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Abstract

Rationale

The COVID-19 pandemic induces considerable strain on intensive care unit resources.

Objectives

We aim to provide early predictions of individual patients’ intensive care unit length of stay,

which might improve resource allocation and patient care during the on-going pandemic.

Methods

We developed a new semiparametric distributional index model depending on covariates

which are available within 24h after intensive care unit admission. The model was trained on

a large cohort of acute respiratory distress syndrome patients out of the Minimal Dataset of

the Swiss Society of Intensive Care Medicine. Then, we predict individual length of stay of

patients in the RISC-19-ICU registry.

Measurements

The RISC-19-ICU Investigators for Switzerland collected data of 557 critically ill patients

with COVID-19.

Main results

The model gives probabilistically and marginally calibrated predictions which are more infor-

mative than the empirical length of stay distribution of the training data. However, marginal

calibration was worse after approximately 20 days in the whole cohort and in different sub-

groups. Long staying COVID-19 patients have shorter length of stay than regular acute

respiratory distress syndrome patients. We found differences in LoS with respect to age cat-

egories and gender but not in regions of Switzerland with different stress of intensive care

unit resources.
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Conclusion

A new probabilistic model permits calibrated and informative probabilistic prediction of LoS

of individual patients with COVID-19. Long staying patients could be discovered early. The

model may be the basis to simulate stochastic models for bed occupation in intensive care

units under different casemix scenarios.

1 Introduction

During the COVID-19 pandemic, governments worldwide imposed severe restrictions on

public life in order to limit the spread of the SARS-CoV-2 virus. A critical point in the decision

making process was the limitation of beds in intensive care units (ICU) in order to adequately

treat all severe cases of COVID-19. Many countries increased the number of ICU beds sub-

stantially at the onset of the crisis. A critical issue with severe COVID-19 disease is the frequent

need for prolonged ICU treatment. For informed decision making it is important to quantita-

tively assess how long the patients are expected to be in an ICU.

At the example of Switzerland, we propose a prediction method for the individual length of

stay (LoS) of patients in ICUs, and apply it to COVID-19 patients. The predictions are given

for each patient based on covariates available within 24 hours after ICU admission. The

method generates probabilistic predictions, that is, for each patient that enters the ICU, we

provide a predictive cumulative distribution function (CDF) that comprehensively quantifies

the uncertainty of the LoS at the time point of prediction. In particular, the predictive CDF

allows to give prediction intervals with nay desired coverage probability. More precisely, the

predictive CDF is an estimate of the conditional distribution of the LoS of the patient given

covariates, which include age, gender, Simplified Acute Physiology Score (SAPS II) [1], and

Nine Equivalents of nursing Manpower use Score (NEMS) (first shift) [2]. Fig 1 shows some

predictive CDFs for randomly selected COVID-19 patients black, and true LoS as vertical

lines. For each possible value t of the LoS, the value of the predictive CDF, F(t), gives the proba-

bility that the patient stays at most t days in the ICU. Conversely, 1 − F(t) gives the probability

that the patient stays longer than t days in the ICU. For example, patient 1 had an LoS of 20

days. The predicted probability that the patient stays at most 20 days was 0.91, and the proba-

bility for a stay of at least 10 days was 0.26 (or 0.74 for at most 10 days). Patient 4 stays longest

in the ICU. This is in agreement with the predictive CDFs, since for all possible t, the probabil-

ity of staying longer than t is highest for patient 4. The waves in the curves are explained by the

fact that patients have a higher possibility to leave the ICU at certain times of the day, and a

lower at others.

Probabilistic predictions allow to assess the uncertainty of the LoS comprehensively.

Therefore they are preferable to forecasts for the mean or median LoS only. Their usefulness is

illustrated by the following examples. The probabilistic LoS predictions allow to derive proba-

bilistic forecasts for the number of patients who are still at the ICU at a certain day in future.

This may be useful for planning purposes. For a single patient admitted today with predictive

LoS distribution F, the probability that the patient is still at the ICU after t days equals 1 − F(t).
From the probabilities for single patients, one may compute (with statistical software) the

probability that any given number of patients is still at the ICU after t days. This allows to

answer questions like ‘How likely is it that there are at least two free beds in five days?’ or

‘What is the smallest number of patients we expect to stay until next week with a high probabil-

ity (say, 90%)?’. The LoS forecasts, and so also the answers to such questions, take into account

the individual characteristics of the patients currently at the ICU. The probabilistic LoS
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predictions also allow to give alerts for patients that are likely to stay unusually long in the

LOS. For example, fix a threshold of x days, say x = 25, and give an alert if the probability that

the patient stays longer than x days exceeds, say, 90%. That is, if 1 − F(x) > 90%, where F is the

predictive LoS distribution of a specific patient.

For planning of normal ward and intermediate care unit to ICU patient flows, such infor-

mation is key to allow optimized resource allocation. On a larger scale, one could plan regional

patient allocations to multiple hospitals based on such algorithms. The current health care cri-

sis has emphasized the importance of patient flow logistics, and informative predictions of LoS

are essential for this purpose.

It is documented in the literature that the prediction of the LoS at the patient level is diffi-

cult, and none of the available prediction models is providing satisfactory forecasts [3] with

a possible exception being the complex models presented in [4, 5] for the purpose of bench-

marking. Furthermore, the focus has almost exclusively been on only point predictions for

the mean LoS, which is not ideal given that the LoS distribution is heavily skewed.

Recently, methodological progress has been made by Ziegel’s group [6]: Based on data in

the format of the Minimal Dataset of the Swiss Society of Intensive Care Medicine (MDSi), it

is possible to give skillful and calibrated probabilistic predictions for the LoS of patients in

ICUs 24h after their admission. In particular, the predictions for the probability of exceed-

ance of the LOS over a certain threshold is shown to be reliable. The proposed method is

semi-parametric, which makes it highly adaptive to the shape of the conditional LoS distribu-

tions. However, it requires large training data sets. The currently available data on COVID-

19 patients in Swiss ICUs is (fortunately) not sufficient. Therefore, we suggest to borrow

strength from the MDSi in order to predict the conditional LoS of COVID-19 patients.

The LoS of a patient in an ICU does not only depend on their physical condition but also

on the characteristics and policies of the ICU. Even within a small country such as Switzerland

such differences can be observed [6]. We restrict the analysis in this paper to Switzerland but

Fig 1. Predictive CDFs for the LoS of some COVID-19 patients with corresponding realizations as a vertical line. Four patients were drawn at

random. The four wavy lines represent their predictive CDFs for the LoS based on covariates that are available at most 24 hours after ICU admission,

that is, for each value t of the LoS on the horizontal axis, the curve gives the probability that the respective patient stays at most t days in the ICU. The

vertical dashed lines represent the actually observed values of the LoS of the patients, which are unknown at the time of prediction. The larger the

increase of the CDF on a given interval on the horizontal axis, the higher the probability of observing an LoS in this interval. For example, the predicted

probability for the LoS of patient 1 being between 0 and 5 days is 0.47, whereas this probability is 0.40 for patient 2, 0.35 for patient 3, and only 0.19 for

patient 4. The CDF of patient 4 lies substantially below the CDFs of the other patients which is in agreement with patient 4 having the longest realized

LoS.

https://doi.org/10.1371/journal.pone.0247265.g001
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the methodology can be adapted to other countries given sufficient data is available. We use

the prediction method for the LoS to analyze the characteristics of the LoS of COVID-19

patients with respect to age differences, and gender differences. Since some parts of Switzer-

land were hit harder by the pandemic than others, we also use the predictions to analyse

regional differences in the LoS.

2 Patients and methods

2.1 RISC-19-ICU and MDSi

Risk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry, is

a collaborative effort with the participation of a majority of the Swiss ICUs to provide a basis

for decision support during the ongoing public health crisis, endorsed by the Swiss Society of

Intensive Care Medicine (https://www.risc-19-icu.net/) [7, 8]. ICU data were reported on a

daily basis, including near real-time data on LoS. The registry was deemed exempt from the

need for additional ethics approval and patient informed consent by the ethics committee of

the University of Zurich (KEK 2020-00322, ClinicalTrials.gov Identifier: NCT04357275). Fully

anonymized datasets, in regard to Swiss law, were collected using a secure REDCap infrastruc-

ture provided by the Swiss Society of Intensive Care Medicine.

557 critically ill patients with COVID-19 that have been admitted to an ICU in Switzerland

have entered the registry as of the snapshot date, June15, 2020, 481 of which have already been

dismissed from the ICU or have died, that is for 86.36% of the patients the LoS is available.

There are 18 patients for which one or more of the covariates are not available. Overall, covari-

ates and LoS observations are available for 473 patients, and we call these the COVID-19 data-

set. Censoring is a non-trivial problem in the COVID-19 dataset and we address this issue in

detail in Section A of S1 Appendix.

The Minimal Dataset of the Swiss Society of Intensive Care Medicine (MDSi) has been

introduced in 2005 and contains fully anonymized key data of the entire number of ICU

patients in certified Swiss ICU’s (https://www.sgi-ssmi.ch/de/datensatz.html). In addition to

demographic data, the MDSi includes SAPS II as initial illness severity score and NEMS per

nursing shift as a workload score.

Because almost any patient with severe COVID-19 disease presents chiefly like acute respi-

ratory distress syndrome (ARDS), the training data consists of all patients in the MDSi with

the diagnosis of ARDS which were admitted to Swiss ICUs in the years 2012 to 2018. Of the

2411 admissions, 856 were excluded because they satisfy one or more of the following criteria:

missing or implausible values for SAPS II or NEMS (135), age younger than 16 (5), admitted

with burns as initial diagnosis (3) or undergoing transplant operations 24 hours before or after

ICU admission (8), readmissions (132), and patients admitted from ICUs or transferred to

other ICUs (580). The exclusion of patients transferred from or to ICUs is because their LoS is

incomplete and therefore not suitable for prediction. For the LoS predictions, admissions are

standardized to a common admission time at midnight, in order to recover patterns in the

ICU discharge times [6]. As a consequence, 99 patients had to be excluded because they did

not stay in the ICU at least until midnight of the admission date. After exclusions, the training

dataset consists of 1555 observations.

Concerning the covariates that are available for prediction, the possibilities are limited to

covariates that are available in the COVID-19 dataset and the training data in the same for-

mat. Clear choices are the gender and age of patients. Furthermore, we have included SAPS

II and the NEMS of the first ICU shift as covariates since they are informative for the LoS

[9–11].

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

PLOS ONE | https://doi.org/10.1371/journal.pone.0247265 February 19, 2021 4 / 14

https://www.risc-19-icu.net/
https://www.sgi-ssmi.ch/de/datensatz.html
https://doi.org/10.1371/journal.pone.0247265


2.2 Statistical methods

Distributional Index Models (DIMs) have been introduced in [6]. They are semi-parametric

models for distributional regression building on isotonic distributional regression (IDR) intro-

duced in [12, 13]. A distributional regression model allows to estimate the full conditional dis-

tribution of the LoS given covariates. For the DIM used in this paper, we use a parametric

model for a real-valued index function α, the DIM index, that depends on gender g, age a,

SAPS II s, and NEMS m, that is

aðg; a; s;mÞ ¼ b0 þ b11fg ¼ maleg þ cr1ðaÞ þ cr2ðsÞ þ cr3ðmÞ;

where β0 is the intercept, β1 the coefficient for gender, and cr1, cr2, cr3 are penalized cubic

regression splines for the continuous variables age, SAPS II and NEMS; see the documentation

of the mgcv package for details about the penalization. The model is fitted on the transformed

LoS log(LoS+ 1). The log-transformation decreases the skewness of the data, while the addition

of the constant 1 makes the resulting distribution more symmetric [6].

Furthermore, we assume that for the probability of the LoS Y of a randomly selected patient

with covariates (G, A, S, M) = (g, a, s, m) it holds that

PðY � yjðG;A; S;MÞ ¼ ðg; a; s;mÞÞ ¼ Faðg;a;s;mÞðyÞ; for all y 2 R ð1Þ

with a family ðFvÞv2R of stochastically ordered CDFs, that is Fv(y)�Fw(y) for all y 2 R if v� w.

We randomly split the training data in two and estimate α by â on the first half. Given â,

we use the second half of the training data to estimate Fv using IDR. In order to make the esti-

mation procedure less dependent on the splitting of the training data, we use repeat this proce-

dure 100 times and average the resulting estimated distributions to obtain our final estimate

F̂ â.

There are dependencies between the covariates age, SAPS II and NEMS but we argue that it

is still useful to include all of them in the model. The variable age is contained in SAPS II as a

discretized effect with 6 levels. Age enters the model as a cubic regression spline with suffi-

ciently high dimension, manually removing the age variable from SAPS II would essentially

correspond to a basis transformation of the model and not affect the prediction results. The

information provided by the NEMS is not redundant to SAPS II. NEMS is a crucial variable

for COVID-19 patients since it contains information on the ventilation status, therapy with

cardiovascular drugs and renal replacement treatment, which are not in the SAPS II. More

precisely than the SAPS II, the NEMS reflects the actual therapeutic intensity a patients needs,

and it is therefore likely to be one of the earliest markers for LoS.

Probabilistic predictions should be calibrated and sharp [14]. We assess probabilistic cali-

bration by Probability Integral Transform (PIT) histograms, and use Pearson’s chi-square test

with 10 bins to test for uniformity. Marginal calibration is checked by comparing average pre-

dicted CDFs to empirical CDFs (ECDFs). Sharpness is assessed using the Continuous Ranked

Probability Score (CRPS) and predictive power is compared with a Diebold-Mariano test

based on the CRPS, see Section B of S1 Appendix.

The implementation is done in R 4.0 [15] using the packages mgcv [16] for the estimation

of the index function, and isodistrreg for isotonic distributional regression [12]. Sample data

and code are provided in the supplement S1 Code of this article.

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

PLOS ONE | https://doi.org/10.1371/journal.pone.0247265 February 19, 2021 5 / 14

https://doi.org/10.1371/journal.pone.0247265


3 Results

3.1 General

Summary statistics for the COVID-19 dataset and the training data are given in Table 1. The

figures are correct for the June 15, 2020, snapshot. The proportion of men in the COVID-19

dataset is higher than in the training data set. The age structure of both datasets is similar with

COVID-19 patients being slightly younger on average. COVID-19 patients generally have a

higher NEMS in the first shift. The median and mean SAPS II is similar in both datasets.

Fig 2 provides a quantitative comparison of the LoS in the COVID-19 dataset and the train-

ing data. Panel (a) shows that the probability PðY � yÞ of the LoS exceeding a fixed threshold

y is larger for COVID-19 patients than in the training data up to about y = 30 days, and after-

wards the relationship is reversed.

This observation does not exclude the possibility that given the covariates (G, A, S, M) for

an individual patient, the conditional distribution of the LOS can be predicted well using the

training data. Panel(b) of Fig 2 shows that the individual predictions are reasonable and are

marginally calibrated up to about 25 days. The tail of the average forecast distribution is

heavier than the tail of the empirical distribution of the COVID-19 dataset, meaning that very

long LoS are less likely in the COVID-19 dataset.

The DIM predictions for the LoS of the COVID-19 patients have an average CRPS of 5.29

compared to 5.69, which is the average CRPS when predicting the LoS of the COVID-19

patients with the ECDF of the training data, that is, for all patients, independently of the covar-

iates, the LoS is predicted by using the distribution of all the LoS values in the training data.

This difference is highly significant with a p-value of less than 5 � 10−4. This shows that the

DIM predictions are significantly more informative than the ECDF forecast. The DIM predic-

tions show better calibration than the ECDF predictions, see S3 Fig in S1 Appendix. Unifor-

mity of the PIT is rejected for the ECDF forecasts (p-value<10−4). For the DIM forecasts,

uniformity of the PIT is not rejected (p-value: 0.384).

3.2 Age differences

Fig 3(a) gives the empirical CDFs of COVID-19 patients grouped by age. Young patients, less

than 40 years, and very old patients, greater than 80 years have much shorter LoS than patients

between 40 and 80. Patients between 40 and 65 tend to have a shorter LoS than patients

between 65 and 80 except in cases of long LoS beyond 30 days. In Fig 3(c) the empirical CDFs

Table 1. Summary statistics of COVID-19 dataset and training data.

Variable Data Q25 Median Mean Q75 P-value

Age training 55.0 67.0 63.8 75.0 4.04 � 10−3

COVID-19 55.0 63.0 63.0 72.0

LoS training 4.5 9.1 12.4 15.8 5.79 � 10−5

COVID-19 5.0 12.0 13.9 19.0

NEMS training 18.0 27.0 28.6 34.0 <1.0 � 10−16

COVID-19 32.0 32.0 33.2 39.0

SAPS II training 35.0 46.0 48.5 59.0 1.39 � 10−1

COVID-19 29.0 50.0 44.9 58.0

Gender training Male: 61.9% Female: 38.1% 1.66 � 10−8

COVID-19 Male: 75.9% Female: 24.1%

P-values are for two-sided Wilcoxon’s rank sum test for continuous variables and Fisher’s exact test for gender.

https://doi.org/10.1371/journal.pone.0247265.t001
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are compared to the predictions based on the training data. The predictions for patients

younger than 40 seem reasonable but their quality is hard to judge given the small sample

size of this group in the COVID-19 dataset. For patients older than 80, the predicted LoS is

longer than observed, but again, a definite statement should not be made due to small sample

size. For patients between 40 and 65, marginal calibration is good until about 18 days. For

higher thresholds, a longer LoS is predicted than observed. For patients between 65 and 80

years, the predictions give too much weight to LoS shorter than 25 days, and substantially

overestimate the LoS beyond 25 days. Fig 3(b) shows that the training data leads to predic-

tions of shorter LoS for patients younger than 40 and older than 80. In contrast to the

COVID-19 data, the predicted LoS for patients between 65 and 80 is shorter than for

patients between 40 and 65.

3.3 Gender differences

Fig 4(a) shows the empirical CDF of COVID-19 patients grouped by gender. Female patients

show a slightly shorter LoS. The deviations of the predicted LoS from the observed LoS for

male and female patients is displayed in Fig 4(c). Qualitatively the differences are similar

with a slightly worse agreement of predictions and observations for female patients. The

average predictive distributions for male and female patients are displayed in Fig 4(b). The

predictions show a clear difference depending on gender with the same order as the COVID-

19 data in that the LoS for women tends to be shorter than the one for men. However, the

difference in average predicted LoS CDF is larger than the difference in ECDF based on the

COVID-19 data.

Fig 2. (a) EmpiricalCDF of the LoS in training and validation dataset. (b) Empirical CDF of the LoS in the validation dataset (black step function black,

same as in panel (a)) and average LoS forecast for the COVID-19 patients (orange curve). Shaded areas show the pointwise 25% and 75% (10% and 90%

for the outer bounds) quantiles of the predictive CDFs. For the average LoS forecast, the predictive CDFs of the COVID-19 patients are averaged

pointwise, that is, the curves show the vertical average of the predictive CDFs for all patients in the COVID-19 dataset. The computation of the

aggregated LoS CDFs is demonstrated in the sample code in S1 Code. The predictions take individual patient covariates into account and this allows to

mitigate some differences between training and validation data observed in panel (a); for further discussion see text.

https://doi.org/10.1371/journal.pone.0247265.g002
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In order to gain some insight on the reasons for this effect, we checked if there is a significant

difference in the LoS distribution of men and women in the training data. This is not the case.

Furthermore, a comparison of the distribution of the DIM index computed for the men and

women in the COVID-19 dataset shows that, indeed, the index values for women tend to be

smaller than those for men, which explains the differences between the CDFs in Fig 4(b). In

summary, it appears that a female patient with COVID-19 is likely to stay longer in the ICU

than a similar female patient in the training data, whereas this effect is less pronounced for men.

3.4 Regional differences

We have split the COVID-19 dataset according to the location of the ICU within Switzerland.

Region NE consisting of Northern and Eastern Switzerland and Region WT consisting of

Western Switzerland and Ticino. Region WT was hit earlier and more severely by the COVID-

19 crisis than Region NE. While ICU capacity limits were never reached in Region NE, ICU

occupation was possibly critical in Region WT.

Fig 3. Depending on age: (a) Empirical LoS distributions of COVID-19 patients. (b) Average DIM forecasts for COVID-19 patients. (c) Empirical LoS

distributions of COVID-19 patients and corresponding DIM forecasts. DIM forecasts are as in Fig 2.

https://doi.org/10.1371/journal.pone.0247265.g003
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The LOS distribution of COVID-19 patients is similar in both regions. The null hypothesis

of equal LoS distribution in both regions cannot be rejected (two-sample Kolmogorov-Smir-

nov test p-value: 0.510, Wilcoxon rank sum test p-value: 0.607), see also S4 Fig in S1 Appendix.

Comparing the regional LoS distributions to the DIM forecasts for the regions, we obtain that

both regions show the same pattern: Good marginal calibration until about 25 days and then

shorter LoS of the COVID-19 patients in comparison to the DIM predictions, see S5 Fig in S1

Appendix. The differences in the predictions for both regions are small, see S6 Fig in S1

Appendix.

4 Discussion

We have applied a new semi-parametric model, a DIM, for probabilistic predictions for the

LoS of COVID-19 patients in Swiss ICUs. The model is trained with data from the MDSi,

namely with data of patients with ARDS. Validation of the model using the COVID-19 dataset

shows that the predictions are probabilistically calibrated, marginally calibrated (except for the

Fig 4. Depending on gender: (a) Empirical LoS distributions for COVID-19 patients. (b) Average DIM forecasts for COVID-19 patients. (c) Empirical

LoS distributions of COVID-19 patients and corresponding DIM forecasts. DIM forecasts are as in Fig 2.

https://doi.org/10.1371/journal.pone.0247265.g004
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tail of the distribution), and significantly more informative then an ECDF forecast based on

the training data.

COVID-19 patients younger than 40 and older than 80 years tend to have a shorter stay in

the ICU than the patient groups between 40–65 and 65–80 years. Predictions for patients older

than 80 were longer than observed which could be an indicator of early treatment withdrawal

in very old patients with severe COVID-19 disease. In the age groups 65-80 years, forecasts

were shorter in the early phase than observations. This could be explained by prolonged recov-

ery times compared with ARDS in elderly patients. The forecasts in both age groups (40–65

and 65–80 years) were longer after 25 to 30 days. In those patient groups, withdrawal of treat-

ment is often executed after 20-30 days because of medical futility. The analysis of the LoS with

respect to age suggests that there are differences between ARDS (training data) and COVID-

19 in the sense that in terms of LoS COVID-19 patients might rather behave like slightly older

ARDS patients keeping the other covariates fixed.

The difference between the LoS distribution of female and male COVID-19 patients is

smaller than the difference between the predicted LoS distributions based on the training data,

that is, non-COVID-19 patients with ARDS. For male patients the predictions agree better

with the empirical distribution of observed LoS of the COVID-19 patients than for female

patients. In terms of LoS, male COVID-19 patients behave more similarly to patients in the

training data than female COVID-19 patients, making “longer than expected” LoS more likely

for female than for male patients.

Despite the fact that the Western Switzerland and Ticino (Region WT) were hit earlier, and

potentially less prepared for the COVID-19 crisis than Northern and Eastern Switzerland

(Region NE), we do not see an impact on the LoS of COVID-19 patients.

There are somepossible shortcomings of our study. First, the training dataset is not on

COVID-19 patients. Despite severe COVID-19 pneumonia behaving similar to ARDS, there

are some important differences [17]. Furthermore, multiple organ involvement is frequent in

severe COVID-19 disease [18, 19]. There have been discussions how and if classical ARDS and

ARDS secondary to COVID-19 (C-ARDS) are different. Initially, substantial differences were

postulated [20–22] but more recently consensus is growing that C-ARDS is most probably

similar to classical ARDS in treatment intensity and therapeutic approach [23]. In view of this,

the historical training data is as well chosen as historical data can be. Furthermore, the NEMS

evaluates how severe or nursing intensive a patient is, independently of the diagnosis. There-

fore, using is as a covariate in prediction is likely to mitigate confounders between training

data and COVID-19 dataset. Second, a limitation is imposed by the use of MDSi as training

dataset because the analysis is then constrained to the relatively few variables contained in

MDSi. Clearly, there are further relevant predictors for COVID-19 patients. However, most of

them concern mortality and not LoS, for example, coagulation status. These values are avail-

able in the RISC-19-ICU registry but not in the MDSi training data. Furthermore, we believe

that a successful model for probabilistic predictions of LoS should rely on values that are rou-

tinely recorded and available early after hospitalization such as SAPS II and NEMS. Since they

are compound variables, they are informative for the LoS. If training data sets with more

covariates are available, the DIM model we propose in Section 2.2 could be adapted to vari-

ables specific to COVID-19 patients. This may lead to an increase in predictive skill. Third,

there is possibly a bias towards a longer predicted LoS because of the data sampling process.

We have assessed whether the patients with missing LoS value in the RISC-19-ICU registry

have a substantially different distribution of covariate values than the patients with valid LoS

value. This is not the case which is an indication that many of them, rather than having a cen-

sored LoS, have indeed not been updated. We have also repeated all of our analyses on the

COVID-19 dataset restricted to patients with admission date before April 5, 2020. Here, the
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update and the censoring problem should be less. Qualitatively, we obtained the same results

as the ones reported here. Nevertheless, it should be kept in mind that some of the very long

LoS are likely to be censored in either case. Fourth, LoS is often not only dependent on epide-

miological and physiologic variables but additionally on ICU resources, therapeutic restriction

policies [24] and withdrawal strategies (https://www.samw.ch/de/Ethik/Themen-A-bis-Z/

Intensivmedizin.html). Our forecasts predict a longer LoS compared with the observed LOS

overall and in almost any patient subgroups after 25 days. This may be due to an earlier with-

drawal of the intensive therapy compared to ARDS, especially in shortage of ICU resources.

However we did not find any significant difference in LoS distribution between two regions of

Switzerland with diverse ICU strain.

5 Conclusion

A new semiparametric model permits calibrated and informative probabilistic prediction of

LoS of individual patients with severe COVID-19 in ICUs, given covariate information. These

predictions would allow to simulate stochastic models for bed occupation in ICUs under dif-

ferent scenarios for the case mix. These scenarios could be different projections for the rate at

which COVID-19 patients and other patients arrive in the ICUs.
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Bülach (Bernd Yuen, MD; Thomas Hillermann, MD); Intensivstation, Regionalspital Emmen-

tal AG, Burgdorf (Petra Salomon, MD; Iris Drvaric, MD); Intensivmedizin, Kantonsspital

Graubünden, Chur (Frank Hillgaertner, MD; Marianne Sieber); Institut fuer Anaesthesie und

Intensivmedizin, Spital Thurgau, Frauenfeld (Alexander Dullenkopf, MD; Lina Petersen, MD);

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

PLOS ONE | https://doi.org/10.1371/journal.pone.0247265 February 19, 2021 11 / 14

https://www.samw.ch/de/Ethik/Themen-A-bis-Z/Intensivmedizin.html
https://www.samw.ch/de/Ethik/Themen-A-bis-Z/Intensivmedizin.html
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247265.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247265.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247265.s003
https://doi.org/10.1371/journal.pone.0247265


Soins Intensifs, Hopital cantonal de Fribourg, Fribourg (Hatem Ksouri, MD, PhD; Govind Oli-

ver Sridharan, MD); Division of Intensive Care, University Hospitals of Geneva, Geneva (Sara

Cereghetti, MD; Filippo Boroli, MD; Jerome Pugin, MD, PhD); Division of Neonatal and Pedi-

atric Intensive Care, University Hospitals of Geneva, Geneva (Serge Grazioli, MD; Peter C.

Rimensberger, MD); Intensivstation, Spital Grabs, Grabs (Christian Bürkle, MD); Institut für

Anaesthesiologie Intensivmedizin & Rettungsmedizin, See-Spital Horgen & Kilchberg, Horgen

(Julien Marrel, MD; Mirko Brenni, MD); Soins Intensifs, Hirslanden Clinique Cecil, Lausanne

(Isabelle Fleisch, MD; Jerome Lavanchy, MD); Anaesthesie und Intensivmedizin, Kantonsspi-

tal Baselland, Liestal (Anja Baltussen Weber, MD; Peter Gerecke, MD; Andreas Christ, MD);

Dipartimento Area Critica, Clinica Luganese Moncucco, Lugano (Romano Mauri, MD;

Samuele Ceruti, MD); Interdisziplinaere Intensivstation, Spital Maennedorf AG, Maennedorf

(Katharina Marquardt, MD; Karim Shaikh, MD); Institut fuer Anaesthesie und Intensivmedi-

zin, Spital Thurgau, Münsterlingen (Thomas Neff, MD; Tobias Hübner, MD); Intensivmedi-
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MD); Institut für Anaesthesiologie und Intensivmedizin, Klinik Hirslanden, Zurich (Christoph

Haberthuer, MD; Roger F. Lussman, MD).

Author Contributions

Conceptualization: Alexander Henzi, Gian-Reto Kleger, Johanna F. Ziegel.

Data curation: Matthias P. Hilty, Pedro D. Wendel Garcia.

Formal analysis: Alexander Henzi.

Investigation: Alexander Henzi, Gian-Reto Kleger, Johanna F. Ziegel.

Methodology: Alexander Henzi, Gian-Reto Kleger, Johanna F. Ziegel.

Project administration: Gian-Reto Kleger, Johanna F. Ziegel.

Software: Alexander Henzi, Matthias P. Hilty, Pedro D. Wendel Garcia.

Supervision: Johanna F. Ziegel.

PLOS ONE Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

PLOS ONE | https://doi.org/10.1371/journal.pone.0247265 February 19, 2021 12 / 14

https://doi.org/10.1371/journal.pone.0247265


Validation: Gian-Reto Kleger, Matthias P. Hilty, Pedro D. Wendel Garcia.

Visualization: Alexander Henzi.

Writing – original draft: Johanna F. Ziegel.

Writing – review & editing: Alexander Henzi, Gian-Reto Kleger, Matthias P. Hilty, Pedro D.

Wendel Garcia, Johanna F. Ziegel.

References
1. Le Gall JR, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a

European/North American Multicenter Study. JAMA. 1993; 270:2957–2963.

2. Miranda DR, Nap R, de Rijk A, Schaufeli W, Iapichino G, members of the TISS Working Group. Nursing

activities score. Crit Care Med. 2003; 31:374–382. https://doi.org/10.1097/01.CCM.0000045567.

78801.CC

3. Verburg IWM, Atashi A, Eslami S, Holman R, Abu-Hanna A, de Jonge E, et al. Which models can I use

to predict adult ICU length of stay? A systematic review. Crit Care Med. 2017; 45:e222–e231. https://

doi.org/10.1097/CCM.0000000000002054 PMID: 27768612

4. Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Intensive care unit length of stay:

Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care

Med. 2006; 34:2517–2529. https://doi.org/10.1097/01.CCM.0000240233.01711.D9

5. Vasilevskis EE, Kuzniewicz MW, Cason BA, Lane RK, Dean ML, Clay T, et al. Mortality probability

model III and acute simplified physiology score II: Assessing their value in predicting length of stay and

comparison to APACHE IV. Chest. 2009; 136:89–101. https://doi.org/10.1378/chest.08-2591 PMID:

19363210

6. Henzi A, Kleger GR, Ziegel JF. Distributional (Single) Index Models. Preprint. 2020;arXiv:2006.09219.

7. Wendel Garcia PD, Fumeaux T, Guerci P, Heuberger DM, Montomoli J, Roche-Campo F, et al. Prog-

nostic factors associated with mortality risk and disease progression in 639 critically ill patients with

COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort.

EClinicalMedicine. 2020; p. 100449. https://doi.org/10.1016/j.eclinm.2020.100449 PMID: 32838231

8. Hilty MP, Wendel Garcia PD. hobbes8080/risc-19-icu: registry data transformation v1.0. Zenodo Data

Repository. 2020. https://doi.org/10.5281/zenodo.3757064

9. Rothen HU, Stricker K, Einfalt J, Bauer P, Metnitz PG, Moreno RP, et al. Variability in outcome and

resource use in intensive care units. Intensive Care Med. 2007; 33(8):1329–1336. https://doi.org/10.

1007/s00134-007-0690-3 PMID: 17541552

10. Granholm A, Christiansen CF, Christensen S, Perner A, Mueller MH. Performance of SAPS II according

to ICU length of stay: A Danish nationwide cohort study. Acta Anaesthesiol Scand. 2019; 63(9):1200–

1209. https://doi.org/10.1111/aas.13415

11. Kleger GR. Die Aufenthaltsdauer kritisch kranker Patienten auf einer Intensivstation: Probabilistische
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