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Abstract: As the amount of data stored from industrial processes increases with the demands of Industry 

4.0, there is an increasing interest in finding uses for the stored data. However, before the data can be used 

its quality must be determined and appropriate regions extracted. Initially, such testing was done manually 

using graphs or basic rules, such as the value of a variable. With large data sets, such an approach will not 

work, since the amount of data to tested and the number of potential rules is too large. Therefore, there is 

a need for automated segmentation of the data set into different components. Such an approach has recently 

been proposed and tested using various types of industrial data. Although the industrial results are 

promising, there still remain many unanswered questions including how to handle a priori knowledge, 

over- or undersegmentation of the data set, and setting the appropriate thresholds for a given application. 

Solving these problems will provide a robust and reliable method for determining the data quality of a 

given data set.  
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1. INTRODUCTION 

 In many industry plants, process information is 

continually stored in a data historian for future reference. 

Given the increasing demands on industry driven by 

environmental, governmental, and economic considerations, 

the ability to use the historical data has increased in 

importance. These data can be used in many different 

applications including system identification (Sha’aban, 2019; 

Khatisbisepehr & Huang, 2008; Mehrkanoon, et al., 2012; 

Arengas & Kroll, 2017; Yang, et al., 2019), fault detection and 

diagnosis (Ding, 2014; Ding, et al., 2013), control, especially 

model predictive control (Shardt & Brooks, 2018; Sha’aban, 

2019; Klimchenko, et al., 2019), and process monitoring 

(Shardt, et al., 2012; Huang, 2003). However, not all of the 

stored data can be used for each task. In fact, it is imperative 

to determine the quality of the data before using them. This 

will avoid using bad data to provide meaningless results. 

 Data quality assessment, that is, determining which parts 

of the given data set are useful and which ones are not, has 

often and, historically speaking, solely, been performed using 

manual methods. These manual methods include such methods 

as checking variables against thresholds or using graphs. 

However, such approaches are only useful for relatively small 

data sets and off-line use. Since current data sets can contain 

thousands if not millions of data points spread out over 

multiple variables, manually verification may not be an 

effective strategy. Furthermore, such an approach cannot be 

used for online checking of data quality before using the data 

for online modelling. 

 Therefore, there is a need to develop and implement 

methods for automatic data quality assessment. The first such 

approaches focused on determining the quality of the data for 

use in system identification. Two different approaches were 

considered: the Laguerre-model based method (Bittencourt, et 

al., 2015; Peretzki, et al., 2011) and the autoregressive model 

with exogenous input method (Shardt & Huang, 2013). Both 

methods used the invertibility of the Fisher information matrix 

as the primary metric to assess the data quality. The difference 

lies in the models assumed for the data set. The Laguerre-

model based method as its name suggests uses the Laguerre 

model as its basis. The main advantage of this approach is that 

the time delay need not be known before hand (Bittencourt, et 

al., 2015). On the other hand, the autoregressive model with 

exogenous input method uses an autoregressive model with 

exogenous input (ARX) to assess the data quality. Here, the 

time delay for the process must be known before hand. 

However, the model used for assessment is close enough to the 

real process and hence better represents the final model that 

will be considered (Shardt, 2012). As well, both approaches 

consider additional metrics, such as the variability of the input 

and output signals and the current controller modes (manual, 

automatic, and cascade). These additional metrics can help 

segment the data set better and more cleanly. 

 Nevertheless, the segmentation methods are often too 

aggressive in splitting the data into separate segments (Shardt 

& Shah, 2014) and there is a need to develop methods that can 

combine adjacent regions that could be modelled by similar 

models. Furthermore, it would be useful to know which 

regions could be represented by similar models so that large 
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data sets for modelling can be obtained. Various approaches 

involving signal entropy (Shardt & Huang, 2013; Basseville, 

1988; Basseville, 1998; Keogh, et al., 2004; Basseville & 

Nikiforov, 1993) have been proposed.  

 Another issue is how to handle multivariate data sets 

(Arengas & Kroll, 2017; Shardt & Brooks, 2018; Arengas & 

Kroll, 2019). Although the initial data quality assessment 

methods considered, univariate data sets, most, if not all, 

industrial data are better treated as multivariate data. This 

means that multiple variables need to be considered when 

implementing the assessment. It can be noted that selecting the 

appropriate set of variables is one of the key challenges, since 

some of the variable may well be correlated and thus cause the 

data quality assessment method to fail. 

 Data quality assessment has been applied in various 

industrial settings leading to new challenges and perspectives. 

Such industrial case studies include the floatation cell in a ore 

separation process (Shardt & Brooks, 2018), modelling of 

coal-fired power plants (Li, et al., 2019), large-scale thermal 

plants (Wang, et al., 2018), and various univariate control 

loops typically found in a chemical plant (Peretzki, 2010). One 

of the main challenges from an industrial perspective is the 

development of appropriate thresholds and values for the 

tuning parameters so that the approach can apply to the largest 

number of different cases. 

 Therefore, this paper seeks to present a comprehensive 

review of the data quality assessment method including a 

summative review of the different guidelines and suggestions 

for setting the thresholds and tuning parameters. As well, areas 

requiring further work will be proposed. Finally, some 

examples showing the different aspects of the data quality 

assessment will be presented.  

2. THEORY 

 Before getting into the practical aspects of data quality 

assessment, it would be useful to examine the theoretical basis. 

Consider the general closed-loop system shown in Figure 1, 

where Gc is the controller transfer function, Gp is the process 

transfer function, Gl is the disturbance transfer function, yt is 

the output signal, rt is the reference signal, ut is the input signal, 

and et is the white noise disturbance signal. The theoretical 

results presented will be considered for both open-loop, that is, 

without a controller, and closed-loop, with a controller, 

conditions. 

 

Figure 1: Generic Closed-loop Process 

2.1. System Identification Background 

 For the process shown in Figure 1, we can consider the 

following situations: 

1) Open-loop data: In this case, Gc and rt are ignored 

and there is no feedback from the output to the input. 

The input signal itself is manipulated and the process 

observed. 

2) Closed-loop data: Here there two subcases to 

consider: 

a. Externally Excited Data: Here the reference signal 

is continuously changing, that is, exciting the 

process. 

b. Routine Operating Data: Here the reference signal 

is constant and the only excitations come from the 

disturbance. 

System identification using open-loop data is relatively 

straightforward (Ljung, 1999). In closed-loop identification, 

there are three different approaches that can be taken: direct, 

indirect, or joint identification. In direct identification, the 

closed-loop input, ut, and the output, yt, are used to model the 

process, while in indirect identification, the reference signal 

and the output are first used to obtain a model of the closed-

loop process that includes the controller. Subsequently, the 

plant model is determined using the controller model. In joint 

identification, both the plant and controller are simultaneously 

identified. In general, since direct identification is very similar 

to open-loop identification, it is often preferred. In certain 

cases, such as routine operating data, direct identification is the 

only approach to take. 

2.2. Data Quality Assessment and System Identification 

 When assessing the quality of a data set for system 

identification, the primary objective is to determine if the data 

is sufficiently excited for identifying the true parameter 

estimates.  

 For the purposes of the developing the theory, let us 

assume that the data set comes from a single model given as 

( ),t t i
y u
 

 of length N, where i is the ith sampling point and the 

subscript arrows denote a vector. Should there be any reason 

to suspect that the data does not come from a single model, 

then the data should first be partitioned into regions with 

similar characteristics and then each region separately 

analysed for data quality. Finally, assume that the model of 

interest for the data set is a single-input, single-output (SISO) 

model with the following form 
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Evaluating the Jacobian matrix, , given as Equation (3), for 

each of the inputs will give the regression matrix, , that is, 
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For a linear system, that is, a system where the Jacobian matrix 

is independent of the parameters, we can write the 

identification problem as 

yθ =




  (5) 

The least-squares solution can be obtained by first multiplying 

Equation (5) by T to give 

T T yθ =




    (6) 

where T is a square matrix, and hence, satisfying one of 

the requirements for invertibility. Furthermore, it can be noted 

that T is the Fisher information matrix, , that is, 

T=    (7) 

  For the nonlinear case,  can still be calculated, however 

its value will depend on the parameter values. 

 In order to obtain unique parameter estimates, Equation 

(6) needs to be solved. In general, this implies that the inverse 

of the Fisher information matrix must be found. Therefore, the 

invertibility of this matrix will determine the uniqueness of the 

solution. 

 For an arbitrary n×n matrix, , to be invertible, any one 

of the following conditions must hold (Anton, 2000): 

1) det() ≠ 0; 

2) The eigenvalues of  cannot be zero; and  

3) rank() = n. 

All three conditions for invertibility given above are 

equivalent, that is, if one holds, then the others hold as well 

(Anton, 2000). Therefore, from a theoretical perspective, it is 

necessary and sufficient to check either the eigenvalues of  

or the determinant to determine invertibility. However, in 

addition to the theoretical constraints on invertibility, when 

dealing with a numerical problem, there is also a need to 

consider the numerical stability of the matrix, that is, how will 

small perturbations in the values effect the overall result. Such 

small perturbations often arise from such factors as 

measurement noise or unexpected disturbances in the system. 

Therefore, in addition to checking the theoretical invertibility 

of the matrix, it would be useful to check the numerical 

stability of the matrix. One such approach is the condition 

number of a matrix, K(), which is defined as 

( ) 1

p p p
K −=    (8) 

where ||·||p is some matrix norm (Quarteroni, et al., 2000; 

Quarteroni & Saleri, 2003). Practically, there are three choices 

for p, namely, p = 1, 2, or ∞. Selecting p = ∞ tends to produce 

too conservative bounds for the condition of the matrix 

(Quarteroni, et al., 2000), although the calculation is rather 

straightforward. Selecting p = 2 is preferred (Quarteroni, et al., 

2000). In this case, 
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where σ() are the singular values of the matrix  (Quarteroni, 

et al., 2000). If  is a symmetric positive definite matrix, then, 

by noting that σ() = |λ()|, where λ() is an eigenvalue of , 

Equation (9) can be rewritten as (Quarteroni, et al., 2000) 
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A matrix is said to be well-conditioned if K2 is less than a given 

threshold, ε. The lower bound for K2 is 1, which will be 

achieved when both the maximum and minimum absolute 

eigenvalues are equal. The upper bound for K2 is +∞, which is 

achieved when the smallest eigenvalue is zero, and hence the 

matrix is uninvertible.  

 The threshold for the condition number is normally set to 

be 104 (Shardt & Huang, 2013). 

 Since  is a symmetric, positive definite matrix, which 

implies that its 2-norm can be calculated using Equation (10), 

it follows that the condition number given by Equation (10) 

can be used to assess the data quality. Therefore, we can define 

the data quality index, ηdata, as 
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A data set is said to be informative enough with respect to the 

given model structure if ηdata < ε, that is, the -matrix is 

sufficiently well-conditioned for the taking of an inverse. 

Furthermore, it can be noted that a well-conditioned  -matrix 

implies that the variances obtained for the parameters will be 

reasonable and hence the results obtained will be significant.  

 Practically speaking, a threshold value of 104 works well. 

However, the thresholds can be changed depending on the 

desired properties of the model. Factors such as the desired 

accuracy of the model, the measurement noise, or model 

structure can be taken into consideration when selecting the 

threshold. 

2.3. Data Partitioning 

 It has so far been assumed that the given data set comes 

from a single operating region so that the assumption of a 

single (linear) model holds. However, in practice, most data 

sets contain multiple different regions with varying data 

structures. 
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given model structure if ηdata < ε, that is, the -matrix is 

sufficiently well-conditioned for the taking of an inverse. 

Furthermore, it can be noted that a well-conditioned  -matrix 

implies that the variances obtained for the parameters will be 

reasonable and hence the results obtained will be significant.  

 Practically speaking, a threshold value of 104 works well. 

However, the thresholds can be changed depending on the 

desired properties of the model. Factors such as the desired 

accuracy of the model, the measurement noise, or model 

structure can be taken into consideration when selecting the 

threshold. 

2.3. Data Partitioning 

 It has so far been assumed that the given data set comes 

from a single operating region so that the assumption of a 

single (linear) model holds. However, in practice, most data 

sets contain multiple different regions with varying data 

structures. 

 

 

 

     

 In fact, it is possible to use the above data quality index 

to partition a given data set. Basically, assume that initial we 

have k data points, where k is some arbitrary, small number. 

This number represents the smallest number of data points that 

we believe is necessary to obtain a good model. Note that this 

value can depend on the type of data being used, for example, 

for routine operating data, k could be larger than for open-loop 

data. For these first k values, compute the value of the data 

quality index and compare it against the threshold. If the index 

is below the threshold, add another point and repeat until it 

fails. The region until failure can be considered to be a single 

region. If the index is above the threshold, take the next k 

points and repeat. 

2.4. Model Considerations 

 When implementing the data quality assessment 

procedure, it can be seen that the type of model selected could 

have an impact on the assessed value of a given data set. In 

general, it may not be known which model structure fits the 

data set the best and there is a need to use a generic model for 

assessing the data quality. In practice, there exist two different 

approaches that can be taken (Bittencourt, et al., 2015): 

1) ARX Models: ARX models are of the form 

t t k tAy Bu e−= +   (12) 

 where A and B are polynomials in z−1 of order na and 

nb respectively and k is the time delay. In order to 

implement this method, it is necessary to know the 

time delay k. Since it is known that any prediction 

error model can be approximated by a high-order 

ARX model, by selecting high orders for na and nb, 

the data quality for arbitrary prediction error models 

can be assessed. The main drawback of this approach 

is that the time delay must be known. 

2) Laguerre Model: A Laguerre model is based on the 

orthogonal Laguerre polynomials, which allows for 

easy removal of unnecessary model components 

without affecting the rest of the parameters. The ith 

order Laguerre basis function, Li, is 
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where α is the time constant, and z−1 is the backshift 

operator. The resulting model can then be written as 

 ( )1

1

,
gN

t i i t t

i

y L z u eθ α−

=

= +∑  (14) 

where Ng is the Laguerre order of the process. The 

advantage of the Laguerre approach is that the time 

delay needs not be known in order to perform the 

partitioning. However, the final model that will be fit 

(often some type of prediction error model) is 

different from the model used for data quality 

assessment. This mismatch may lead to issues with 

the accuracy of the assessment. In practice, the 

advantage of not needing a time delay often overrides 

other considerations. 

 

 

3. DATA QUALITY ASSESSMENT PROCEDURE 

 Figure 2 shows a schematic overview of the general data 

quality assessment framework. The details regarding the steps 

are (Peretzki, et al., 2011; Bittencourt, et al., 2015; Shardt & 

Brooks, 2018): 

1) Preprocessing: Load and preprocess the data set. This will 

often mean scaling and centring the data set. 

2) Mode Changes: In many industrial systems, the overall 

system may change its behaviour in a known fashion, for 

example, operating points may change, faults may occur, 

or controller setting may be changed. In such cases, it 

makes sense to incorporate this information into the data 

quality assessment algorithm. Separating the known 

changes will mean that the final results will be better. It can 

be noted that, for example, the number of initial data points 

required can depend on the control conditions. Therefore, 

detecting the changes will improve the results. 

3) Partitioning: For each identified mode, perform the 

following steps: 

a. Initialisation: If the length of the unanalysed data for 

the given mode is greater than the minimum required 

length r, set the model counter to the current data point, 

kinit = k and then set k = k + r. Otherwise, go to the next 

identified mode. 

b. Preprocessing: For certain types of processes, it may 

be necessary to perform additional manipulations, for 

example, for an integrating process, it is necessary to 

integrate the input. 

c. Computation: Compute the required values. In most 

cases, this will include the variances of the signals and 

the condition number of the information matrix. 

d. Comparison: Compare the variances, the condition 

number of the regressor matrix, and the significance of 

the parameters against the thresholds. 

i. Failure: If any of the thresholds fail to be met go to 

the next data point, that is, k = k + 1, and go to Step 

3.a.  

ii. Success: Otherwise, set k = k + 1, and go to Step 3.b. 

The “good” data region is then [kinit, k]. 

e. Termination: The procedure stops once k equals N, the 

total number of data points in the given mode. Repeat 

Step 3 for any remaining modes. 

4) Simplification: It may be desirable to compare adjacent 

regions and determine if they could be considered to come 

from a single model. Often the segmentation algorithm will 

be a bit too strict and provide too many segments (Shardt 

& Shah, 2014). 

 In general, a recursive method can be used to compute 

the required variances, that is, the following update rule is 

used: 
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 (15) 

where λ is the forgetting factor and σ2 is the variance of the 

given signal. The two forgetting factors,
ymλ and 

yσ
λ , need to 

be tuned. The variance is updated using the above formulae for 
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3 different signals, the inputs, outputs, and the regression 

matrix.  

 

Figure 2: Data Quality Assessment Framework 

3.1. Setting the Parameters for Partitioning  

 As with any method, there are a series of parameters that 

must be set in order for the method to work. Since the 

Laguerre-based approach is more commonly used, the primary 

focus will be on setting the required parameters for this 

approach. 

The Laguerre model parameters, α and Ng, are the two 

model parameters whose value needs to be set. From (Peretzki, 

2010), we have that 
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τ
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where θ is the continuous time delay and τs is the sampling 

time. Previous investigations have shown that α should be set 

between 0.80 and 0.95 (Shardt & Shah, 2014). When the exact 

time delay is not known, then an estimated upper bound can be 

used. 

 The forgetting factors in Equation (15) also need to be 

set. Previous investigations suggest that selecting a value of 

0.99 for all the forgetting factors works well (Shardt & Shah, 

2014). 

 The minimum required number of data points for 

identification r can be set based on experience and the required 

accuracy of the model. For open-loop or externally excited 

closed-loop data, a value of 20 will suffice. For routine 

operating data, the value will need to be much larger. In many 

cases setting r = 100 will work. 

 

 

3.2. Setting the Thresholds for Partitioning 

 The second important aspect is setting the appropriate 

thresholds for the partitioning. The success of failure of the 

assessment can strongly depend on the values selected for the 

different thresholds. 

 Firstly, it can be noted that many of the thresholds depend 

on the properties of the signal and the system at hand. Noisy 

or systems with large normal variation will require larger 

thresholds then systems with less noise or small variation. 

Therefore, it is important that the user take the time to 

understand the process and implement appropriate bounds. 

 Secondly, setting conservative thresholds that result in 

overpartitioning of the data set are probably better than overly 

loose thresholds that fail to detect such changes. The reason 

for this is that it is always easier to combine partitions then it 

is to try and split a partition into multiple partitions. 

 Often, the thresholds for variances for closed-loop 

control must be rather small (often on the order of 10−7) due to 

the fact that a good controller will eliminate most variation in 

the signal. On the other hand, in open-loop data, the variances 

can be higher, but even then, consideration needs to be made 

for such cases as step changes, which could be potentially used 

for system identification, but whose variance will be small, 

especially for the input signal. 

 The threshold for the condition number can be set to the 

standard value of 104. Selecting a different threshold can be 

based on the desire to vary the quality of the model obtained, 

for example, a large threshold will decrease the quality of the 

model, but could allow for identification of more difficult 

processes. 

3.3. Partition Simplification 

 The proposed data quality assessment procedure tends to 

overpartition the data set, that is, even if two adjacent regions 

actually belong to the same model, the procedure will consider 

them to be different (Shardt & Brooks, 2018). 

 Furthermore, it would be useful to identify which 

partitions, even if widely separated, are potentially the same, 

since these could then be used together for system 

identification, for example, one region could be the validation 

and the other the modelling data set. 

 One of the challenges of this step are that it should be 

more or less implemented without finding models for the 

system and comparing them. 

 One potentially interesting approach is to use an entropy-

based metric. It has been shown that the signal entropy value 

of the difference between the input and output signals can be 

used to monitor a process and determine if it changes (Shardt 

& Huang, 2013). The entropy of a signal, which measures the 

amount of information in a signal, is given as 

1
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where H is the entropy, N is the signal length, and x is the 

signal of interest. The difference in entropy would then be 

calculated as 

y uH H H∆ = −  (18) 
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where Hy is the entropy of the output signal and Hu the entropy 

of the input signal. Assuming that the input signal is always a 

pseudorandom signal or a white, Gaussian noise signal, then 

the difference between the input signal entropy and output 

signal entropy will be constant and equal to the model entropy. 

The advantage of this approach is that it simply requires the 

computation of a difference of values for the two signals. 

Instead of monitoring the complete signal, it is also possible to 

use a moving window approach where only the last N values 

are considered. 

 Another approach to solving this challenge is to consider 

various clustering algorithms, which can be used to compare 

the partitions and determine which ones are similar.  

3.4. Multivariate Considerations 

 The last area of consideration is multivariate data sets. 

Although all of the above methods easily generalise to the 

multivariate case, there are some additional challenges. 

 First, determining which of the variables should be used 

for data partitioning is a large question (Arengas & Kroll, 

2019; Shardt & Brooks, 2018). If the wrong set of variables is 

used, then it is possible that the method will fail or give an 

incorrect result. It should be noted that selecting all available 

input variables may not be efficient, since some of these inputs 

could be correlated with each, which will mean that the 

resulting Fisher information matrix is uninvertible (as it should 

be given the circumstances). However, the correlations and 

relationships between the variables can change depending on 

the mode or circumstances, so that it is now necessary to bear 

this in mind.  

4. INDUSTRIAL EXAMPLE 

 

4.1. Process Description 

Before considering the actual implementation of the data 

segmentation system, it will be useful to briefly examine the 

actual system considered. 

The data used was obtained from a section of the lead zinc 

concentrator at the Mount Isa Mines in Queensland, Australia.  

The concentrator is a complex operation, recovering both lead 

and zinc from a feed sourced from three different mines.  The 

ore is milled and is then fed to a lead removal circuit.   The 

lead is recovered in the form of a concentrate.  The reject 

stream from this unit, termed the tailings, is fed to a zinc 

flotation unit.  In this circuit, a number of banks of flotation 

cells, are used to recover the zinc.  As shown in Figure 3, these 

banks are named the roughers, scavengers and recleaners. 

The section of the circuit covered here is the zinc roughers 

(Brooks & Koorts, 2017).  The rougher tails from the upstream 

lead circuit are the feed to the zinc roughers.  As shown in 

Figure 4, this bank consists of four cells (FC23, FC24, FC25, 

FC26).  The objective of this bank is to perform a rough 

separation of zinc from the waste material. Copper sulphate 

(activator) and naphthalene sulphate (depressant) are added 

upstream. Ethyl xanthate, a collector, is added to cells FC23 

and FC25. The tails of the rougher (unfloated material) report 

downstream to the scavengers where the majority of the 

remaining zinc is floated. The concentrate (floated material) 

from the roughers reports to the recleaners.  

 

Figure 3: Zinc rougher, scavenger and recleaner circuit. 

In the rougher bank, levels are controlled per pair of cells.  

The flowrate of air can be varied on a per cell basis.  

Composition measurement by X-ray fluorescence (XRF) is 

used on all concentrate and tails streams.  In Figure 4, LC1 and 

LC2 are level PID controllers on pairs of cells, FC1 to FC4 are 

flow PID controllers on air flowrates and FC5 to FC8 are 

reagent flow PID controllers. FI1 is the volumetric feed 

flowrate.  Analysers AI1 to AI3 measure zinc percentages in 

the feed, concentrate, and tails respectively. 

 

Figure 4: Rougher Bank Showing Control Loops and 

Analysers 

4.2.  Data Set Characteristics 

The data collected for this investigation consists of two 

months of plant operation, collected at a frequency of one 

minute.  The historian’s interpolation routine is used to ensure 

the data is aligned.  No special care was used to ensure that the 

data had any particular characteristics, other than that the plant 

was running. It was reported that during this period some step 

tests had been conducted. The completed data set can be 

downloaded from https://doi.org/10.5281/zenodo.3701260.    

Forty-three variables were collected: for each of the PID 

controllers, setpoint, process value and output (SV/PV/MV) 

were recorded.  The three analysers provide measure of iron, 

lead and zinc percentages. Variables collected are listed in 

Table 1. The process was assumed to be running under control 

throughout the period of investigation. 

 The ultimate goal of the models is to design a model 

predictive controller (MPC) for the unit. The manipulated 

variables (MVs) are the air flows, levels, and the flows of the 

reagents. The outputs or controlled variables (CVs) are the 

zinc percentages in the concentrate and tailing streams. The 
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primary focus of this investigation is on the zinc percentage in 

the concentrate stream. Similar results are expected for the 

other situations. The focus is on the multivariate nature of the 

data set. 

Table 1: Test Variables 

Tag Attributes Description 

FC1 SV/PV/MV Air flow to FC23 

FC2 SV/PV/MV Air flow to FC24 

FC3 SV/PV/MV Air flow to FC25 

FC4 SV/PV/MV Air flow to FC26 

FC6 SV/PV/MV EX (reagent) to FC23 

FC7 SV/PV/MV EX (reagent) to FC25 

LC1 SV/PV/MV FC24 Level 

LC2 SV/PV/MV FC26 Level 

FC8 SV/PV/MV NS (reagent) to FC3 

FC5 SV/PV/MV CuSO4 (reagent) to FC22  

AI2 Fe/Pb/Zn Primary Rougher 

Concentrate Compositions 

AI3 Fe/Pb/Zn Primary Rougher Tailings 

Compositions 

 

 The following 3 situations will be considered: 

1) Variable Selection: which of the input variables 

should be selected for data partitioning, since not all 

of the selected variables may be independent. 

2) Reduction of Partitions: determining of some or all 

of the regions could be modelled by similar models. 

3) Model Validation: Using some of the suggested 

partitions, models will be fit and compared. 

4.3. Variable Selection 

 One of the most important issues in multivariate data 

quality assessment is determining which of the potential 

variables can or should be used for partitioning the data set. 

One of the main issues is the selecting a set of independent 

variables. In order to examine the situation, the following 3 

cases will be considered: 

1) Case 1: using all the input variables to partition the 

data set. 

2) Case 2: using a subset of variables based on 

correlation analysis. 

3) Case 3: using a subset of variables based on user 

selection. 

 For Case 1, the results are shown in Figure 5. In Figure 

5, the top figure shows the actual measured zinc concentration 

in the concentrate stream. It should be noted that for a series 

of values around 6.2×104 min, the value went to −10,000, 

which is an impossible value for concentration, suggesting that 

the process was not running at this point. Therefore, these 

extreme values have been replaced by −1 in the top figure for 

ease of display. The original values were used for the data 

partitioning part. The bottom figure shows the partitioned data. 

The programme assigns the same partition number to adjacent 

points if they are assumed to belong together. A separate 

number implies that the points do not belong together. The 

jumps in the value arise from the way the programme reacts to 

values going to zero. It is assumed that since the process at 

these points is not working properly it resets the counter. The 

goal is to find plateaus in the partitioning graph that represent 

the regions of sufficient excitation. From Figure 5, it can be 

seen that there are few if any plateaus. This implies that either 

the data itself is not sufficiently excited or that some of the 

variables used are correlated with each other. If we examine 

the correlation plot shown in Figure 6, we can quickly see that 

many of the variables are strongly correlated with each other. 

The variables are ordered the same way as in Table 1, so that 

the first variable is the air flow to FC23 and the last variable is 

CuSO4 to FC22. It should be noted that all the variables are 

strongly correlated with each other. However, some are much 

more strongly related than others, for example, variables 5 to 

10 are all correlated with a value close to 1. This suggests a 

very strong relationship between the variables. As well, note 

that variables 3 and 4 are also strongly correlated. 

 

Figure 5: Data Partitioning for Case 1: Using all Available 

Variables 

 Using the results obtained from Figure 6, the variables 

for Case 2 will be defined as variables 1, 2, and 4, that is the 

first two flow rates and the reagent to FC23. The results are 

shown in Figure 7. It can now be seen that more additional 

regions can be found and that the partitioning seems to align 

better with the actual results. 

 Finally, Case 3 will consider the case of simply using the 

first three flow rates, that is, the first three variables, for 

partitioning the data. From Figure 6, we can see that these three 

variables are also independent of each other raising the 

question if they too can provide good results. Figure 8 shows 

the results. Comparing with the previous case, we can see that 

the two results are similar. This suggests that at least for the 

example considered that the variables selected for partitioning 

do not matter as long as the variables are independent of each 

other for the given data set. 
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in the concentrate stream. It should be noted that for a series 

of values around 6.2×104 min, the value went to −10,000, 

which is an impossible value for concentration, suggesting that 

the process was not running at this point. Therefore, these 

extreme values have been replaced by −1 in the top figure for 

ease of display. The original values were used for the data 

partitioning part. The bottom figure shows the partitioned data. 
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points if they are assumed to belong together. A separate 

number implies that the points do not belong together. The 
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values going to zero. It is assumed that since the process at 
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seen that there are few if any plateaus. This implies that either 

the data itself is not sufficiently excited or that some of the 

variables used are correlated with each other. If we examine 

the correlation plot shown in Figure 6, we can quickly see that 

many of the variables are strongly correlated with each other. 

The variables are ordered the same way as in Table 1, so that 

the first variable is the air flow to FC23 and the last variable is 

CuSO4 to FC22. It should be noted that all the variables are 

strongly correlated with each other. However, some are much 

more strongly related than others, for example, variables 5 to 

10 are all correlated with a value close to 1. This suggests a 

very strong relationship between the variables. As well, note 

that variables 3 and 4 are also strongly correlated. 
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 Using the results obtained from Figure 6, the variables 

for Case 2 will be defined as variables 1, 2, and 4, that is the 

first two flow rates and the reagent to FC23. The results are 

shown in Figure 7. It can now be seen that more additional 

regions can be found and that the partitioning seems to align 

better with the actual results. 

 Finally, Case 3 will consider the case of simply using the 

first three flow rates, that is, the first three variables, for 

partitioning the data. From Figure 6, we can see that these three 

variables are also independent of each other raising the 

question if they too can provide good results. Figure 8 shows 

the results. Comparing with the previous case, we can see that 

the two results are similar. This suggests that at least for the 

example considered that the variables selected for partitioning 

do not matter as long as the variables are independent of each 

other for the given data set. 
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Figure 6: Correlation Plot for the Variables of Interest 

 

Figure 7: Data Partitioning for Case 2: Using Uncorrelated 

Variables 

 

Figure 8: Data Partitioning for Case 3: Using Only the First 

Three Air Flow Rates 

 

4.4.  Reduction of Partitions 

 Taking Case 2 from the variable selection situation, it 

now desired to investigate the impact of the reduction of 

partitions on the overall results. In the previous results, the 

number of partitions was reduced using the entropy-based 

method. Here the results with and without partition reduction 

will be compared. 

 Figure 9 shows the partitioning results for Case 2 but 

without any reduction of partitions. It can be seen that there 

are now more partitions and some of the partitions are 

separated as belong to different potential models. By 

combining adjacent partitions, it is possible to increase the 

amount of available data and create potentially better models. 

Therefore, it makes sense to determine if adjacent partitions 

could belong to the same overall model. 

 

Figure 9: Data Partitioning for Case 2: Using Uncorrelated 

Variables and No Reduction of Partitions 

4.5. Model Validation 

 Using the data segmentation results from above, the 

different, the following regions will be considered: 

• S1: 17,079−18,631 

• S2: 18,645−20192 

• S3: 20,2017−21,650 

• S4: 21,670−23,112 

• S1′: 14,038−28,738 

• S2′: 17,079−23,112 

S1, S2, S3, and S4 are the initial subpartitions of S1′ and S2′. 

The difference between S1′ and S2′ lie in exactly which 

endpoints are considered and the exact reduction values are 

used. 

 The data for each section was modelled using a 

commercial package that uses canonical variate analysis 

(CVA) (Larimore, 1990; Zhao, et al., 2006). Multiple input, 

single output models with a settling time of 60 min were 

obtained for the zinc percentage in the concentrate. 

 Table 2 shows the results for the different sections. It can 

be noted that in the development of models for use in model 

predictor control, it is the gains that are considered to be 

important. Therefore, the focus is on the accuracy of the gains. 

Furthermore, it should be noted that these models are to be 
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used as seed models for providing the initial model parameters 

for subsequent online identification. 

 From Table 2, it can be seen that the models for the larger 

partitions S1′ and S2′ compare well, although the fits are not 

particularly good.  Partitions S3 and S3 have the same signs 

for the gains, although the negative gain for the feed zinc is 

physically unrealistic.  Partition S1, although having the 

highest correlation coefficient, has a positive gain for total 

xanthate, which is not what is found in practice. The practical 

issue is that the sample sets lengths of around 24 hours for S1 

to S4 are too short to derive reliable linear time invariant 

models.  Set S1′ is 240 hours, and S2′ 100 hours, so that the 

CVA produces better models in these cases. It is very 

encouraging for the method that the set S2′, which is a section 

of S1′, produces very similar models.  It would appear that for 

the purposes of dynamic model identification heuristics need 

to be added to the algorithm specifying a minimum dataset 

length. Thus, the ability to combine adjacent partitions is an 

important aspect of any data segmentation method. 

Table 2: Comparison of Models for Different Partitions 

Partition S1 S2 S3 S4 S1′ S2′ 

G
a

in
 

Total 

xanthate 
0.83 0.01 −0.29 −1.05 −0.34 −0.31 

Feed flow −0.02 0.001 −0.01 −0.01 −0.002 −0.004 

Feed zinc 0.34 −0.31 −0.15 −0.10 0.11 0.11 

Feed 

percent 

solids 

−0.16 −0.21 −0.03 −0.07 −0.10 −0.11 

Mean 

Squared 

Error 

1.11 0.76 1.30 0.62 1.26 1.04 

R2 0.84 0.19 0.69 0.49 0.06 0.29 

    

5. CONCLUSIONS 

 This paper has examined the field of data quality 

assessment and its recent successes. A general data quality 

assessment algorithm was proposed and the details of setting 

its parameters examined. Previous work has shown that 

selecting appropriate thresholds can impact the accuracy and 

speed of the resulting algorithm. Furthermore, extending the 

results to them multivariate situation introduces new 

challenges including how best to select the variables for 

segmentation. Selecting the wrong subset of variables can lead 

to issues with collinearity between the variables.  

The proposed data quality assessment algorithm was 

validated using data extracted from a historian for a zinc 

flotation cell. It was shown that the partitioning depended 

strongly on the variables selected and the methods used to 

reduce the number of partitions.  

Future work will focus on generalising the results to the 

multivariate case and providing better methods for combining 

adjacent partitions. 
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used as seed models for providing the initial model parameters 

for subsequent online identification. 
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