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Abstract In this work, a tensegrity structure with

spatially curved members is applied as rolling loco-

motion system. The actuation of the structure allows a

variation of the originally cylindrical shape to a

conical shape. Moreover, the structure is equipped

with internal movable masses to control the position of

the center of mass of the structure. To control the

locomotion system a reliable actuation strategy is

required. Therefore, the kinematics of the system

considering the nonholonomic constraints are derived

in this paper. Based on the resulting insight in the

locomotion behavior a feasible actuation strategy is

designed to control the trajectory of the system. To

verify this approach kinematic analyses are evaluated

numerically. The simulation data confirm the path

following due to an appropriate shape change of the

tensegrity structure. Thus, this system enables a two-

dimensional rolling locomotion.

Keywords Tensegrity structure � Inverse
kinematics � Nonholonomic mechanics

1 Introduction

Tensegrity structures represent a special kind of

prestressed frameworks consisting of one-dimensional

members [1]. Due to the prestress, these structures

enable free-standing self-stable equilibrium configu-
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rations. According to the load at the equilibrium

configuration, the members are classified as com-

pressed members and tensioned members. The tenseg-

rity principle requires that all compressed members

are connected to each other only by tensioned

members. Although tensegrity structures were origi-

nated in the fields of architecture [2] and modern arts

[3] they recently accessed the fields of engineering due

to their advantageous properties like shock resistance

and great shape change ability. Therefore, engineers

extended the definition of tensegrity. Hence, also

curved compressed members can be applied [4] and

only groups of compressed members have to be

connected to each other by tensioned members [5].

Especially, in the fields of mobile robotics tensegrity

structures are established. Various locomotion sys-

tems based on such structures are given in [6–9]. In

particular, the rolling locomotion seems to be a

appropriate approach to realize a controllable loco-

motion as shown in [10–12]. The shape of the structure

is controlled by varying the prestress state. As a

consequence of this actuation strategy the position of

the center of mass is changing. Reaching a critical

configuration a tilting motion is occurring. This tilting

sequence is repeated successively to realize a desired

locomotion. However, the tilting of the structure

results in an impact. A real rolling locomotion system

with precurved members is presented is [13]. The

locomotion is controlled by the movement of internal

masses to influence the position of center of mass.

However, for a general two-dimensional locomotion

additional tilting sequences are necessary. In [14] an

approach of a rolling locomotion system based on a

tensegrity structure, which allows a two-dimensional

locomotion by pure rolling is investigated. The

cylindrical shape of the locomotion system can be

varied to a conical shape by controlling the prestress

state.

Based on [14] a tensegrity structure with spatially

curved members is applied as rolling locomotion

system in this work. The use of a topology with only

few members is targeted to guarantee a simple design

of the locomotion system. The kinematics of the

system are derived and a feasible actuation strategy to

control the locomotion behavior is designed. Finally,

numerical simulations are evaluated to verify the

theoretical approach. The results confirm the occur-

rence of a controllable two-dimensional rolling

locomotion due to a suitable shape change of the

tensegrity structure.

In Sect. 2 the investigated tensegrity structure is

presented. A mechanical model of the structure is

developed and the kinematics of the rolling locomo-

tion considering the nonholonomic constraints are

derived. The locomotion behavior of the system is

investigated in Sect. 3 focusing on the rectilinear

locomotion, the circular locomotion and the general

locomotion on a horizontal plane. In Sect. 4 a novel

actuation strategy to follow a desired trajectory is

derived. Furthermore, simulations are evaluated in

order validate the actuation strategy. In Sect. 5 the

results are concluded and an outlook for further

investigations is given.

2 Mechanical modeling of the rolling locomotion

system

2.1 Topology of the tensegrity structure

The tensegrity simplex shown in Fig. 1a represents the

simplest three-dimensional tensegrity structure. This

structure consists of three struts, which are connected

by 9 cables. The state depicted in Fig. 1a is a

stable equilibrium configuration. With regard to the

load in this configuration the struts are compressed

members and the cables are classified as tensioned

members. The replacement of the straight struts of the

simplex by spatially precurved members yields a

cylindrically shaped tensegrity structure as shown in

Fig. 1b. The connectivity of the members is modified

in a small manner regarding to original tensegrity

simplex. Due to the spatial precurvature of the struts,

there is a multidimensional stress state. Nevertheless,

following the common terms in the field of tensegrity

structures, these precurved struts are declared as

compressed members.

To verify the occurrence of a free-standing self-

stable equilibrium configuration a demonstrator of the

varied tensegrity simplex is developed. This demon-

strator is depicted in Fig. 1c. The precurved com-

pressed members are made of aluminum and the

tensionendmembers are realized by steel wire. Indeed,

a stable equilibrium state occurs and the shape is

described by cylinder with radius R ¼ 0:040m and

height H ¼ 0:150m.
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Obviously, a cylinder features only a uniaxial

bidirectional rolling locomotion. Thus, in order to

realize a two-dimensional rolling locomotion a shape

change of the tensegrity structure is required. This

issue is realized by varying the length of selected

tensioned members. Due to this actuation, the cylin-

drical geometry can be influenced to a conical shape

which yields a circular rolling locomotion. The radius

of curvature of the resulting trajectory depends on the

conicity of the geometry. Finally, the combination of

the rectilinear locomotion and the circular locomotion

allows a general two-dimensional locomotion based

on pure rolling. The actuation principle of the

tensegrity structure to control the outer shape is shown

in Fig. 2. The drive to realize the rolling of the system

can be realized by the movement of internal masses as

presented in [13].

The shape of the compressed members (j ¼ 1; 2; 3)

is defined by the vector qP parameterized respective to

u (u 2 ½0;umax� with umax ¼ 4=3p). This issue is

formulated in (1). The parameter b represents the cone

angle of the structure. In this work, the complex

deformation of the spirals is simplified as shown in (1)

respective to the body fixed Cartesian coordinate

system fn; g; f;Cg (C represents the geometric center

of the tensegrity structure). Hence, the height H of the

cylinder and the cone is identical. Due to the limited

shape change the parameter b can be varied within

b 2 � arctan 2R
H

� �
; arctan 2R

H

� �� �
. Applying the param-

eters of the demonstrator in Fig. 1c, the parameter b is

limited approximately to �28�.

qP ¼

H

4p
3u� 2pð Þ

RðuÞ cos uþ j
2p
3

� �

RðuÞ sin uþ j
2p
3

� �

0

BBBBBBB@

1

CCCCCCCA

ðj ¼ 1; 2; 3Þ

with RðuÞ ¼ R� H

4p
3u� 2pð Þ tanðbÞ

ð1Þ

This issue clarifies that the radius of the cone in the

g�f-plane (u ¼ 2=3p) is constant and cannot be

influenced by the parameter b.

2.2 Kinematics of the rolling locomotion system

The rolling locomotion system is represented by the

considered tensegrity structure which is in contact

with a horizontal rigid plane due to gravity as shown in

Fig. 1 Development of a rolling locomotion system based on a

tensegrity structure—a simplex tensegrity (thick lines: com-

pressedmembers, thin lines: tensionedmembers), b replacement

of the straight struts by spatially precurved members, c real

demonstrator of the tensegrity simplex with spatially precurved

compressed members

Fig. 2 Mechanical model of the considered tensegrity structure

with conical shape due to the actuation
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Fig. 3. The position of the geometric center C of the

structure is described by the vector rC ¼ ðxC; yC; zCÞT
respective to an inertial Cartesian coordinate system

fx; y; z;Og. The orientation of the tensegrity structure

results due to three intrinsic rotations. This issue is

given by a rotation respective to the z-axis of the

inertial Cartesian coordinate system (rotation angle c),
a rotation respective to the resulting y0-axis (rotation
angle b) and a rotation respective to the resulting x00-
axis (rotation angle a). To transfer the vectors defined

in the body fixed coordinate system fn; g; f;Cg into

the inertial coordinate system fx; y; z;Og the transfor-

mation matrix T defined in (2) is applied.

T¼Tc �Tb �Ta with Ta ¼
1 0 0

0 cosðaÞ � sinðaÞ
0 sinðaÞ cosðaÞ

2

64

3

75;

Tb ¼
cosðbÞ 0 sinðbÞ

0 1 0

�sinðbÞ 0 cosðbÞ

2

64

3

75; Tc ¼
cosðcÞ � sinðcÞ 0

sinðcÞ cosðcÞ 0

0 0 1

2

64

3

75

ð2Þ

Thus, the vector qP to the arbitrary body-fixed point

P can be transformed into the inertial coordinate

system as shown in (3). Here, the translational shift is

taken into account using the vector rC.

rP ¼ rC þ T � qP ð3Þ

Hence, the current position of the locomotion system

is characterized by the six parameters xC, yC, zC, a, b
and cwhich are summarized in the vector q. However,

the locomotion system enables only two degrees of

freedom due to four nonholonomic constraints. In

order to describe the behavior of the rolling

locomotion system these constraints have to be taken

into account. Therefore, the velocity of the tensegrity

structure is considered. The velocity of an arbitrary

body fixed point P is given in (4).

_rP ¼ _rC þ d

dt
T � qPð Þ ð4Þ

The current contact point in the g�f-plane of the

tensegrity structure is denoted as Q and is specified by

qQ ¼ ð0;�R sinðaÞ;�R cosðaÞÞT). Additionally, two
specific points attached to the tensegrity structure are

considered. The point T represents the point of

intersection of the n-axis and the x�y-plane. This

point is given by qT ¼ ðR= tanðbÞ; 0; 0ÞT. The param-

eter K represents a point on the circumference of the

tensegrity structure in g�f-plane characterized by

qK ¼ ð0; 0;�RÞT. If K is in contact with the horizontal

plane (a ¼ 0) the corresponding velocity has to be

zero. This issue yields three nonholonomic constraints

given in (5). Additionally, the point T does not move

perpendicular to the axis given by the current contact

point Q and T (v? ¼ 0). These issue allows the

description of the fourth nonholonomic constraint

which is given in (6).

_rPjqP¼qK ; a¼0¼ 0 ð5Þ

v? ¼ TT
c � _rPjqP¼qT

� �
�

0

1

0

0

B@

1

CA ¼ 0 ð6Þ

The parameter _a and _b are chosen as generalized

velocities. Considering the nonholonomic constraints

Fig. 3 Mechanical model of the rolling locomotion system in contact with a horizontal plane due to gravity
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in (5) and (6), the parameters _xC, _yC, _zC and _c can be

formulated as shown in (7)–(10).

_xC ¼ R cos2ðbÞ sinðcÞ _aþ R cosðbÞ cosðcÞ _b ð7Þ

_yC ¼ �R cos2ðbÞ cosðcÞ _aþ R cosðbÞ sinðcÞ _b ð8Þ

_zC ¼ �R sinðbÞ _b ð9Þ

_c ¼ sinðbÞ _a ð10Þ

The generalized velocities represent the actuation of

the tensegrity structure. Here, _a is realized by the

movement of internal masses and the angular velocity
_b represents the shape change of the structure.

Following, the realization of the actuation of the

locomotion system is not specified. Therefore, arbi-

trary actuation parameters _a and _b are possible.

3 Locomotion behavior of the rolling locomotion

system

In this section the resulting locomotion due to the

actuation parameters _a and _b is considered for

t 2 ½0; tend�. Thus, the differential equation formulated

in (11) has to be solved taken the nonholonomic

constraints (7)–(10) into account. The control param-

eters _a and _b are given due to the applied actuation

[15–17]. Here, A represent a matrix (A 2 R6�2).

q ¼
Z tend

0

A �
_a
_b

� �� �
dt

with q ¼ ðxC; yC; zC; a; b; cÞT
ð11Þ

As initial configuration q0 ¼ qðt ¼ 0Þ the state q0 ¼
ðx0; y0;R cosðb0Þ; 0; b0; c0ÞT is chosen. Because of the

nonlinear character of (11) a numerical solution using

computational support is required. Following, if

necessary (11) is solved numerically using a RUNGE–

KUTTA method. Beside the general locomotion behav-

ior the motion behavior of the cylindrical shaped and

conical shaped tensegrity structure is considered.

3.1 Rectilinear locomotion

As first approach, the rolling locomotion of the

cylindrical tensegrity structure without shape change

is considered. Obviously, a rectilinear locomotion will

occur. This issue is formulated by b0 ¼ 0 and _b ¼ 0

(b � 0). Hence, the nonholonomic constraints formu-

lated in (7)–(10) are simplified to (12)–(15).

_xC ¼ R sinðcÞ _a ð12Þ

_yC ¼ �R cosðcÞ _a ð13Þ

_zC ¼ 0 ð14Þ

_c ¼ 0 ð15Þ

These constraints are integrable and are transformed

into holonomic constraints by integration [18]. This

approach yields a linear system of differential equa-

tion, which can be solved analytically. The resulting

position is given by (16).

xC

yC

zC

a

b

c

0

BBBBBBBB@

1

CCCCCCCCA

¼

x0 þ R sinðc0Þa
y0 � R cosðc0Þa

R
R
_a dt

0

c0

0

BBBBBBBB@

1

CCCCCCCCA

ð16Þ

Thus, this locomotion mode yields one degree of

freedom specified by a. The simulation results

depicted in Fig. 4 clarify the rectilinear locomotion.

The orientation of the uniaxial trajectory is defined by

the parameter c0. Moreover, the direction of motion

(forward locomotion/ backward locomotion) can be

controlled by the actuation parameter _a.

3.2 Circular locomotion

In this section the locomotion behavior corresponding

to the conical shape of the tensegrity structure

Fig. 4 Simulation of the rectilinear locomotion due to the

cylindrical shape of the tensegrity structure for x0 ¼ 0, y0 ¼ 0,

c0 ¼ 0 and _a ¼ p rad=s
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characterized by b0 is considered. Apparently, a

circular locomotion occurs due to the outer shape of

the tensegrity structure. The corresponding nonholo-

nomic constraints given in (7)–(10) are simplified by
_b ¼ 0 (b � b0). This approach is shown in (17)–(20).

_xC ¼ R cos2ðb0Þ sinðcÞ _a ð17Þ

_yC ¼ �R cos2ðb0Þ cosðcÞ _a ð18Þ

_zC ¼ 0 ð19Þ

_c ¼ sinðb0Þ _a ð20Þ

This locomotion enables only one degree of freedom

specified by a. Moreover, the constraints listed in

(17)–(20) are also integrable. Therefore, these con-

straints are integrated to holonomic constraints. The

resulting linear system of differential equations is

solved analytically. This yields (21).

xC

yC

zC

a

b

c

0

BBBBBBBB@

1

CCCCCCCCA

¼

x0 � R
cos2ðb0Þ
sinðb0Þ

cosðc0 þ sinðb0ÞaÞ

y0 � R
cos2ðb0Þ
sinðb0Þ

sinðc0 þ sinðb0ÞaÞ

R cosðb0ÞR
_a dt

b0
c0 þ sinðb0Þa

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

ð21Þ

In order to clarify the circular locomotion of the

conical shaped tensegrity structure, corresponding

simulation results are depicted in Fig. 5.

These results confirm that the resulting locomotion

trajectory is represented by a circle. The correspond-

ing radius of curvature of the trajectory qQ is given by

jR= sinðb0Þj. Thus, the cone angle b enables the

variation of qQ. The direction of motion (counter-

clockwise/clockwise) can be controlled by _a or b.

3.3 General locomotion

The previous locomotion modes are obvious and

feature only one degree of freedom. For the realization

of a general two-dimensional rolling locomotion

system, the shape change of the tensegrity structure

has to be taken into account. Hence, the nonholonomic

constraints formulated in (7)–(10) cannot be simplified

or be transformed into holonomic constraints. Due to

the nonlinear character of (11) no analytical solution is

known. Thus, the nonlinear system of equation given

in (11) has to be solved numerically. The resulting

rolling locomotion is simulated exemplarily for

x0 ¼ 0, y0 ¼ 0, b0 ¼ 0, c0 ¼ 0, _a ¼ p rad=s and _b ¼
0:4 cosð2p=5 tÞ rad=s for t 2 ½0 s; 10 s�. The simula-

tion results are depicted in Fig. 6.

With regard to the simulation results, indeed this

locomotion type enables two degrees of freedom

specified by a and b. The combination of the

rectilinear locomotion corresponding to the cylindri-

cal shape and the circular locomotion corresponding to

the conical shape allows the realization of a general

two-dimensional rolling locomotion without tilting

sequences. In order to derive an appropriate locomo-

tion strategy to control the locomotion behavior the

resulting locomotion trajectories are considered in the

following section.

Fig. 5 Simulation of the circular locomotion due to the conical

shape of the tensegrity structure for x0 ¼ 0, y0=0, c0 ¼ 0, b0 ¼
10� and _a ¼ p rad=s

Fig. 6 Simulation of the circular locomotion due to the conical

shape of the tensegrity structure with x0 ¼ 0, y0 ¼ 0, c0 ¼ 0,

b0 ¼ 0, _a ¼ p rad=s and _b ¼ 0:4 cosð2p=5 tÞ rad=s
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4 Path planning of the locomotion system

In this section, the various locomotion modes are

combined to realize a controllable two-dimensional

rolling locomotion. In order to follow a desired a

trajectory in the x�y-plane a suitable actuation strat-

egy is required. Following, the targeted two-dimen-

sional trajectory C is formulated respective to the

inertial coordinate system fx; y; z;Og as parametric

equation as shown in (22).

C ¼
xC

yC

0

0

B@

1

CA ð22Þ

4.1 Actuation strategy of the locomotion system

The point Q represents the current contact point in the

g�f-plane of the tensegrity structure. The velocity of

Q respective to the inertial coordinate system

fx; y; z;Og is shown in (23).

_rQ ¼
_xQ

_yQ

0

0

B@

1

CA ¼
R sinðcÞ _a
�R cosðcÞ _a

0

0

B@

1

CA ð23Þ

Thus, the trajectory of this point coincide with the

horizontal plane. For the following investigations the

actuation strategy of the rolling locomotion system is

derived to ensure C ¼ rQ. Therefore, these trajectories

are evaluated as parametric equations. The properties

of the trajectories characterized by the trajectory speed

_s and the corresponding radius of curvature q. Those
characteristic parameters of the trajectory C are

formulated in (24) and (25).

_sC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2C þ _y2C

q
ð24Þ

qC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2C þ _y2C

p 3

_xC €yC � €xC _yC
ð25Þ

Analogous, the parameters are derived for the

trajectory of the point Q. This characteristics are

simplified applying (23) and (10). This issue yields the

Eqs. (26) and (27).

_sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2Q þ _y2Q

q
¼ Rj _aj ð26Þ

qQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2Q þ _y2Q

q 3

_xQ €yQ � €xQ _yQ
¼ Rj _aj

_c
¼ Rsgnð _aÞ

sinðbÞ
ð27Þ

Obviously, the radius of curvature qQ of this trajectory

is limited respective to the possible shape change of

the system. Therefore, a minimum radius of curvature

given by the geometry of the tensegrity structure is

defined: qQ;min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ H2=4

p
. Thus, the trajectory C

can be realized if jqCj 	 qQ;min 8t. Finally, the actu-

ation strategy is derived considering (28) and (29).

Here, the sign of the parameter _a is evaluated with

regard to the tangent vector of the trajectory C.

_a ¼ � _sC
R
� TT

c �
0

1

0

0

B@

1

CA

0

B@

1

CA �
_C

j _Cj

0

B@

1

CA ð28Þ

b ¼ arcsin
Rsgnð _aÞ

qC

� �
ð29Þ

These equations show that the actuation parameter _a is
responsible to guarantee to desired velocity of the

trajectory _sC. The shape change of the tensegrity

structure specified by b is required to follow the

targeted path characterized by the radius of curvature

qC. Finally, to define the actuation parameter _b the

derivative of b respective to the time t has to be

evaluated ( _b ¼ d=dt b). This issue clarifies that the

function qC has to be differentiable to realize the

desired trajectory by the rolling locomotion system. If

discontinuities exist for qC the locomotion system has

to stop ( _a ¼ 0) to realize the corresponding radius of

curvature. Therefore, the targeted path can be

achieved. However, the velocity of the trajectory

cannot be enabled.

Utilizing (28) and (29) the trajectory C
can be realized for a suitable initial configuration q0
as shown in (30). Moreover, the radius of curvature of

the trajectory C has to fulfill the criterion

qC 	 qQ;min 8t.
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x0 ¼ xCðt ¼ 0Þ þ R sinðb0Þ cosðc0Þ;
y0 ¼ yCðt ¼ 0Þ þ R sinðb0Þ sinðc0Þ;
z0 ¼ R cosðb0Þ

b0 ¼ arcsin
Rsgnð _aðt ¼ 0ÞÞ

qCðt ¼ 0Þ

� �
;

c0 ¼ arctan
_yCðt ¼ 0Þ
_yCðt ¼ 0Þ

� �
� p

2

ð30Þ

4.2 Application example

In order to highlight this advantageous and feasible

actuation strategy the environment depicted in Fig. 7a

is considered exemplarily. Because of the obstacles

(grey rectangles) the targeted trajectory shown in

Fig. 7a is defined by (31).

C ¼
1� 0:25 1þ cos

2p
10

t

� �� �2

0:2 t

0

0

BBB@

1

CCCA
ð31Þ

An evaluation of the radius of curvature qC confirms

that jqCj 	 qQ;min 8t. Thus, the realization of this

trajectory is possible. The initial configuration is

chosen considering (30). With regard to (28) and (29)

the actuation parameters _a and _b are calculated. These

results are depicted in Fig. 7b, c. Finally, a numerical

simulation of the locomotion system implementing the

calculated actuation strategy confirms the locomotion

on the targeted trajectory C. Various states of the

tensegrity structure during the rolling locomotion are

depicted in Fig. 7a.

Thus, indeed the considered tensegrity structure

with spatially precurved compressed members

allows a steerable rolling locomotion on a horizon-

tal plane due to the shape change between a

cylindrical geometry and a conical geometry. Fur-

thermore, the presented actuation strategy allows a

feasible trajectory control of the rolling locomotion

system to navigate through an arbitrarily shaped

environment.

5 Conclusion

In this work, a tensegrity structure with spatially

precurved members inspired by the tensegrity simplex

was designed. Due to the variation of the prestress

state, the shape of the structure can be influenced.

Therefore, a cylindrical shape and a conical shape can

be realized. Furthermore, the utilization of internal

masses allows the realization of a rolling locomotion.

Kinematic analyses considering the nonholonomic

constraints show that the cylindrically shaped struc-

ture enables a rectilinear locomotion and the conical

shape correspond to a circular locomotion trajectory.

The application of a shape change during the loco-

motion enables a rolling locomotion with two degrees

of freedom. Thus, each point in the x�y-plane can be

reached by pure rolling locomotion. Moreover, a

feasible actuation strategy to generate a desired path

(a) (b)

(c)

Fig. 7 Application of the

rolling locomotion system to

navigate around an obstacle

(grey rectangle)—

a considered environment

with targeted trajectory and

various states of the

tensegrity structure during

the locomotion, b calculated

actuation parameter _a,
c calculated actuation

parameter _b
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with an according trajectory velocity is derived. This

approach allows the navigation through an arbitrarily

shaped environment. Simulations are evaluated to

verify this approach. The results confirm the advan-

tageous properties of the rolling locomotion system

and encourage investigations focusing on the devel-

opment of a prototype and experiments.
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