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Summary

� Pollen identification and quantification are crucial but challenging tasks in addressing a vari-

ety of evolutionary and ecological questions (pollination, paleobotany), but also for other

fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring

alternative methods to automate these tasks but, for several reasons, manual microscopy is

still the gold standard.
� In this study, we present a new method for pollen analysis using multispectral imaging flow

cytometry in combination with deep learning. We demonstrate that our method allows fast

measurement while delivering high accuracy pollen identification.
� A dataset of 426 876 images depicting pollen from 35 plant species was used to train a con-

volutional neural network classifier. We found the best-performing classifier to yield a

species-averaged accuracy of 96%. Even species that are difficult to differentiate using

microscopy could be clearly separated.
� Our approach also allows a detailed determination of morphological pollen traits, such as

size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in

some of these traits. Given a comprehensive pollen reference database, we provide a powerful

tool to be used in any pollen study with a need for rapid and accurate species identification,

pollen grain quantification and trait extraction of recent pollen.

Introduction

There are many questions in ecology and evolution that require
accurate identification and quantification of pollen grains. For
example, ecologists are often interested in the effectiveness of dif-
ferent pollinator species in transferring pollen to plant species,
the functional role of pollinators in networks (e.g. how gener-
alised or specialised they are); and the integration of new pollina-
tor species into communities (e.g. due to biological invasions,
climate-driven range shifts) (Tur et al., 2013; Ballantyne et al.,
2015; Thompson & Knight, 2018). Evolutionary biologists, in
turn, are interested in using paleo-pollen to reconstruct past com-
munities and climates (Harris, 1963; Marcos et al., 2015; Birks
et al., 2016), and to understand the selection pressures pollinators
impose on floral plant traits (Lankinen & Larsson, 2009; Mor-
eira-Hernández and Muchhala, 2019). Large-scale ecological and
evolutionary studies have been so far most limited by method-
ological constraints as time-consuming and labour-intensive mea-
surements as well as proneness to misidentification.

Researchers need a methodology that allows the identification
as well as the quantification of pollen grains quickly and

effectively (Ramalho & Kleinert-Giovannini, 1986; Stillman &
Flenley, 1996; Holt & Bennett, 2014; Cornman et al., 2015;
Hicks et al., 2016). In the past 20 yr, several attempts to auto-
mate the process have been proposed, but there are still substan-
tial limitations hindering their practical application on a large
scale. For example, metabarcoding is an emerging tool allowing
large quantities of pollen samples to be identified to species level
(Cornman et al., 2015; Bell et al., 2017; Smart et al., 2017;
Gresty et al., 2018; Macgregor et al., 2019). Metabarcoding uses
standardised barcode marker gene regions showing specificity
within a species and variability between species (Bell et al., 2016).
This method achieves high species identification accuracy with
high throughput and is becoming cheaper. Metabarcoding will
continue to become even more accurate as vascular plants’ genetic
information becomes more complete. Nevertheless, researchers
still debate whether metabarcoding can adequately quantify the
abundance of pollen for each species in a sample (Keller et al.,
2015; Smart et al., 2017; Bell et al., 2019). Bell et al. (2019)
pointed out that pollen metabarcoding data cannot be treated as
if they are quantitative, because correlation between the number
of sequence reads and the number of visually identified pollen
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grain is only moderate. However, quantifying the relative abun-
dance of pollen is essential for answering many ecological and
evolutionary questions, for example about the effectiveness of
pollinators to particular plant species (Gyan and Woodell, 1987;
Davis, 1997; Bell et al., 2019).

Microscopy is still the gold standard for qualitative and quanti-
tative pollen analysis (Erdtman, 1986; Crompton & Wojtas,
1993; Marcos et al., 2015). Microscopy is based on relatively
straightforward and widely accessible sample preparation tech-
niques as acetolysis, placing pollen samples on a slide, (occasion-
ally) staining, counting and identifying pollen grains based on
traits, such as pollen grain size, surface structure, number and
shape of apertures or exine thickness (Erdtman, 1986). Draw-
backs of this approach are the high manual effort and the spe-
cialised expertise required, both leading to high costs and time
consumption and thus to restrictions in sample throughput (Still-
man & Flenley, 1996; Ronneberger et al., 2002; Holt et al.,
2011; Marcos et al., 2015). There have been promising steps
towards automation of microscopic pollen analysis using slide
scanning devices, such as ‘Classifynder’ (Holt et al., 2011; Holt
& Bennett, 2014), ‘Airyscan’ (Sivaguru et al., 2018), ‘SR-SIM’
(Sivaguru et al., 2018), and ‘BAA500’ (Oteros et al., 2015). A
recent review of 24 studies using automated pollen analysis
showed that only seven of these studies could discriminate
between more than 10 species and no study could identify more
than 26 (Holt & Bennett, 2014). Since this review, several addi-
tional studies have emerged using a combination of microscopy
and machine learning (Daood et al., 2016, 2018; Marcos et al.,
2015; Oteros et al., 2015; Pedersen et al. 2017; Sevillano &
Aznarte, 2018; Sevillano et al., 2020), the best of which can iden-
tify 46 species with 98% accuracy (Sevillano et al., 2020). Most
of these studies did not include congener species, which can be
difficult to distinguish from each other. For a summary of the
number of species and images, classification techniques and accu-
racy of these recent studies, see Supporting Information Table
S1.
In addition, microscopy with slide scanning is still more time

consuming than other technologies, such as flow cytometry (Mach
et al., 2010). As an example, the Classifynder instrument processes
10 pollen/min (Holt et al., 2011), while imaging flow cytometry
allows a maximum event rate of 2000 particles per second.

Flow cytometric approaches have been used so far to identify
pollen based on DNA quantity, scatter, and fluorescence traits
(Pan et al., 2004; Dewitte et al., 2009; Moon et al., 2011; Kron
& Husband, 2012). Flow cytometry facilitates substantially
higher capture rates than manual microscopy, that is pollen
grains can be rapidly processed as they pass through a fluid
stream. However, the pollen species’ scatter and fluorescence
properties measured with traditional flow cytometric approaches
have been inadequate for differentiating certain species (Tennant
et al., 2013). Kron and colleagues (Kron et al., 2014) found that
distinguishing pollen species was only possible when traditional
flow cytometry was used in combination with microscopy.

In this paper, we present a new method for identifying and
counting pollen using automated multispectral imaging flow
cytometry in combination with deep learning. This

interdisciplinary approach combines the advantages of flow
cytometry’s high throughput with microscopic imaging, resulting
in image capture rates of up to 2000 images per second at ×40
magnification. Single pollen grains are hydrodynamically focused
(Fig. 1), and imaged with high resolution charge coupled device
(CCD) cameras. For every particle passing the light sources, a
brightfield as well as various fluorescence images for several spec-
tral ranges is captured.

Multispectral imaging flow cytometry in combination with
deep learning has recently been demonstrated as a tool for phyto-
plankton identification and quantification (Dunker et al., 2018;
Dunker, 2019), allowing algae traits to be described in detail and
enabling new research regarding the roles of functional traits in
shaping patterns of coexistence and diversity in this important
functional group of species (Hofmann et al., 2019). Here, we
propose a similar application for pollen, aiming primarily for fast
and accurate identification and counting of pollen grains. Many
pollen traits related to morphology (e.g. diameter, circularity,
symmetry) and fluorescence (e.g. bright detail intensity) can be
rapidly measured, some for the first time. Thus, our new method
opens up the potential to ask new questions in pollen ecology
and evolution. Further, if pollen traits are phylogenetically con-
served, this will may allow future studies to identify pollen species
that are not in the pollen library to family-level or genus-level,
based on their traits.

We sampled pollen from 35 plant species across a range of
plant families, including some closely related species, to develop
and assess multispectral imaging flow cytometry as a tool for pol-
lination biologists. We asked: (1) How accurate is flow cytometry
in combination with machine learning at identifying recent ento-
mophilous pollen from a known reference database, and does this
accuracy depend on the sample size of pollen per species and the
number of images per spectral channel? and (2) Is there a phylo-
genetic signal in pollen traits?

Materials and Methods

Plant species

Sampling Pollen samples were collected from plant species
occurring in montane meadows in the Apuseni Mountains,
Romania (site longitude and latitude: 46.49°N, 22.83°W and
46.50°N, 22.81°W; height above sea level c. 1150 m). The
meadows are actively managed as extensive hay meadows, are
highly diverse, and are active research sites for our ongoing pro-
jects on the structure and function of plant–pollinator networks
(Bennett et al., 2018). Pollen was sampled at the peak flowering
time in the second half of July 2018. Our study focused on a rep-
resentative subset of locally common to rare species from all
angiosperm families present in the meadows (Table 1). Individ-
ual plant species were identified in the field using identification
keys (Fischer, 2008) and several freshly opened flowers of 1–5
plant species were collected. Flowers were stored and dried in
sealed tea-bags, the anthers being subsequently removed with
clean tweezers, and transferred to 2 ml Eppendorf tubes. Tubes
were stored at −20°C until further analysis.
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Sample preparation

Depending on the plant species, anthers from 1–5 flowers/species
were removed using clean forceps and placed in a 2 ml Eppen-
dorf tube. Pollen isolation buffer (PIB) was prepared according
to Aloisi et al. (2015) (100 mM K2HPO4, pH 7.5; 1 mM
EDTA; 0.1% (v/v) Triton X-100) with the modification of using
KH2PO4 instead of NaH2PO4; 500 µl of the buffer was added to
each tube. The Eppendorf tubes containing the pollen samples
were vortexed and then sonicated for 5 min at room temperature
in an ultrasonic bath (Sonorex Digitec DT 514 BH, Bandelin,
Berlin, Germany) to separate aggregated pollen grains. Subse-
quently, the samples were filtered through a 50-µm filter
(CellTrics, Sysmex, Norderstedt, Germany) in a 1.5 ml Eppen-
dorf tube and centrifuged for 2 min at 4000 g (Centrifuge Pico
21, ThermoFisher Scientific, Waltham, MA, USA). The super-
natant was carefully discarded and 70 µl of Dulbecco’s phosphate
buffered saline (without calcium, without magnesium) (Biowest,
Nuaillé, France) was added as a standard reagent for flow cytome-
try to the pellet. If the pollen concentration was low in the final
samples, anthers from more flowers were removed with forceps
and placed in a 50 ml Falcon tube and processed in the same way
as the original samples.

Multispectral imaging flow cytometry

The samples prepared in this way were vortexed before the
analysis and measured with an imaging flow cytometer
ImageStream®X MK II (Amnis part of Luminex, Austin, Texas,
USA) equipped with three lasers (488 m laser with 5 mW inten-
sity, 561 nm laser with 20 mW intensity, and 785 nm laser with
0.1 mW intensity) and two cameras. The instrument is able to
simultaneously record a combination of 12 images overall per
particle, including one brightfield image and five or six fluores-
cence images per camera as well as one scatter image on one of
the two cameras. The instrument is specifically configured with a

non-co-linear spatial arrangement of the two lasers (488 and 561
nm laser) on two different CCD cameras to enable the simultane-
ous measurement of fluorescence emissions of an identical cell
(Patent WO 2019/068352 A 1). The instrument can take images
of pollen with a high sampling rate at ×40 magnification with a
numeric aperture of 0.75, a pixel size of 0.5 × 0.5 µm and a 60
× 256 µm field of view. As sheath-fluid, Dulbecco’s phosphate
buffered saline without calcium and magnesium (Biowest,
Nuaillé, France) was used. For each pollen suspension prepared
as described above, c. 50 µl of sample was used per measurement.
Data acquisition terminated when 5000 particles were measured
or, alternatively, when a time of 25 min had elapsed. We cap-
tured all images per defined volume with the instrument-specific
INSPIRE Software (v.200.1.620.1) and processed them with the
IDEAS software (v.6.2.187.0). Pollen grains were forced by hydro-
dynamic focusing through an outer core stream of D-PBS, mean-
ing that their orientation was controlled by physical forces and
that they adjusted their position in the flow direction, for exam-
ple prolate and oblate pollen grains mostly adjusted along their
longitudinal axis.

Image extraction and gating strategy

Images and respective morphological information are available
for 12 different channels; channels 1–6 were captured by the first
camera (488 nm laser excitation) and channels 7–12 were cap-
tured by the second camera (561 nm laser excitation). Brightfield
images were collected on channels 1 and 9; a scatter image was
collected on channel 6; and fluorescence images were collected
on channel 2 (528/65 nm BP filter), channel 3 (577/35 nm BP
filter), channel 4 (610/30 nm BP filter), channel 5 (702/85 nm
BP filter), channel 7 (457/45 nm BP filter), channel 8 (537/65
nm BP filter), channel 10 (610/30 nm BP filter), channel 11
(702/85 nm BP filter) and channel 12 (762/35 nm BP filter).

For pollen identification and trait analysis, pollen particles
were first separated from nonpollen particles based on threshold

Deep 
Bright- SSccaatttteerr

488 nm Excitation

Fluorescence emissionfield

Salvia verticillata L. 

Achillea millefolium L. 

learning

(Laser/ LED)
Light source

Multispectral imaging flow cytometry Pollen identification

Multispectral imaging flow cytometry & Deep learning

▷ Particles are hydrodynamically

 particles
▷ Up to 2000 particles/s

 focused and imaged as single  

Fig. 1 Schematic workflow of our approach utilising multispectral imaging flow cytometry measurements and deep learning for rapid species identification.
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Table 1 Methodological details for pollen of each plant species.

Family Plant species
Sample
image

No. dataset images
(total per channel)

Measurement
time (min)

Particle concentration
in buffer (pollen ml–1) Pollen size (µm)

Lamiaceae Salvia verticillata L. 11 892/991 13.3 59 989 30.7 � 2

Prunella grandiflora (L.) Scholler 16 152/1346 15.0 71 660 42.2 � 2

Thymus pulegioides L. 3996/333 24.2 9648 31.5 � 3

Stachys officinalis (L.) Trevis 15 816/1318 1.9 543 205 34.0 � 2

Orobanchaceae Euphrasia rostkoviana Hayne 924/77 10.4 5860 40.7 � 4

Rubiaceae Galium verum L. 16 920/1410 14.0 80 881 17.0 � 2

Gentianaceae Gentianella austriaca

(A. Kern. & Jos. Kern.) Holub
18 228/1519 1.9 641 803 32.6 � 2

Asteraceae Achillea millefolium L. 16 392/1366 4.4 248 545 28.3 � 2

Achillea distansWilld. 16 236/1353 9.4 116 007 28.7 � 2

Leucanthemum vulgare Lam. 16 716/1393 13.7 79 997 31.7 � 2

Leontodon hispidus L. 384/32 8.2 2448 34.1 � 3

Centaurea jacea 22 032/1836 4.6 321 517 35.2 � 2

Campanulaceae Campanula serrata (Schult.) Hendrych 23 928/1994 1.0 1684 996 33.9 � 2
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Table 1 (Continued)

Family Plant species
Sample
image

No. dataset images
(total per channel)

Measurement
time (min)

Particle concentration
in buffer (pollen ml–1) Pollen size (µm)

Campanula rotundifolia L. 18 504/1542 9.9 121 994 43.9 � 2

Apiaceae Heracleum sphondylium L. 20 148/1679 0.7 2032 718 23.5 � 2

Pimpinella major (L.) Huds. 19 992/1666 0.6 2292 523 23.7 � 2

Astrantia major L. 20 808/1734 4.1 341 137 34.9 � 3

Dipsacaceae Scabiosa columbaria 276/23 6.2 543 34.9 � 3

Primulaceae Lysimachia vulgaris L. 22 704/1892 2.8 549 531 22.5 � 1

Caryophyllaceae Dianthus carthusianorum L. 13 548/1129 11.1 80 244 38.5 � 4

Stellaria graminea L. 360/30 9.4 2409 32.6 � 6

Fabaceae Trifolium repens L. 1812/151 8.9 11 849 28.5 � 2

Trifolium montanum L. 11 700/975 4.2 183 501 27.3 � 2

Trifolium pratense L. 3672/306 10.5 22 893 35.7 � 4

Vicia cracca L. 10 692/891 6.2 68 469 33.9 � 2

Lotus corniculatus L. 6480/540 25.2 17 152 16.6 � 2

Anthyllis vulneraria L. 2400/200 9.6 14 110 38.9 � 3
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levels for brightfield intensities (pollen range: channel 1 =
−6300 000 to −63 000/channel 9 = −4000 000 to −50 000).
Afterwards, by using circularity (r.u.), single (>11) and nonsingle
particles (e.g. doublets) (<11) were distinguished. For trait analy-
sis, only sharp images were used, which could be extracted based
on threshold levels of bright detail intensity (channel 9)
(354 000–264 000). As a last step, a manual inspection of all col-
lected images was performed in the IDEAS software. All other parti-
cles (undefined particles, debris) as well as foreign pollen (all
pollen other than the focal species) were excluded based on
brightfield images ensuring a high qualitative training dataset.
The images were extracted from IDEAS software as 8-bit TIF
images for subsequent training of a convolutional neural network.

Deep learning

Dataset Our dataset consisted of 35 573 images for each of the
12 channels covering 35 species and resulting in a total of 426
876 images. This dataset was split into three sets for training, val-
idation, and testing in the proportions 80 : 10 : 10. All images
were centre cropped to an equally sized rectangle. In order to gain
a more robust and better generalising classifier, the images in the

training set were additionally augmented in the following ways:
flipped horizontal, flipped vertically, adjusted in bright-
ness � 12.5%, adjusted in saturation � 50.0%, adjusted by
contrast � 12.5%, and adjusted in hue � 20%.

Pollen ID classifier Analysing the captured set of microscopic
images poses a computer vision problem and makes convolu-
tional neural networks (CNN) the proper choice of model to
train (Nguyen et al., 2018). CNNs are feed-forward artificial
neural networks composed of layers with learnable filters. More
specifically, an inception network architecture (INCEPTION v.3)
with 48 convolution layers was used (Szegedy et al., 2016). In the
prestigious ImageNet competition in 2015, this architecture was
the first to beat a human performing the same classification task.
Transfer learning is a common procedure for training classifiers
with fewer than c. 1000 000 images (Yosinski et al., 2014). That
is, we used a network that was pretrained on the large-scale
ImageNet ILSVRC 2012 dataset (http://www.image-net.org/cha
llenges/LSVRC/) before utilising it for our training. The classi-
fiers were trained for 170 epochs (i.e. complete training cycles)
with a batch size of 32. The initial learning rate of 0.001 was
exponentially decayed every 3 epochs with a factor of 0.94.

Table 1 (Continued)

Family Plant species
Sample
image

No. dataset images
(total per channel)

Measurement
time (min)

Particle concentration
in buffer (pollen ml–1) Pollen size (µm)

Securigera varia (L.) Lassen 10 668/889 12.0 58 835 25.0 � 3

Rosaceae Potentilla erecta (L.) Räusch. 6444/537 11.4 36 697 25.5 � 1

Violaceae Viola tricolour L. 828/69 11.6 3118 35.8 � 3

Clusiaceae Hypericum maculatum Crantz 18 672/1556 4.2 296 617 22.2 � 3

Hypericum perforatum L. 21 756/1813 3.5 415 801 22.5 � 2

Parnassiaceae Parnassia palustris L. 15 180/1265 12.1 84 073 22.5 � 2

Cistaceae Helianthemum nummularium (L.) Mill. 2844/237 17.9 10 515 21.4 � 6

Ranunculaceae Ranunculis acris L. 17 772/1481 2.0 609 387 30.1 � 4.6

This table shows the plant families and species, sorted according to the phylogeny (Figs 3, 4). a representative image taken at ×40 magnification with the
imaging flow cytometer, total number and per-channel number of images in the database, measurement time, pollen concentration and averaged pollen
size and standard deviation. The number in the top left corner of the image shows the image ID.
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In order to assess the characteristic information conveyed per
captured image channel in separation and in complementation to
each other, we trained 16 classifiers: classifiers 1–12 assess the indi-
vidual species characteristics conveyed per channel, while classifiers
13–16 are trained with a mixture of images from three channels
each (i.e., 2 + 7 + 9, 2 + 9 + 10, 7 + 9 + 10, 6 + 9 + 12)
assessing whether there is complementary information in the chan-
nels helpful in generalising and creating amore robust classifier.

Classifier evaluation For the evaluation of the classifier results,
different parameters were determined. The classification rate or
accuracy for a species is given by the relation:

Accuracy ¼ TP þ TN

TP þ TNþFPþFN

where TP (true positive rate) indicates accurate positive identifi-
cations (e.g. pollen species x is identified correctly as pollen
species x) are correctly predicted (pollen x), TN (true negative
rate) indicates accurate negative identifications (e.g. pollen species
y is identified correctly as not being pollen species x), FP (false
positive rate) indicates that the observation is different but pre-
dicted as true (e.g. pollen species y is identified to be pollen
species x), and FN (false negative rate) indicates that a true obser-
vation is predicted to be different (e.g. pollen species x is identi-
fied to not be pollen species x). As accuracy counts all kinds of
errors with the same costs, it is important to consider other more
detailed parameters in addition:

Recall ¼ TP

TPþFN

High Recall indicates that the species is correctly recognised (a
small number of FN).

Precision ¼ TP

TPþFP

High Precision indicates that an example labelled as positive is
indeed positive (a small number of FP).

To consider both quality parameters equally, the F-measure is
calculated based on both, using a harmonic mean value:

F-measure ¼ 2�Recall�Precision

RecallþPrecision

All tests and evaluations were performed with single-species
samples.

Phylogenetic trait analysis and principal component
analysis

From the subfraction of manually annotated images, 54 traits
(image features) were calculated with the IDEAS software
(v.6.2.183.0) for further analyses, including 24 morphological
traits, 17 traits characterising pollen grain structure (texture) and
13 fluorescence intensity traits (Table S2). For all traits no raw
data, but quality assured data, were used, that is values with
higher/lower three standard deviations of the mean value were
not considered for the analyses. These traits were selected based
on the transferability to classical pollen characteristics (Erdtman,

1986; Beug, 2015). For example, the shape traits ‘circularity’ and
‘aspect ratio’ could be translated into equivalents for the pollen
form-index (PFormI) (Erdtman, 1986; Beug, 2015), which was
determined by the ratio of the length of the polar axis to the
equatorial diameter. As an example, pollen with perprolate
(PFormI > 2) or prolate shapes (PFormI 1.33-2) show low circu-
larity, whereas pollen with more spheroidal shapes (PFormI
0.75–1.33) show high circularity. Size-related traits include
‘area’, ‘diameter’, ‘width’, ‘height’, ‘length’ and ‘perimeter’.

To create a phylogeny for our focal plant species, we started
with the dated phylogenetic angiosperm supertree created by
Zanne et al. (2014). If our focal species were not included in the
supertree, as was the case for Campanula serrata, Gentianella
austriaca and Pimpinella major, they were included in the tree by
creating a polytomy with congeners that were present in the tree
using the congeneric.merge function from the PEZ package in R
(Pearse et al., 2015). We then pruned the supertree to only
include our focal species using the drop.tip function from the APE

package (Paradis & Schliep, 2019).
Each trait was individually mapped to the phylogeny and tested

for phylogenetic signal using Blomberg’s K and Pagel’s lambda
(Münkemüller et al., 2012) with the phylosig function in the PHY-

TOOLS package (Revell, 2012) (Table S2). As examples, four traits
were selected for graphical representation in the main manuscript:
(1) The circularity trait is calculated based on the average distance
of the object boundary from its centre divided by the variation of
this distance. Thus, the closer the object to a circle, the smaller the
variation and therefore the trait value will be high and vice versa.
(2) The symmetry 2 trait measures the tendency of the object to
have a single axis of elongation and therefore two lobes.
(3) The symmetry 3 trait measures the tendency of the object to
have a three-fold axis of symmetry.
(4) Finally, the diameter is defined as d ¼ 2x

p Area
π .

Three of these traits (circularity, symmetries 2 and 3) showed
significant phylogenetic signal and one (diameter) did not. Phylo-
genetic signals for the rest of the traits can be found in the supple-
ment to this manuscript (Table S1). Those traits are not listed in
detail here, as they are common parameters for image analysis
(Igathinathane et al., 2008; Zhao et al., 2014; Armi & Fekri-
Ershad, 2019). Some of these traits are related to each other and
have similar or opposite meanings, for example aspect ratio, elon-
gatedness or symmetry 2.

In addition, to individual traits, a principal component analy-
sis (PCA) was calculated based on a multidimensional resem-
blance matrix using either all 52 traits (Fig. S2) or only traits that
did not include fluorescence intensity (Fig. S1). We tested the
first three principal components for a phylogenetic signal using
Blomberg’s K and Pagel’s lambda.

Results

We collected a varying number of reference pollen images per
plant species depending on availability. The species with the most
images were Campanula serrata (23 928 images, 1994 pollen
grains), Hypericum perforatum (21 756 images, 1813 pollen
grains), and Lysimachia vulgaris (22 704 images, 1892 pollen
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grains), while Euphrasia rostkoviana (924 images, 77 pollen
grains), Leontodon hispidus (384 images, 32 pollen grains),
Scabiosa columbaria (276 images, 23 pollen grains), Stellaria
graminea (360 images, 30 pollen grains) and Viola tricolour (828
images, 69 pollen) had the least available images.

Classifier performance

We trained and evaluated various classifiers for single channels as
well as for combinations of three channels (cp. Table 2). We

found that a model trained on images of one of the two bright-
field channels (i.e. channels 1 and 9) performed best in terms of
accuracy with a species-averaged accuracy of 95% and 94%,
respectively. Species-averaged accuracy means that we first deter-
mine the accuracy per species, before averaging across all species.
In this way we prevent dominant classes in an unbalanced dataset
like ours, that is, some species occur more often than others, to
also dominate the overall performance measure. We also found
that a model trained on a combination of one brightfield channel
(channel 9) and two fluorescence channels (channels 2 and 7)
performed best overall with a species-averaged accuracy of 96%
and an F-measure of 0.96.

To understand, how well performance depends on the number
of collected pollen images, we plotted the F-measure in relation
to the number of collected pollen per species and per family. We
found that the required number of images is strongly dependent
on the classifier, as for the best multichannel combination, a min-
imum of 50 images was sufficient to create a classifier of reason-
able performance (Fig. 2), even for underrepresented species. By
contrast, the worst single channel classifier (channel 5) performed
much less reliably and 500-1000 images would be required to
have similarly good results as the best multichannel classifier.

With the best multichannel classifier, a confusion matrix was
prepared by plotting true vs predicted species identity against
each other (Fig. 3). Ideally, true vs predicted species identity
should match and result in a 100% overlap visible as only the
diagonal SW–NE being coloured in the matrix. Mispredictions
were highest for Scabiosa columbaria. However, this species had a
total of only 23 pollen grains, five of which were used for classi-
fier tests. All other species matched quite well. Congeners of
Achillea, Trifolium, Campanula and Hypericum could be robustly
identified and, if they were confused, it was not with their con-
geners, but with species belonging to other genera.

Table 2 Per-channel accuracy and F-measure as indicators for classifier
performance for all trained single channel models as well as for the four
models trained with multichannel combinations, each including the
brightfield channel 9.

Per-channel accuracy F-measure

Channel 1 95.17 0.95
Channel 2 85.16 0.87
Channel 3 88.33 0.89
Channel 4 87.52 0.88
Channel 5 83.73 0.84
Channel 6 81.91 0.82
Channel 7 92.74 0.93
Channel 8 89.01 0.89
Channel 9 94.23 0.95
Channel 10 87.89 0.89
Channel 11 89.81 0.89
Channel 12 88.96 0.90
Channel 9-7-2 96.02 0.96
Channel 9-7-10 95.95 0.96
Channel 9-6-12 89.97 0.91
Channel 9-10-2 94.34 0.95

Higher values of per-channel accuracy and F-measure indicate better
performance and vice versa.

0.00

1.00

0 4000 6000

Ch 5
Ch. 9-7-2

Families
Species

Classifier

Group

Sample size (Number of pollen)
2000

F-
m

ea
su

re

0.75

0.50

0.25 Fig. 2 F-measure for species (triangles) and
plant family (circles) level in relation to the
number of measured pollen (sample size)
available as reference data for the best
multichannel classifier (channel 9-7-2 in blue)
and the worst single channel classifier
(channel 5, red). A high F-measure indicates
high values of recall and precision. A detailed
version of this figure can be found in the
Supporting Information (Fig. S4).
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Phylogenetic signal in traits

For all plant species investigated, various morphological and fluo-
rescence parameters of their pollen grains were derived from
respective images, and these traits were tested for phylogenetic
signal (Table S2). Twenty-three of the 54 traits had a phyloge-
netic signal (Table S1). Four traits were considered to display in
Fig. 4, three of which had a significant phylogenic signal. This
figure highlights that the tricolporate and perprolate/prolate pol-
len of Heracleum sphondylium, Pimpinella major and Astrantia
major, all belonging to Apiaceae, can be easily distinguished from
all other groups by high two-dimensional plane dimension (sym-
metry 2) and lowest roundness (circularity). Campanulaceae
species showed the highest circularity and could therefore be well
differentiated from other families. The vast majority of species
studied had tricolporate pollen such as the Fabaceae Lotus
corniculatus, Anthyllis vulneraria and Securigera varia, as well as
the Rosaceae Potentilla erecta and the Dipsacaceae Scabiosa
columbaria, showed the highest values in three symmetrical plane
dimensions (symmetry 3). The stephanocolpate species, Salvia
verticillata, Prunella grandiflora and Thymus pulegoides, belonging
to the Lamiaceae, as well as the periporate Caryophyllaceae

species Dianthus carthusianorum and Stellaria graminea revealed
lowest symmetry 3.

Interestingly, pollen diameter, an essential trait used in tradi-
tional morphological identification of pollen, was found to be
more conserved among species belonging to the same genus, but
not among genera belonging to the same family. Thus, pollen
diameter was similar between the species of the genera Achillea,
Campanula, Trifolium and Hypericum, but varied markedly
between Lamiaceae, Fabaceae and Gentianaceae genera.

Discussion

Imaging flow cytometry in combination with machine learning
allows for fast and accurate pollen analyses. In our study, we show
that pollen from 35 different plant species across a range of the
angiosperm tree of life but also including congeners can be iden-
tified with 96% accuracy. This represents a significant technolog-
ical advance, as most previous studies using feature extraction or
CNN have not distinguished among congener species (Marcos
et al., 2015; Oteros et al., 2015; Daood et al., 2016, 2018).

In a reasonable time frame of 9 min on average, fast measure-
ments make it easy to rapidly establish a comprehensive image
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database for training of deep learning models. Comparable stud-
ies used 1060 (Daood et al., 2016), 13 617 images (Pedersen
et al., 2017) or 19 500 images (Sevillano et al., 2020), while in
our study the CNN classifier was trained with 426 876 images.

We have previously suggested that a minimum of 200 images
per species are required for accurate species identification of phy-
toplankton (Dunker et al., 2018). By contrast, in the present
study on pollen, five out of six species with fewer than 200 pollen
grains were classified with an accuracy higher than 90%. Based
on these findings, we concluded that between 50 and 100 pollen
grains represented a reasonable amount of pollen images on a sin-
gle channel to be included in the reference library.

Although we were able to show with our approach that a high
degree of accuracy was achieved, an explanation of misclassifica-
tion would be, that they are caused by a different orientation of
the pollen on the images. As described in the methods section,
particles underlie the physical forces of hydrodynamic focus,
meaning that their statistical orientation along their longitudinal

axis is relatively stable and herewith reproducible, especially for
oblate and prolate pollen grains. We checked the reproducibility
of this orientation visually, which in our opinion is not a relevant
reasonable source of error explaining the misclassifications in our
study.

Most studies using machine learning approaches for species
recognition rely solely on microscopic brightfield or darkfield
images for object identification (Marcos et al., 2015; Pedersen
et al., 2017; Khanzhina et al., 2018; Sevillano & Aznarte, 2018;
He et al., 2019; Sevillano et al., 2020). An additional advantage
of our approach is that brightfield scatter as well as fluorescent
images are collected for every particle, allowing quantification of
a broader range of particle properties with spatial image resolu-
tion. By testing various classifiers, we found that a classifier with
a combination of brightfield and fluorescence images performed
significantly better than the brightfield channel alone (Fig. S3),
indicating that the information content of brightfield and fluores-
cence images is complementary. As satisfactory accuracy was

Symmetry 3

Circularity Diameter (µm)

(a) (b)

(C) (d)

Symmetry 2

Fig. 4 The phylogeny of investigated plant species, colour coded according to their trait values for (a) biradiate symmetry (symmetry 2), (b) triradiate
symmetry (symmetry 3), (c) circularity and (d) diameter. Exemplary pollen images illustrate the differences in the respective trait expression.
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achieved in this study, the number of channels was reduced to
three, with the option to use a combination of up to 12 channels
for a higher number of species.

Pollen autofluorescence arises mainly from the sporoderm (in-
tine and exine) from proteins, phenolic compounds and
flavonoids in the UV range, as well as carotenoids in the visible
range we investigated (Stanley & Linskens, 1974; Roshchina,
2003; Pöhlker et al., 2013). This could explain why the highest
accuracy was achieved for the multichannel combinations includ-
ing channel 2 (carotenoid absorption), while the worst single
channel 5 revealed an unspecific absorption in the red region
(O’Connor et al., 2011). Pollen fluorescence is discussed as hav-
ing two important ecological functions: UV-light protection
(Stanley & Linskens, 1974; Rozema et al., 2001) and animal
attraction (Stanley & Linskens, 1974; Mori et al., 2018). Inter-
estingly, we detected exceptionally high fluorescence from
Hypericum pollen on all channels with 488 nm excitation (Fig.
S2). This fluorescence could be caused by hypericin (Roshchina,
2012) and is especially relevant as European Hypericum species
are known to provide pollen as the sole reward to their pollina-
tors (Willmer, 2011; Woodcock et al., 2014). Therefore, the high
fluorescence could be interpreted as a potential attractant for pol-
linators. As Pöhlker et al. (2013) demonstrated, fluorescence
emission can differ between pollen grains of the same species and
fluorescence intensity increases with pollen age. In our study, all
pollen samples were treated similarly (same age class), and we
suggest that great care has to be taken when comparing results
across studies as fluorescence signals might be influenced by the
age and storage of the respective samples. For paleopalynological
analyses it was even shown that fluorescence could be a fast indi-
cator to examine qualitative shifts in sediment fluxes (Yeloff &
Hunt, 2005).

A marked point of our results is that we could differentiate
between closely related species that belong to families challenging
to distinguish using classical microscopy such as the Asteraceae,
Fabaceae and Clusiaceae. Often, some species from Asteraceae
(Jafari & Ghanbarian, 2007) or some other families are so diffi-
cult to distinguish that pollen can only be identified to the family
or genus level (Beil et al., 2008; Bilisik et al., 2008; Keller et al.,
2015). The differentiation of different species of the same genus
has rarely been shown with automated image-based methods.
Some of the few exceptions are wind-pollinated Picea (Punyasena
et al., 2012) and some Poaceae species (Mander et al., 2013;
Julier et al., 2016). We hypothesise that the ability to distinguish
similar species from each other is due to the high number of
images used in our study compared with previous studies (Mar-
cos et al., 2015).

If pollen traits are phylogenetically conserved, this could have
potential for research projects interested in identifying key evolu-
tionary transitions in angiosperms and could be used as diagnos-
tic character states to identify untrained plant species in a study.
Previous studies have demonstrated that morphological pollen
traits, such as shape, symmetry and polarity, showed phylogenetic
structure (across 64 species in Wortley et al., 2015). Similarly, we
found a phylogenetic signal in the morphological trait ‘circular-
ity’, which indicates how much the pollen deviates from a

spheroidal shape class (lower value of circularity). This difference
in circularity is best seen by comparing the perprolate or prolate
shape of Apiaceae with the more spheroidal shape of Asteraceae
and Campanulaceae species in our database. Many dicotyledons
are characterised by three symmetrically arranged longitudinal
furrows (tricolpate pollen), which is explained by the fact that
four cells are formed from one mother cell after two successive
divisions and dependent upon whether Fischer’s or Garside’s rule
of division is apparent (Wodehouse, 1929). We also found a phy-
logenetic signal in symmetry traits and could distinguish families
within the tricolporate pollen class (e.g. Apiaceae with high sym-
metry 2 and Fabaceae and Dipsacaceae with high symmetry 3),
and distinguished between families (e.g. stephanocolpate Lami-
aceae species and periporate Caryophyllaceae species, which all
had low symmetry 3).

While there was a phylogenetic signal, there was also a great
deal of variability in pollen traits within families. This suggests
that, at this time, the traits we analysed are only partially suitable
to successfully identify a pollen that is not already in our pollen
library. This is not surprising, as other studies have pointed out
that even in families that have highly conserved pollen traits,
there are always some deviant species (Klerk & Joosten, 2007).
Thus, pollen traits are similar to other plant traits, such as eco-
physiological traits (Liu et al., 2015), which are shaped by local
environments (Young & Stanton, 1990).

Despite the lack of a strong phylogenetic signal in our analyses,
pollen size (i.e. diameter) is an essential trait for traditional pollen
identification (Beug, 2015). Our method allows a rapid assess-
ment of the diameter of a high number of pollen grains (>1000)
impossible to achieve in reasonable time with traditional manual
microscopic approaches. Consequently, by using this approach,
it will be possible to accurately account for the amount of varia-
tion in this trait associated with ecological and physiological fac-
tors as well as evolutionary adaptation of plant–pollinator pairs.
Studies on the relationship between pollen size or other morpho-
logical features and pollinators are mainly focused on a limited
number of taxonomic groups (Taylor & Levin, 1975; Osborn
et al., 1991; Harder, 1998) and it would be interesting to estab-
lish a more comprehensive study on this aspect, like the one for
example performed by Wortley et al. (2015) for evolutionary
studies on pollen traits. As one example, body hair morphology
and hair density of pollinators affect which pollen size and pollen
structure an insect can carry. Therefore, pollen grain size and
shape should partially depend on the pollinator species group to
which a plant is adapted (Davis, 1997). In addition, pollen size
was shown to be influenced by nutrient treatments (Young &
Stanton, 1990) or ploidy in several plant species (Altmann et al.,
1994; Katsiotis & Forsberg, 1995; Srisuwan et al., 2019). Pollen
size is also an indicator of ploidy, which has major relevance for
plant physiology and plant distributions (Paule et al., 2017).
Some of the differences in pollen size observed for our species
and the literature might have been caused by varying ploidy, for
example for the plant species Campanula rotundifolia (Laanei
et al., 1983) and Leucanthemum vulgare (Marchi et al., 1983) for
which different ploidy was described previously. In our study, the
pollen size for both species is higher than reported in Beug

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2021) 229: 593–606

www.newphytologist.com

New
Phytologist Research 603



(2015) and could indicate that our populations have a higher
ploidy level. However, we note that pollen size could be also
affected by different hydration states, but this should not differ in
our study as all samples have been treated similarly.

Rapid and accurate identification and quantification of pollen
grains either directly from the flowers or from the body of visiting
insects opens up numerous opportunities for assessing different
aspects of the reproductive biology of plants and their interaction
with pollinators. To apply our method to these kinds of studies,
as a next step, it is required that mixed samples of various pollen
will be predicted with the existing classifiers. These results need
also to be validated against the gold standard microscopy.

Once these steps are established, our approach can be explored
for a variety of other pollen-related studies such as health-related
research about allergenic pollen, honey analysis, forensics or pale-
obotanical studies and allows more efficient analyses with much
more sample throughput than ever before. These applications
would require different reference pollen databases, and for pale-
opalynology a different way of sample preparation (e.g. with ace-
tolysed pollen material). The method could also be a valuable
supplementary approach to pollen metabarcoding.

As the cytometer used in this study is quite an expensive piece
of equipment it is important for the future to develop more
affordable options, but using a similar technical configuration. At
the moment it is recommended that such measurements should
be performed centrally, for example in core facilities. As our
method is expanded, it will facilitate the creation of a more
robust database on pollen phenotypes, allowing for new research
on the drivers of variation in pollen size and other morphological
traits.

Our method allows ecological questions to be asked on a large
spatial and temporal scale, for example on the effects of global
land use and climate change on plant reproduction and on the
relative importance of different pollinator species for maintaining
stable plant–pollinator networks.
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Auflage. der ‘Exkursionsflora von Österreich’ 1994. Linz, Austria: OÖ
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