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Abstract. Consider an exact action of a discrete group G on a separable C*-
algebra A. It is shown that the reduced crossed product A oσ,λ G is strongly purely
infinite—provided that the action of G on any quotient A/I by a G-invariant closed
ideal I 6= A is element-wise properly outer and that the action of G on A is G-
separating (cf. Definition 5.1). This is the first non-trivial sufficient general criterion
for strong pure infiniteness of reduced crossed products of C*-algebras A that are not
G-simple. In the case A = C0(X), the notion of a G-separating action corresponds
to the property that two compact sets C1 and C2, that are contained in open subsets
C j ⊆U j ⊆ X , can be mapped by elements g1, g2 of G onto disjoint sets σg j (C j )⊆U j ,
but satisfy not necessarily the contraction property σg j (U j )⊆U j . A generalization
of strong boundary actions on compact spaces to non-unital and non-commutative
C*-algebras A (cf. Definition 7.1) is also introduced. It is stronger than the notion of
G-separating actions by Proposition 7.6, because G-separation does not imply
G-simplicity and there are examples of G-separating actions with reduced crossed
products that are stably projection-less and non-simple.
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1. Introduction
In this paper we carry on the study of C*-dynamical systems with applications in
classification via equivariant KK-theory. It was shown by the first named author that for
any two stable separable nuclear strongly purely infinite C*-algebras, both with primitive
ideal space isomorphic to the same T0-space X , the algebras are isomorphic if and only
if they are KK X -equivalent. Since until now it is unknown if non-simple nuclear purely
infinite C*-algebras are also strongly purely infinite, the verification of pure infiniteness is
not suitable for classification purposes. It is however far from understood when C*-algebra
crossed products A oσ,λ G associated to C*-dynamical systems are strongly purely infinite
in terms of properties of the action σ , in particular in the non-simple case. Our main
focus of this work is such characterization for crossed products that are either simple or
more generally contain ideals coming from arbitrary G-invariant ideals of the algebra A
on which the group G acts.

We begin (in §2) by introducing crossed products and by providing the notation used
throughout the paper.

In §4, we look at results related to the ideal structure of crossed products. It was shown
in [22] that residually properly outer (Definition 4.1) and exact (Definition 4.5) actions
σ : G→ Aut(A) on a separable C*-algebra A have the property that the lattice of (closed)
ideals of the reduced crossed product A oσ,λ G is naturally isomorphic to the lattice of
G-invariant ideals of A (by the map I 7→ A ∩ I ). We refine this result by showing that
for any exact and residually properly outer action σ of a discrete group G on a separable
or commutative C*-algebra A, the set A+ is a filling family (Definition 3.3) for A oσ,λ G
(which implies that I 7→ A ∩ I is a bijective map from the lattice of ideals in A oσ,λ G
onto the lattice of G-invariant ideals in A; see Remark 3.5 for details).

In §5, we introduce the notion of G-separating actions (Definition 5.1). We show
in Theorem 5.3 that for any exact and residually properly outer action σ of a discrete
group G on a separable or commutative C*-algebra A and for any filling family F ⊆ A+,
the crossed product A oσ,λ G is strongly purely infinite if and only if F has the
diagonalization property (Definition 3.9) in A oσ,λ G. Applying the results in the related
paper [14], we obtain (in Proposition 5.5) an equivalent characterization of G-separating
actions, from which we can deduce that A+ has the diagonalization property whenever the
action on A is G-separating. By using [14] once again, we prove our main result.

THEOREM 1.1. Suppose that (A, G, σ ) is a C*-dynamical system, where G is discrete
and A is separable or commutative.

If the action σ of G on A is exact (Definition 4.5), residually properly outer
(Definition 4.1) and G-separating (Definition 5.1), then A oσ,λ G is strongly purely
infinite.

In §6, we look at actions on commutative C*-algebras. Here we characterize the notion
of G-separating action purely in terms of the underlying geometry. More specifically,
we consider actions α of a discrete group G on a locally compact Hausdorff space X ,
and denote by σ the induced action on A := C0(X). We show (in Lemma 6.1) that the
action of G on A is G-separating if and only if the action satisfies the following condition:
for every two open compact sets K1, K2 contained in open subsets K j ⊆U j ⊆ X , there
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exist g j ∈ G such that αg j (K j )⊆U j , and αg1(K1) ∩ αg2(K2)= ∅. This result is what
motivates the choice of our terminology ‘G-separating’. Notice that it does not imply
that αg j (U j )⊆U j . As a consequence of this characterization, we obtain in Corollary 6.2
a topological sufficiency criterion for the strong pure infiniteness of the crossed product
C0(X)oσ,λ G in terms of a condition on the action α of G on X .

In the final §7, we consider actions that produce simple and strongly purely infinite
crossed products. We introduce (Definitions 7.1 and 7.2) the notions of n-majorizing
(n ≥ 1) and n-covering actions (n ≥ 2), the latter for actions on unital C*-algebras. These
two notions generalize and refine results on simple purely infinite crossed products in
[10, 17], where the notions of strong boundary actions (Definition 3.1) and n-filling actions
(Definition 3.2) were introduced. We prove in Remark 7.7 that our notions are weaker: any
n-filling action on a unital C*-algebra A is n-covering and, for any action α on a compact
space X with more than two points (on which strong boundary actions are defined),
the action α is a strong boundary action if and only if its adjoint action σ on C(X) is
1-majorizing. Both our notions are G-simple. Therefore, we call the 1-majorizing actions
on not-necessarily unital or commutative C*-algebras also strong boundary actions.
Despite our weaker assumptions, we are able to prove the following result.

THEOREM 1.2. Suppose that the C*-dynamical system (A, G, σ ) with discrete G is
n-majorizing (Definition 7.1) for some n ≥ 1 or n-covering (Definition 7.2) for some n ≥ 2,
the latter if A is unital. If the action σ is element-wise properly outer (Definition 4.1) and
A is separable or commutative, then A oσ,λ G is simple strongly purely infinite.

In §7, we also look at how the different properties relate to each other. In Lemma 7.3,
we show that each n-covering action (for n ≥ 2) on a unital C*-algebra A is n-majorizing,
and the latter properly (for n ≥ 1) implies that the action is (n + 1)-covering. In
Proposition 7.6, we prove that that any 1-majorizing action on a non-unital C*-algebra
A is automatically G-separating. In Remark 7.7, we prove that any action on a unital
commutative C*-algebra A is n-filling if and only if it is n-covering and, for n = 2, this is
again equivalent to a strong boundary (i.e., 1-majorizing) action.

We end with a number of remarks, including a proof of the fact that our notions of
G-separating, n-majorizing and n-covering actions can be expressed in terms of
projections when A has real rank zero (see Remark 7.9).

We hope that the study of crossed products—even those for actions of amenable discrete
groups on locally compact Polish spaces—can help to detect possible differences between
strong and weak pure infiniteness. This paper is a very first step in this direction, and gives
a sufficient criterion by conditions on the action that implies strong pure infiniteness of
reduced crossed products.

2. Preliminaries
We let A+ denote the set of positive elements in a C*-algebra A. We denote the positive
and negative parts of a self-adjoint element a ∈ A by a+ := (|a| + a)/2 ∈ A+ and a− :=
(|a| − a)/2) ∈ A+, where |a| := (a∗a)1/2. If a ∈ A+, then (a − ε)+, the positive part of
a − ε1 in M(A), is again in A+. Here M(A) is the multiplier algebra of A. This notation
will be used also for functions f : R→ R; then e.g. ( f − ε)+(ξ)=max( f (ξ)− ε, 0).
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A subset F ⊆ A+ is invariant under ε-cut-downs if for each a ∈ F and ε ∈ (0, ‖a‖) we
have (a − ε)+ ∈ F . The minimal unitalization of A is denoted Ã. Restriction of a map
f to X is denoted f |X . We let Cc(0,∞]+ denote the set of all non-negative continuous
functions ϕ on [0,∞)with ϕ|[0, η] = 0 for some η ∈ (0,∞) such that limt→∞ ϕ(t) exists.

Remarks 2.1.
(i) Suppose that a, b ∈ A+ and ε > 0 satisfy ‖a − b‖< ε. Then the positive part

(b − ε)+ ∈ A of (b − ε · 1) ∈M(A) can be decomposed into d∗ad = (b − ε)+ with
some contraction d ∈ A [13, Lemma 2.2].

(ii) Let τ ∈ [0,∞) and 0≤ b ≤ a + τ · 1 (in M(A)); then for every ε > τ there is
a contraction f ∈ A such that (b − ε)+ = f ∗a+ f . (See [13, Lemma 2.2] and
[3, §2.7].)

We abbreviate C*-dynamical systems by (A, G, σ ) with discrete groups G. We denote
by e the unit of G and consider only closed and two-sided ideals of A. The reduced
(respectively the full) crossed product associated to (A, G, σ ) is denoted by A oσ,λ G
(respectively A oσ G). The norm on A oσ,λ G will be sometimes written as ‖ · ‖λ if
it is necessary to distinguish it from other norms. We let I(A) denote the lattice of
ideals in a C*-algebra A. The map η : A→ A oσ G means the natural embedding into
the full crossed product. Let πλ : A oσ G→ A oσ,λ G be the natural epimorphism. We
will sometimes suppress the canonical inclusion maps η : A→ A oσ G and πλ ◦ η : A→
A oσ,λ G. Let U denote the canonical unitary representation U : G→M(A oσ G).
Notice here that the linear span η(A)U (G) is a dense *-subalgebra of A oσ G. We
denote by Uλ : G→M(A oσ,λ G) the regular representation for some more precise
explanations. The same happens for the reduced crossed product with ηλ := πλ ◦ η in
place of η.

The set Cc(G, A) consists of the maps f : G→ A with finite support F := G\ f −1(0).
There is a natural linear embedding of Cc(G, A) into A oσ G by canonical identification
of f : G→ A (of finite support) with an element of A oσ G: let F ⊆ G be a finite subset
with f (g)= 0 for g 6∈ F . Then f will be identified with the element

∑
g∈F η(ag)U (g)

of A oσ G, where ag := f (g). In this way, Cc(G, A) becomes a *-subalgebra of A oσ G
that unitally contains A. The natural C*-morphism πλ : A oσ G→ A oσ,λ G is faithful
on Cc(G, A), and we do not distinguish between

πλ

(∑
g∈F

η(ag)U (g)
)
=

∑
g∈F

ηλ(ag)Uλ(g)

and
∑

g∈F η(ag)U (g). In particular, η(a) ∈ A oσ G and ηλ(a) ∈ A oσ,λ G will be
denoted simply by a ∈ A, and Uλ(g) might be denoted U (g).

We now recall the conditional expectation E : A oσ G→ η(A)∼= A: the map Ealg :

Cc(G, A)→ A,
∑

g∈F agU (g) 7→ ae, extends by continuity to a faithful conditional
expectation Eλ : A oσ,λ G→ A. In particular, Eλ is a completely positive contraction,
Eλ(A oσ,λ G)= A, and Eλ(b)= 0 imply b = 0 for b ∈ (A oσ,λ G)+. Since A is also
contained in its full crossed product A oσ G, we can use the natural epimorphism A oσ
G→ A oσ,λ G to define E by E := Eλ ◦ πλ as a (not necessarily faithful) conditional
expectation from A oσ G onto its C*-subalgebra A.
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3. Some used definitions and results
For the convenience of the reader, we include here a few used definitions and results that
are frequently cited throughout this paper. The paper [14] is available as a preprint.

Definition 3.1. [17] Let α be an action of a discrete group G on a compact space X with
at least three points. The action α is a strong boundary action if for every pair U and V of
non-empty open subsets of X there exists t ∈ G such that αt (X\U )⊆ V .

Definition 3.2. [10] An action σ of a discrete group G on a unital C*-algebra A is
n-filling (n ≥ 2) if, for all b1, . . . , bn ∈ A+, with ‖b j‖ = 1 for each j , and all ε > 0, there
exist g1, . . . , gn ∈ G such that

∑n
j=1 σg j (b j )≥ 1− ε.

Definition 3.3. [14] Let F be a subset of A+. The set F is a filling family for A if F
satisfies the following equivalent conditions (i) and (ii).
(i) For every a, b, c ∈ A with 0≤ a ≤ b ≤ c ≤ 1, with ab = a 6= 0 and bc = b, there

exist z1, z2, . . . , zn ∈ A and d ∈ A with z j (z j )
∗
∈ F such that ec = e and d∗ed = a

for e := z∗1z1 + · · · + z∗nzn .
(ii) For every hereditary C*-subalgebra D of A and every primitive ideal I of A with

D 6⊆ I , there exist f ∈ F and z ∈ A with z∗z ∈ D and zz∗ = f 6∈ I .

LEMMA 3.4. [14] Suppose that A ⊆ B is a C*-subalgebra of B and F ⊆ A+ is a subset
of A+. If F is filling for A, and A+ is filling for B, then F is a filling family for B.

Remark 3.5. [14] Let A ⊆ B be C*-algebras and F ⊆ A+. If F := A+ ⊆ B is filling for
B, then the map I ∈ I(B) 7→ I ∩ A ∈ I(A) is injective, i.e., A separates the closed ideals
of B.

Definition 3.6. [14] A C*-algebra A is strongly purely infinite (for short: s.p.i.) if, for
every a, b ∈ A+ and ε > 0, there exist elements s, t ∈ A such that

‖s∗a2s − a2
‖< ε, ‖t∗b2t − b2

‖< ε and ‖s∗abt‖< ε. (1)

Remark 3.7. [14] A C*-algebra A is strongly purely infinite if and only if for every
a, b ∈ A+, c ∈ A and ε > 0, there exist contractions s, t ∈ A such that

‖s∗as − a‖< ε, ‖t∗bt − b‖< ε and ‖s∗ct‖< ε. (2)

Definition 3.8. [14] Let S ⊆ A be a multiplicative sub-semigroup of a C*-algebra A
and C ⊆ A a subset of A. An n-tuple (a1, . . . , an) of positive elements in A has the
matrix diagonalization property with respect to S and C if, for every [ai j ] ∈ Mn(A)+ with
a j j = a j and ai j ∈ C (for i 6= j) and ε j > 0, τ > 0, there are elements s1, . . . , sn ∈ S with

‖s∗j a j j s j − a j j‖< ε j and ‖s∗i ai j s j‖< τ for i 6= j. (3)

If S = C = A, then this is the matrix diagonalization property of (a1, . . . , an) as defined
in [13, Definition 5.5], and we say that (a1, . . . , an) has matrix diagonalization (in A).

Definition 3.9. [14] Let F be a subset of A+. The family F has the (matrix)
diagonalization property (in A) if each finite sequence a1, . . . , an ∈ F has the matrix
diagonalization property (in A) of Definition 3.8.
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LEMMA 3.10. [14] Suppose that F ⊆ A+ is invariant under ε-cut-downs, i.e., that for
each a ∈ F and ε ∈ (0, ‖a‖), we have (a − ε)+ ∈ F .

Then the family F has the matrix diagonalization property if and only if each pair of
elements in F has the matrix diagonalization property of Definition 3.8.

(It was Lemma 3.12 in the first version of this paper.)

LEMMA 3.11. [14] Let ε0 > 0 and non-empty subsets F ⊆ A+, C ⊆ A be given, and let
S ⊆ A be a (multiplicative) sub-semigroup of A that satisfies s∗2Cs1 ⊆ C for all s1, s2 ∈ S.
Suppose that the following properties hold.
(i) For every ε0 > δ > 0, the pair ((a1 − δ)+, (a2 − δ)+) has the matrix diagonalization

property with respect to S and C of Definition 3.8.
(ii) ϕ(a1)cϕ(a2) ∈ C for each c ∈ C and ϕ ∈ Cc(0,∞]+.
(iii) ϕ(a1)s, ϕ(a2)s ∈ S for each s ∈ S and ϕ ∈ Cc(0,∞]+.
Then, for every c ∈ span(C), a1, a2 ∈ F , ε0/2≥ ε > 0 and τ > 0, there exist s1, s2 ∈ S
that fulfil ‖s j‖

2
≤ 2‖a j‖/ε and

‖s∗1 a1s1 − a1‖< ε, ‖s∗2 a2s2 − a2‖< ε and ‖s∗1 cs2‖< τ. (4)

THEOREM 3.12. [14] The minimal tensor product of a strongly purely infinite C*-algebra
and an exact C*-algebra is strongly purely infinite.

THEOREM 3.13. [14] Suppose that A+ contains a filling family F that has the
diagonalization property (in A). Then A is strongly purely infinite.

4. Properly outer actions and ideal structure
In this section we look at conditions on a C*-dynamical system (A, G, σ ) ensuring that
the set A+ is a filling family for A oσ,λ G in the sense of Definition 3.3. This implies in
particular a one-to-one correspondence between ideals of A oσ,λ G and G-invariant ideals
of A, but (as we shall see) also applies to the verification of when a crossed product is
strongly purely infinite. A crucial ingredient of the following consideration is that the
automorphisms σt for t 6= e are all properly outer. We recall the definition below.

Definition 4.1. Suppose that (A, G, σ ) is a C*-dynamical system and that G is discrete.
The action σ will be called element-wise properly outer if, for each g ∈ G\{e}, the
automorphism σg of A is properly outer in the sense of [6, Definition 2.1], i.e.,
‖σg|I − Ad(U )‖ = 2 for any σg-invariant non-zero ideal I of A and any unitary U in
the multiplier algebra M(I ) of I . See also [18, Theorem 6.6(ii)].

We call here an action σ residually properly outer if, for every G-invariant ideal J 6= A
of A, the induced action [σ ]J of G on A/J is element-wise properly outer.

Remarks 4.2.
(i) Notice that element-wise proper outerness passes to subgroups, i.e., for each

subgroup H ⊆ G, the system (A, H, σ |H) is element-wise properly outer on A if
(A, G, σ ) is element-wise properly outer. But residual proper outerness does not
necessarily pass to subgroups. The system (A, H, σ |H) is not necessarily residually
properly outer if (A, G, σ ) is residual proper outer, because possibly there could be
more H -invariant ideals than G-invariant ideals of A.
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(ii) If A is non-commutative, then topological freeness of (A, G, σ ) in the sense of
[1, Definition 1] is—at least formally—stronger than the assumption of element-wise
proper outerness of (A, G, σ ) in Definition 4.1 (cf. [1, Proposition 1]). We do not
know examples where they actually differ. Thus, for non-commutative A, ‘essential
freeness’ of the corresponding action of G on Â in the sense of [22, Definition 1.17]
(inspired by [20, Definition 4.8]) is—formally—stronger than our residual proper
outerness of (A, G, σ ).

(iii) If G is countable and acting on C0(X), one can show—using the Baire property of
X—that element-wise proper outerness is the same as the requirement (for the action
α of G on X with σg( f ) := f ◦ αg−1 ) that points with trivial fix-point subgroup
(trivial isotropy) are dense in X , i.e., [22, Definition 1.17] holds. We can reformulate
this as: stability subgroups of non-empty open subsets are trivial.

Remark 4.3. We recall [18, Lemma 7.1.] (cf. also [16, Lemma 3.2]).
If α1, α2, . . . , αn are properly outer automorphisms of a separable C*-algebra A, there

is, for each a0, a1, a2, . . . , an ∈ Ã, with 0 6= a0 ≥ 0, and each ε > 0, an element x ∈ A+
with ‖x‖ = 1 such that

‖xa0x‖> ‖a0‖ − ε, ‖xaiα j (x)‖< ε, 1≤ i, j ≤ n.

If A is commutative, i.e., A ∼= C0(X) for X = Â ⊆ A∗, then it is not necessary to
suppose that A is separable in the above-quoted lemma of Olesen and Pedersen (compare
also [7]): an automorphism σ ∈ Aut(A) is properly outer if and only if, for every
open subset ∅ 6=U ⊆ X , there exists y ∈U with σ̂ (y) 6= y. Thus, for every finite set
S ⊆ Aut(A) of properly outer automorphisms, every non-empty open subset U ⊆ X
contains a non-empty open subset V ⊆U with σ̂ (V ) ∩ V = ∅ for all σ ∈ S. If one
takes U := a−1

0 (‖a0‖ − ε,∞) and non-empty V ⊆U as above, then each x ∈ C0(X) with
‖x‖ = 1 and support in V satisfies ‖xa0x‖> ‖a0‖ − ε and xσ(x)= 0 for σ ∈ S.

The following Lemma 4.4 is a suitable modification of proofs of [18, Lemma 7.1 and
Theorem 7.2]. It has been proved in [1] under the stronger assumption that the action σ is
topologically free, and part (iii) has been shown in [11, Theorem 4.1] even to be equivalent
to the topological freeness of the action if A is commutative and unital and G is amenable.
Compare also Corollary 4.9 for a ‘residual’ version.

LEMMA 4.4. Suppose that A is separable or commutative and that the action of G on A
is element-wise properly outer.
(i) For every b ∈ (A oσ G)+ with E(b) 6= 0 and ε > 0, there exists x ∈ A+ satisfying

‖x‖ = 1, ‖xbx − x E(b)x‖< ε, ‖x E(b)x‖> ‖E(b)‖ − ε.

This holds also for b ∈ (A oσ,λ G)+ and Eλ in place of E.
(ii) If h : A oσ G→ L(H) is a *-representation such that h|A is faithful, then

‖h(b)‖ ≥ ‖E(b)‖ for all b ∈ (A oσ G)+.
In particular, the kernel of h is contained in the kernel Iλ of the natural epimorphism
πλ : A oσ G→ A oσ,λ G.

(iii) Every non-zero ideal of A oσ,λ G has non-zero intersection with A.
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Proof. (i) Let b ∈ (A oσ G)+ with E(b) 6= 0, and ε > 0.
Let a0 := E(b). Since Cc(G, A) is dense in A oσ G, there exists a′ = c0 +∑m
j=1 a jU (g j ) ∈ Cc(G, A) with g−1

i g j 6= e and g j 6= e for i 6= j ∈ {1, . . . , m}, and
‖a′ − b‖< ε/6. Since E is a contraction, it follows that ‖b − a‖< ε/3 and E(a)=
a0 = E(b) for g0 := e and a := a0 + (a′ − c0)=

∑m
j=0 a jU (g j ). By [18, Lemma 7.1]

and Remark 4.3, there exists x ∈ A+ with ‖x‖ = 1, ‖x E(a)x‖> ‖E(a)‖ − ε/3m and
‖xa jσg j (x)‖< ε/3m for g j 6= e, j = 1, . . . , m. In particular,

‖x E(b)x‖ = ‖x E(a)x‖> ‖E(a)‖ − ε = ‖E(b)‖ − ε.

Since ‖xa jU (g j )x‖ = ‖xa jσg j (x)‖, we get in A oσ G that

‖x(a − E(a))x‖ ≤
∑
g j 6=e

‖xa jσg j (x)‖ ≤ ε/3.

Thus, in the full crossed product A oσ G, we have

‖xbx − x E(b)x‖ ≤ ‖x(b − a)x‖ + ‖x(a − E(a))x‖ + ‖x(E(a)− E(b))x‖< ε.

The same arguments work for b ∈ (A oσ,λ G)+ and Eλ in place of E .
(ii) The restriction of h to A ⊆ A oσ G is faithful and hence ‖h(a)‖ = ‖a‖ for all

a ∈ A. Let b ∈ (A oσ G)+ be given. If E(b)= 0, then ‖h(b)‖ ≥ ‖E(b)‖. If E(b) 6= 0,
then select x ∈ A+ as in (i). It follows that ‖h(x E(b)x)‖ = ‖x E(b)x‖ ≥ ‖E(b)‖ − ε.
On the other hand, ‖h(b)‖ ≥ ‖h(x)h(b)h(x)‖ = ‖h(xbx)‖ and ε > ‖xbx − x E(b)x‖ ≥
‖h(xbx)− h(x E(b)x)‖. Thus, ‖h(b)‖ + ε ≥ ‖h(x E(b)x)‖, and ‖h(b)‖ + 2ε ≥ ‖E(b)‖
for all ε > 0.

Since E = Eλ ◦ πλ, we have b ∈ (A oσ G)+ and E(b)= 0 implies that b is contained
in the kernel of πλ : A oσ G→ A oσ,λ G. In particular, if h : A oσ G→ L(H) is any
*-representation with ‖h(b)‖ ≥ ‖E(b)‖ for all b ∈ (A oσ G)+, then the kernel h−1(0) of
h is contained in the kernel of the natural epimorphism πλ : A oσ G→ A oσ,λ G.

(iii) Let I be a closed ideal of A oσ,λ G with I ∩ A = {0}, consider (A oσ,λ G)/I
as a C*-subalgebra of some L(H) and let h : A oσ G→ L(H) be the corresponding
representation with kernel h−1(0)= J := π−1

λ (I )⊇ π−1
λ (0). Then h is faithful on A and,

therefore, satisfies π−1
λ (0)⊇ h−1(0). It follows that I = πλ(h−1(0))= {0}. �

Definition 4.5. [22, Definition 1.2] Suppose that (A, G, σ ) is a C*-dynamical system with
locally compact G. The action σ of G on A is exact if, for every G-invariant ideal J in A,
the sequence 0→ J oσ |J,λ G→ A oσ,λ G→ A/J o[σ ]J ,λ G→ 0 is short-exact.

Remarks 4.6.
(i) Recall that a locally compact group G is exact if and only if every action σ : G→

Aut(A) is exact. If G is discrete, then this is equivalent to the exactness of the C*-
algebra C∗λ(G); cf. [15]. This applies to all amenable groups G, e.g. G = Z. Under
Definition 4.5, each minimal (=G-simple) action is exact. In particular, non-exact
discrete groups can have exact (and faithful) actions.

(ii) Let F denote the (small) Thompson group and ρ : F→ Homeo(R) the minimal
action of F (or only of its commutator subgroup F ′) on the real line R as described
by Haagerup and Picioroaga in [9, Remark 2.5]. One can use ρ to construct a
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F-separating, non-minimal and exact action α of F (or F ′) on the disjoint union
of two lines X := R ∪ (i + R)⊆ C if one considers the restriction α(g) := β(g)|X
to X of the action g ∈ F→ β(g) on C given by β(g)(s + i t) := ρ(g)(s)+ i t†. It is
at present unknown whether the Thompson group F is amenable or not; cf. [2, 8]. It
is not even known if F is exact.

(iii) It is not known if Gromov’s examples of non-exact groups can have non-exact actions
on commutative C*-algebras. It is likely that it has to do with still missing non-trivial
geometric conditions for G-actions on locally compact spaces X that are equivalent
to the exactness of the adjoint action σ : G→ Aut(C0(X)) given by σg( f ) := f ◦
αg−1 . Therefore, we use the trivial and non-geometric definition and define α to be
exact if its adjoint action σ on C0(X) is exact.

Remark 4.7. Combination of Lemma 4.4(iii) and of the exactness of an action σ : G→
Aut(A) on a separable or commutative C*-algebra A shows that the lattice of (closed)
ideals of the reduced crossed product A oσ,λ G is naturally isomorphic to the lattice of
G-invariant ideals of A (by the map J 7→ A ∩ J ) if σ is exact and residually proper outer.
(See [22, Remark 2.23] for details.)

THEOREM 4.8. Let (A, G, σ ) be a C*-dynamical system with discrete G and separable
or commutative A. If the action σ of G on A is exact and residually properly outer, then
the elements of A+ build a filling family for A oσ,λ G in the sense of Definition 3.3.

Proof. We show that for every hereditary C*-subalgebra D of A oσ,λ G and every (closed)
ideal I of A oσ,λ G with D 6⊆ I , there exist f ∈ A+ and z ∈ A oσ,λ G such that z∗z ∈ D
and zz∗ = f 6∈ I .

Suppose that D is a hereditary C*-subalgebra of A oσ,λ G and that I is an ideal
of A oσ,λ G with D 6⊆ I . Let J := I ∩ A; then J is a G-invariant ideal of A with
J oσ |J,λ G ⊆ I and g ∈ G 7→ [σg]J is an element-wise properly outer action on A/J by
our assumptions on σ . We denote this action by α, i.e., αg(a + J ) := σg(a)+ J .

By Remark 4.7, the exactness and residual proper outerness of σ : G→ Aut(A) allow
a natural identification

(A oσ,λ G)/I = (A/J )oα,λ G.

Since D 6⊆ I implies D+ 6⊆ I , there exists d ∈ D+, d /∈ I . The epimorphism πI :

A oσ,λ G→ (A oσ,λ G)/I is equal to the quotient map π J from A oσ,λ G onto
(A/J )oα,λ G ∼= (A oσ,λ G)/I (under natural identifications). We denote the conditional
expectation Eλ : (A/J )oα,λ G→ A/J (temporarily) by E and define

b := πI (d) and ε := 1
4‖E(b)‖> 0.

Lemma 4.4(i) gives an element x ∈ (A/J )+ such that

‖x‖ = 1, ‖xbx − x E(b)x‖< ε, ‖x E(b)x‖> ‖E(b)‖ − ε = 3
4‖E(b)‖.

By Remark 2.1(i), there is a contraction y ∈ (A/J )oα,λ G such that

y∗xbxy = (x E(b)x − ε)+ ∈ (A/J )+.

† This action is not topologically free.
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Note that y∗xbxy 6= 0, because

‖(x E(b)x − ε)+‖ = ‖x E(b)x‖ − 1
4‖E(b)‖>

1
2‖E(b)‖ = 2ε.

Since πI |A = π J
|A and (x E(b)x − ε)+ ∈ (A/J )+, there exists c ∈ A+ such that π J (c)=

(x E(b)x − ε)+. Since π J (= πI ) is surjective, there exists a contraction w ∈ A oσ,λ G
with π J (w)= xy. We obtain that

c = w∗dw + v

for some v ∈ I . The set Cc(G, J ) is dense in I , because I = J oσ,λ G and G is discrete.
This allows us to see that J I J is dense in I . It follows that {e ∈ J+ | ‖e‖< 1} is an
approximate unit of I . In particular, there exists e ∈ J+ with ‖v − ev‖< ε.

Let 1 denote the unit of Ã oσ,λ G; then A oσ,λ G is an ideal of Ã oσ,λ G. With
g := (1− e) ∈ Ã+, ‖g‖ ≤ 1, we get

‖gw∗dwg − gcg‖ = ‖gvg‖ ≤ ‖v − ev‖< ε = 1
4‖E(b)‖.

Since gzg = z + eze − (ze + ez) and πI (e)= π J (e)= 0, we have πI (gzg)= πI (z) for
all z ∈ A oσ,λ G.

By Remark 2.1(i), there exists a contraction h ∈ A oσ,λ G such that

h∗(gw∗dwg)h = (gcg − ε)+ ∈ A+.

With z := (d1/2wgh)∗, we have that z∗z ∈ D and zz∗ = (gcg − ε)+ =: f ∈ A+. Finally,
we see from πI (gcg)= πI (c) that

‖πI ( f )‖ = ‖πI ((gcg)− ε)+)‖ = (‖πI (gcg)‖ − ε)+ = (‖πI (c)‖ − ε)+

= (‖(x E(b)x − ε)+‖ − ε)+ = ‖x E(b)x‖ − 1
2‖E(b)‖>

1
4‖E(b)‖> 0.

Hence, f 6∈ I . �

The following corollary shows that in the case of commutative A and discrete
amenable G several of the previously considered properties are equivalent.

COROLLARY 4.9. If A is commutative and G is a discrete amenable group that acts on A
by σ , then the following properties are equivalent.
(i) A separates the ideals of A oσ G, i.e., I 7→ A ∩ I is an injective map from

I(A oσ G) into I(A) (see [22, Definition 1.9]).
(ii) The action σ : G→ Aut(A) is residually properly outer (Definition 4.1).
(iii) The family F := A+ is filling for A oσ G (Definition 3.3).

Proof. (i)⇒ (ii): By [11, Theorem 4.1] (in case of unital A, and [1, Theorem 2] for the
general—non-unital—case), the separation property implies that the adjoint action of G
on the Gelfand spectrum of A is topologically free, which is equivalent to element-wise
proper outerness by [1, Proposition 1].

This applies also to the quotients (A/J )o[σ ]J ,λ G, because the property (i) passes to
quotients by amenability of G. See also [22, Theorem 1.13].

(ii) ⇒ (iii): Since amenable G are exact, the residual proper outerness of the action
implies that F := A+ is filling for A oσ,λ G by Theorem 4.8.

(iii)⇒ (i): By Remark 3.5, the subalgebra A separates the ideals of B := A oσ,λ G if
F := A+ is filling for B. �
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Remark 4.10. Asking G to be amenable in Corollary 4.9 can be weakened to exactness of
σ and A oσ,λ G ∼= A oσ G. One might also expect nuclearity of A oσ,λ G would suffice
in place of amenability of G (this is known at least in the unital case).

5. Strongly purely infinite crossed products
In this section we prove our main result (Theorem 1.1). We start with the definition of a
G-separating action.

Definition 5.1. Suppose that (A, G, σ ) is a C*-dynamical system with discrete group G.
The action of G on A is G-separating if, for every a, b ∈ A+, c ∈ A, ε > 0, there exist
elements s, t ∈ A and g, h ∈ G such that

‖s∗as − σg(a)‖< ε, ‖t∗bt − σh(b)‖< ε and ‖s∗ct‖< ε. (5)

Remarks 5.2.
(i) Notice that Definition 3.6 and Remark 3.7 immediately imply that every action

σ : G→ Aut(A) is G-separating if A itself is strongly purely infinite: take h = g =
e ∈ G. If the contractions s, t ∈ A satisfy the defining inequalities (2) of s.p.i.
algebras A, then they also satisfy the inequalities (5).

(ii) G-separating actions on a locally compact space X are not necessarily minimal. One
can show that the mentioned example in Remark 4.6(ii) of an exact and non-minimal
action of the (small) Thompson group F on two parallel lines R ∪ (i + R)⊆ C is
also F-separating.

(iii) The existence of a G-separating action on A imposes a requirement on A itself,
e.g. the cases a = b = c = p and a = b = c = 1 with ε = 1/3 in inequalities (5) show
that A cannot contain minimal non-zero projections p ∈ A and that 1A must be
properly infinite in A if A is unital. Therefore, C*-algebras that are commutative
and unital cannot have any G-separating actions.

(iv) Further variations of the concepts that we introduce here are possible, e.g. one could
start with conditions that are weaker than conditions for G-separating actions. Also,
one could require the existence of n ∈ N such that for a, b ∈ A+ and ε > 0, there is
a solution d1, . . . , dn ∈ A and g1, . . . , gn ∈ G of the inequality (7) in Definition 7.1
of n-majorizing actions whenever b is in the smallest G-invariant closed ideal that
contains a. Or one could attempt to replace the filling family F := A+ by smaller
filling families F ⊆ A+ and require more elaborate local matrix diagonalization
formulas involving also G-translates; cf. Definition 3.8.

Combining Theorem 4.8 with Theorem 3.13, we obtain the following result.

THEOREM 5.3. Let G be a discrete group acting by σ : G→ Aut(A) on a separable
or commutative C*-algebra A. Suppose that the action is residually properly outer
(cf. Definition 4.1) and exact (cf. Definition 4.5). Let F ⊆ A+ be a filling family for A.
Then the following are equivalent.
(i) The crossed product A oσ,λ G is strongly purely infinite.
(ii) The family F has the diagonalization property in A oσ,λ G.
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Proof. Let B := A oσ,λ G. The assumptions ensure that A+ is a filling family for B by
Theorem 4.8. Since F is filling for A, F is also filling for B by Lemma 3.4.

(i)⇒ (ii): If B is s.p.i., then B+ has the diagonalization property (see Definition 3.9)
in B; cf. [13, Lemma 5.7]. This implies that our family F ⊆ A+ ⊆ B+ has the
diagonalization property in B.

(ii)⇒ (i): Since our family F ⊆ A+ is filling for B, and since F has the diagonalization
property in B, we get that B is s.p.i. by Theorem 3.13. �

Remark 5.4. Let (A, G, σ ) be a C*-dynamical system.
(i) For each a1, a2 ∈ A+, x, d1, d2 ∈ A, g0, g1, g2 ∈ G and s1 := d1U (g1), s2 :=

σg−1
0
(d2)U (g−1

0 g2g2), c := xU (g0), b1 := a1 and b2 := σg0(a2), the following
equalities hold:

‖s∗j a j s j − a j‖ = ‖d∗j b j d j − σg j (b j )‖ and ‖s∗1 cs2‖ = ‖d∗1 xd2‖.

(ii) With g0 = e in (i), the equalities reduce to

‖s∗j a j s j − a j‖ = ‖d∗j a j d j − σg j (a j )‖ and ‖s∗1 cs2‖ = ‖d∗1 cd2‖.

PROPOSITION 5.5. Suppose that (A, G, σ ) is a C*-dynamical system with discrete G.
The following properties (i)–(ii) are equivalent.
(i) The action of G on A is G-separating in the sense of Definition 5.1.
(ii) For every a1, a2 ∈ A+, c ∈ A oσ,λ G and ε > 0, there exist d1, d2 ∈ A and

g1, g2 ∈ G such that the elements s j = d jU (g j ) of Cc(G, A) satisfy, for j = 1, 2,

‖s∗j a j s j − a j‖< ε, and ‖s∗1 cs2‖< ε. (6)

Proof. (ii)⇒ (i): If we take c ∈ A, a1 := a and a2 := b for a, b ∈ A+ and ε > 0, then (ii)
implies, using Remark 5.4, that there exist d1, d2 ∈ A and g1, g2 ∈ G such that ‖d∗j a j d j −

σg j (a j )‖< ε and ‖d∗1 cd2‖< ε, so the inequalities (5) of Definition 5.1 are satisfied with
d1, d2, g1, g2 in place of s, t, g, h.

(i)⇒ (ii): Define C := {dU (g) | d ∈ A, g ∈ G} and S := C. Select any ε0 > 0. Clearly,
the closed linear span of C is equal to A oσ,λ G. If we can show that F := A+, C and S
satisfy the assumptions (i)–(iii) of Lemma 3.11—with A oσ,λ G in place of A—, then it
follows from Lemma 3.11 that for every a1, a2 ∈ A+, c ∈ A oσ,λ G and ε > 0, there exist
d1, d2 ∈ A and g1, g2 ∈ G such that s j = d jU (g j ) ∈ S fulfil (6), which in turn gives (ii).

It is evident that our C and S satisfy properties (ii) and (iii) in Lemma 3.11. Since A+
is closed under ε-cut-downs, property (i) in Lemma 3.11 becomes automatic if each pair
(a1, a2), with a1, a2 ∈ A+, has the matrix diagonalization property of Definition 3.8 with
respect to S and C:

If a1, a2 ∈ A+, c = xU (g0) ∈ C with x ∈ A, g0 ∈ G and ε > 0 are given, then we
define b1 := a1, b2 := σg0(a2). (If, instead of ε, we are given positive ε1, ε2 and τ , set
ε :=min(ε1, ε2, τ ).) Since the action σ is G-separating, we can find d1, d2 ∈ A and
g1, g2 ∈ G with ‖d∗1 b1d1 − σg1(b1)‖, ‖d∗2 b2d2 − σg2(b2)‖ and ‖d∗1 xd2‖ all strictly below
ε. Remark 5.4 provides elements s j ∈ C satisfying (6). Thus, (a1, a2) has the matrix
diagonalization property with respect to S and C. �
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THEOREM 5.6. Let (A, G, σ ) be a C*-dynamical system with discrete G. Suppose that
A+ is a filling family for A oσ,λ G and that the action of G on A is G-separating. Then
A oσ,λ G is strongly purely infinite.

Proof. By Theorem 3.13, it remains to show that A+ has the diagonalization property in
A oσ,λ G. Since A+ is closed under ε-cut-downs, Lemma 3.10 applies and therefore it
is enough to show that each pair (a1, a2) with a1, a2 ∈ A+ has the matrix diagonalization
property in A oσ,λ G. But this follows from the G-separation property of the action σ by
Proposition 5.5. �

Proof of Theorem 1.1. By Theorems 4.8 and 5.6, the assumptions imply that A oσ,λ G is
strongly purely infinite. �

Remark 5.7. Suppose that (A, G, σ ) is a C*-dynamical system and that G is discrete.
Then a family F ⊆ A+ ⊆ A oσ,λ G which is invariant under ε-cut-downs has the
diagonalization property in A oσ,λ G if and only if, for every a1, a2 ∈ F , c ∈ Cc(G, A)
and ε > 0, there exist s1, s2 ∈ Cc(G, A) such that, for j = 1, 2,

‖s∗j a j s j − a j‖< ε and ‖s∗1 cs2‖< ε.

This follows from Lemma 3.10, Lemma 3.11 and the fact that Cc(G, A) is dense in
A oσ,λ G.

Remark 5.8. Notice that for an exact locally compact group G, the reduced group
C*-algebra C∗λ(G) is an exact C*-algebra (cf. [15, p. 171]). By Theorem 3.12, the minimal
C*-tensor product A ⊗min B of a s.p.i. C*-algebra A with an exact C*-algebra B is again
s.p.i. Hence, if G is an exact locally compact group and σ(g) := idA is the trivial action
on a s.p.i. C*-algebra A, then A oσ,λ G ∼= A ⊗min C∗λ(G) is s.p.i.

This shows that there is room for refinements of our sufficient conditions on the actions
that imply strong pure infiniteness of the reduced crossed products: here the action σ is
even not element-wise properly outer, but satisfies the G-separation property and is an
exact action by C*-exactness of C∗λ(G).

6. The case of commutative C*-algebras
The case of G-actions on commutative C*-algebras allows some topological interpretation.
The next lemma has inspired our choice of the name G-separating in Definition 5.1. Notice
that we do not require αg j (U j )⊆U j in its part (ii).

LEMMA 6.1. Suppose that (A, G, σ ) is a C*-dynamical system, that A ∼= C0(X) is
commutative and that the action σ of G on C0(X) is induced by the action α of G on X ∼= Â
(i.e., σg( f ) := f ◦ α−1

g for f ∈ A, g ∈ G). Then the following properties are equivalent.
(i) The action of G on A is G-separating, i.e., for every a, b ∈ A+, c ∈ A and ε > 0,

there exist elements d1, d2 ∈ A and g1, g2 ∈ G such that

‖d∗1 ad1 − σg1(a)‖< ε, ‖d∗2 bd2 − σg2(b)‖< ε and ‖d∗1 cd2‖< ε.

(ii) For every open U1,U2 ⊆ X and compact K1, K2 ⊆ X with K1 ⊆U1, K2 ⊆U2, there
exist g1, g2 ∈ G such that

αg1(K1)⊆U1, αg2(K2)⊆U2, αg1(K1) ∩ αg2(K2)= ∅.
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Proof. (ii)⇒ (i): Let a, b ∈ A+, c ∈ A and ε > 0. We use assumption (ii) on

U1 := a−1(ε/4,∞)= {x ∈ X | a(x) > ε/4}, U2 := {x ∈ X | b(x) > ε/4},

K1 := {x ∈ X | a(x)≥ ε/2}, K2 := {x ∈ X | b(x)≥ ε/2},

and find g1, g2 ∈ G such that

αg1(K1)⊆U1, αg2(K2)⊆U2, αg1(K1) ∩ αg2(K2)= ∅.

Since a, b ∈ C0(X)+, we have that U1 ⊆ a−1
[ε/4,∞) and U2 ⊆ b−1

[ε/4,∞) are
compact subsets of X .

Since the compact sets αg1(K1) and αg2(K2) are disjoint, applications of the Tietze
extension theorem give elements e1, e2 ∈ A+ with ‖e j‖ ≤ 2/

√
ε and a contraction

f = f ∗ ∈ A such that

e1|U1 = a−1/2
|U1, e2|U2 = b−1/2

|U2, f |αg1(K1)=−1, f |αg2(K2)= 1.

Let f+, f− ∈ A+ be the canonical decomposition f = f+ − f− with f+ f− = 0. We
define

d1 := e1(σg1(a)− ε/2)
1/2
+ f− and d2 := e2(σg2(b)− ε/2)

1/2
+ f+.

Then d∗1 cd2 = 0, because f+ f− = 0.
Since (σg1(a)− ε/2)+(x) 6= 0 implies a(αg−1

1
(x)) > ε/2, we get αg−1

1
(x) ∈ K1, and

x ∈ αg1(K1)⊆U1 ⊆U1. It implies that f−(x)= 1 and e1(x)= a−1/2(x). We obtain that

d∗1 ad1 = e2
1a(σg1(a)− ε/2)+( f−)2 = (σg1(a)− ε/2)+.

In a similar way, we see that d∗2 bd2 = (σg2(b)− ε/2)+.
(i) ⇒ (ii): Let U1,U2 ⊆ X be open and K1, K2 ⊆ X be compact subsets such that

K1 ⊆U1 and K2 ⊆U2. We can assume that the intersection K1 ∩ K2 is non-empty
(if K1 ∩ K2 = ∅, then property (ii) is satisfied with g1 = g2 = e). There exists an open
set W with a compact closure W such that

K1 ∪ K2 ⊆W ⊆W ⊆U1 ∪U2.

By the Tietze extension theorem, there are contractions a, b, c ∈ A+ such that

a|K1 = 1, b|K2 = 1, c|W = 1,

supp(a)⊆U1 ∩W, supp(b)⊆U2 ∩W, supp(c)⊆U1 ∪U2.

We apply assumption (i) to a, b, c and ε := 1/4, and get elements d1, d2 ∈ A and
g1, g2 ∈ G such that

‖d∗1 ad1 − σg1(a)‖< 1/4, ‖d∗2 bd2 − σg2(b)‖< 1/4, ‖d∗1 cd2‖< 1/4.

If x ∈W , then c(x)= 1 and |d1(x)||d2(x)| ≤ ‖d∗1 cd2‖< 1/4. Thus,

V1 := {x ∈W | |d1(x)| ≥ 1/2}, V2 := {x ∈W | |d2(x)| ≥ 1/2}

are disjoint sets. If x ∈ αg1(K1), then αg−1
1
(x) ∈ K1 and σg1(a)(x)= a(αg−1

1
(x))= 1. It

follows that |d1(x)|2a(x)≥ 3/4 and |d1(x)|> 1/2 (the latter because 1≥ a(x) > 0). Thus,
x ∈U1 ∩W (as x ∈ supp(a)) and x ∈ V1 (as |d1(x)| ≥ 1/2). Since x was an arbitrary
element of αg1(K1), it follows that αg1(K1)⊆U1 ∩ V1. In a similar way, αg2(K2)⊆

U2 ∩ V2. It implies that αg1(K1)⊆U1, αg2(K2)⊆U2 and that αg1(K1) ∩ αg2(K2)= ∅. �
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The following condition (i) in Corollary 6.2 is satisfied if the action α has the residual
version of the topological freeness in the sense of [1, Definition 1]; see e.g. the essential
freeness defined in [22, Definition 1.17] (inspired by [20, Definition 4.8]) when G is
countable.

COROLLARY 6.2. Let G be a discrete group and α : G→ Homeo(X) an action of G on a
locally compact Hausdorff space X. Suppose that:
(i) for every closed G-invariant subset Y of X and every e 6= g ∈ G, the set {y ∈ Y :

αg(y)= y} has empty interior;
(ii) the action σ : G→ Aut(C0(X)), given by σg( f ) := f ◦ (αg)

−1, is exact on the
C*-algebra C0(X); and

(iii) the action α is G-separating, i.e., by Lemma 6.1, for every U1,U2 ⊆ X open and
K1, K2 ⊆ X compact such that K1 ⊆U1, K2 ⊆U2, there exist g1, g2 ∈ G such that

αg1(K1)⊆U1, αg2(K2)⊆U2, αg1(K1) ∩ αg2(K2)= ∅.

Then C0(X)oσ,λ G is a strongly purely infinite C*-algebra.

Proof. Let A := C0(X). It is easy to see that property (i) implies that the action on any
quotient A/I by a G-invariant closed ideal I 6= A is element-wise properly outer. Now
Theorem 1.1 (proved in §5) applies to A oσ,λ G. �

7. Strong boundary actions versus G-separating actions
Here we prove Theorem 1.2. We start with the definitions of n-majorizing and n-covering
actions.

Definition 7.1. Let n ∈ N and A be a non-zero C*-algebra, that is not isomorphic to a
subalgebra of Mn+1(C) if A is unital. An action σ : G→ Aut(A) will be called an
n-majorizing action of G on A if, for every non-zero a ∈ A+, every non-invertible b ∈ A+
and every ε > 0, there exist d1, . . . , dn ∈ A and g1, . . . , gn ∈ G such that∥∥∥∥ n∑

j=1

d∗j σg j (a)d j − b
∥∥∥∥< ε. (7)

Definition 7.2. Let n ∈ N, n ≥ 2†. Suppose that A is a unital C*-algebra, that is not
isomorphic to a *-subalgebra of Mn(C). An action σ of G on A is an n-covering
action if, for every non-zero a ∈ A+ and every ε > 0, there exist d1, . . . , dn ∈ A and
g1, g2, . . . , gn ∈ G such that ∥∥∥∥ n∑

j=1

d∗j σg j (a)d j − 1
∥∥∥∥< ε. (8)

The following lemma denies the existence of non-zero ‘socles’ in C*-algebras A that
admit n-majorizing or n-covering actions considered in Definitions 7.1 and 7.2.

LEMMA 7.3. Let (A, G, σ ) be a C*-dynamical system.
Consider the following properties (α) or (β) of (A, G, σ ) depending on n ∈ N.

† If n = 1, then property (8) holds if and only if A is a unital simple purely infinite C*-algebra.
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(α) There is n ≥ 1 such that, for each non-zero a ∈ A+, non-invertible b ∈ A+ and ε > 0,
there exist d1, . . . , dn ∈ A and g1, . . . , gn ∈ G that satisfy the inequality (7) in
Definition 7.1.

(β) A is unital, and there is n ≥ 2 such that, for each non-zero a ∈ A+ and ε > 0,
there exist d1, . . . , dn ∈ A and g1, . . . , gn ∈ G that satisfy the inequality (8) in
Definition 7.2.

If A is unital and (A, G, σ ) satisfies (α), then it satisfies (β) with n replaced by n + 1 and,
if (A, G, σ ) satisfies (β), then it satisfies (α)—with the same n ∈ N. If (A, G, σ ) satisfies
(α) or (β), then the algebra A is G-simple, i.e., A and {0} are the only G-invariant closed
ideals of A.

If A contains a projection p 6= 0 with p Ap = C · p, then A is a C*-subalgebra of Mn+1

(respectively of Mn) if (A, G, σ ) has property (α) (respectively has property (β)).
The shift action σ of the cyclic group Zn+1 := Z/(n + 1)Z on A := C(Zn+1) satisfies

(α) for n ∈ N and is element-wise properly outer.

Proof. If A is unital and σ has property (α), then let b := 1− (‖a‖−1a)3, and find
d1, . . . , dn and g1, . . . , gn that satisfy the inequality (7). If we let gn+1 := e and
dn+1 := ‖a‖−3/2a, then a and g1, . . . , gn, gn+1 satisfy (8). It shows that actions on unital
A that satisfy property (α) are also actions that satisfy (β) with n + 1 in place of n. If
(A, G, σ ) satisfies (β) and non-zero elements a, b ∈ A+ are given with ‖b‖ = 1, then
d1b1/2, . . . , dnb1/2 and g1, . . . , gn is a solution of the inequality (7) in Definition 7.1 if
d1, . . . , dn and g1, . . . , gn satisfy the inequality (8) of Definition 7.2.

The properties (α) and (β) imply that {0} and A are the only G-invariant closed
ideals of A: if A is non-unital in case (α), then the approximation, as expressed by the
inequalities (7), shows that for each non-zero a ∈ A+ the smallest closed G-invariant ideal
of A containing a contains each b ∈ A+. If A is unital and the action has property (β),
then each G-invariant closed ideal of A contains 1. If A is unital and the C*-dynamical
system (A, G, σ ) satisfies property (α), then it satisfies property (β) with n replaced by
n + 1. Thus, again, A and {0} are the only closed G-invariant ideals.

From now on, we suppose that there exists a projection 0 6= p ∈ A+ with p Ap = Cp.
We call those projections ‘minimal’, even if minimal non-zero projections of a C*-algebra
A do not have the property p Ap = Cp in general, e.g. the unit of the Jiang–Su algebra
Z is a minimal projection. We show that this assumption of the existence of such p ∈ A,
together with the assumption that σ satisfies (α), implies that A is unital. Thus, A satisfies
(β) with n + 1 in place of n. Then we derive that property (β) and the existence of such
p ∈ A imply that A is a C*-subalgebra of Mn .

It is obvious that the ideal socle(A) generated by those ‘minimal’ projections is
(universally) invariant under all automorphisms of A, i.e., α(socle(A))= socle(A) for all
α ∈ Aut(A). This happens also for the closure J of socle(A). Thus, J must be G-invariant.
Since A is G-simple by (α) and socle(A) 6= ∅, it follows that J = A.

It is not difficult to see that J is isomorphic to the c0-direct sum of a family of algebras
K(Hτ ) of compact operators on suitable Hilbert spaces Hτ , and that p is a rank-one
projection on some Hτ0 . Let H denote the Hilbert space sum of the Hilbert spaces Hτ .
Then A becomes isomorphic to a non-degenerate C*-subalgebra of the algebra of compact
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operators K(H) on H, in a way that each minimal non-zero projection p ∈ A becomes a
rank-one projection on H. This happens also for all σg(p). Recall that every projection
in A ⊆K(H) has finite rank in L(H). Since A is a C*-subalgebra of K(H), A is in
particular an approximately finite-dimensional C*-algebra, and—therefore—contains an
approximate unit (qτ ) consisting of an upward-directed net of projections of finite rank in
H.

We show that A must be unital using that (A, G, σ ) satisfies (α) by an indirect proof:
suppose that A is not unital; then none of the projections (qτ ) are invertible in A.
Therefore, we can take b := qτ , a := p and ε = 1/2 in (7). It follows that each qτ has
linear rank ≤ n. This implies that the approximate unit (qτ ) must be constant, qτ = e, for
all τ ≥ τ1 with suitable τ1. Then e ∈ A is necessarily the unit element of A, in contradiction
to our assumption that A is not unital.

It follows that A must be unital, and—as above observed—the action σ satisfies
property (β) with n replaced by n + 1.

If A is unital and (A, G, σ ) satisfies property (β), then we take a := p and ε := 1/2
in inequalities (8). It shows that the rank of 1A in its representation is ≤ n. Thus, A is a
C*-subalgebra of Mn in case (β).

The crossed product C(Zn+1)o Zn+1, where Zn+1 = Z/(n + 1)Z, is naturally
isomorphic to Mn+1. Hence, by Corollary 4.9, the action of Zn+1 on C(Zn+1) is
element-wise properly outer. If a ∈ A+ := C(Zn+1)+ is non-zero and b ∈ A+ is not
invertible, then there are non-zero minimal projections p, q ∈ A+ and δ > 0 such that
a ≥ δp and b ≤ ‖b‖ · (1− q). Select g1, . . . , gn ∈ Zn+1 with

∑n
j=1 σg j (p)= 1− q. It

implies that δ−1 ∑n
j=1 σg j (a)≥ 1− q. Thus, there exists T ∈ (1− q)A+(1− q) with

T (
∑n

j=1 σg j (a))T = 1− q. Then a, b, d j := T b1/2, j = 1, . . . , n and g1, . . . , gn satisfy
the inequality (7) for each ε > 0. �

Remark 7.4. Let B be a non-zero simple C*-algebra. In preparation for the proof of
Theorem 1.2, we display here a number of properties equivalent to strong pure infiniteness
of B.
(i) B is strongly purely infinite.
(ii) Each non-zero element of B+ is properly infinite in the sense of [12].
(iii, n) There exists n ∈ N such that, for each non-zero element a, b ∈ B+ and ε > 0, there

exists n elements d1, . . . , dn ∈ B with

‖d∗1 ad1 + · · · + d∗n adn − b‖< ε, (9)

and B is not isomorphic to Mk for any k ≤ n.
(iv) B is locally purely infinite in the sense of [3, Definition 1.3], i.e., each non-zero

hereditary C*-subalgebra of B contains a non-zero stable C*-subalgebra.
(v) B is purely infinite in the sense of Cuntz [5, p. 186], i.e., each non-zero hereditary

C*-subalgebra contains an infinite projection.

Proof. Property (ii) implies (i) by [3, Theorem 5.8] and (i) implies (ii) by [13,
Proposition 5.4]. Property (iii, n = 1) is equivalent to (ii) by [12, Theorem 4.16]. The
properties (iii, n = 1), (iv) and (v) are equivalent by [3, Proposition 3.1].
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(iii)⇒ (ii): Suppose that B is elementary, i.e., that B ∼=K(H) for some Hilbert space
H. By (iii), applied on some rank-one projection a := p ∈ B+, b ∈ B+ and ε = 1/2, it
follows that each element of b ∈ B+ has rank ≤ n. Thus, H has dimension k ≤ n, and
B ∼= Mk . But the latter case was excluded in (iii, n). Therefore, B is non-elementary and
hence has the global Glimm halving property in the sense of [3, Definition 2.6]. This is
easy to see for non-elementary simple B (or use Glimm halving [19, Lemma 6.7.1]). Since
B is simple, property (iii, n) ensures that B satisfies property (i) of [3, Definition 1.2] of
pi(n). Therefore, [3, Proposition 4.14] says that B is pi(1). Since B is simple and B 6= C,
there are no non-zero characters on B. In particular, pi(1) ensures that B is purely infinite
in the sense of [12, Definition 4.1]. By [12, Theorem 4.1] we obtain property (ii). �

Proof of Theorem 1.2. By Lemma 7.3, A is G-simple. Thus, the action σ is automatically
exact by Definition 4.5. Since σ is element-wise properly outer by assumption, it is now
also residually properly outer, and Theorem 4.8 applies. It says that F := A+ is a filling
family in A oσ,λ G. In particular, A separates the ideals of the reduced crossed product. It
shows that B := A oσ,λ G is simple.

Take any b ∈ B+ with ‖b‖ = 1. (Unfortunately, it not always the case that there exists
z ∈ B+ such that z∗z = b and zz∗ ∈ A; if that were true then A = B = A oσ,λ G.) Using
that A+ is filling for B, we can find non-zero z ∈ B such that z∗z ≤ b and zz∗ ∈ A: to see
this, set

a′ := (3b − 2)+, b′ := (3b − 1)+ − a′, c′ := 3b − a′ − b′.

By functional calculus, we have a′, b′, c′ ∈ B with 0≤ a′ ≤ b′ ≤ c′ ≤ 1, a′b′ = a′ 6= 0 and
b′c′ = b. For example, since c′ = 3b − (3b − 1)+, we have c′ ≤ 1 from the inequality 3t −
max(3t − 1, 0)≤ 1, t ∈ R. By property (i) of Definition 3.3, there exist z1, z2, . . . , zn

∈ B and d ∈ B with z j (z j )
∗
∈ A+ such that ec′ = e and d∗ed = a′ for e := z∗1z1 + · · · +

z∗nzn . Since d∗ed = a′ 6= 0, we know that e is non-zero and hence so is z := z j for suitable
j . We conclude that z∗z ≤ e = c′ec′ ≤ ‖c′‖‖e‖c′ ≤ ‖c′‖‖e‖3b. Rescaling z gives z∗z ≤ b
(and zz∗ ∈ A).

Take δ ∈ (0, ‖z‖2/2). Then 0 6= z(z∗z − δ)+z∗ = ϕ(zz∗) ∈ A+ for some suitable
ϕ ∈ Cc(0,∞]+.

We consider three cases: (i) the action is n-majorizing and A is non-unital, (ii) the action
is n-majorizing and A is unital and (iii) the action is n-covering and A is unital.

Since G is discrete, A is a non-degenerate C*-subalgebra of B. In particular, A+
contains an approximate unit (eν) of positive contractions in A+ for B, which we will
use for case (i). In cases (ii) and (iii), let eν := 1, where 1 is the unit of A. Define
m := n + 1 for case (ii) and m := n for cases (i) and (iii). By each of the Definitions 7.1
and 7.2 (and using Lemma 7.3 to get property (β) in case (ii) with n replaced by m),
for each ε > 0 and eν ∈ A+ there are d1, . . . , dm ∈ A and g1, . . . , gm ∈ G such that
‖eν −

∑m
j=1 f ∗j (z(z

∗z − δ)+z∗) f j‖< ε for f j :=U (g−1
j )d j in B.

By Remark 2.1(ii), there exists a contraction d0 ∈ B with d∗0 bd0 = (z∗z − δ)+. Then the
elements y j := d0z∗ f j ∈ B satisfy ‖eν −

∑m
j=1 y∗j by j‖< ε. Since a1/2eνa1/2 converges

to a ∈ B+, we get that B has the following property.
For any two non-zero elements b, a ∈ B+ and ε > 0, there exist m elements

d1, . . . , dm ∈ B such that ‖a −
∑m

j=1 d∗j bd j‖< ε. A simple C*-algebra B with this
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property is strongly purely infinite by Remark 7.4 if B is not isomorphic to Mk for some
k ≤ m. The case that B is isomorphic to a C*-subalgebra of Mm has been excluded by the
definitions. For case (i), we know that A is non-unital and hence B is non-unital. For cases
(ii) and (iii), we know that A is not isomorphic to a C*-subalgebra of Mm and hence B is
not isomorphic to a C*-subalgebra of Mm . �

LEMMA 7.5. The following are equivalent for C*-algebras B.
(i) B does not contain a non-zero projection p ∈ B+ with pBp = C · p.
(ii) For every non-zero hereditary C*-subalgebra D of B, each maximal commutative

C*-subalgebra C of D has perfect Gelfand spectrum Ĉ, i.e., Ĉ does not contain an
isolated point.

(iii) For every a1, a2 ∈ B+\{0} and c ∈ B, there are b1, b2 ∈ B+\{0} with b1cb2 = 0, and
b j ≤ a j ( j = 1, 2).

Proof. (iii)⇒ (i): Let p∗ = p = p2
∈ B\{0} and put ak := c := p for k = 1, 2. Then there

are non-zero b1, b2 ∈ (pBp)+ with b1b2 = 0. Thus, pBp 6= C · p.
(i) ⇒ (ii): Let D 6= {0} be a hereditary C*-subalgebra of B and C a maximal

commutative C*-subalgebra of D. Suppose that Ĉ is not perfect. Then Ĉ contains
an isolated point χ . The point χ corresponds to a projection 0 6= p ∈ C+ ⊆ D+ with
pBp = C · p; see [21, Lemma 7.1.4].

(ii)⇒ (iii): It is easy to see that a commutative C*-algebra C with a perfect spectrum
Ĉ contains non-zero contractions e1, e2 ∈ C+ with e1e2 = 0, because the locally compact
Hausdorff space Ĉ must in particular contain two different points (6= ∞).

Given c ∈ B and non-zero a1, a2 ∈ B+, let d j := (a j − ‖a j‖/2)+ and x := d1/2
1 cd1/2

2 .
Notice that 0 6= d j ∈ B+, and that 0 6= d1/2

j y j d
1/2
j ≤ a j for all non-zero contractions

0≤ y j ∈ d j Bd j . If x = 0, then take b j := d j . If x 6= 0, consider the hereditary
C*-subalgebra D := x∗Bx = x∗x Bx∗x that is generated by x∗x and is contained in
d∗2 Bd2. Let C be a maximal commutative C*-subalgebra of D with x∗x ∈ C . Then C
contains non-zero contractions e1, e2 ∈ D+ with e1e2 = 0= e1(x∗x)1/2e2.

It is well known (and easy to see) that the polar decomposition x = v(x∗x)1/2 in B∗∗ has
the property that vDv∗ = x Bx∗ ⊆ d∗1 Bd1. Thus, f := ve1v

∗
∈ x Bx∗ and has the property

f xe2 = ve1(x∗x)1/2e2 = 0. It follows that b1 := d1/2
1 f d1/2

1 and b2 := d1/2
2 e2d1/2

2 satisfy
b1cb2 = d1/2

1 f xe2d1/2
2 = 0 and 0 6= b j ≤ a j . �

PROPOSITION 7.6. Let (A, G, σ ) be a C*-dynamical system with non-zero non-unital A.
If the action σ of G on A is an 1-majorizing action in the sense of Definition 7.1, then A
is G-simple and σ is G-separating for A.

Proof. The algebra A is G-simple and A does not contain a projection p 6= 0 with
p Ap = C · p by Lemma 7.3. To show that σ is G-separating, let a1, a2 ∈ A+\{0}, c ∈ A
and ε > 0. By Lemma 7.5, there exist b1, b2 ∈ A+\{0} with b1cb2 = 0 and b j ≤ a j

( j = 1, 2). Using (twice) that the action is 1-majorizing, we find e j ∈ A, h j ∈ G for
j = 1, 2 such that ‖e∗jσh j (b j a j b j )e j − a j‖< ε. With g j := h−1

j and d j := b jσg j (e j ), we
get ‖d∗j a j d j − σg j (a j )‖< ε and d∗1 cd2 = 0, i.e., σ is G-separating. �



Strong pure infiniteness of crossed products 239

Remark 7.7. Suppose that (A, G, σ ) is a C*-dynamical system, A is unital and
commutative and G is discrete. Then the following properties (i)–(iv) of the action σ
are equivalent.
(i) The action is 2-covering in the sense of Definition 7.2.
(ii) The corresponding (adjoint) action σ̂ on Â is a strong boundary action in the sense

of Definition 3.1.
(iii) The action is 1-majorizing in the sense of Definition 7.1.
(iv) The action is 2-filling in the sense of Definition 3.2, and A is not isomorphic to a

subalgebra of M2(C).
We do not know if, also for non-commutative and unital A, every 2-covering action is a
1-majorizing action or a 2-filling action.

Proof. We show more general implications, except for (i)⇒ (ii). In particular, we show
that an action σ on a unital abelian C*-algebra A is n-filling if and only if it is n-covering
provided that the (linear) dimension of A is greater than n.

(i)⇒ (iv) (for A unital, commutative, any n):
Suppose that A ∼= C(X) and take any n ≥ 2. Let α denote the action of G on X

inducing σ , i.e., σg( f )= f ◦ α−1
g for f ∈ A and g ∈ G. Since the action α is minimal

by Lemma 7.3, Remark [10, Remark 0.4] shows that it suffices to prove that for each non-
empty open subset U of X , there exist g1, . . . , gn ∈ G such that αg1(U ) ∪ · · · ∪ αgn (U )=
X . Let such U be given. Select non-zero a ∈ A+ with support contained in U . By (i), there
exist g1, . . . , gn ∈ G and d1, . . . , dn ∈ A such that

∑n
j=1 d∗j σg j (a)d j ≥

1
2 . In particular,

for each x ∈ X , σg j (a)(x) is non-zero for some j , so x ∈ αgi (U ).
(iv)⇒ (i) (for A unital, commutative/non-commutative, any n):
Suppose that A is unital and take any n ≥ 2. Let 0 6= a ∈ A+. Using (iv), there are

g1, . . . , gn ∈ G and δ > 0 such that D :=
∑n

j=1 σg j (a)≥ δ1, and A is not isomorphic
to a C*-subalgebra of Mn . Thus, D is invertible in A and

∑n
j=1 d∗j σg j (a)d j = 1 for

d j := D−1/2 in A.
(iii)⇒ (i) (for A unital, commutative/non-commutative, any n):
Each n-majorizing action on unital A is an (n + 1)-covering action by Lemma 7.3.
(i)⇒ (ii) (for A unital, commutative, one n):
Suppose that A ∼= C(X) and let α denote the action of G on X inducing σ . The

equivalence of (i) and (iv) shows that for given 0 6= a ∈ A+, there exist g ∈ G and δ > 0
such that a + σg(a)≥ δ1.

Let U ⊆ X be open and non-empty. There is 0 6= a ∈ C(X)+ with support a−1(0,∞)⊆
U . Choose h ∈ G and δ > 0 with a + σh(a)≥ δ1. Since a is a positive function, this
implies that σh(a)(x) > 0 for all points x ∈ X\U . Thus, αg(x) ∈U for all x ∈ X\U and
g := h−1, i.e., there exists g ∈ G with αg(X\U )⊆U .

Given non-empty open subsets U and V of X , we let W :=U ∩ V if U ∩ V 6= ∅. Then
g ∈ G with αg(X\W )⊆W satisfies αg(X\U )⊆ V . If U ∩ V = ∅, then we find g, h ∈ G
with αg(X\U )⊆U ⊆ X\V and αh(X\V )⊆ V . Then αhg(X\U )⊆ V .

The space X contains more than two points because A is not isomorphic to a
C*-subalgebra of M2(C). Thus, (X, G, α) satisfies the conditions of Definition 3.1 of
a strong boundary action.
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(ii)⇒ (iii) (for A unital/non-unital, commutative, one n):
We show (iii) using possibly less than (ii): let X be a locally compact space that is not

necessarily compact and contains more than two points. Let α be an action of G on X with
the property that, for every compact subset K ⊆ X with K 6= X and each non-empty open
subset U ⊆ X , there exists g ∈ G with αg(K )⊆U . Then the adjoint action σ of α on
A := C0(X) is a 1-majorizing action of G on A.

Indeed: let 0 6= a ∈ A+, b ∈ A+ non-invertible and ε > 0. Put δ := ε/3. Then,
considered as functions on X , they have the property that U := a−1(‖a‖/2,∞) is non-
empty and open and K := b−1

[δ,∞) is compact. Find h ∈ G with αh(K )⊆U . Then
x ∈ K ⇔ b(x)≥ δ implies that for g := h−1, we get σg(a)(x)= a(αh(x)) > ‖a‖/2. It
follows that ‖d∗σg(a)d − b‖< ε with d ∈ A+ given by d(x) := σg(a)(x)−1/2(b(x)−
2δ)1/2+ for x ∈ K and d(x) := 0 for x ∈ X\K . �

Remarks 7.8. (i) Let α be an action of a discrete group G on a locally compact Hausdorff
space X with more than two points, and σ the induced action on A := C0(X). By
Remark 7.7, the following properties are equivalent for X compact.
(1) The action α is a strong boundary action (Definition 3.1) in the sense of [17]:

for each pair of non-empty open subsets U and V of X , there exists g ∈ G with
U ∪ αg(V )= X .

(2) For any compact set K 6= X and any open set U 6= ∅, there exists t ∈ G such that
αt (K )⊆U .

(3) For every non-zero a ∈ A+, every non-invertible b ∈ A+ and every ε > 0, there exist
d ∈ A and g ∈ G such that ‖d∗σg(a)d − b‖< ε.

Clearly, this cannot be the case if X is locally compact but is not compact. In general (i.e.,
when X is compact or non-compact), we know that (1)⇒ (2)⇒ (3). Properties (2) and (3)
are both candidates for a generalized notion of a strong boundary action; however, only (3)
applies when A is non-commutative.

(ii) The notion of a strong boundary action (Definition 3.1) is defined on compact
Hausdorff spaces with more than two points. In view of Remarks 7.8(i) and 7.7, we call
the 1-majorizing actions on not-necessarily unital or commutative C*-algebras also strong
boundary actions.

(iii) Suppose that a discrete group G acts by a topologically free action α on a
compact Hausdorff space X , and that X contains more than two points. It was shown
in [17, Theorem 5] that the crossed product C(X)oσ,λ G is purely infinite provided that
the action—in addition—is a strong boundary action. Since topological freeness implies
that σ is element-wise properly outer (by [1, Proposition 1]), we conclude that, with the
terminology of Remark 7.8(ii), [17, Theorem 5] is a special case of Theorem 1.2. �

(iv) Let α be an action on a non-compact locally compact Hausdorff space X with
more than two points and σ the induced action. It was shown in Proposition 7.6 that σ is
G-separating if σ is a strong boundary (i.e., 1-majorizing) action. A simpler argument
applies if we assume that for any compact set K 6= X and any non-empty open set U ⊆ X ,
there exists g ∈ G such that αg(K )⊆U .

Proof of (iv). Since any finite subset M of X is compact, it can be moved by suitable αg

into any non-empty open subset U of X . In particular, X is perfect and each non-empty
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open set V ⊆ X contains at least two non-empty open disjoint subsets V1 and V2. Let
K1 ⊆U1 and K2 ⊆U2 with K j compact (hence K j 6= X ) and U j open. If U1 and U2

are disjoint, then we can take g1 = g2 = e in Lemma 6.1(ii). If V :=U1 ∩U2 6= ∅, then
consider the above disjoint non-empty open subsets V j ⊆ V . By assumption, there exist
g1, g2 ∈ G with αg j (K j )⊆ V j ⊆U j . Thus, the adjoint action σ of α is G-separating. �

(v) Suppose that a discrete group G acts by a topologically free action α on a non-
compact locally compact Hausdorff space X , and that X contains more than two points.
Then the crossed product C0(X)oσ,λ G is purely infinite provided that the following
property holds: for any compact set K 6= X and any non-empty open set U ⊆ X , there
exists t ∈ G such that αt (K )⊆U . This follows as a corollary of Theorem 1.1, also of
Theorem 1.2 or of Corollary 6.2.

Proof of (v). We must verify the following properties according to each of the listed results.
(Theorem 1.1) The action σ is exact, residually properly outer and G-separating.
(Theorem 1.2) The action σ is 1-majorizing and element-wise properly outer.
(Corollary 6.2) The action σ is exact, G-separating and fulfils (*): For every closed

G-invariant subset Y of X and every g 6= e, the set {y ∈ Y : αg(y)= y} has empty
interior.

By Remark 7.8(i), we know that the action σ is a strong boundary (i.e., 1-majorizing)
action. Hence, A is G-simple; cf. Lemma 7.3. In particular, it follows that the action
α on X is minimal. This reduces property (*) to the definition of topological freeness;
cf. [1, p. 120]. The minimality of the action α implies that the corresponding adjoint
action σ : G→ Aut(C0(X)) is exact, and that it becomes residually properly outer if it is
element-wise properly outer. But σ is element-wise properly outer if and only if α is a
topological free action (see [1, p. 120] or [22, Corollary 2.22]). It remains to show that σ
is G-separating, but this is already contained in Remark 7.8(iv).

(vii) It is an important point that a strong boundary action is often G-separating and
(in fact always) minimal, but the notion of a G-separating action is not typically related
to minimality. Consequently, working with G-separating actions allows us to consider
ideal-related classification of non-simple strongly purely infinite crossed products.

Remark 7.9. If A has real rank zero, then one can restrict the conditions in
Definitions 5.1, 7.1 and 7.2 to projections p, q ∈ A in place of the elements a, b ∈ A+.

Proof. Case of Definition 5.1: let a1, a2 ∈ A+, c ∈ A, ε > 0 and define

δ := ε/(1+ ‖a1‖ + ‖a2‖).

By [4], D j := a j Aa j contains an approximate unit consisting of non-zero
projections. Thus, there are projections p j ∈ D j such that ‖a j − a1/2

j p j a
1/2
j ‖< δ.

Use [12, Proposition 2.7(i)] and the comment following [12, Proposition 2.6] to select
z j ∈ D j satisfying z∗j a j z j = p j . Let c′ := z∗1cz2.

Suppose that there exist e j ∈ A, g j ∈ G such that

‖e∗j p j e j − σg j (p j )‖< δ and ‖e∗1c′e2‖< δ.
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Define v j := σg j (a
1/2
j ) and d j := z j e jσg j (a

1/2
j ). They satisfy d∗j a j d j = v

∗

j e∗j p j e jv j and

v∗jσg j (p j )v j = σg j (a
1/2
j p j a

1/2
j ). Thus, ‖d∗j a j d j − σg j (a j )‖< (1+ ‖a j‖)δ ≤ ε. Since

d∗1 cd2 = v
∗

1e∗1c′e2v2, we get ‖d∗1 cd2‖< δ(‖a1‖ · ‖a2‖)
1/2
≤ δ(‖a1‖ + ‖a2‖)≤ ε.

Case of Definitions 7.1 and 7.2: let a1, a2 ∈ A+ and ε > 0, with a1 6= 0 and a2 not
invertible in A (respectively a2 = 1). We can assume that ε ≤ 1. Define δ := ε/(1+ ‖a2‖).
Choose p j , z j ∈ D j := a j Aa j as above with ‖a1/2

j p j a
1/2
j − a j‖< δ and z∗j a j z j = p j .

Then p1 6= 0 and p2 is not invertible in A (i.e., p2 6= 1) if a2 is not invertible, otherwise
p2 = 1: if p2 is invertible, then 1 ∈ a2 Aa2, so a2 is invertible. Conversely, if a2 is
invertible, then ‖p2 − 1‖< ε/2, so p2 is invertible.

If there are e1, . . . , en ∈ A and g1, . . . , gn ∈ G with ‖p2 −
∑

j e∗jσg j (p1)e j‖< δ,

then d j := σg j (z1)e j a
1/2
2 satisfies ‖a2 −

∑
j d∗j σg j (a1)d j‖< (1+ ‖a2‖)δ ≤ ε. �
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