
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Walker, Katt E

Title:
Evolving Morphological Adaption Methods in Compliant Robots

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



A dissertation submitted to the University of Bristol in accordance with 

the requirements for award of the degree of PhD in Robotics and 

Autonomous Systems in the Faculty of Aerospace Engineering. 

 

 

 

Evolving Morphological Adaption 

Methods in Compliant Robots 

Kathryn Elizabeth Walker 

October 2020 

 

 

 

 

 
Supervised by:        Word Count: 

Dr. Helmut Hauser       30800 



I declare that the work in this dissertation was carried out in 

accordance with the requirements of the University's Regulations and 

Code of Practice for Research Degree Programmes and that it has not 

been submitted for any other academic award. Except where indicated 

by specific reference in the text, the work is the candidate's own work. 

Work done in collaboration with, or with the assistance of, others, is 

indicated as such. Any views expressed in the dissertation are those of 

the author. 

 

SIGNED: Kathryn Elizabeth Walker   DATE: 23/10/2020 



Despite the huge success of robotics in general, there are very few machines that
are capable to stably locomote in rough, unknown terrain. Whilst a few robots are
just becoming able to deal with the uncertainty, complexity and variety typical of
natural environments, in the most cases even these cutting edge robots fail. On
the other hand, animals, including humans, have the ability to locomote in many
environments un-accessible to robots. Additionally, animals are able to outperform
robots in almost any category (with respect to locomotion), including in energy effi-
ciency, stability, robustness, agility, and numerous others. There are many possible
reasons as to why nature is able to outperform robotic designs. It is speculated that
animals are able to successfully locomote without an exact environmental model by
outsourcing some of this computation to their well designed morphology, achieved
through evolution. Additionally, if adaption to new environments is required, ani-
mals not only adapt their behaviour but also in some cases their morphology. They
appear to be able to learn from their interaction with the environment and use this
information to adapt. Whilst many researchers have improved robot morphology
through artificial evolution, recreating adaptive morphology is relatively unexplored.
This leads to the question, can artificial evolution be used to find optimal methods
of morphological adaption by exploiting feedback from the environment in order to
successfully locomote in a wide range of environments?

In an attempt to partly answer this question, this thesis forms two parts. Firstly,
the best methods to adapt a simulated Spring Loaded Inverted Pendulum Model (the
SLIP model). The SLIP model has a unique property that if the combination of its
morphological and control parameters are in a particular range it is self stabilising.
The aim of the first part of the thesis is to find ways that the SLIP model can
adapt its parameters accordingly to become stable, based on its interaction with the
environment. Two approaches are explored; an offline approach, where adaption of
the SLIP model occurs between episodes and the model is allowed to fail after each
episode and an online approach where instead the adaption takes place between
strides. Not only did both methods expand the range of parameters for which
self-stability could occur (when compared with a basic SLIP model that has no
capacity for learning) but in the case of the online learning the model was now able
to withstand environmental changes, such as a decrease in ground level of up to 14
times the length of the spring.

In the second part of the thesis, the optimal morphological adaption of a soft
robot is evolved. The evolved morphological adaption method use the distribution
of kinetic energy throughout the entire robot to determine which parts to harden
and which to soften. If part of the robot becomes too soft, it is removed. Thus
an optimal morphology, adapted for the specific environment is sculpted. Here, the
results show that as the kinetic energy of the different robot parts depends on the
interaction the entire robot has with the each environment, many task-specific final
morphologies can be sculpted but crucially they are all created using one single
general method of adaption.

Overall, it is hoped that the research presented in this thesis showcases the
potential that artificial evolution has for enabling robots to learn to adapt their
morphology, based on interaction with the environment, in order to achieve robust
locomotion in a wide range of environments.
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1 Introduction

In the past decades the advancement of robotics is undeniable. However, whilst the
use of robots is now common place on factory lines and in industrial settings, few
robots have been able to succeed outside these fixed, controlled environments. As
of yet, robots are unable to successfully deal with unexpected situations and tasks
that they have not been trained for.

These limitations of current robots are especially pronounced in the field of loco-
motion. Natural environments present a level of uncertainty that most robots can’t
deal with, there are some exceptions such as Big Dog [94].

There are numerous instances where using robots capable of adaptive locomotion,
rather than humans, would be highly beneficial if not necessary. For example, robots
capable of adaptive locomotion, could be used for search and rescue tasks relating
to disaster relief, carrying out tasks unsafe for humans due to the uncertain danger-
ous environments. Another example as to where using robots instead of humans is
in exploration, for example new planets [6]. Harsh environmental conditions such
as lack of oxygen make planet exploration challenging for humans, whereas robots,
especially those capable of adaptive locomotion offer a promising alternative. Fur-
thermore, nuclear decommissioning is another situation where working surrounded
by hazardous radiation would be damaging to human health [50, 27]. Yet another ex-
ample of where adaptive locomotion in robots would be beneficial is reaching places
where, although not hazardous, humans are simply unable to access, for example
inspecting and clearing blocked pipework [55]. Therefore, the motivation for robots
capable of robust, stable adaptive locomotion spans a large range of disciplines.

In contrast to robots, animals are particularly good at adapting themselves to dif-
ferent environments, including ones they have not yet experienced. This adaption
to new tasks and environments occurs over multiple different timescales; i.e., almost
instantaneous changes in the nervous system (learning), slower changes over the
lifetime of the organism in both its morphology and behaviour (postnatal develop-
ment), as well changes over numerous generations (evolution). In the last decade,
advances in biology have shown the importance of environmental feedback at every
stage of development, not just at evolution and learning, as commonly utilised in
engineering.

Additionally biological systems do not rely on changes in their behaviour to adapt;
they also alter their morphology. This is perhaps most obvious in the evolution
timescale, where, for example, organisms living in water have evolved to have fins
for swimming, whereas those evolved on land have legs. However, morphological
adaption can also occur during the lifetime of the organism.

One example of this postnatal development is the adaptive growth of plants [76,
32]. Photo-convertible molecules found in the cells of plants above ground can be
activated by specific wave lengths of light, stimulating sensitive and rapid growth
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of the stem to position leaves away from shaded areas[32, 103]. Thus, depending
on location of a light source the final “morphology” of the plant would appear
different, it has adapted to its environment. The same mechanism is triggered by
submergence of the plant in water, triggering rapid growth and thus removal of the
leaves from underwater [117]. In these instances, the same plant genotype has been
exposed to vastly different environments and has used postnatal development to
adapt accordingly in order to survive.

Morphological developmental as a response to environmental changes occurs not
only in plants but also in animals. For example, Passerine birds that change their
musculature to cope with winter [67]. The Arctic fox changes its texture and colour
of coat in response to changes in season [76]. The tiger salamander is capable
of radical metamorphoses if its aquatic environment becomes uninhabitable, and
when a male bluehead wrasse is removed from his harem, a female will change its
phenotype completely and become a male [76].

(a)

(b) (c)

Figure 1.1: Examples of morphological development in nature; all images taken from
reference [76]. a) The arctic fox changes the colour and texture of its coat depending
on seasonal conditions. b) If the aquatic environment of the tiger salamander be-
comes uninhabitable it will metamorphose to adapt to the new conditions. c) If the
male is removed from the harem of blue wrasses (the females of which are yellow) a
female will phenotype completely and become a male.

Whilst changing morphology to adapt to new environments or situations is rela-
tively common place in nature, traditionally is not so common in robotics in any
timescale. Typically, robots are built with a predefined and fixed morphology and
a corresponding suitable controller is found [88]. Additionally then if a new be-
haviour is required, usually only the controller is changed, but the morphology of
the robot is kept as it is. This works well in traditional robotic applications where
the environment is well known and can be controlled, like assembly lines or under
lab conditions, but it has its limitations when complex behaviours are required to
deal with unexpected situations, e.g. changes in the environment, or new tasks. The
required controller becomes often too complicated and the robot is likely to fail.
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The concept of embodied intelligence promises an alternative approach by placing
higher emphasis on the morphology of the robot and its interaction with the en-
vironment [90]. Often, designing a more appropriate morphology can significantly
improve the performance of a robot, whilst still employing either a very simple con-
trol system [19], or in some cases none at all [72, 120]. Furthermore in nature,
especially animals, the morphologies are often soft. Compared with robots, which
are traditionally made of stiff rigid body parts, animals have soft compliant bod-
ies which they are able to exploit through their interaction with the environment.
The dynamics of these soft, compliant morphologies, have been shown to be able to
contribute to the overall performance in an animal’s locomotion [41]. This is often
referred to morphological computation [42].

Researchers are now considering how changes in morphology can be used to adapt
robots to new environments or tasks, either on its own or in conjunction with changes
in control systems and across varies timescales. Within this area, the most com-
monly researched timeline for morphological adaption is evolution. However, if the
morphology of a robot is adapted to environment via evolution, this morphology is
then fixed at the initialisation of the robot. Therefore, it will perform well in one
environment but if during the lifetime of the robot the environment changes it will
more likely fail.

Therefore, a new approach named Evo-Devo combines adaption on two timescales;
evolution and over the lifetime of the robot (development). In the Evo-Devo field
of research, the way the robot adapts over its lifetime could also be evolved; rather
than a single adapted morphology or behaviour. Whilst there any many examples
of using and Evo-Devo approach to design adaptive control systems, there a very
limited examples of evolving methods of altering robot morphology throughout its
lifetime.

In this thesis, I take an Evo-Devo approach and use evolutionary algorithms to
evolve the way a compliant robot develops/changes its morphology over its lifetime
in order to adapt to different environments. Furthermore, in my research the way
the robot adapts its morphology is based on its interactions with the environment,
relying on its embodied intelligence in order to successfully adapt.

In the rest of this chapter, I further introduce the key concepts of this thesis. I first
discuss Morphological Computation in section 1.1 and provide additional evidence
in support of the importance of an optimised robot morphology. Then I give an
overview of evolutionary robotics in general in the section 1.2.

I then provide a literature review of the existing research relevant to this project.
First, I consider the different ways that researchers have adapted the morphology of
robots to different environments via evolution. In the case of evolutionary robotics
there is a vast amount of research, so here I mainly consider examples where the
researchers have focused on morphology. I then provide an overview of the existing
research related to postnatal morphological adaption, followed by a section of Evo-
Devo design. In this later section (i.e., the Evo-Devo section). Here, I also provide
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examples where researchers have evolved methods of adapting robot control.

After the literature review I contextualise my thesis aims and provide an overview
of the structure of the rest of the document.

1.1 Morphological Computation

In this subsection, the concept of morphological computation is explained in more
detail and the relevant literature surrounding this field of research is presented. I
also discuss how the work detailed in this thesis relates to the current research area.

Figure 1.2: An replica of the
first passive walker designed by
McGeer at el. in 1990 [72]. The
details of this replica are detailed
in the work by Collins et al.
[20] from which the image is also
taken.

As previously mentioned, traditionally when de-
signing robots, researchers have placed more em-
phasis on sophisticated control systems than the
morphology design. It should be noted here that
the word morphology does not just encompass
the shape of the system (be that a biological or-
ganism, or robot) but also the dynamic proper-
ties, for example the stiffness of the individual
parts. Typically, researches first design a mor-
phology and then work to find a suitable con-
troller. This design methodology, featuring non-
compliant robots, has worked well when robot is
required to perform a single task, where preci-
sion, speed and little interaction with the envi-
ronment are desired, but it appears to fall down
in situations where more adaptability is impor-
tant [89]. Therefore with the aim of increas-
ing adaptability, researchers keep the morphol-
ogy of the robot the same and try to change
or improve the complexity of the controller. In
many cases this causes the robot to fail. Fur-
thermore, traditionally, when designing the mor-
phology of a robot, rigid body parts are favoured
over soft compliant structures which are deemed
less “good” versions of their stiff counterparts.
This could be in part because soft morphologies have a larger number of degrees
of freedom and are in many cases non-linear, therefore they are hard to model and
control. Thus the design process is more complicated.

Researchers are therefore now looking for alternative ways to design better, more
adaptive robots and thus placing the emphasis back on morphology, including con-
sidering the use of compliant bodies instead of rigid ones. Instead of viewing these
soft morphologies as a hard-to-model nuisance, some researchers are now considering
them to be a highly beneficial feature of the robot, able to outsource some of the
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required computation; i.e., they are a potential computational resource [40]. This
concept, in robots, is referred to as morphological computation.

Here, I explore examples of the use of morphological computation to aid the design
of locomotive robots. Note that there are other examples of areas of robotics where
outsourcing computation to the morphology is also useful, such as passive grippers
and vision [77, 65] that are not considered in this review.

One of the earliest and most researched examples of using the concept of Morpho-
logical Computation to design robots for locomotion is passive walkers, the first
example of which was by McGeer at al. in 1990 [72], see Figure 1.2.

A passive walker is a simple robot that is capable of locomotion even though it
has no motors or control electronics. Therefore, its ability to walk is solely due
to the morphological parameters of the walker i.e., the leg segment lengths, mass
distribution, and foot shape and the interaction this body has with its environment
(a downwards slope) [77]. Therefore, it can be seen that although these passive
walkers have no active control, when walking down slopes are able to exhibit intelli-
gent behaviour, i.e., the balance of the robot is robustly maintained whilst walking.
Additionally, passive walker designs have even been shown to have stability, finding
stable locomotion despite errors in starting conditions [120]. In the case of McGeer
et al. [72] the functionality of the walker is trivial, limited only to locomotion on
a downward slope. However, building on this pioneering work, researchers such as
Wisse (2006) and Collins (2005) [121, 19] have created robots now capable of loco-
motion also on horizontal ground by adding a very simple controller. Since most of
the control of the robot is still down to the interaction between the body and the
environment, the required control system is incredibly simple. Furthermore, utilis-
ing a “clever” morphology, i.e., a passive walker, can also improve a robots ability
to learn function, as shown in the work by Tendrake et al. in 2005 [115], where the
time required for the robot to learn to walk was reduced.

Another, more complex, example of where an appropriate morphological design aids
the locomotion of a robot are the case of the quadruped “Puppy” by Iida et al.
in 2006 [49]. This is shown in Figure 1.3 Here, simple springs are used as artificial
muscles, allowing for not only fast but also highly robust locomotion with no sensory
feedback.

A further example is a robotic fish, named “Wanda”, created by Ziegler et al. also
in 2006 [126]. In Wanda, the body of the fish is one dimensional and movement
is achieved by wiggling its elastic tail fin back and forth. It therefore exploits the
dynamics between its physical body and its environment and is able to achieve
a number of behaviours (movement up, down left and right) through this simple
interaction.

More recently, another example of morphological computation is the work done by
Howison et al. (2019, 2020) [46, 47]. In this work they explore how by varying the
parameters of a simple V shaped piece of paper, different and distinct behaviours
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can be achieved when the paper is dropped from a height of 3m. In this example,
once again there is no direct controller and different behaviours are gained through
how the morpologies interact with the environment.

Figure 1.3: The “Puppy”
robot provides and exam-
ple of where an appro-
priate morphology can
aid the locomotion of a
robot. Image taken from
[49]

A more abstract implementation of morphological com-
putation is Tensegrity robots. Tensegrity robots are built
from a specific combination of rigid struts and compliant
strings [53]. It has been shown through numerous exam-
ples, e.g., Rieffel et al. (2008) [97], Paul et al. (2005)
[86], Bruce et al. (2014) [13] and Iscen et al. (2013)
[51], that evolutionary algorithms are able to be used as
a powerful tool to evolve complex tensegrity structures
that only require very simple controllers to induce loco-
motion. Locomotion is therefore achieved by indirectly
exploiting the dynamics of the physical body. See Figure
1.4 for an example of Tensegrity robots.

Whilst the concept of morphological computation has
been shown to be a powerful tool for designing robust
robots capable of energy efficient locomotion there are
two main points to consider. Firstly, designing suitable
morphologies for a given task is challenging, especially,
if soft compliant bodies are to be used. Since the bodies

are non-linear with high degrees of freedom (which can be a benefit), it means they
are hard to model, and therefore their desired interaction with the environment is
not always obvious. One way to solve this issue is to evolve suitable morpholo-
gies, the methodology and examples of which is described in the next subsection
(Evolutionary Robotics, Section 1.2).

Secondly, in all the above, the functionality implemented in a morphology is deemed
to be fixed, i.e., they are specialised to one task that they perform well. However,
truly autonomous robots should be highly flexible and therefore capable to adapt
to changes in the environment and to new tasks [39]. In case of morphological
computation, in order to change the desired computation to be carried out, the
underlying morphology has to be altered, the investigation of which is one of the
main themes of this thesis. Therefore the ideas of morphosis are discussed in
Section 1.4.

1.2 Evolutionary Robotics

Even in traditional robot design, there are many different aspects to consider; its
morphology, sensory apparatus, motor system, control architecture, and it not clear
how best to combine these parts in order to produce the best robot [26]. Whilst
morphological computation has the potential to outsource some of the necessary
control to the morphology, and therefore also the potential to simplify the system as
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a whole, in actuality designing a suitable morphology is not trivial, especially when
considering soft compliant bodies.

The idea of using artificial evolution to solve hard problems in optimization, model-
ing, and design is almost as old as computers themselves [26]. The concept takes its
inspiration from natural evolution and Darwin’s theory of evolution, a population
of solutions to a problem is randomly created and each solution is tested against a
particular criteria. Those that perform well at the task produce offspring (through
a number of possible methods chosen by the algorithm designer, discussed below),
those that perform poorly are discarded. This continues for many generations until
the algorithm converges.

Figure 1.4: An example of a
tensegrity robot. These robots
are build from a specific combi-
nation of rigid struts and compli-
ant strings. This image is taken
from the Columbia University
Creative Machine Labs website
(https://www.creativemachineslab.com)
accessed 14/04/2021)

The field of Evolutionary Computing is vast
and encompasses many areas, in this thesis
I focus on Evolutionary Robotics (although
even just the research surrounding Evolu-
tionary Robotics considerable!). As alluded
to above, since there are many aspects to
robot, e.g. control, morphology, there are
many potential ways to utilize evolutionary
robots.

No matter what is being evolved, be that
the morphology, control or both, soft or rigid
robots, the main ingredients of an evolution-
ary robotics experiment remain the same
and are described in detail below.

First, an initial (usually randomised) popu-
lation of candidate robots is created. How-
ever, finding a way to simply represent dif-
ferent robots making them suitable for use in
an evolutionary algorithm is in its self chal-
lenging. The encoding of the robot is termed
“genotypes”. This genotype is then trans-
lated in a phenotype which is then tested.
Note that if the genotype, analogous to ge-
netic description of animals, the phenotype
is analogous to the physical animal body
[60]. The encoding used is down to the designer of the evolutionary algorithm
and, as a result, how these robots are encoded in genotypes has been the subject
of much consideration over the years. The simplest form of encoding is a “direct”
method, where each the genotype directly maps to a phenotype and all components
and attributes are simply listed. Of course if the robot required to be described is
particularly complicated, direct encoding can have its disadvantages. Comparisons
of encoding for evolutionary robotics can be found in [58, 116].
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The fitness of each member of the population is then evaluated. This means firstly
translating the genotype, i.e., the encoding, into a phenotype. Each phenotype is
then placed in a particular environment and allowed to interact with said environ-
ment for some time. The resulting behaviour is observed and measured against
a particular criteria to determine the fitness. The criteria used is again down to
the designer of the evolutionary algorithm; and example fitness function could be
distance travelled in a set time frame.

The final part of evolutionary robotics is that of the evolutionary algorithm. As pre-
viously mentioned, this is the part that takes the genotypes that translate into well
performing phentopyes, and manipulates them to form the next generation. This
manipulation is usually one of three types: reproduction, crossover or mutation.
In reproduction the genotype is simply copied into the next generation unchanged.
Often the genotypes selected for reproduction are those that have the best perform-
ing phenotypes, if this is the case it is normally termed elitism. Crossover forms
a “child” genotype from combing two “parent” genomes. In mutation, an individ-
ual part of single “parent” genotype is randomly changed to create a new genotype.
These different methods are used to generate a new generation of candidate solutions
which are in turn tested against the fitness critera. Note that a new generation is
usually created from a mixture of the methods, for example 50% new genotypes may
be created by crossover, 40% by mutation and 10% by reproduction. This continues
for many generations until an optimal solution is found – indicated by convergence
of the algorithm. The parameters of the evolutionary algorithm, i.e, the percentages
of mutation, reproduction and crossover, as well as the population size and number
of generations are usually hand tuned by the designer. The first instances of evolu-
tionary robotics, are those of Cliff, Harvey, and Husbands at University of Sussex
[38] and Floreano and Mondada at EPFL [31], which both focus on evolving neural
circuits for robots with fixed morphology operating in real environments.

Around the early 1990s, Karl Sims first used evolutionary algorithms to evolve both
the morphology and an appropriate control system of “virtual creatures” [110], see
Figure 1.5. This research was followed by many other studies, all investigating the
best way to co-optimize the controller and morphology via evolutionary algorithms.
These researchers include Dellaert et al. (1996) [25], Lund et al. (1997) [70], Eggen-
berger et al. (1997) [28],Pollack et al. (2000 and 2001) [91, 92], Bongard et al.
(2001) [12], Ray et al. (2001) [95], and Shen et al. in 2021 [109]. The majority
of these studies focused on how best to encode both the morphology and control
system into a population suitable for testing and also manipulating for the next
generation.

In this thesis I am especially interested in the idea of evolving robot morphology.
Therefore, in the following sub-section I discuss specifically the area of research
regarding evolution of morphology

However, it should be noted that in many cases it is hard to completely separate
evolution of morphology with evolution of control. In the majority of cases a new
morphology requires a new control system, and it is not a trivial challenge to co-
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Figure 1.5: Examples of the pioneering work by Karl Sims. Sims used evolutionary
algorithms to evolve virtual creatures capable of swimming, jumping, following,
competing and collaborating [110]. (Image taken from http://www.karlsims.com
accessed 14/04/2021)

optimise both aspects of the robot. In the rest of this literature review, and the rest
of the thesis, I place the emphasis on evolution and adaption of morphology, but
note that in some cases adaption of control is also required.

1.3 Evolving Robot Morphology

As previously discussed, using evolutionary algorithms to evolve robot morphol-
ogy is something that has been investigated now for almost three decades. In this
subsection I consider the more recent research into the area of just morphology evo-
lution (rather than just evolution of control systems). Although, also as previously
discussed, in many cases it is impossible to separate evolution of morphology and
control.

Early research into evolving robot morphology focused on evolution of more tra-
ditional rigid bodied robots, but as the benefits of using soft robots became more
apparent some researchers have also studied how the morphology and control of soft
robots can be evolved using evolutionary algorithms, e.g., Hiller/Lipson (2010 and
2011) [43, 45] and Cheney (2010 - 2014) [17, 96].

Traditionally evolution of fixed morphology and control are all carried out in just
simulation. However, what differentiates evolutionary robotics from just evolution-
ary computation is the requirement for embodiment. Therefore, there is a trend in
this area to move from just simulation, to sim to real, or in some cases just evolve
in the real world. This is discussed in the following subsection.

1.3.1 Sim-to-Real Evolutionary Robotics

One such example of where researchers have evolved in simulation and then trans-
ferred these designs to the real world is the work by Kriegman et al. in 2020 [63]
where simple voxel based robots are evolved in simulation and then optimal designs
are transferred to real life. The real robots are built out of silicone voxels and actu-
ation is achieved by varying the air pressure in the voxels via syringes (see Figure
1.6a).
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(a) (b)

Figure 1.6: a) Example of the silicone robots made by Kriegman et al. The mor-
phologies of the robots are first evolved in simulation and these designs transferred
to real life. Image taken from reference [63]. b) Example of biological robot:
xenobot. The design has been optimised through simulated evolution and trans-
ferred to the biological system. Image copyright Sam Kriegman, accessed from
https://cdorgs.github.io

In the same year, Kriegman et al. also introduced a framework for transferring
designs evolved in simulation to biological robots (Xenobots: see Figure 1.6b). These
Xenobots have been evolved to walk, swim, push pellets, carry payloads, and can
survive for weeks without food. They are also able to adjust their morphology to
heal themselves after lacerations.

These are two examples of where traditional evolution of morphology in simulation,
transfer to real systems has worked well. However, in many cases transfer from
simulation to reality is challenging. This is especially true in the cases of evolution-
ary robots where evolution has the tendency to exploit artifacts in the simulation
environment that may or may not be present in the real world.

A solution to this transfer-ability problem is to evolve robots entirely in the real
world. Whilst this is usually costly both in terms of time (and if evolving morphol-
ogy, hardware) there are a couple of examples in literature where this has worked
well.

In particular, Nygaard Glette developed a quadruped system where the morphology
of each leg is able to be altered, along with the control system [82, 83]. This robot
configuration is shown in Figure 1.7a. With this platform, Nygaard et al. were
able to explore real world (online) evolution of their robots morphology. They were
able to evolve different morphologies depending on battery voltage but also different
ground types (e.g. concrete versus grass). Their platform allowed the morphology
to be changed for each genotype without completely rebuilding the robot. Whilst
the only adaption that took place was through evolution, postnatal development
could also be feasible.

Another examples of real world evolution is the ARE project [37, 36]. The main
aim of the ARE project is to evolve in the real world both the control and body
plans of robots, e.g., see Figure 1.7b. Again in this case the morphological adaption
only occurs on an evolution timescale. However, in both the above cases the authors
argue the importance of increased interaction with the environment where evolution
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(a)
(b)

Figure 1.7: a) Nygaard and Glette developed a robot capable of morphological
adaption to different environments. Image taken from reference [83]. b) Hale et al.
are investigate how to evolve robot morphology and control in the real world. Image
taken from reference [36].

is an online approach.

Another area of recent, particularly relevant, research is how evolution can be used
to generate robot morphologies and control systems that are specifically adapted
to different environments. They also aim to understand how different types of
environment influence the final evolved morphologies. These examples are discussed
in the section below.

1.3.2 Evolution in different environments: adaption via evolution

Figure 1.8: An example of the
work by Auerbach and Bongard.
This is one the first examples
of researchers evolving robots for
locomotion in different environ-
ments. They showed that the
more complex the environment
the more complex the robot mor-
phology.

Traditionally, evolution of robot morphology has
been carried out in a single environment (flat
land). However, more recently researchers have
been looking at evolving in multiple environ-
ments. This is usually done to observe the ef-
fects of the environment on the way these robots
evolve and how they adapt to different environ-
ment. However, note that in these cases, adap-
tion takes places over many hundreds (or thou-
sands) of generations. Therefore, if the robot
was then required to adapt to a new environ-
ment, the evolution process would have to be
repeated.

One such example of evolving robot morpholo-
gies in multiple environments is the work by
Auerbach and Bongard in 2012-2014 [5, 4] where
they showed that more complex morphologies
were produced when evolution took place in
complex environment; when compared to evolu-
tion in simple environments. Examples of their
work are shown in Figure 1.8.

11



This finding was also supported by the work by
Miras et al. [74] later in 2020, where they compared evolution in two “static”
environments with one “dynamic”. In the dynamic environment the environment
the robot was evolved in changed throughout the robot’s lifetime. This also resulted
in more complex robots being produced when evolved in the more complicated
dynamic environment. Note however, that in this instance only one morphology
per genotype was evolved even in the dynamic environment; this morphology was
fixed throughout the robot’s lifetime but had adapted to cope with the changing
environments.

A similar concept to Miras’s work was carried out by Corucci et al. in 2017 [22].
In this instance, virtual creatures were evolved separately on land and in water.
Also evolved were robots that for the first half of the evolution (4500 generations)
experienced one environment, and then for the second half of evolution (4500-9000)
experienced another. They observed that the transition from water to land resulted
in better performing land individuals than when evolved only on land. However, it is
not clear whether these final morphologies are able to operate in both environments;
it would appear that they lose the ability to locomote in water after a few generations
of land evolution.

In 2018, Nygaard et al. evolved rigid legged robots in real world [83]. These legged
robots were also evolved in a damaged condition (i.e., with lower voltage). They
found that those robots evolved at the low voltage also performed well at optimal
voltages. However, in contrast, the robots evolved at the higher optimal voltage
suffered a loss of performance at the lower “damaged” voltage.

The above examples all show that the environment has a strong influence on the way
the robots evolve, i.e., in both the control and the morphology of the robot. Whilst
there are a number of positives to adapting via evolution there are a number of
disadvantages also. First, is that adaption occurs over a large number of generations.
Therefore, if the environment for which the robot is required to locomote in changes,
the entire evolution process will need to be redone to re-adapt the robot. Nature
however, adapts on a number of timescales, specially evolution and over the lifetime
of the robot when considering morphology. A key aim of this thesis is to examine
how adaption on two timescales (evolution and development) can be used to improve
the robustness of robots in a wide range on environments. Therefore, in the next
section I discuss examples of robots adapting after birth/initialisation.

1.4 Morphosis and Adaptive Robots

In this subsection, I explore the relevant literature surrounding robots that are able
to adapt their morphology to different environments or tasks during the lifetime of
the robot (i.e., after evolution).

The simplest case of morphosis for locomotion are robots capable of changing leg
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stiffness. A number of different variable compliant mechanisms have been proposed
for this purpose, e.g., Quy et al. (2011), Tagliamonte et al. (2012), Vu et al.
(2015), Li et al. (2019) [93, 114, 118, 66]. These examples attempt to mimic the
behavior observed in humans and other animals, where they adapt their leg stiffness
depending on ground conditions in order to locomote in an energy efficient manner.

Vu et al. [119] also built on the concept of variable compliant mechanisms by de-
veloping a robot platform to explore the idea of changing gait to enable robust
locomotion. They use a crank-slider mechanism in the leg that translates the simple
control signal (i.e., constant rotational velocity) into leg trajectories. This mech-
anism changes the way the rotational movement is translated, while the control
remained unchanged. The result was a range of different end point trajectories that
can be useful for different terrains.

There are a number of example of robots which aim to mimic that adaptive growth
of plants. Whilst this is not locomotion in traditional sense it is still useful and
relevant to this thesis. Using soft materials and additive manufacturing techniques
these robots are able to navigate obstacles passively e.g., Sadeghi et al. (2017-2020)
[100, 101], Greer et al (2020) [35] and Del et al. (2019) [24]. However, these examples
do have the disadvantage in that, unless they have an infinite of resource to add
to their bodies, or way of recycling the material, they will remain anchored to the
starting location.

In 2015, Cacucciolo et al. [14] designed an adaptive simple robot with four soft,
pneumatically actuated legs and a rigid backbone. They showed that by adjust-
ing the angle of the legs and the pressure within the legs the robot was able to
successfully locomote in two different environments. However, in these instances
the morphological parameters were hand tuned in order to achieve this adaptive
locomotion.

Modular robots have been also considered as a potential way to create robots capa-
ble of morphosis by moving identical modules relative to each other, e.g., consider
work by Murata et al. (2002-2007) [78, 79], and Marbach et al. (2005)[71] and
later in 2017 Veenstra et al. [116]. There are even some cases of researchers using
evolutionary algorithms to evolve optimal methods of reconfiguration to adapt to
new environments, e.g. Marbach et al. (2005), Yoshida et al. (2003), Klidbary et
al. (2013) and Alattas et al. (2019) [71, 122, 57, 2, 69]. However, whilst in these
examples the overall robot has the ability to change its morphology, they do not
have the capability to determine when to adapt – this is still done by the robot
designer. In this sense the robot does not develop, instead when the human de-
signer puts the robot into a new environment the human reruns the evolutionary
algorithm to determine the best new morphology, the new control system and then
the way that that the individuals modules of the robot should move to realise this
new morphology. In most cases the modules of the robot have no sensor – if they
do, the results from the sensors are fed into an adaptive control system rather than
to aid the development of the morphology to improve robustness.
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Another area of morphosis or adaptive robotics is origami robots, e.g., Miyashita
et al. (2017) [75], Kotikian et al. (2019) [59], Zhakypov et al. (2018) [124] and
Taghavi et al. (2018) [113]. These robots aim to provide the same adaptability
that can be gained from the morphology changes from the modular re-configuring
without the need for many bulky electronics, which is generally seen as one of the
main disadvantages of the self re-configuring robots. These robots are generally
formed from a flat sheet of material which is activated, e.g. by magnetic fields
or hinge mechanisms, to form differently shaped “exoskeletons.” However, once
again these do not necessarily respond to feedback from the environment in order
to change shape. Also in these instances there are only a certain number of final
morphologies able to be generated from the initial sheet and these are predetermined
by the designer.

Figure 1.9: Corucci et al. used
an evolutionary algorithm to de-
termine optimal morphologies from
which the robot could minimally
change between to gain a maxi-
mum change in behaviour, this was
implemented on the PoseiDRONE
robot pictured here. Image taken
from www.ideaconnection.com ac-
cessed 14/04/2021.

An interesting study, carried out by Corucci
et al. [21] investigated using novelty as
a fitness function to evolve morphing be-
haviour in the soft octopus robot the Po-
seiDRONE (see figure 1.9). The evolu-
tionary algorithm determined optimal mor-
phologies from which the robot could min-
imally change between to gain a maximum
change in behaviour. Again this was com-
pleted without any real feedback from the
environment – instead it was still up to the
robot designer as to when the morphology
should be adapted.

Another relevant study [52] considers how
terminating embryonic development at dif-
ferent stages can allow for robust and adap-
tive behaviour suited to different environ-
ments. For example, a single genotype can
be transformed into two different pheno-
types just depending on for how long the
genotype is allowed to develop. Further-
more, after “birth” these phenotypes have
the ability to morph between the two mor-
phologies. However, this study has the same
problem as before, e.g., in [21]. The robot
has no environmental sensing, it does not know when and how to change its body
shape.
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1.4.1 Morphological Adaption for Damage Recovery

The above examples mostly relate to research where the authors have adapted mor-
phology in order to perform in a different environment or carrying our a different
tasks. There is also an area of research that considers morphological adaption for
damage recovery. Traditionally, researchers have used adaptive control methods to
recover from even morphological damage, for example the work by Cully et al. in
2015 “Robots that can adapt like animals” [23]. However, with increased realisation
of the importance of embodiment, some researchers have explored how adaptive
morphology may also help in damage recovery.

One example of this is Kriegman et al. in 2019 [64] where they evolved soft voxel
based robots who were shape to change the size of remaining voxels when others were
removed. Additionally, to some extent this was replicated in the real world. Later,
in 2020 Kreigman et al. [63] also designed biological robots capable of morphological
regeneration with sliced (however in this instance the amount of damage is relatively
low).

It has already been discussed in the previous section, that strong interaction between
the environment and the robot is required for better performing adaptive robots.
Whilst the above examples do show morphological adaption, in the majority of cases
the adaption is instantaneous but also limited to only a few body types. Instead, I
argue that combining evolution with development and allowing the robot to alter its
morphology over its entire lifetime as a response to interaction with its environment
would result in even more adaption.

There are some limited examples of where researchers have explored combing evo-
lution and development of morphology; these are discussed in the next section.

1.5 Evo-Devo: Combined evolution and development of mor-
phology

In the majority of the examples in the above section, adaption of robot morphology
after initialisation or “birth are limited to one or two different body structures.
These body structures are often hand designed and the trigger for morphological
change is usually by a human. This therefore limits the amount of adaption that
the robot can achieve.

Considering the example of the natural biological plants, adaption takes the form
of morphological development and is driven by interaction with the environment.
The plant grows towards a light source, if the light source moves, the plant changes
the way it develops. This adaption is not instantaneous; adaption develops over the
course of the plants lifetime.

There have been a number of examples of research were adaption takes place on two
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timescales; i.e., evolution and development.

More commonplace is the development of control systems. There are many examples
where researchers have evolved starting neural networks to act as the control system
for a robot. Then, the weights of the neural network over the lifetime of the robot
are altered; enabling adaption through development. Examples of these are Najarro
Risi [80], Oudeyer et al. [84], and Stanley et al. [111].

However, as previously discussed, there are comparably few examples of morpho-
logical development. Additionally, in many cases this development is used as a
tool to evolve better performing final robots, rather than used for further postnatal
adaption.

Bongard [9] designed robots capable of growing from an anguilliform into legged
robots during their lifetime in early evolution runs. However, in later generations
this postnatal development was removed and only legged robots were tested in the
environment. Bongard found that allowing development in early evolution stages
evolved better final robots.

Another such example of this is the work is by Kriegman et al. [62], where they
showed the benefits of using even a small amount of morphological development,
coupled with evolution, to create better performing voxel-based robots. Initially
their approach did not consider how the environment could influence growth; but
touched on the idea a year later [61]. In this later work, the stiffness of each voxel
was changed depending on feedback from its interaction with the environment and
this was shown to increase the robustness of the evolved robots.

Similarly, Corucci et al. [22], inspired by the adaptive nature of plants, investigated
how individual voxels could alter their respective size to alter the overall virtual
creatures morphology based on feedback from an artifical light source.

Therefore, it can be seen that morphological development (especially that driven by
environmental feedback) of robots is something currently under researched. It is the
aim of this thesis to expand upon this idea in the context of locomotion.

1.6 Thesis Context and Structure

From the literature in this chapter, it can be seen that using artificial evolution to
evolve the way a robot develops and adapts its morphology based on its interaction
with environment has not yet been researched. In this section, I discuss how my
thesis relates with respect to the wider research field. Later in this section, I also
present the structure of this thesis.

It can be seen, from the “Morphological Computation” section, Section 1.1, that
there is benefit in designing soft compliant robots, capable of locomotion, that are
able to exploit the way their morphology interacts with their environment. This
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exploitation has been shown to reduce some of the necessary computational expense
required by the controller. However, designing suitable morphologies, especially
when utilising soft bodies, is a challenge in itself.

Artificial evolution has already proved itself a powerful tool to design complex and
interesting (albeit fixed) morphologies. However, previously it has been mostly used
to produce fixed morphologies via evolutionary algorithms. Therefore these robots
are only able to adapt on one timescale; over hundreds or thousands of generations.
Since in these examples the robot morphology is fixed from initialisation, the amount
of adaption they can achieve is limited. Whilst there are many example of robots
that are able to alter their shape after initialisation, the amount of adaption is
usually limited to two or three body shapes which have been pre-designed by a
human.

There are also numerous examples of evolving developing control systems, some of
which are based on feedback from the environment. However, evolutionary algo-
rithms have only just begun to be used for evolving the postnatal adaption of robot
morphology.

In this thesis, I present my research which combines the areas of Morphosis and
Evolutionary Robotics. Using evolutionary algorithms, I evolve the way a robot
should adapt/develop its morphology, based on feedback from the environment, in
order to change itself into successful morphologies for a wide range of environments.
The adaption takes the form of development, and the robot’s morphology is grad-
ually changed based on its integration with the environment. Therefore, the main
hypothesis of this thesis is that evolutionary algorithms can be used to evolve opti-
mal methods of morphological adaption/development in compliant robots allowing
for more robust locomotion in a wide range of environment.

Furthermore, the key aims and objectives of this thesis are:

• To investigate the use of evolutionary algorithms to evolve methods of adapting
the morphology of compliant robots in order to achieve robust locomotion.

• To carry out the investigation of evolving methods of adaption in two contexts.
Firstly, using the theoretical Spring Loaded Inverted Pendulum model as a
“base robot”. Secondly, using a more complex voxel-based robot as a platform
for adaption.

• To determine how transferable, and therefore robust, the evolved methods of
adaption are in terms of performance in different starting environments and
different starting morpologies.

Note that in this thesis, I concentrate on adaption/development of the robots mor-
phology rather than control. A strong motivator for this thesis is to explore to what
extent just adapting the morphology of a robot can improve its robustness in the
context of locomotion. Whilst I do not anticipate that in the future, robots will
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require no control system, I aim to provide evidence as to the power of adaptive
morphology. Furthermore, in many aspects of machine learning there is the theory
of “no free lunch. In this thesis I do not present a single global algorithm capable of
adaption in any possible scenario. However, I do aim to show that through evolution
it is possible to generate robots capable of developing their morphology in order to
be successful in a much wider range of environments than if they had a fixed body
structure.

In the second and third chapters (i.e., the two chapters following this one), I consider
methods of adaption of the both the morphology and control of the Spring Loaded
Inverted Pendulum (SLIP model), which is a commonly used model to describe a
wide range of animal locomotion, see chapter two literature relating to the SLIP
model. One of the reasons the SLIP model is so widely used is that if the morpho-
logical and control parameters that make up the model have the correct values the
model is self stabilizing. That is it will exhibit a stable locomotion pattern that is
maintained even when the system experiences small perturbations (however, larger
disturbances will make the model fall over). In chapter 2, I conceive a number of
adaption rules that, when combined, uniquely describe how the SLIP model should
adapt a single part of its self in order to find stability for a wide range of starting
parameters. Here, I use an offline learning approach where the model allowed to
fail and its parameters are changed upon reattempt; therefore, the rules are based
on how the model improves between locomotion attempts. The rule sets are sys-
tematically tested to determine the optimal. In this chapter and optimal rule set
is one that is able to update the widest range of initial morphology and control
parameters so that, after a number of locomotion attempts the SLIP model exhibits
stable locomotion.

The third chapter has two main parts. Firstly, I further investigate this offline
learning approach by using evolutionary algorithms to evolve optimal rule sets that
update both the morphological and control parameters simultaneously. In the second
part of this chapter, I investigate how these rules can be changed to allow the
SLIP model to adapt, to find stability, without the need to failure. Instead of
being based on previous locomotion attempts, these “online” rules are now based
on changes in energy between strides. As with the second chapter, the optimal
rule sets are those which are able to adapt the widest range of initial morphological
and control parameters into those capable of stable locomotion in the SLIP model.
Additionally in this chapter, I explore how these new online rules allow the SLIP
model to maintain stability in the face of changing landscapes, i.e., downwards steps.

In Chapter 4, the complexity of the simulated robot is increased and specifically, I
consider using evolutionary algorithms to evolve methods of adapting a voxel based
robot. The overall initial voxel based robot is formed of 216 individual modules, or
voxels, arranged into a 6x6x6 cube. The internal voxels have the ability to expand
and contract based on an external sinusoidal signal – this gives the robot the ability
to locomote. However, in the initial morphological configuration, the robot is only
able to locomote a very small distance in all three different environments for which it
is tested in. As with Chapter 2, morphological adaption of the robot takes between
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a number of locomotion attempts. Whereas in the previous chapters, the adaption
methodology is based on rule sets, in this chapter after each locomotion attempt a
single neural network determines how the robot should adapt. More specifically, the
neural network is based on the kinetic energy of the voxel, determines how much the
stiffness of that voxel should change. If the stiffness of a voxel becomes too low it
removed; thus an optimal morphology, adapted to the environment that the robot
is in, is sculpted. In this chapter, it is the weights of the neural network that are
evolved; an optimal neural network is one that is able to sculpt a final morphology
capable of travelling the further distance in all three environments for which it is
tested for. Note that the internal expanding and contracting voxels are not removed;
thus only the morphology of the robot is adapted, not the control. Also included
this fourth chapter is an investigation into how the evolved neural networks transfer
into environments for which they were not initially evolved. I also investigate how
these evolved neural networks can be used as a way of adapting the morphology of
the robot to counteract morphological damage.

The final chapter contains a summary of the work presented in this thesis and dis-
cusses the arisen implications of the research. It also includes a section on potential
further work. Note that the work carried out in this thesis is entirely in simulation,
therefore the final chapter also contains a discussion as to how this work could be
transferred to physical robots.

1.7 Publication List

1.7.1 Journal Articles

Walker, Kathryn, and Helmut Hauser. “Evolving optimal learning strategies for
robust locomotion in the spring-loaded inverted pendulum model.” International
Journal of Advanced Robotic Systems 16.6 (2019): 1729881419885701.

Walker, Kathryn, and Helmut Hauser. “Adapting stiffness and attack angle through
trial and error to increase self-stability in locomotion.” Journal of Biomechanics 87
(2019): 28-36.

1.7.2 Conferences

Walker, Kathryn, and Helmut Hauser. “Evolution of Online Update Rules for Ro-
bust Locomotion in the SLIP Model.” 9th International Symposium on Adaptive
Motion of Animals and Machines (AMAM 2019). No. CONF. 2019.
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2 Adaption of the spring loaded inverted pendu-

lum - an offline learning approach

This chapter is based on the publication Walker, K. and Hauser, H., 2019.
Adapting stiffness and attack angle through trial and error to increase
self-stability in locomotion. Journal of Biomechanics, 87, pp.28-36.

2.1 Introduction

In this chapter and the next, optimal rule sets used to adapt a simulated “Spring
Loaded Inverted Pendulum” (SLIP) model are investigated. The SLIP model is a
prevalent model for analyzing the running and hopping leg motion of a wide range
of species [7, 73]. The model consists of two main components, a point mass and a
linear spring connected to it. It is due to its prevalence for modelling legged animal
locomotion and its simplicity that the SLIP model was chosen as an initial platform
to explore the evolution of optimal adaption methods.

In more detail, in its basic form, the SLIP model describes the motion of an animal
by representing its body as a lossless, linear spring with constant stiffness k and
constant rest length lo as shown in Figure 1, the center of mass of the body is
represented by a point mass.

Traditionally, the movement of the model is formed of two phases; the flight phase
and the stance phase [105], as shown in Figure 2.1. During the flight phase the point
mass follows a simple ballistic trajectory until the foot of the leg “touches down”
on the floor. At this point the leg enters the stance phase; whilst the top of the leg,
the point mass, continues to move with the same horizontal velocity, the rest of the
spring first compresses and then expands; when the spring length returns to lo the
leg “takes off” and re-enters the flight phase. The angle at which the leg enters the
stance phase is called the attack angle (α).

At particular combinations of attack angle (α) and spring stiffness (k) the SLIP
model is stable. It is able to transfer from the flight phase to stance phase and
back again indefinitely without the point mass coming into contact with the ground
(i.e., without the SLIP model falling over). Additionally, at these combinations
the SLIP model is able to withstand small perturbations, e.g. those introduced by
small changes to ground level. However, if the perturbation is too large the model
will fail. These combinations of attack angle (α) and spring stiffness (k) have been
investigated by Seyfarth et al. (2002) [104] and are commonly referred to as the
J-Figure [33] due to the shape of the region of stable combinations. An example of
the J-Figure is shown in 2.2.

There is a wide range of literature relating to the improvement of the SLIP model,
to widen the stable “J” region and therefore make the model more robust to envi-
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Figure 2.1: Figure showing the SLIP model in its basic form. The basic SLIP model
consists of two main parts; a point mass (m) on top of a linear spring with constant,
linear stiffness (k). Note the spring itself has no mass and is lossless, i.e., it is not
damped. During locomotion the SLIP model has two phases, a flight phase and a
stance phase. During the flight phase the point mass follows ballistic trajectory and
the spring remains at a constant uncompressed length until the other end of the
spring comes into contact with the ground, termed “touchdown.” At this point the
“foot” end of the spring remains fixed. The spring first compresses and then starts
to re-expand. When the spring length reaches the initial uncompressed length again
the SLIP model re-enters the flight phase, i.e., it “lifts off.” The angle at which the
SLIP model touches down is termed the attack angle (α).

Figure 2.2: Figure showing the stability regions of a SLIP model. In this case the
SLIP model has a leg length of 1m and a mass of 80kg. The SLIP model was tested
for stability at 1600 different starting combinations of attack angle and stiffness. If
the SLIP model is stable at these starting parameters it is shown in blue. From
this the “J-Figure” as determined originally by [104] can clearly be seen. Note that
if different masses and leg length were used the values for the stable combinations
would be also be different but a J shape would still be observed.
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ronmental changes.

One approach has been to extend or alter the design of the SLIP model in order to
exploit the soft compliant morphology, i.e., the spring section. Note that in these
cases the morphology of the extended SLIP model stays constant throughout the
locomotion and any improvement in performance in robustness is simply down the
extension in morphology. For example, Rummel et al. [99, 98] showed that an
addition of an extra leg segment leads to an overall nonlinear stiffness function and
as a results bigger region of self-stabilization. Karssen et al. in 2011 [56] optimized a
non-linear stiffness profile function; optimizing the gait sensitivity norm (a measure
for disturbance rejection, described in their paper.) Okwaki et al. in 2007 also
carried out a similar approach [85], as did Yu et al. [123]. Other modifiers to the
SLIP model, such as the inclusion of leg damping or hip torque have also been
shown to improve the stability, e.g., the work from Shen et al. in 2021, Blickhan
et al. in 2015 and Abraham et al. also in 2015. [109, 8, 1]. Additionally, Jun
et al. (2011) [54] considered how curved legs affect the stability of SLIP based
locomotion. As stated above, these examples modify the force profile of the SLIP
model during the stance phase, either by introducing non-linearity of the spring or
introducing damping, in order to improve robustness. These examples do not allow
the morphology, or control (i.e., α), of the SLIP model to change either between
strides or between locomotion attempts.

Some researchers have investigated changing the morphology from stride to stride.
For example, Andrews et al. (2011) [3], Schmitt et al. (2009) [102] and Shen et al.
(2014) [108] implement systems where the morphology, in this case the leg length,
is varied from stride to stride (between two fixed leg lengths) to maintain stability
over rough ground. However, in these cases the amount the the leg length is varied
is irrelevant of any feedback from the environment.

Another method used to increase robustness is the addition of a control system
which adapts the attack angle of the leg upon touchdown. For example, consider
the works of Ghigliazza et al. (2005) [34], Hurst et al. (2004) [48], and Peuker et al.
(2021) [87]. Whereas in the cases of morphological adaption (i.e., those described in
the previous paragraphs) the amount that the attack angle is varied is dependant
on feedback from the environment (albeit indirectly). Researchers have based their
attack angle alterations on a variety of elements of the SLIP model, e.g. velocity
(Sharbafi et. al (2016-2017) [107, 106] or force (Englsberger et al. in 2015) [30].
Note, however, that even though these angle changing systems do take into account
the environmental changes experienced by the SLIP model (through velocity), the
rules dictating how the angle is changed are hand designed; they have not been
optimised.

In general, there is a vast amount of research into how to expand the robustness
of the SLIP model. However, in the case of adapting the morphology, the systems
do not take into account any feedback from the environment. Furthermore, in both
the cases of adaptive control and adaptive morphology, none of the examples from
the literature listed above use past experience, be it success or failure, to determine
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how best to adapt. Therefore, they all have one common flaw. If the SLIP model
starts with a combination of parameters (stiffness k, and attack angle α) outside the
range of stable parameter combinations, it has no way to learn to become stable. In
this chapter, I present a learning methodology that adapts the attack angle (α) and
spring stiffness (k) of the basic SLIP model based on a set of rules. This learning
approach is offline; it uses locomotion attempts (named episodes) and allows the
model to fail. The relevant parameters (be that spring stiffness or attack angle) are
updated between such episodes. After each episode the distance travelled in that
episode (Di) is compared to the previous distance (Di−1). This change in distance
(∆D) is the key measurement in each of the rule sets. Each rule set uses ∆D in a
unique way to determine how to change either attack angle (α) and spring stiffness
(k). Thus, an optimal rule set would, over a number of episodes, adapt either the
control or the morphology parameter, from an unstable to stable one; i.e., the SLIP
model would learn to become stable. Figure 2.3 shows the concept of episodes.

Figure 2.3: Figure showing how the attack angle (α) and spring stiffness (k) of a
SLIP model are updated using the offline rule approach. Each rule set is based on
the change in distance between each locomotion attempt (or episode) and dictates
how either the control (α) or morphology (k) should change for the beginning of the
next episode.
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2.2 Methodology

2.2.1 SLIP Simulation

As previously discussed the SLIP model was first presented in 1989 by Blickhan [7].
It is a simple, generic model of legged locomotion, commonly used to model hopping
or running. In the case of my research I follow the simulation layout from the 2003
work by Seyfarth et al. [105].

Figure 2.4: Figure shows the SLIP during the two phases, stance and flight, in more
detail. During the flight phase the only force acting gravity g, the point mass follows
a ballistic trajectory and spring remains at lo. When the bottom of the spring hits
the ground (i.e., the position of the foot is equal to the ground level) the spring
starts to compress. This results in an additional spring force which provides an
upwards force k(l − lo); when the spring length is at lo once more take off occurs.

During the flight phase the leg is only represented by the point mass, since the spring
is considered to be mass-less. This point mass follows a ballistic trajectory until the
end of the spring (the foot) comes into contact with the ground at which point the
leg enters the stance phase (this point is referred to as touch down). During the
stance phase the foot of the spring is assumed to be anchored to the ground, the
point mass continue to move in the direction of travel but its exact trajectory is no
longer ballistic as a result of the anchored spring. When the length of spring returns
to the resting length the stance phase ends and the flight phase begins once again
(termed the takeoff point).

The behaviour of the SLIP model can be characterised mathematically with a few
simple equations. During both phases the point mass follows the equations of motion
shown in Equation 1.

r̈ = Fl +mg, (1)

where r̈ = [ẍ, ÿ]T , i.e. the acceleration of the point mass (in 2D), g = [0,−9.81]T ,
the gravitational acceleration acting on the point mass, and Fl is the spring force.

24



Figure 2.5: Figure shows the basic SLIP model and the parameters required to
calculate motion. Initially the model is shown just at touch down, the attack angle
(α), spring stiffness (k), point mass (m) and resting length (lo) are labelled. In the
second diagram the spring has compressed slightly and the current spring length is
shown (l).

If the model is in flight phase Fl = 0. If the model; is in the stance phase the spring
force is:

Fl = k(lo − l). (2)

Here, lo is the resting length of the spring, as shown in Figure 2.5. Additionally,
Figure 2.4 and Figure 2.5 show each of the parameters used in the equations. During
the stance phase, first the spring force is calculated. This is then resolved into x
and y using cosine and sine respectively. The angle that the spring makes with the
ground during the stance phase is always measure from the same direction, therefore
when the angle increases beyond 90 degrees and the spring is orientated the other
way, the resultant force in the x direction changes sign. In the simulations, during
the flight phase the spring is always angled against the ground surface by α, the
attack angle, i.e., any retractions of the spring are not modelled. This means that
the transitions between the two phases are simply triggered by the following rules:

• Entering Stance : y- l0sinα < ground level

• Entering Flight : Length of spring > l0

The system was simulated in Matlab using the Forward Euler method for integration
with a time step of ∆t = 0.001 seconds. In each episode the system was simulated
until either the spring fell over (the vertical height of the point mass was less than
ground level, i.e. y < 0) or the maximum time of t = 10 seconds (= 10′000 simulation
time steps) was achieved. If the spring had not fallen over after 10 seconds it was
considered stable. An episode was defined as the time between when the leg begun
to move and when it falls over (or the simulation reaches 10 seconds). Therefore, the
maximum length of one episode was 10 seconds. It is worth noting that although
that potentially there are parameter combinations of attack angle and stiffness that
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may lead to the leg falling over after 10 seconds. However, after extensive testing
this situation never occurred and as a result this maximum episode length was a
reasonable trade-off between simulation time and stability.

As a reminder, running the model for multiple episodes, and to update its parameters
between episodes, allows the model to learn from previous experience. This means it
can learn to become stable by updating its “unstable” parameters to stable ones. In
the research presented here the simulations were allowed to run for up to a maximum
of 100 episodes. If stability was found earlier the simulation is terminated. The
number of episodes required is termed a “lifetime” and, therefore, these simulations
have a maximum lifetime of 100 episodes. As with the choice of maximum episode
length, again it should be noted that potentially there may be an adaption method
that finds stability after this 100th episode (for example in episode 105). However
the maximum lifetime length of 100 episodes was selected after extensive initial
testing which showed that whilst potentially possible, the above case never actually
occurred.

For the simulations the resting length of the leg was chosen to be 1 m and the point
mass 80 kg. This is consistent with the values used in literature, see [105], and are
representative of an average adult human male.

2.2.2 Adaption Methods

Next, I introduce the adaption methods that the leg (the SLIP model) uses to alter
its morphology (spring stiffness, k) and control (attack angle, α).

The adaption method used in this research is termed a “rule set”. Each rule set is
made up of five individual rules that all dictate a part of the leg adaption. When
the rules are combined, the rule set uniquely determines how the SLIP model will
alter its parameters. When following a rule set, the SLIP model will either change
the attack angle α, the stiffness k, or both. As discussed this adaption takes place
after each episode, so that a new configuration of attack angle and stiffness is used
in the next episode.

The rule sets are configured so that either just the attack angle, just the stiffness
or both can be tested. The basic rule sets for angle change and stiffness change
are shown in Figure 2.8. Initially separating the adaption of the morphological and
control parameters allows a comparison of the two approaches. These rule sets are
shown in Figures 2.8 and 2.7 (two separate figures shown for clarity).

A key aim of my research was to enable to SLIP model to learn from previous
locomotion attempts. Therefore, distance travelled, Di was used as a measure of how
successful the previous episode had been, i.e. if the leg had managed to locomote
a long distance before falling over, this was deemed to be a more successful episode
than if the leg had fallen over almost instantaneously. Note that for a completely
successful episode (i.e., where the model had not fallen over at all) the achieved
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Figure 2.6: Figure showing two basic rule set, one for adapting only the attack angle
(α) and one for adapting only stiffness (k). These two basic rule sets can then be
also combined to form a rule set capable of adapting both the attack angle and the
stiffness simultaneously. Each rule set consists of five different rules. In this figure
the possible values for each rule are shown. Refer to the text below for a detailed
description of each rule.
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Figure 2.7: Figure showing an alternative view of how each of the individual rules
are combined to create an adaption method. It is this final rule set that is evolved
via evolutionary algorithm.

Figure 2.8: Figure showing two example offline angle changing rule sets. In the
first example, if the difference in distance between the current and previous episode
(∆D) is positive, the attack angle is increased (rule 1) by the fixed amount (rule 2)
of 0.23 rads (rule 4). If ∆D is negative the attack angle is decreased (rule 1) by the
fixed amount (rule 3) of 0.56 rads (rule 5). In the second rule set if ∆D is positive
the spring stiffness is decreased (rule 1) by the fixed amount of 5.4 kN/m (rule 4). If
∆D is negative the stiffness is increased (rule 1) by µ

2D+1
where µ = 0.54 as per rule

4. Note that in the second example rule set rule 5 is redundant as rule 3 is unfixed.
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distance is the amount the SLIP model has traveled after 10 s. For an unsuccessful
run it is the distance traveled before the model has fallen over.

The distance travelled in an episode is the key parameter used in the rule sets. In
particular, the rules use the difference between in distance between the episode just
finished and the one before that i.e., ∆D = Di − Di−1. With this knowledge the
individual rules can be detailed further, note that these rules can be used to adapt
their the attack angle or the spring stiffness:

• Rule 1 dictates if ∆D is positive, the parameter (either α or k) should increase
or decrease. This is symmetrical, so that if ∆D is negative the opposite occurs.
To clarify further if rule 1 is set to “increase” and ∆D is positive either α or
k increases, whereas if ∆D is negative the parameters decrease.

• Rule 2 dictates when the parameter is to increase, this increase should be
dependent on ∆D or a fixed value, i.e. “fixed” or “unfixed”.

• Rule 3 is similar to rule 2 and dictates whether, when the parameter is to
decrease, this amount should be “fixed” or “unfixed”.

If either Rule 2 or Rule 3 is unfixed an equation is required to calculate by how
much either the attack angle or stiffness should change.

amount of adaption =
µ

2 + ∆D
, (3)

where ∆D = Di −Di−1 and µ is given by rule 4.

• Rule 4 has two possible functions. If Rule 2 is fixed, then Rule 4 determines by
how much either attack angle or stiffness should increase. The second possible
function is that if either Rule 2 or Rule 3 is set to unfixed, Rule 4 dictates the
value of µ.

• Rule 5 is only used if Rule 3 is set to fixed. In this case Rule 5 is the amount
that either α or k should be decreased by. If Rule 3 unfixed then Rule 5 is
redundant as µ is dictated by Rule 4.

In addition, if the parameter is changed, according to the rules, to a value that is
outside of the range (< 0◦, or > 90◦, for α, or a negative stiffness) the learning
process is terminated (i.e., the lifetime has ended) and the rule set is determined
unsuitable.

These five rules can be used to make up a wide variety of different sets, i.e., differ-
ent methods the SLIP model can use to adapt with the aim of achieving stability.
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Therefore, using these basic rules to build rule sets, a large number of potential
adaption methods were able to be tested to determine the optimal. Considering
that Rules 1, 2, and 3 are binary (i.e., either fixed/unfixed or increase/decrease)
and Rule 4 and Rule 5 are set to be values from 0.01 to 0.9 in 10 discretitized steps,
in total 23 ∗ 10 ∗ 10 = 800 angle adapting methods and 23 ∗ 10 ∗ 10 = 800 stiffness
adapting methods were created. This enabled me to systematically test them all.
However, it should be noted that the actual number of unique rule sets is 400, for
each parameter. This reduced number accounts for the redundant Rule 5.

A metric of determining how successful a rule set was in terms of enabling the SLIP
model to achieve robust locomotion was required. Therefore, the metric selected
to determine the success of a adaption method (a rule set) was the proportion of
tested starting parameter combination from which the rule set was able to find
stability: the percentage success rate. To clarify, each rule set was tested 1,600
times, each time with a different starting combination of attack angle and stiffness.
Within the selected testing range, the perfect rule set would be able to find stability,
after a maximum of 100 episodes, for 100% of the tested starting situation. This
hypothetical rule set would be described as having a success rate of 100%. In
contrast a completely useless rule set would never be able to find stability regardless
of starting parameters: it would have a success rate of 0%. In actuality, due to the
set up of the experiments, this would never occur as in some cases the experiment
would start with a parameter combination within the existing self stability region
(i.e., the J-figure) for the SLIP model and, therefore, the experiment would be
terminated after one episode. Using the metric of success rate allows a comparative
measurement on the usefulness of any given set of learning rule.

The range of starting parameters(i.e., the ranges of attack angle α and spring stiff-
ness k) were selected so that it fully encompassed the self stabilising area, but also
had enough additional parameter combinations so that the validity as well the limita-
tions of my approach could be full demonstrated.This area of stability is in literature
often referred as J-Figure (e.g., [104] - also see Figure 2.2.) The range encompassed
for α were values from 20◦ to 90◦ (in 40 discrete steps) and for k from 2, 000 to
60, 000 N/m (also in 40 discrete steps); resulting in 1,600 different angle/stiffness
pairs.

Figure 2.9 shows how successful the basic SLIP model (i.e., one that has no capability
for learning) is; this is used as a baseline for the experiments detailed in this chapter.
A pink dot in the figure represents a starting condition where a stable solution could
not be found. The success rate for the non-learning SLIP model was 3.75% (i.e. 60
out of 1600 starting parameter pairs were stable). This is the pre-existing self
stabilizing area that is already a feature of the SLIP model. This basic SLIP model
does not have the capacity to update its parameters between episodes. Therefore, if
started with an unstable parameter it has no way of updating it to become successful.
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Figure 2.9: Figure showing a standard slip model (i.e, without the capabilities for
learning). A pink dot represents a starting condition where a stable solution could
not be found. For the tests detailed in this chapter 1600 different starting combina-
tions were tested. From this figure it can be seen that a non learning SLIP model
only has a small range of starting configurations where it can be stable (3.75%,
60/1600
) - i.e., the non learning SLIP model can only be stable if it is started in this small

range of configurations. Please note that the background colours in this figure
represent the distance travelled by the SLIP model in 10 seconds (one episode) at
a particular starting configuration. The starting parameters for which the SLIP
model travels furthest is indicated by yellow (50m), in contract the dark blue
regions indicate starting combinations where the SLIP model travels the least
(2m). However it should be noted that this is not necessarily an indication of
stability. Both the light green and yellow parameters are stable, however the

length of the strides are different due to the difference in parameter combinations.
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2.3 Angle Changing Rule Sets

In this section, I will first present the results from the testing of the rules that change
attack angle α. The results for the rules that change the stiffness of the SLIP model
are discussed later in this section (2.4). Every combination for the attack angle rule
sets (a total of 800,400 unique when considering the redundant rule 5) was tested
and the results assessed by their success rates, as previously defined), are presented
in Figure 2.10. Note in Figure 2.10 that the rule sets are grouped according to the
first three binary rules (i.e., increase/decrease, fixed/unfixed, fixed/unfixed), then
by an increasing rule 4 and finally increasing rule 5. It can be seen that in the
rule sets where Rule 3 is “unfixed” that usually as the value for rule 4 increases
the performance of the set decreases. Since in these instances rule 5 is redundant it
obviously has no effect on the success rate. In contrast, when rule 3 is “fixed” and
thus rule 5 is not redundant it’s value has a significant effect on the final set’s success
rate (arguably more than rule 4). For example, in the case where the first three rules
are “increase, unfixed, fixed” there is a strong negative correlation between rule 5
and the overall success rate. Additionally, Table 1 summarizes the top 5 rule sets
(they are also highlighted in red in Figure 2.10).

The best rule obtained a success rate of 78.93%, which is much higher compared
to the standard SLIP model with 3.75% (i.e., the corresponding base line which is
depicted by the red line in Figure 2.10). To clarify, a success rate of 78.93% means
that this rule set was run for 1600 different starting combinations. For each starting
combination, after each episode, the SLIP model would update the attack angle
according this rule set. For 1216 out of 1600 (78.93%) of these starting parameter
combinations by the time the lifetime of the model had been reached the attack
angle had been successfully updated so that the system was now stable, i.e., within
the J-Figure.

Rule Set % Success Rate
x / total parameter

combinations
Increase, Unfixed, Fixed, 0.67, 0.23 78.93% 1263/1600
Increase, Unfixed, Fixed, 0.78, 0.23 78.93% 1263/1600
Increase, Unfixed, Fixed, 0.45, 0.12 71.12% 1250/1600
Increase, Unfixed, Fixed, 0.34, 0.12 71.12% 1250/1600
Increase, Unfixed, Fixed, 0.56, 0.12 69.31% 1109/1600

Table 1: Top 5 successful angle changing rule set and their corresponding success
rates. These top rules can also be seen in Figure 2.10 within the red circle. It can
be seen that these top rule sets all have the same first three rules. The top rule
sets increase the percentage success rate by at least 69.00% when compared with
the basic SLIP model that does not have the ability to learn.

It can be seen from Table 1 that the best angle changing rule sets all follow a
similar learning mechanism. This is that if the current distance Di is larger than
the previously achieved distance Di−1 the angle of attack is increased. The amount
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Figure 2.10: This figure shows all the results from the angle changing rule set testing.
In total 800 different rule sets were generated and systematically tested, however
there are only 400 unique rule sets due to the redundancy in rule 5. Note that the
rule set number is actually an arbitrary number and just corresponds to the order
the rule sets were tested in, but note that they are grouped by the first three rules,
then the values of rules 4 and 5. Also shown in this figure is the base line percentage
success rate for the basic SLIP model (this baseline is shown by the red line towards
the bottom of the figure.) The red circle in this figure shows the top results for the
angle changing rule set testing. Note that all the best performing angle changing
rule sets have the same first three rules, Increase, Unfixed, Fixed.
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is inversely proportional to ∆D. This allows the agent to climb the gradient of the
SLIP model. Remember this global optimum is the point where the SLIP model
is stable and will locomate indefinitely without falling over, so long as there are no
extra perturbations to the system. Accordingly, if the leg performance was worse
than the the previous run, i.e., ∆D < 0, the angle was reduced by a fixed amount.
Figure 2.10 also shows that any combination of the individual rules for changing the
attack angle performs better than the default SLIP model, i.e., all success rates are
much larger than the base line success rate of 3.75%.

In a similar way to that in Figure 2.9, Figure 2.11 shows the successful starting
starting combinations of α and k for the best angle changing rule set. As a reminder,
a pink dot represents a starting condition where a stable solution could not be found.
Therefore, it can clearly be seen that the region where stable solutions can be found
is much bigger (success rate 78.93%) than when its is compared to the standard,
non-learning SLIP (success rate 3.75%, see the red baseline in Figure 2.9).

Figure 2.11: This figure shows the starting combinations that are successful for
the best angle changing rule set found from the systematic testing. A pink dot
represents a starting combination where a stable solution could not be found. Out
of the 1600 starting combinations the best angle changing rule set was able to find
stable solutions for 78.93% of the starting combinations. Also shown in this figure
is a red circle which highlights an unexpected area of starting combinations from
which the best rule set could not find a stable solution. These instability points
are discussed in the text below. Please note, again that the background colours in
this figure represent the distance travelled by the SLIP model in 10 seconds (one
episode) at a particular starting configuration.

However, from Figure 2.11 it can also be seen that there are still some areas of the
tested starting combinations where stable solutions cannot be found (pink dots). It
seems for starting points with smaller angles, left of the J-Figure, most of the points
reach a stable solution, while starting combinations with higher angle values are
more likely to be unsuccessful. These “large-angle problem areas” were investigated
further by looking in depth at the contrast between starting parameters on the right
side and on the left side of the J- Figure. The change of α after each episode over
the lifetime of the test was observed. These test results showed that if the starting
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angle is on the right hand side of the J-Figure, i.e., the starting angle was quite
large, the learning mechanism will cause the angle to zig-zag away from the optimal
region. This is shown in Figure 2.12.

By looking at the underlying gradient it can see that both sides of the peak stability
region (low angle and high angle) the gradient is negative (as the angle decreases
the maximum distance increases, see Figure 2.12). This is why, when the starting
condition is on the right side of the J-Figure (it has a large angle) the best rule set
will lead away from the stable region.

Given the arrangement of the gradient, a rule set that would be able to distinguish
which side of the J curve the starting point was on, would perform even better.
However, it this case that functionality it not available, because I assume the system
does not have the information in which direction the stable region is located.

Another problem starting point area is shown by the red circle in Figure 2.11. Again,
I investigated this area by studying how the attack angle changes after each episode.
Here, I observed oscillation between an angle slightly below the stable region and one
slightly above it. Interestingly, this behaviour is only seen in the top angle changing
rule set; it is not present in the other top 4 angle changing rule sets (see Table 1).
However, the other top rule sets in Table 1 have lower overall success rates due to
more points at higher attack angles that are unable to find stable solutions due to
the zigzagging behaviour described above. Therefore it may be more appropriate
to select one of the slightly worse performing rule sets, .e.g. rules 2,3,4 or 5, as ff
there were to be any perturbations to the system that would cause the initial attack
angle to change, it is likely to only alter it slightly, i.e., into the unstable region
observed in the top rule set (Figure 2.11). Although there are more unsuccessful
starting parameters in rules 2-5 they are in more predictable areas, which could be
more beneficial.

2.4 Stiffness Changing Rule Sets

In the previous section, I showed that allowing the SLIP model to adapts its attack
angle between episodes increased the range of starting parameters for which it can
achieve stability. However, I do not consider how morphological adaption could also
expand this region. Therefore, in this section, I present the results from testing of
the 800 stiffness changing rule sets. Figure 2.13 summarizes the obtained success
rates from each of the 800 different stiffness changing rule sets that were testing,
although note that due to the redundancy of rule 5, only 400 of these are unique.
In this figure the rule sets are arranged in the same way as 2.3; first grouped by
rules 1,2,and 3 and then by the values of rules 4 and 5. In this figure it can be seen
that there is also a negative correlation between rule 5 and the overall success rate.
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Figure 2.12: The graphs show how the top angle changing rule set attempts learn a
stable solution from a variety of different starting conditions. The top figures shows
how the rule adapts its angles over multiples steps with respect to the underlying cost
function landscape. The bottom graphs show how the angle is changed over time.
In both cases a green diamond indicates the starting angle and a red start indicates
the final stable angle. A) shows results for a successful starting angle with a suitable
stiffness parameter. B) shows results for an unsuccessful starting position, in this
case a high angle. In both cases the green diamond indicates the start position, a
red star the final position. The stiffness in both cases is kept constant at 20,000
N/m. The green lines on the bottom graphs show the angle where the model would
be stable.
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Table 2 shows the top 5 stiffness changing rule sets.

Rule Set % Success Rate
x / total parameter

combinations
Increase, Fixed, Fixed, 0.89, 1.00 51.00% 816/1600

Increase, Unfixed, Fixed, 0.78, 0.23 50.50% 808/1600
Increase, Fixed, Fixed, 0.56, 0.67 49.90% 799/1600
Increase, Fixed, Fixed, 0.45, 0.56 49.30% 789/1600
Increase, Fixed, Fixed, 0.67, 0.78 49.30% 789/1600

Table 2: Top 5 successful stiffness changing rule set and their corresponding success
rates. These top rules can also be seen in Figure 2.13 within the red circle.

Figure 2.13: This figure shows the entire results from the stiffness changing rule
set testing. In total 800 different stiffness changing rule sets were generated and
systematically tested. However, only 400 of these are unique due to the redundancy
of rule 5. Note that the rule set number is actually an number and just corresponds
to the order the rule sets were tested in. Also shown in this figure is the base line
percentage success rate for the basic SLIP model (this baseline is shown by the red
line towards the bottom of the figure.) The red circle in this figure shows the top
results for the angle changing rule set testing.

Figure 2.14 shows the starting parameter combinations for which the best stiffness
changing rule set is able to find a stable solution. As with the other figures, the
pink dots represent starting combinations where stable solutions could not be found.
When comparing this figure to the same top angle changing rule and the non-
learning SLIP model, it can be seen that in this case the regions of suitable starting
combinations (that lead to stable solutions) is much bigger than for the SLIP without
learning (compare Figure 2.9, success rate 3.75%), but smaller compared to the best
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angle adaptation rule (see Figure 2.11, success rate 78.93%). Additionally it can be
seen from Figure 2.13 that all of the 800 stiffness adapting rule sets that were tested
have a higher percentage success rate than the non learning SLIP model.

In a similar way to the top five angle changing rule sets, the top five stiffness chang-
ing rule sets all have the same three starting rules (Rules 1,2,3). The stiffness value
is increased if the leg performs better than in the previous episode ∆ > 0, and de-
creased if ∆D < 0. Both the increase and decrease of the stiffness is fixed regardless
of the magnitude of ∆D.

Figure 2.14: Figure showing the results from the testing of the top stiffness changing
rule set. A pink dot represents a starting condition for which the top rule set was
not able to find a stable solution. It can be seen that the top stiffness changing
rule set was about to find stable solutions for 51.00% of the 1600 starting parameter
combinations Please note that the background colours in this figure represent the
distance travelled by the SLIP model in 10 seconds (one episode) at a particular
starting configuration. The starting parameters for which the SLIP model travels
furthest is indicated by yellow (50m), in contract the dark blue regions indicate
starting combinations where the SLIP model travels the least (2m).

However, when comparing the success rates of the entire 800 stiffness / 800 attack
changing rule sets there is an interesting key difference (see Figures 2.13 and 2.10).
In Figure 2.10 it can be seen that rule sets beginning [Increase, Unfixed, Fixed out-
perform rule sets that have a different Rule 1,2 and 3. In contrast, when considering
the entire stiffness changing rule sets there seems be various rule sets with the dif-
ferent first three rules (for example [Decrease, Fixed, Fixed], and even [Decrease,
Unfixed, Fixed] that are also very successful.

2.5 Combined Angle and Stiffness Changing Rule Sets

The previous two sections of this chapter show that the area of starting parameters
for which the SLIP model can learn to become stable from can be expanded by
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allowing the model to learn from previous locomotion attempts and use this infor-
mation to update just one of its parameters. From these results it can be seen
that although the adaption of both parameters is beneficial, the region of successful
starting parameters is slightly larger for the optimal attack angle adaption rule set
that the optimal stiffness adaption rule set.

Given that adapting a single parameter can improve the robustness of the SLIP
model, it could be speculated that adapting both parameters after each episode
would improve the robustness further. Therefore, I also investigated rule sets that
were able to adapt both the angle and the stiffness of the SLIP model. As mentioned
above in the methods section of this chapter, these dual adaption rule sets are
created by simply using an angle changing rule set “side by side” with a stiffness
changing rule set. Both the two rule sets are kept the same, and are responsible
for changing just one of the parameters. After each episode, the angle changing
rules update the attack angle and the stiffness changing rules update the stiffness –
this is done independently. However, because both the attack angle and stiffness are
now updated, the distance achieved by the SLIP model in the subsequent episode is
different from if just one parameter had been updated. If all possible angle changing
rule sets (800 in total, 400 unique) are combined (or paired with) all possible stiffness
rule sets (again 800 in total, 400 unique), this results in a possible 160,000 different
rule combinations (160,000 unique). As a result it is not possible to test every single
rule set through brute force. In fact, it would take 3 months of simulation time to
test the entire 160,000 different rule sets for the computer setup I used.

Instead of bulk testing these dual adaption rule sets, I take a simpler approach were
a small subset of these dual adaption rule sets are created by combining the top
five angle changing rule sets with the top five stiffness changing rule sets (forming
25 rule sets in total). Although simplistic, this was considered an adequate starting
point.

Indeed when considering the best dual adaption rule set combined from the best
angle changing rule sets and the best stiffness changing rule, at first sight, there
appears to be little benefit gained compared to just adapting the attack angle. The
percentage success rate of the combined adaption rule set was 75.56%, (1209/1600).
This is compared to the best angle adaptation rule alone (78.93%, 1262/1600) and
the best stiffness adaptation rule (51.00%, 816/1600). The performance of this
combined rule set are shown in 2.15.

Although the overall success rate of the combined rule set is lower than the top
angle changing rule set, an advantage of this combination is that the the problem
area shown in Figure 2.11 (by the red circle) does not show here. It appears that the
addition of the stiffness adaption means that these starting combinations are now
successful. However, on the other hand, a disadvantage of this combination is the
region highlighted by the black circle in Figure 2.15, which seems to emerge because
of the combined change of the two parameters. Specifically here, the stiffness and
angle change seem to work against each other. The changes they introduce have
opposite effects resulting in a zig-zag pattern in a direction that moves perpendicu-
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Figure 2.15: Performance when the best stiffness and angle changing rule sets are
combined, i.e., [Increase, Unfixed, Fixed, 0.67, 0.23 (angle) Increase, Fixed, Fixed,
0.89, 1 (stiffness)]. A pink dot represents a starting condition for which a stable
solution can not be found. It can be seen from the figure that this combined rule
set is able to find stable solutions for 75.56% of the starting parameters. The black
circle highlights an interesting area of unexpected problem starting points. See text
for discussion. Please note that the background colours in this figure represent the
distance travelled by the SLIP model in 10 seconds (one episode) at a particular
starting configuration. The starting parameters for which the SLIP model travels
furthest is indicated by yellow (50m), in contract the dark blue regions indicate
starting combinations where the SLIP model travels the least (2m).

larly away from the area of stability. The summary of the top five combinations, out
of the additional 25 duel adaption rule sets that were tested, are shown in the table
below. Interestingly, they all use the best angle rule set, but use inferior stiffness
rule sets to achieve higher success rates.

Angle Rule Rank Stiffness Rule Rank Success Rate

1 4 76.31%
1 3 76.31%
1 2 76.25%
1 5 75.81%
1 1 75.56%

Table 3: Table showing top 5 of the 25 different rule set combinations tested. These
25 rule sets were formed by combining each of the top 5 angle changing rule sets
with each of the top 5 stiffness changing rule sets. The fitness of all 25 different rule
set combinations are shown in Table 4

This suggests that there may be combinations of angle changing rules and stiffness
changing rules that are less successful when used on their own, but when combined
are able to further expand the region of stability. Since there are two many combina-
tions of rule sets to bulk test, using a heuristic search algorithm like an evolutionary
algorithm, may yield even better results. This idea and others for further work, plus
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Angle Rule Rank
1 2 3 4 5

1 75.56% 69.52% 61.25% 58.21% 58.25%
2 76.25% 73.25% 66.81% 59.21% 57.25%
3 76.31% 74.61% 65.25% 59.65% 57.81%
4 76.31% 74.67% 65.25% 59.65% 57.81%

Stiffness
Rule
Rank

5 75.81% 70.25% 65.25% 59.21% 58.21%

Table 4: All 25 combined angle and stiffness changing rule sets. The top 5 rule sets
are highlighted by red text - they are also presented for clarity in Table 3

a summary of the chapters findings, is detailed in the next section.

2.6 Chapter Conclusions

In this chapter, I have investigated using simple rule sets to adapt the stiffness and
attack angle of the Spring Loaded Inverted Pendulum Model to improve its robust-
ness. These rule sets use information from the SLIP models previous locomotion
attempts to update its morphology and control parameters for the next try. This
means that when using an optimal rule set, if the SLIP model is started with un-
stable parameters, it has the potential to learn to become stable by episodically
updating it morphology and control.

Each rule set is made up individual rules that when combined uniquely converts
information from the SLIP model’s interaction with the environment to determine
how to adapt either the attack angle or the stiffness of the spring with the aim of
becoming stable. In this case, the information from the SLIP model’s interaction
with the environment, is a comparison between the distance the SLIP model traveled
before it fell over on its previous attempt and the distance achieved on its current
attempt (∆D).

In this chapter, 1600 different rule sets were systematically tested, although note
that only 800 were unique due to redundancy in one of the rules. Each rule set was
tested with 1600 different starting conditions (i.e., combinations of starting attack
angle and spring stiffness). The percentage of these 1600 different starting conditions
for which the the rule set in question could find a stable condition was used as a the
metric for determining a successful rule set.

Overall the results detailed in this chapter show that improvement, in terms of
percentage success rate, can be achieved by implementing any one of these simple
rule sets. The least successful rule sets, in terms of percentage success rate, are
still able to find stable solutions for approximately double the amount of starting
conditions than a basic SLIP model, which is unable to adapt. Additionally the top
rule sets are able to increase the baseline percentage success rate from 3.75% for the
basic SLIP model to 78.93% (the best change changing rule set) and 51.00% (stiffness
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changing rule set). It is interesting that these percentage success rate can be achieved
through systematic testing of these very simple rule sets. Furthermore, these high
percentage success rates are achieved simply by adapting one single parameter (i.e,
either the stiffness or the attack angle).

These results suggest that in the case of offline, episodic learning, updating the
attack angle is more successful in achieving robust locomotion than changing the
stiffness. It could be that this is slightly biased by the selected starting parameters
combinations that were tested. For example, if instead of using the initial attack
angle range of 0-90 degrees the range was shorted to 50-90 degrees this would change
the percentage success rate. This would then make the top stiffness changing rule
set success rate and top angle changing rule set success rate more comparable.

As previously discussed, the percentage success rate can be increased by at least
50% by just changing one parameter. However it is likely that the percentage suc-
cess rate could be increased further by adapting both the spring stiffness and the
attack angle. Some initial investigation regarding the concept of dual adaption was
carried out in this chapter. The top five angle changing rule sets were combined with
the top five stiffness changing rule sets (to create 25 combined dual adaption rule
sets) and tested to determine their percentage success rate. Through this testing it
was found that the dual adaption rule sets that were generated in this way did not
improve the percentage success rate when compared with the top angle changing
rule sets (there was a 3% increase). However, when compared with the best stiffness
changing rule set, there appears to be a benefit to using the dual adaption (i.e, an
increase in approximately 15% in percentage success rate when also adapting the
attack angle) It is likely however, that this approach of generating dual adaption
rule sets is too simple and other dual adaption rule sets could be more successful.
Another indication that this approach is too simple is that the top angle changing
rule set combined with the top stiffness changing rule set actually performs worst of
all the 25 combined rule sets that were tested. The best combined rule set tested is
the combination of the best angle changing rule set and the 4th best stiffness chang-
ing rule set. Additionally, when considering the results from the dual adaption rule
sets, the top five combined rule sets all have the same angle changing part (i.e., the
top angle changing rule set found from the systematic testing.) This could provide
more evidence to the hypothesis that adaption of the angle is more useful in gaining
stability than the stiffness.

With regards to the dual adaption rule set testing the results are somewhat in-
conclusive. The combination top attack angle adaption rule set and the top stiffness
adaption rule set perform worse than the top attack angle rule set alone. In fact,
the top attack angle adaption rule set performs better when combined with a lower
ranked stiffness adaption rule set. This presents the possibility of better combi-
nations of rule sets, then when working alone perform poorly, but when combined
outperform these investigated in this chapter.

It has already been highlighted that systematically testing all possible combined
rule sets is infeasible due to computational expense. However using a search heuris-

42



tic such as an evolutionary algorithm has the potential to find optimal combined
rule sets in a feasible amount of time. Therefore, in the next chapter I use evolu-
tionary algorithms to explore further optimal dual adaption rule sets and investigate
further the interplay of the attack angle and stiffness adaption in the offline episodic
learning approach.

An interesting discussion point surrounding this chapter is the implications the
results have with regards to a physical system. Whilst the chapter has some promis-
ing outcomes, all this work has been carried out in simulations and therefore it is
worth considering how these results might relate to a physical system. Due to the
simplicity of the rule sets implementation on a real system is feasible; the change
in distance between episodes could be measured easily by an encoder. Similarly the
attack angle could be easily adjusted through use of a stepper motor. However,
adaption of the spring stiffness, without dismantling the robot, is likely to be more
challenging, although this could be achieved with variable stiffness actuators. Addi-
tionally, the current model is simplistic and does not include, for example, damping
would also affect the performance.

Something that is not investigated in this chapter is the amount of time (i.e., the
number of episodes) it takes for the SLIP model to update its parameters to become
stable. In simulation this is not as large a problem. However, if, as suggested in the
previous paragraph, this system was to be implemented in hardware, taking many
episodes to learn to be stable would be highly energy inefficient. It would also results
in a large number of required failures, which could result in damage to the robot.

Another limitation of this work is that it uses an offline approach. This has some
advantages; for instance if the robot was to undergo some damage which caused its
mass to change, the system would be able to re-adapt its stiffness and attack angle
to combat this change. As previously discussed this offline episode approach allows
the model to update parameters from unstable to stable ones through learning from
past experience.

However, because the approach is offline, the robot would have to fail (fall over) and
this could damage the robot further which in turn could be costly. This would also
mean that every time the environment changed the robot would have to undergo
a number of failures before regaining stable locomotion. Therefore, an approach
where the robot could adapt stride to stride would be useful.

As well as exploration into using evolutionary algorithms to evolve optimal dual
adaption rules in the offline episodic methodology, in the next chapter I also con-
sider how to implement these rules to allow for online learning. The rule sets are
altered so that they allow the parameter adaption to take place between stride; re-
moving the requirement for failure. These online rule sets are evolved to find those
that have the highest percentage success rate, but also take the shortest amount of
time to find stability. Furthermore, in the next chapter, how these online rule sets
are able to cope with sudden changes to the environment, such as downwards steps,
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is also investigated.
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3 Evolving optimal adaption rule sets for robust

locomotion in the SLIP Model

In the previous chapter I presented my work on using rule sets to adapt the stiffness
and morphology of a simple Spring Loaded Inverted Pendulum model in order to
expand the number of starting conditions that the model was able to find stability
from. The adaption of either the spring stiffness or the attack angle took place
episodically, i.e., the SLIP model would first attempt locomotion with one set of
parameters (spring stiffness and attack angle). If the model failed (falls over) the
parameters are updated according to the rule set in use and locomotion is reat-
tempted. Using this offline, episodic approach, the SLIP model is able to learn from
previous experience in order to become stable.

In total 1600 different rule sets were systematically determined to an optimal solu-
tion; 800 attack angle adapting rule sets and 800 stiffness adapting rule sets. The
best rule set was one that adapted the attack angle; it increased the number of
starting parameters, from which the model could learn to become stable, from 48 to
1218 (out of 1600). This is compared to the basic SLIP model that does not have
the capacity to learn and therefore adapt its parameters.

In the previous chapter the focus was on adapting either the stiffness or the attack
angle. Whilst some testing on dual stiffness and attack angle adaption rule sets was
carried out, these were simply generated by combining the best stiffness and angle
changing rule sets. Using this methods, the tested dual adaption rule sets were only
able to increase on the stability area by 48 from the best angle changing rule sets.

Thus, in this chapter I explore whether using a heuristic search algorithm, in this
case an evolutionary algorithm, would be able to find a dual adaption rule set able
to increase the area of stability further.

There are two main parts to this chapter. Firstly, as discussed, I use evolutionary
algorithms to evolve adaption rule sets that adapt both parameters in the hope of
exploiting the tight interplay between the control parameter and soft morphology of
the body to improve further the robustness of the SLIP model. As in the previous
chapter these extended rule sets adapt the parameters (i.e., the attack angle and
spring stiffness) between episodes. The difference is in this chapter is that now both
parameters updated simultaneously.

Additionally, in the previous chapter, only one criteria was selected to determine
the success of a genome; the percentage success rate. This was the percentage of
tested starting parameter combinations for which the rule set was able to find a
stable solution. As discussed in the previous section, this fitness criteria has some
limitations. For example, it might take a larger number of episodes for the rule set
to find a stable solution. Whilst this doesn’t present a large problem in simulation,
if this methodology was transferred to a physical system, taking a large number of
episodes to stabilize would be highly inefficient. It would also require a large number
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of failures which could cause damage to the robot. Therefore, in this chapter, a
second fitness criteria is also introduced which optimises for a reduced number of
episodes required until the model reaches stability.

In the second part of the chapter, the rule sets are adapted to allow for online
learning. A limitation of the work in the previous chapter (i.e., the offline approach)
was that failure was required between parameter updates. The episodic approach
also would not be capable of dealing with sudden changes in environment, such as
decreases in ground level. Therefore I also alter the rule sets so that they are able to
update the SLIP model parameters between strides, instead of after failure. Using
this “online” approach investigation of environmental transitions are also carried
out.

3.1 Offline Learning

In this first part of the chapter, offline learning, i.e. learning happens between two
episodes is investigated. In this offline learning section, the adaption of the stiffness
and attack angle occurs episodically, as in the previous chapter. However, in this
chapter both parameters are updated simultaneously and an evolutionary algorithm
is used to search for optimal rule sets.

The simulation of the SLIP model in this chapter is the same as in the previous
chapter. Remember that if the SLIP model has the correct combination of attack
angle (the angle the spring forms with the ground on touch down, α) and spring
stiffness (k) then the model will be stable. It will be able to transfer between phases
without loss of energy and without falling over. It is also able to withstand small
perturbations to the system such as changes in ground level, i.e. it is self stabilizing.
However, if the changes in ground level are too large the model will fail.

In the case of the offline learning, the SLIP model attempts locomotion on a flat
horizontal landscape with a starting attack angle (α) and starting stiffness (k). As
previously, each locomotion attempt is referred to as episode, an episode either ends
when the model fails or when 10 seconds has expired, at this point the model was
considered stable. As before, the distance the SLIP model is able to travel in one
episode is compared with the distance travelled in the previous episode. This change
in distance (∆D) is used as a key measurement in the offline rule sets. These offline
rule sets dictate how much the stiffness (k) or attack angle (α) should be changed.
For a complete description of the SLIP model simulation please refer to the previous
chapter.

As previously discussed the key difference between the offline episodic learning in
this chapter and the previous is that both parameters (attack angle α and stiffness
k) are now updated simultaneously. The way the parameters were updated was
dictated by a rule set formed of 5 different individual rules, one rule set for changing
the attack angle and one for changing the stiffness of the spring. To create a rule
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set capable of updating both parameters, two “5 rule” rule sets can be combined to
form a “10 rule” rule set. Figure 3.1, shows a simple explanations of the individual
rules used to make up a “10 rule” rule set capable of adapting both parameters.
Note that these are the same individual rules used in the previous chapter, but this
time combined to form a dual-adaption rule set.

Using the possible value options (detailed in Figure 3.1) for each individual rule
there are 640,000 different possible combined rule sets. This would take too long to
systematically test all of these rule sets so a search algorithm is required.

In this chapter, I use an evolutionary algorithm to determine optimal dual adaption
rule sets. Details of the evolutionary algorithm are described in the following section.

Figure 3.1: Individual rules that are encoded and combined to build a rule set. The
top 5 grey rules show those relating to angle adaption. The bottom rules shown
in blue relate to stiffness adaption. A complete rule set uniquely describes how the
SLIP model should use the information from each episode to change the stiffness (k)
and attack angle (α) of the SLIP model based on the change in distance achieved
in consecutive episodes (∆D).

3.2 Evolutionary Algorithm

This section details the key characteristics of the algorithm and the two fitness
criteria used to evolve optimal duel adaption rule sets. Ten different individual rules
form the genome (also known as the rule set), see Figure 3.1. An initial population
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of 50 genomes were formed from 10 randomly initialized rules. Specifically, rules
1,2,3,6,7 and 8 were randomly assigned one of the two values. In the case of rules
1 and 6 values were either ’Increase’ or ’Decrease’. To encode this ’Increase’ was
represented as a ’1’ and ’Decrease’ as a ’0’. In the case of rules 2,3,7 and 8 these
values were ’Fixed’ (encoded as ’1’) or ’Unfixed’ (encoded as ’0’). For the non-binary
rules (rules 4,5,9,and 10) a random value was selected between 0.01 and 0.99 and
directly encoded as thus.

Two different fitness criteria were chosen and tested. This allowed exploration as to
which selection criterion would produce better results overall.

The first criterion was the percentage success rate. This is the same criteria that
was used in the previous chapter. As a reminder, for this criteria, 1,600 different
starting combinations of attack angle (40 values equally spaced between 20-90 deg)
and stiffness (40 values equally spaced between 2000 - 80,000) are tested. This region
was selected as it fully encompassed the “J” curve region of stability detailed in the
work by Blinkhan et al. [7] and as shown in Figure 3.2. The percentage success
rate of a rule set is defined as the percentage of starting combinations, within the
selected range, for which the SLIP model could find stability when following that
particular rule set.

Figure 3.2: Figure showing the stability regions of a SLIP model. The blue “J-
Figure” shows the starting combinations for which the basic SLIP model is stable.
This figure also shows the regions of all starting combinations that were tested to
determine the success of a rule set/genome

As previously discussed, in this chapter, I also use a second criterion to determine
the success of a rule set: the mean recovery time (offline learning) / time to stability
(online learning). These criteria determine how long the SLIP model takes, starting
at a particular parameter combination, to stop adapting its parameters and maintain
a stable solution. For offline learning this is the number of episodes required to reach
stability. The mean recovery time is the average individual recovery times for all
the tested starting parameter combinations. Therefore, the lower the mean recovery
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time the more successful the rule set it determined to be.

For offline learning the evolutionary algorithm was run six times; three times using
the percentage success rate as the fitness, and three times using the mean recovery
time. For each different run a new initial randomised population was used.

Each time the evolutionary algorithm was run for 100 generations — each new
generation was formed as following. The top 5 best rule sets from the previous
generation were automatically passed onto the next (i.e. elitism). The next 15 rule
sets of the new generation were produced by two-point crossover, as demonstrated in
Figure 3.3 between randomly selected parents from the 50% most successful genomes
from the previous generation. The next 15 rules sets were generated by mutating
the non-binary rules (rules 4,5,9 and 10). Note that in this instance the binary rules
are unchanged, initial testing determined enough variation in the binary rules was
created by crossover. This was done by randomly selecting a new value between
0.01 and 0.99 for these rules, see Figure 3.4. The final 15 rule sets were randomly
generated.

Figure 3.3: This figure shows two example genomes that are used to create an
offspring via multi-point crossover, parent 1 is shown in blue, parent 2 is shown
in red. The figure also shows the two crossover points. The offspring is therefore
created by the combining the first three rules from parent 1, with rules 4,5,6,7,8
from parents 1 and finally rules 9 and 10 from parent 2.

Figure 3.4: Diagram showing how an offspring genome is created via mutation from
a single parents. The parent is shown in blue and the mutated genes in the offspring
are shown in purple. Note that only the non-binary rules, i.e. rules 4,5,9 and 10 are
mutated
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Note that the design and choice of the parameters could be considered a limitation
of the research presented. The design does not match a “standard evolutionary
algorithm”, moreover, the amount of effort put into optimising the parameters for
the algorithm was limited. This was selected simply as a preliminary design; some
of the implications of this are discussed in the results section.

3.3 Offline Results

In this section, the results for offline learning are discussed. Figure 3.5 shows the fit-
ness of the top genomes for each evolution run after each generation both both fitness
criteria used. Table 5 shows the most successful rule sets for each of the 6 different
optimization runs (i.e. the three repeated runs optimized for percentage success
rate and the three repeated runs optimized for mean recovery time) along with their
corresponding percentage success rate and mean recovery time. Remember, as a
comparison a SLIP model that has no learning capabilities has a percentage success
rate of 3% (compare Figure 3.2). For a comparative number, the “mean time to
recovery” of a basic SLIP model is 97 episodes. This is calculated as follows. When
the basic SLIP model is tested with a stable starting parameter combination it has a
time to recovery of 0 episodes, i.e., it takes zero episodes to find stability because it
is already stable. This occurs for 3% of the tested starting parameter combinations.
For the other 97% starting points, the basic SLIP model is not able to find stability
at all as it lacks the ability to update its parameters. Therefore, for these points,
the basic SLIP model can be thought of as having a maximum score of 100 episodes
until stability, although in actuality this number of episodes would be infinity. The
average the time to recovery for all starting combinations for a non-learning SLIP
model is therefore 97 episodes.

(a) (b)

Figure 3.5: Sub-figures a and b show the fitness of each of the six generation runs.
A) shows the first three runs that were evolved using the percentage success rate as
a fitness metric. B) shows the second set of three runs that were evolved using the
mean time to recovery as the fitness metric.

It can be seen from Table 5, that the optimal solutions found when using “mean
time to recovery” as the selection criteria outperform those using “percentage suc-
cess rate”. Not only do they have a better mean recovery time, but also a better
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Trial Number
Optimized for

Percentage Success Rate
Optimized for

Mean Recovery Time
Rule No 1 2 3 4 5 6

1 Decrease Increase Increase Increase Increase Increase
2 Unfixed Unfixed Unfixed Unfixed Unfixed Unfixed
3 Fixed Fixed Fixed Fixed Fixed Fixed
4 0.01 0.98 0.82 0.57 0.7 0.53
5 0.04 0.37 0.32 0.21 0.27 0.2
6 Increase Increase Decrease Decrease Decrease Decrease
7 Fixed Fixed Fixed Unfixed Unfixed Fixed
8 Unfixed Fixed Fixed Fixed Fixed Fixed
9 0.59 0.93 0.03 0.05 0.14 0.01
10 – 0.01 0.86 0.9 0.79 0.94

% Success Rate 99 97 98 97 99 98
Mean Recovery

Time
24 12 14 11 12 11

STD Recovery Time 7 6 6 6 6 6

Table 5: This table shows each of the optimal genomes founds in the six evolution
trials for offline learning. The first three rule sets were found when optimising for
percentage success rate. The final three rule sets were found when optimising for
mean recovery time. Colour coding is used to highlight the differences in rule set.
The binary rules are represented by either blue or brown text whilst the non-binary
rules are between red (very low values) or green (very high values).

percentage success rate. Therefore this indicates that the mean recovery time is
a better fitness metric, i.e. it evolves better performing genomes in both fitness
criteria, than optimizing for percentage success rate. Additionally, when consider-
ing the individual rules in each of the top genomes, there are strong similarities in
those that were evolved for mean recovery time. All three rule sets have the same
first three rules – “Increase”, “Unfixed” and “Fixed”, and similar values for all non
binary rules (i.e. rules 4,5,9 and 10). In contrast the individual rules in the top rule
sets optimized for percentage success rate show less correlation.

When comparing all of the top 6 best rule sets it can be seen that they all outperform
the non-learning SLIP model and are able to find stability for almost all starting
combinations in our exploration region. This shows an increase in robustness from
the non-learning SLIP model. Although there are some cases (i.e. starting configu-
rations) where these top rule sets are unable to find stable solution, these are all at
the limits of the testing values (i.e. at a starting angle of 90 degrees). This is not
a large problem as 90 degrees is equivalent to a completely horizontal leg, which is
quite unnatural.

If these dual adaption rule sets are compared with those explored in the previous
chapter, it can be seen that the using the evolutionary algorithm search did in
fact yield much better solutions that just combining the two individual (angle and
stiffness changing rule sets). Similarly the work in this chapter shows that using the
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dual adaption method, rather than just adapting one parameter can also improve
the robustness of the SLIP model.

For the wide majority (over 98%) of the tested starting parameter combination
these optimal rules sets are able to update the parameters in order to find stability.
Furthermore, evolving for mean time to recovery ensures that stability is found
time-efficiently.

However, it is also important to consider what implications the un-optimised evolu-
tionary algorithm parameters may have on the results. As previously discussed, the
evolutionary algorithm was designed quickly, with little thought given to the hyper-
parameters. Furthermore, it does not confirm to what is considered to be a standard
evolutionary algorithm [29]. In Figure 3.5 it can be seen that the algorithms con-
verge almost immediately. This indicates that the evolutionary algorithm isn’t as
successful as it could be with a better design. In the case of this offline learning ap-
proach, the results, especially the percentage success rates are very high. Therefore,
the weakness of the evolutionary algorithm isn’t considered as much of a problem
as it could be in other experiments.

Additionally these algorithms were only run 6 times (only 3 repeats for each ex-
periment). However, for both experiments the standard deviations between the
optimised values (percentage success rate for the first experiment, mean recovery
time for the second) are low (µ <= 1). Whilst lack of repeated experiments is a
limitation of this work, given the low standard deviation this is more acceptable.

The limitation of requiring failure to learn still remains. Also, as discussed, the
offline learning method does not allow for sudden changes in the environment, such
as decreases in ground level.

In the next section, I investigate how these offline rule sets can be translated to
online rule sets. These online rule sets allow adaption of the parameters between
strides, rather than after failure.

3.4 Online learning

As discussed in the introduction to this chapter there is a limitation to the offline
learning approach – it requires failure in order to learn to become stable. Whilst
this isn’t necessarily a problem in the case of simulation, if this work is implemented
on a real robot, failure could be very costly. Therefore, I extended the offline rule
sets previously discussed earlier in this chapter (Section 3.1) (and also in the chapter
before, Chapter 2) to allow for online learning. In contrast to the previously used
offline learning, in this online approach the SLIP model is not required to fail; instead
adaption of the attack angle (α) and spring stiffness (k) occurs just before touch
down of the leg. Indeed, if the leg does fall over this terminates the learning for that
particular starting parameter. Given that in this online learning no episodes occur,
the rule sets are no longer able to use ∆D as one of the key parameters.
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Therefore, the online rules are based around the exchange of kinetic energy between
each stride. This is based on the observation that in a completely stable SLIP model
the kinetic energy at each apex of the flight phase should remain constant; therefore,
if there is a change in kinetic energy, this could be an indication of instability. Note
however, that since this is a lossless system the overall energy would not change -
instead the respective amounts of kinetic and potential energy would change. There-
fore it should also be noted that the same results are likely to be achieved by using
apex height or horizontal velocity as the key parameter, instead of kinetic energy.
The kinetic energy is calculated, by measuring the horizontal velocity at the apex
(the vertical velocity is zero at this point) at each stride as shown in Figure 3.6. Be-
fore touch down the difference in kinetic energy between consecutive flight apexes
(∆KE(i) = KE(i) −KE(i−1)) is considered and this information is used by the rule
sets to determine how the parameters (i.e. α and k) should be updated.

Figure 3.6: Diagram shows how the basic SLIP model is adapted to incorporate
online learning. Instead of the SLIP model being allowed to fail and the attack
angle and stiffness being adjusted upon reattempt, these parameters are instead
adjusted before the touch down depending on the rule set being followed. Instead
of change in distance between episodes the rule sets are now based on changed in
kinetic energy ∆KE between consecutive apex of the flight phases.

The change in key measurement parameter (i.e. the change from using ∆D to ∆KE)
is not the only change required from offline learning to an online learning approach;
the rules need to be changed too. Table 3.7 shows the new rules updated for the
online learning approach.

The main difference between these online rules and the offline rules, is the change
in rules 2,3,8 and 9. Instead of using change in distance between episodes (∆D),
online rules use the change in kinetic energy (∆KE) between consecutive flight
apex. However, in addition, two new rules (numbers 6 and 12) have been added.
These are referred to as the threshold rules. Any change to the system, i.e. adaption
of stiffness or attack angle, will only occur if the percentage change of the kinetic
energy (∆KE) is higher than this threshold. This rule was added to avoid the
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Figure 3.7: Table shows the online learning rules. The rule sets are similar to
the those used in the offline learning although slightly adapted to allow for online
learning. The first 6 rule sets relate to the adaption of the attack angle, the second
6 about the adaption of the stiffness. Further details about the online rules can be
seen in the main text.
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scenario where the SLIP model is started with, or has reached, stable parameters,
but still tries to update. Without this threshold value, the SLIP model would be
constantly updating itself from one set of stable parameters to another which would
not be energy efficient. The maximum threshold value for both rules 6 and 12
was selected to be 0.02. This was chosen after initial testing that showed a high
deterioration in success with thresholds higher than this value.

The same evolutionary algorithm was used for online learning as in offline learning,
i.e. the same number of generations, initial population and crossover/mutation rates.
However, as in the offline testing the mean recovery time proved to be the better
fitness metric in this case percentage success rate was not used.

The definition of the mean recovery time was updated from the one used in the
offline rule set testing, which used number of episodes to stability to determine rule
set success. As the concept of episodes no longer exists in online learning, instead
the mean number of seconds it took for a rule set to find a stable solution (i.e., for
∆KE to be below the specified threshold) for all tested starting parameters was
used.

To clarify further, an example of a successful online rule set is shown in Figure 3.8. In
this case the threshold was a percentage change in kinetic energy of 1% (rather than
the 0.2 actually used in testing) for clarity. Initially the change in kinetic energy
varies from stride to stride, as a result the parameters are updated. This continues
until approximately 31 seconds (shown by the red line) at which the parameters now
stable. The variation of kinetic energy between strides is below the threshold value
(see the red circle). The attack angle (α) and stiffness (k) are no longer changed.
This 31 seconds is the time to stability for this rule set at this starting parameter
combination.

3.5 Online Results

In this section, the results from online learning are presented. As before with the
offline rule sets, the evolutionary algorithm was run three times with three different
randomly initialized starting populations using the fitness criteria of mean time
to stability. The best rule sets from each of these three evolution set runs are
show in Table 6. Whilst these rule sets were evolved for mean time to stability, the
percentage success rate was also calculated to allow for comparison, but was not
included in the algorithm as a fitness metric. Additionally, Figure 3.9 shows each
of the starting parameters for which a stable solution could be found for each of
the best rule sets. In Figure 3.9 the different colours represent the time to stability.
The darker the colour, the quicker it reached stability. Areas of grey represent areas
where the starting combination of parameters could not find stability with a given
rule set.

It can be seen that the top three rule sets all alter the region of stability in the same
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Figure 3.8: Showing time to stability for an online learning SLIP model with stable
starting parameters. The top graph shows the percentage difference between con-
secutive flight apex. Once this percentage difference is below the threshold (in this
case 0.01%) the angle and stiffness become fixed. This can be seen in the 3rd and
4th graphs in this figure which show the change in stiffness and angle over time.
Also shown in the second graph is the height of the point mass during the learning
process – here one can see when the model is in flight phase and when it is in stance
phase.
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(a) (b) (c)

Figure 3.9: Sub-figures a,b and c show the results from each of the online evolution
runs. A grey square represents a starting parameter combination where stability
could not be found. The lighter the square the longer the model takes to find
stability at that starting parameter.The rule sets for each of these results are shown
in Table 6. For comparison to SLIP model without the ability to adapt, refer to
Figure 3.2

Top Rule Sets

Set Number Top Rule Set Second Rule Set Third Rule Set

Rule 1 Decrease Decrease Decrease

Rule 2 Unfixed Unfixed Unfixed

Rule 3 Unfixed Unfixed Unfixed

Rule 4 0.2 0.41 0.35

Rule 5 0.23 0.24 0.56

Rule 6 0.014 0.025 0.009

Rule 7 Decrease Decrease Increase

Rule 8 Fixed Fixed Unfixed

Rule 9 Fixed Fixed Unfixed

Rule 10 0.32 0.54 0.52

Rule 11 0.49 0.2 0.83

Rule 12 0.008 0.03 0.019

Mean Time to Stability 83 82 85

% Success Rate 20% 20% 15%

STD Time to stability 30 30 31

Table 6: Table showing the results from the three online evolution runs. Each run
was started with a random initial population and evolved to minimise the mean time
to stability. The percentage success rate of each of the top genomes was calculated
after the evolution. Note that for a basic SLIP model (i.e., one without the capability
to learn) has a mean time to stability of 94 seconds and a percentage success rate
of 3.75% (rounded to 4%). Also included the standard deviation of the time to
stability
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way, i.e. through expanding the region to the left hand side of the curve. None
of the found rule sets are able to expand the region of stability for higher angle
values (i.e. the right hand side of the curve). It can also been seen that these rule
sets reach stability in a shorter time if the angle is low, compared with starting
parameter configurations that are close to the standard “J” curve.

It should also be noted that all three top rule sets have very similar angle changing
rules. All the rule sets aim to change the angle opposite to the change in kinetic
energy by amounts proportional to the change. Rules 4,5,6 also have similar values
across all three top rule sets. Similarly, the stiffness changing rule also has good
consistency between the top two results. However, in the third rule set the first
three rules are the opposite to the other top rule sets. This could explain why the
mean time to stability for this third rule set is slightly longer and the percentage
success rate is lower.

Additionally note that the evolutionary algorithm was only repeated three times,
i.e., with three different random starting populations. Although this is a limitation,
more repeated runs would yield more statistically convincing results, the standard
deviation of the three repeats is small (µ = 1.57). Given this is the case, three
repeated runs is more acceptable.

3.6 Investigating Instability Regions

To understand the dynamics of the best evolved rule sets better, the unsuccessful
regions were investigated. These regions are shown in grey in Figure 3.9 and are
where the model could not find a stable solution. These regions include particu-
larly low/high angles and the regions of instability in the number 2 rule set were
investigated (for example, see Figure 3.10). In the case of starting parameters with
combinations of high angles and low stiffness, failure before any adaption takes place
— i.e. it falls over on the first touch down and therefore does not have time to adapt
to be stable. In contrast, starting parameter combinations with low angles, fail on
second touch down. Although in theory there is enough time for the model to adapt,
there is such a large percentage difference in kinetic energy between the two apexes
that the angle is also changed by such a large amount that is outside the range of
acceptable attack angles. Therefore, the system fails. The changes in attack angle
and stiffness for the unstable grey areas (Figure 3.9c) are shown in Figure 3.8. Three
different unstable starting configurations, shown by the different coloured diamonds
were explored by using the number two rule set. Three different starting configura-
tions were selected to test whether there were any patterns in how the parameters
were updated between the three different positions. Interestingly, when following
this rule set, the pattern of parameter changes are the same for all three. Initially
the attack angle is increased to an angle just higher than within the stable range and
the stiffness is kept relatively similar. Then the stiffness in each case is gradually
decreased, whilst the attack angle oscillates between attack angle values that are
just larger than the region of stability shown in Figure 3.9a. Eventually the model
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simply fails.

Figure 3.10: Plot showing how the attack angle and stiffness change, whilst using rule
2, during the online learning process for three different unstable starting conditions
(the gray areas). The coloured diamonds show the starting parameter configurations
and the green star shows the final configuration. It is at this configuration that the
SLIP model has fallen over (i.e., y < 0).

For the top rule set (Table 6) the two parts of the rule set (i.e., the first 6 angle
changing rules and 6 stiffness changing rules) were tested separately. This was to
investigate how the interplay between the attack angle changing and the stiffness
changing affected the overall success of the rule set. First, only the angle was allowed
to adapt, following the first 6 rules from the top rule set. The stiffness remained
constant and fixed throughout this simulation. Secondly, it was the attack angle
that remained fixed and the stiffness was allowed to adapt follow the last 6 rules
from the top rule set. Figure 3.11 shows the two mean time to stability plots for
these individually tested rules. Interestingly, it can be seen that the angle adaption
rule maintains the high percentage success rate seen in the top combined rule, i.e.
it is still able to find stability for a wide range of starting parameters. The stiffness
adaption is much less successful when on its own. However, it appears that the
stiffness adaption is needed for the model to settle quickly. When only the angle is
adapting the mean time to stability is much higher, in some cases, whilst not falling
over, not finding stability at all. The change in kinetic energy never falls below the
percentage threshold. This finding is consistent with the other two top rule sets
(i.e., both the other top rule sets maintain a high percentage success rate when only
adapting the attack angle but show a much higher mean time to stability then when
also adapting stiffness).

This is explored further in Figure 3.12 showing the top rule set. On the top graph
the stiffness adaption part is not included. The model is started in three different
starting configurations. For all configurations, initially the angle changes a lot, but
then the changes are small until stability is reached. However, on the bottom graph
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(a) This graph shows the behaviour of the model following the first six rules of
the best online adaption rule set, i.e., only the angle was allowed to change and
the stiffness remains fixed and constant.

(b) This graph shows the behaviour of the model following the second six rules
of the best online adaption rule set, i.e., only the stiffness was allowed to change
and the angle remains fixed and constant.

Figure 3.11: Diagram showing the mean time to stability plots for the two individual
parts of the top rule set, i.e. just adapting the angle and just adapting the stiffness.
As before a grey square represents a starting parameter combination for which a
stable solution could not be found. For the coloured squares the lighter the colour
the longer the model takes to find a stable solution.
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the stiffness adaption is included - this small change in stiffness allows the model to
find stability much quicker.

(a) (b)

(c) (d)

Figure 3.12: This figure shows how adapting both stiffness and attack angle affects
the time to stability for the top online rule set (see Table 6). The top two graphs
(a and b) show the how the model adapts when the stiffness is fixed for three
different starting parameter combinations. The bottom two graphs (c and d) show
the same starting parameters combinations following the same rule set but this time
the stiffness is also able to adapt.

3.7 Investigating Environmental Change

To further investigate how robust these learning rule sets are, they were tested in
a further challenge. The model is now required to maintain stability when then
ground level is decreased (via a step).

Figure 3.13 illustrates how online learning rather than offline learning is necessary to
deal with changes in environment. In Figure 3.13a the top offline learning method
(see Figure 5), tested at a single starting configuration (26000N/m, 50 degs, selected
as it was in the center of the stable online region), attempts locomotion in the new
“stepped” environment. In this case the ground level is decreased by 2.5m (x2.5
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greater than the resting length of the spring of 1m). In Figure 3.13b the same
landscape is attempted by the top online learning rule set (Table 6), using the
same starting parameters. In the case of the online rule set this stability is found
almost immediately after approximately 3 seconds. In contrast the offline rule set
takes a larger number of episodes, where it fails after each, in order to update its
parameters so that they are stable. Whilst the online learning method is able to
immediately react to the decrease in ground level and adapt its parameters without
losing stability, the offline learning method the SLIP model fails almost instantly
when it reaches the step. It is reset with updated parameters and another attempt is
made, but it always fails when reaching this step. It can be seen from the top graph
( Figure 3.13) that offline learning has numerous attempts at overcoming the step,
shown in different colours which represents different episodes, but given it is reset
to the start (x = 0m) each time it is unable to maintain stability for the distance.
In addition to this, it has failed many times.

Note that when the mass moves down the step there is a loss of potential energy;
the change in energy now causes the mass to not only travel further between strides,
but also reach a higher height during the flight phase.

Whilst Figure 3.13 demonstrates the potential advantages of using the online rule
set to maintain stability when encountering a change in ground level, it does not
fully explore how robust these rule sets are. For example, what is the maximum
drop in ground level for which the rule set can maintain stability.

Therefore, to explore this aspect further, the success of the top three online rule sets
were tested across a variety of step heights. As before each rule set was tested with
1600 different starting conditions and success was measured in terms of percentage
success rate and mean time to stability. However in this case, the step height was
introduced half way through the simulation landscape.

Figure 3.14 symbolises how the percentage success rate changes with step height for
a basic SLIP model, one following the first evolved rule set and one following the
3rd best rule set. Rule set two was not included in the graph due to its similarity
with rule set one. The downward step height was increased until the percentage
success rate of the model was zero. Also tested was a small increase in ground level.
Along the x-axis is the percentage success rate of the starting combinations for which
the two rule sets (grey and orange) and the basic un-adapting SLIP model (blue).
Along the y-axis is the step height that the SLIP model needs to overcome. It can
be seen that for the non-adapting SLIP model that at a step height of zero, 3.75%
of the starting combinations are stable. This percentage success rate decreases as
downward step height increases, until the percentage success rate reaches zero at a
step height of approximately -1m. In contrast, for the best rule set (shown in orange)
the percentage success rate at zero step height is 20%. This decreases almost linearly
with increase of downward step height until it becomes almost zero at a step height
of -14m.

Figure 3.14 shows that a basic SLIP model without the capability to adapt can
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(a) The offline learning approach dealing with the change in environment, i.e., a
decrease in ground level height of 2.5m. Each of the different colours represent a
different episode, all starting from the same position but with different stiffness
and attack angle values. The model fails many times, including when it encoun-
ters the change in ground level. In this instance the staring attack angle is set to
40 degrees and the starting stiffness was set to 26000N/m

(b) This graph shows when the SLIP model uses the online learning approach
to attempt to maintain stability when encountering the change in ground level.
In one attempt the online learning is able to overcome this downwards step and
maintain stability throughout the simulation. The starting attack angle was set
to 40 degrees and the stiffness was set to 26000N/m.

Figure 3.13: Comparison of offline and online learning approaches when faced with
a change in ground level
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Figure 3.14: Graph showing how the percentage success rate varies with step height
for two online update rules and the basic SLIP model (one that is not able to adapt).

only withstand a very small change in environment. At a step size of only -1m
the percentage success rate of the basic SLIP model reduces to zero, i.e., there is
no starting parameter combination for which the basic SLIP model can maintain
stability when the ground level decreases by 0.5m. This basic SLIP model data is
shown by the blue line in Figure 3.14. When following the optimal online rule set,
the model is able to withstand a downwards step height of up to 2.5m without any
changes to the percentage success rate when compared with a level ground (i.e. a
step change of zero). This is shown by the orange line in Figure 3.14. The top online
rule set is that at some starting conditions is it also able to withstand a decreasing
step of up to 14m. It is also able to withstand increases in step heights up to 0.3m.
Figure 3.14 also shows that the percentage success rate of the both the top and
second best online rule set decreases as the step height increases. It is interesting to
see that the shape of the successful starting combinations change as the ground level
change increases. Therefore, stable starting parameters for the different step levels
are shown in Figure 3.15. From Figure 3.15 it can be seen that as the change in
ground level increases (i.e., the downwards step size increases) the amount of stable
starting parameters decreases and favours higher stiffness values. However, for a
given step height, if starting at a lower stiffness it is possible to quickly find a stable
solution (i.e. it will need less time to become stable). A point of interest that arose
from the successful starting combination plot (Figure 3.15) is shown in Figure 3.16.
The SLIP model is started at a successful combination of attack angle and stiffness.
How these parameters then change between strides are are shown in red. First the
model settles in the curve of the J-Figure of the basic SLIP model (see Figure 3.2).
This is as expected, the SLIP model is becoming stable before any change in ground
level. However, when the ground level changes the angle changes again, this time
settling in a very different area, shown by the red star. Although it is speculated
that this could be due to the increase in energy in the system due to the step and
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exploration of this could be part of future work.

Figure 3.15: Graph showing how the mean stability time varies with step height for
the top online update rules. Note that the increase in settling time (when compared
to Figure 3.9) is due to the addition of the step at 50 seconds).
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Figure 3.16: Graph showing how the attack angle/stiffness change at a particu-
lar starting configuration, when the model encounters a down step of 7.5m. The
green diamond shows the starting position and the red stars shows the finishing
configuration.

3.8 Chapter Conclusions

The results in this chapter build upon those presented in the prior chapter relating to
the offline learning of the SLIP model. In this chapter, I use evolutionary algorithms
to evolve rule sets capable of simultaneously adapting the spring stiffness and attack
angle in order to find stability. In the offline learning approach the SLIP model is
allowed to fall over (fail) and the adaption takes place before a locomotion reattempt.
In the prior chapter, rule sets that are capable of adapting either the attack angle
or stiffness were systematically tested for success. Then to test dual adaption the
best individual rule sets were combined. This approach yielded combined rule sets
that were able to find stability for a percentage success rate of 79%. In this chapter,
however, when I used an evolutionary algorithm, I found an optimal dual adaption
rule set that was able to find stability for 99% of the starting combinations. As
discussed in the previous chapter being able to find stability from a wide range of
starting parameters is useful, especially if these methods were to be transferred to
a physical robot. For example, if the robot experience wear during its use, it would
be able to re-adapt its attack angle or stiffness to find stability. However, there are
other ways that may also be useful to test the success of a rule set. In this chapter,
I explore using mean time to recovery (offline)/ mean time to stability (online) as a
fitness metric. By just measuring the success of a rule set by the percentage success
rate a situation could arise where the attack angle or stiffness was being adapted for
a large number of episodes before finding stability. Not only would this require a
robot to fail many times, which could be a problem for a physical system, it would
also require a vast amount of energy – also a potential problem. Optimising for
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mean time to recovery/stability instead reduces these potential issues.

Interestingly, this chapter shows that when evolving for mean recovery time/mean
time to stability, the optimal rule sets obtained also have larger percentage success
rates (equivalent to the when percentage success rate is used as the fitness metric).
This could suggest that the fitness landscape when evolving for percentage success
rate is easy to navigate. It is relatively easy to find successful rule sets. This can be
seen by the percentage success rate generational fitness graphs (Figure 3.5) which
show a quick convergence. This hypothesis is reinforced by the fact that the top
offline rule set (when evolved for percentage success rate) all have a different genetic
structure, i.e., the individual rules that make up the optimal rule sets are dissimi-
lar. In contrast, it would appear that there are fewer areas of optimal solutions in
the mean time to recovery fitness landscape. In this case the optimal rule sets all
have a very similar genetic structure and the evolutionary algorithms take a larger
time to converge when compared to when using the percentage success rate as the
fitness metric. On the other hand it could be because the mean time to recovery
is indirectly affected by the percentage success rate. For example, if a rule set has
a low percentage success rate it means that many of the starting combinations are
not able to achieve stability and therefore are given maximum recovery time (100
seconds). However, if more starting parameter combinations are able to find stabil-
ity there is a strong possibility that they are able to find this stability in a shorter
amount of time than 100 seconds, reducing the mean time to recovery, i.e., there is
a correlation between the percentage success rate and the mean time to recovery.

A problem outlined in the discussion in the previous chapter, i.e., the requirement
to fail before stability can be found, is also addressed in this chapter. The offline
rule sets are adapted to allow for online learning which are also evolved using an
evolutionary algorithm. This means that, when following these online rule sets the
SLIP model is able to adapt to changes to the environment without the need to fall
over and restart. The optimal online rule sets from the testing are able to increase
the percentage success rate by approximately 15%. Additionally, at some starting
parameters the SLIP model is also able to withstand changes in ground levels of up
to 14m meters (step decrease).

An interesting observation made in this chapter is how the adaption of the two
parameters affect the behaviour of the SLIP model. When the stiffness is fixed,
the top online rule set is still able to find stable conditions for the same amount of
starting parameters as when both parameters as adapted. However, the mean time
to stability is very long without the stiffness adaption, i.e., the stiffness adaption
is necessary for a speedy recovery. Although not specifically tested for, there are
suggestions of this finding also in the results of the offline testing. When only
evolving for percentage success rate the stiffness rule sets are less important – this
could be why there is little similarity between the stiffness rules of the top sets and
good similarity between the angle rules. However, when evolving for mean time to
stability, adaption of the stiffness is more important.

Although I do adapt both the morphology (i.e., the stiffness) and control (attack
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angle) at the same time in these experiments, they are still kept relatively separate.
In the introduction section, I described how the closely linked morphology and con-
trol are, and the need for a suitable morphology for a particular control system. By
changing the attack angle and stiffness together expands the percentage of starting
combinations for which the model can become stable. I initially expected that dual
adaption may take longer to find a solution that only adapting one parameter. Both
parameters need to be optimised, but changing one parameter will have a strong in-
fluence on the other. However, based on these experiments it appears that adapting
the stiffness somewhat independently but at the same time actually makes find the
solution quicker.

As previously discussed throughout the chapter, a limitation of the results presented
is the weak design of the evolutionary algorithms. This does not appear to be a
problem for the offline learning approach, where especially the percentage success
rate is high (only a few starting combinations at the extremes of the parameter
ranges are not able to find stability.) Given this success from the offline learning
experiments, the evolutionary algorithm was not updated for the online experiments.
It is therefore likely that using a better performing algorithm would yield even lower
mean time to stability values.

Additionally, the choice of kinetic energy as a key parameter is perhaps a limitation
in this work. Although using kinetic energy has been shown to work, and achieve the
aim of expanding the region of stability, there may be better key parameters to use.
For example, it is likely that equally good results could be achieved by using hor-
izontal velocity or apex height. Kinetic energy was selected, somewhat arbitrarily,
early on in the experiment design but because it yield good results, careful consid-
eration as to its benefits over other parameters was not carried out. Furthermore,
although not a problem in simulation, other parameters such a horizontal velocity
may be easier to measure if required to be implemented in a real robot.

Another limitation of the online SLIP model is that it is only able to withstand a
decrease in ground level. When the SLIP decreases in height the system converts
potential energy. This increase in energy appears to cause the SLIP to increase the
height reached during the flight phase (see Figure 3.13). In contrast, the SLIP model
would require energy in order to increase its vertical position, i.e., if the ground level
was to increase. This may imply that to be able to withstand increases in ground
level the height of the pendulum during flight phase would have to decrease to allow
for this raise in ground level. There is only so much the height during the flight
phase could be decreased by and the system currently has no other way to combat
the decrease in energy. Therefore, to be able to maintain stability when the ground
level increases the SLIP model would require a way of adding energy to the system.

Another interesting way to extend this model further is to consider adding damping
to the system and allowing this parameter to be adapted also. Alternatively, the
model could use a non-linear spring where the parameters of the equation describing
the spring could be adapted. These additions to the system could expand the region
of stability even further.
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Additionally, evolving offline and online rule sets together could increase perfor-
mance even further. Initially the SLIP model would rely on the online learning ap-
proach; using this approach the model would be able to counteract sudden changes in
the environment such as the downwards steps. However, if the perturbations became
too large the offline rule sets could adapt the parameters back into a region where
the online rules were sufficient. This would combine the benefits of both approaches
– the large percentage success rate from the offline approach whilst reducing the
need for failure.

In conclusion, the results from this chapter and the previous show the benefits of
evolving the way of adapting both control and morphological parameters in the
SLIP model, instead of optimizing fixed parameters. Using both offline and online
approaches the SLIP model has been shown to have increased robustness, compared
with a system that has no ability to adapt.

An important finding from these chapters is that is a benefit to either only adapting
the morphology of the system, or adapting in combination with the control. As
discussed in the introduction section, traditionally, if further robustness is required
it is the control system that is changed. In these two chapters it has been shown that
for offline learning, adapting the only morphology of the SLIP model can increase
the robustness as well. Also, in the case of online learning, adaption of the spring
stiffness is crucial for a low mean time to stability.

However, the SLIP model is simple and theoretical. Therefore, in the next chapter
I investigate how well the concept of evolving methods of morphological adaption
works in a more complex system. Additionally, I use this framework to further
investigation how a robot can learn from past experience to become successful in a
wider range of situations and tasks.
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4 Evolving morphological adaption mechanisms

for in voxel based soft robots

4.1 Introduction

In the previous two chapters, the advantages of evolutionary algorithms to evolve
simple rules which dictate how a Spring Loaded Inverted Pendulum should adapt its
morphology (spring stiffness) and control system (attack angle) were investigated.
Using both offline and online adaption the optimal rule sets were able to expand the
range of tested starting parameters for which the SLIP model could learn to become
stable from (to 1520 out of 1600 of the for the offline learning and 320 out of 1600
for the online learning, from the baseline value of 48 out of 1600). Furthermore,
using the online learning approach the optimal rule set was able to adapt the SLIP
model to overcome large changes in the environment, such as sudden decreases in
ground level.

For the next part of the thesis, I tested how a similar methodology, i.e., evolution
of adaption rules can be employed, on a less abstract, more complex robot. More-
over, in this chapter I aim to find a set of adaption rules that allows a robot to
adapt to a variety of distinct environments. A key aim of this thesis is to explore
the possibility of creating robots capable of adapting their morphology to new en-
vironments. Ideally the robot could be introduced to one environment and follow
a single set of adaption rules to change their morphology to suit that environment.
Then, if the environment were to change, the robot could follow the same adaption
rules to reconfigure itself to the new environment. The two morphologies would
not necessarily be the same, the adaption rules would rely on feedback from the
environment and given the environments are different the feedback would also be
different. However, crucially the underlying adaption rule which the robot follows in
both environments would be the same. Whilst in the previous chapter the concept of
adapting to an environment was somewhat explored – I investigated how the SLIP
would could adapt to decreases in ground level – in this chapter there is a stronger
focus on environmentally transferable adaption rules which generate morphological
change in different environments. Therefore, whereas in the SLIP model chapters
an optimal rule set one was able to learn stability, based on interaction with the
environment, for the widest range of starting conditions, here an optimal adaption
system is one that can successfully adapt the same initial robot to locomote the
fastest in a number of different environments.

In this chapter the robot has an initial morphology made up of a number of individual
soft modules (i.e., voxels) that are arranged into a cube. This is more complex as in
the previous chapter the SLIP model was formed of only one linear spring, whereas
now each voxel has its own stiffness. More detail into the initial morphology of the
robot is described in the methodology section (Section 4.2. The robot has a set of
voxels that are able to expand and contract which provides the actuation required
for the whole robot to move, these are located at the center of the robot. The rest
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of the voxels (i.e., the outer voxels) are passive and therefore do not expand and
contract. Similar to the offline approach described in the second chapter, the robot
interacts with the environment over a number of episodes. After each episode the
robot is adapted based on the physical feedback from these interactions and the
overall adaption rules and thus the stiffness of the individual voxels are changed. If
the stiffness of the voxel is changed below a certain threshold that voxel is removed.
Thus, the morphological adaptions takes the form of sculpting. Note that, similar
to the previous chapter, it is the adaption rules that are evolved rather than the
morphology specific to the environment. Thus the aim of this chapter is to find
an optimal, transferable adaption rule which use the robots interaction with the
environment to create successful morphologies in a diverse range of environment.

The structure of this chapter is as follows: first presented is the methodology used to
evolve the adaption control system, i.e., the way the robot uses the information from
its interaction with the environment to change the properties of each voxel and when
to remove the voxel entirely. This section includes the design of the initial robot, the
simulation environments and the basis of the overall adaption control system and
the evolutionary algorithm. Optimal neural networks are first evolved in individual
environments, they are then tested in other environments (for which they were not
evolved in) to determine transferability. These results are then compared to when
the neural networks are evolved in three unique environments. Also included in
this chapter is a comparison of adapting just the stiffness of the robot compared
with removing voxels. Following this is an exploration into how the neural networks
converge, and also whether there is any benefit to evolving first in one environment
and then transferring to a new one. Finally, a section on using the evolved neural
networks for damage recovery concludes this chapter.

4.2 Methodology

The starting structure of the initial robot was made from 216 modules (or voxels)
arranged into a cube with the dimensions 6x6x6 voxels, as shown in Figure 4.1. Each
module has a volume of 0.125m3 and a starting stiffness of 5,000N/m. The density
of each module was set to 1200kg/m3.

To simulate the robot, the soft-body physics simulator Voxelyze was used [44]. In
Voxelyze, a module takes the form of a 3D cube called a voxel; adjacent voxels are
connected together by simulated beams. VoxCad creates actuation within these soft
robots by employing a sinusoidally varying global control signal (termed temperature
by the Voxelyze software). Active voxels expand and contract in phase with this
sinusoidal temperature variation – additionally a phase shift can be added to an
individual voxel.

Using this voxel expansion mechanism, a simple locomotion control signal was ap-
plied to the center of the robot, as shown in Figure 4.1. Specifically, a central
sinusoidal control signal with a period of T = 0.25 seconds was applied to a set of
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Figure 4.1: The initial morphology of the robot. The inner green voxels are able to
expand/contract by 20% percent in time with the control signal (sinusoidal, with a
period of 0.25 seconds). There is also a phase shift along the y-axis of the robot.
The phase shift increases with each voxel, starting at 0 and ending at -0.5 rads.

specific, so-called active voxels allowing them to expand and contract by 20% (green
voxels in Figure 4.1). In addition, an increasing phase shift from front to back (from
0 to -0.5 rads along the y-axis) has been added to break symmetry and to achieve
locomotion (see Figure 4.1). Note that this control is fixed throughout the simula-
tion. It’s not part of the optimisation process. Also note that the magenta-colored
voxels in Figure 4.1 are passive and, hence, are not driven by the central control
signal.

It should also be noted that the size of the robot was selected to be large enough
that there would be a variation in environmental feedback in between voxels, but
small enough so that simulation times were a manageable length.

As previously discussed the adaption process in this chapter takes place episodically,
i.e., the robot interacts with its environment for a number of fixed time periods
(episodes, each episode lasts for 28 control signal periods) and adaption takes place
between episodes. A diagram showing the overall adaption process of the robot and
the method of adaption is shown in Figure 4.2. Whilst the fitness of the robot is
taken to be the distance travelled in the final episode, it is still required to interact
with the environment during every episode, not just the final one. This means that
here the interaction with the environment and the corresponding feedback is key to
morphological adaption.

Each episode lasted for 28 control cycle seconds. This episode length was chosen as it
allowed for a number of voxel expansion cycles whilst still maintaining a short enough
run time for efficient optimization. It also meant that the robot had a sufficient
time to interact with the environment. The feedback from the environment was
the kinetic energy KEj

i of each individual voxel i which was recorded throughout
each episode (j). Although other parameters were considered to characterise the
robot’s interaction with the environment, such as pressure or voxel strain, kinetic
energy was selected not only because of its success in the previous chapter regarding
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online learning in the SLIP model but also because of its success in preliminary
experiments. The kinetic energy of the ith voxel is calculated by the formula KEi =
1
2
miv

2
i , where mi is the mass and vi is the resultant velocity of the ith voxel. The

kinetic energy of each voxel is dependant not only on its own properties (mass)
but also its environment, i.e., how constrained it is by other voxels and features
of the external environment like the ground. For example, a voxel that is highly
constrained will not be able to move as easily, its velocity and therefore its kinetic
energy is likely to be low. Upon reflection, the choice of kinetic energy as the key
parameter may have not been optimal. Indeed, in his work, Kriegman [62] uses
stress/pressure as his key parameters. Therefore a potential limitation of this work
is that I chose to use kinetic energy without rigorous scientific investigation. More
discussion related to this is included in the conclusion section of this chapter.

In this chapter, the adaption rules, that dictate how the robot should change its
morphology, is in the form of a simple neural network. The output of the neural
network is how much the stiffness of a voxel should be changed. As it is the adaption
rule that is optimised through the evolutionary algorithm, it is the weights of the
neural network that are evolved (not the robot morphology). It is important to note
that the same neural network (i.e., the same adaption rules) is applied to each
passive voxel so that each voxel is updated every episode. The two inputs into the
neural network are the kinetic energy for the voxel in question and the change in
distance the entire robot traveled between the current jth and previous (j − 1)th
episode, ∆D (as shown in Figure 4.3). More specifically the average kinetic energy of
the individual voxel over an episode and the average kinetic energy across the whole
robot, also over the episode, is calculated. The difference in these two values is used
as the input to the neural network. Therefore, each voxel at every episode receives
both local information specific to itself (the kinetic energy) and global information
regarding the entire robot (the distance travelled and kinetic energy of the entire
robot). Using the global information, as well as the local information, as an input
to the neural network allows the robot to adapt its morphology to changes locally
depending on whether or not the previous adaption had been successful. To clarify,
if after episode one, the robot adapts in a way that causes it to travel less far in
episode two ∆D would be negative. Whereas if it travels further in episode two
than in episode one ∆D would be positive.
As previously mentioned if the stiffness of a voxel is changed below a given threshold
that voxel is removed. This threshold was set to 1kN/m after initial testing ( the
initial stiffness is 5kN/m). Initially, it was anticipated that the threshold would
be zero, i.e., the stiffness could be continued to be reduced until it became 0N/m
and the voxel “disappeared”. However, preliminary testing of this method showed
that the Voxelyze software encountered fatal errors when simulating stiffness below
1kN/m. Therefore, this value was included as a threshold value, i.e., voxels were
removed when decreased below 1kN/m. It should be noted that given the structure
of the neural network “regrowth” could be possible. A voxel that has been removed
has a kinetic energy of zero. However, there is the potential that if the global input
(i.e., the absolute change in distance) was high the change in stiffness to the “empty
space” could be enough to increase the voxel stiffness to above the threshold again.
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However it was observed that this regrowth is never occurred.

The adaption process continues for 15 episodes; this is termed a lifetime. The length
of lifetime was selected after initial testing as it allowed enough morphological adap-
tion to occur whilst still keeping computational running costs low. As previously
discussed the overall performance of the genetically encoded rules (i.e., the fitness)
is the distance travelled in the final episode, i.e. Dj=15.

episode 15

SimulateAdapt

...

AdaptSimulate

episode 3

Adapt

episode 2

SimulateAdapt

ANN

ANN is based on genome

All voxels are updated
individually using the same ANN

and their local information
episode 1

starting
configuration

simulate for
28 periods
(7 sec)

Simulate

Genome 1

Figure 4.2: This figure shows the basic method of how a suitable morphology is
sculpted out of the original cube, using an evolved sculpting adaptation system over
time. After each episode j the total distance travelled Dj is recorded as well as the
individual average kinetic energy KEj

i in each voxel i. The change in stiffness of
each voxel is calculated by inputting the above values for each voxel into the overall
adaptation system (see ANN in Figure 4.3). Note that in this figure the different
colours represent the different stiffness values of each voxel (red is more stiff and
blue less stiff).
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Figure 4.3: This image shows the neural network that implements the sculpting
adaptation system which is responsible for how the robot adapts between episodes.
The weights of the neural network, as well as the two bias values, are all optimized
through the use of an evolutionary algorithm.

In the past few years, methods of evolving robot morphologies, has mainly utilised
computational pattern producing networks (CPPNs). Based on neural networks,
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traditionally CPPNs determine a robots morphology by considering each co-ordinate
point in the robots solution space (x,y,z) and outputting whether or not there is part
of the body there. The activation function at each node is typically different and
thus the output of the CPPN is symmetrical, complex and unique. However, in this
thesis I chose instead to differentiate from the CPPN approaches. The design of my
neural network was kept as simple as possible, with one hidden layer and a tanh
function applied at each node. For each input node a bias was also added. The
bias values were introduced so that, in the case of the two input values being zero,
a non zero value would be outputted from the network. Although it has achieved
the criteria of being simple, the design of the neural network could still be much
improved. For example the addition of two bias values is not necessary; the same
effect could be achieved with a single bias value. However, the neural network was
designed early on in experiments, and as shown below, was able to yield good results.
Therefore, it was not changed, although I anticipate that a more complex ANN or
perhaps a CPPN approach would yield more complex and better performing results.

An initial population of 30 different randomised genomes was formed. As discussed
before, per genome, the robot was first simulated as a complete cube of 216 voxels.
Each voxel had a starting stiffness of 5,000N/m and the inner voxels were able
to expand and contract, as described above, see Figure 4.1. After one episode
(simulated 28 control cycles) the stiffness of each voxel was updated according to
the neural network that was encoded in the genome. This was continued for 15
episodes, after which the distance in the final episode Dj=15 was recorded and used
as a fitness measurement for the current genome. This process was repeated for all
of the 30 randomised genomes in the initial population. Once the distance reached
in the final episode was recorded for the entire population, the population was sorted
accordingly to their performance, i.e., how far they have travelled in the final episode.
A new population for the next generation was formed in the following way. The best
two genomes in the current generation were kept in the population as they were and
formed the first two genomes of the next generation. The next 18 genomes were
formed by mutating successful genomes from the current generation. Specifically,
a genome that was ranked in the top 50% was selected at random and four out
of the total parameters of the genome were mutated, i.e. randomly changed to a
different value. The final 10 of the new generation were created from completely
new, randomised genes. This was continued for 150 generations. The parameters
of the evolutionary algorithm were selected after initial testing and were deemed to
be appropriate (large enough to allow convergence, but short enough to not be too
computationally expensive.)

As mentioned in the introduction section, the aim was to find an optimal way of
adaptation that works in a wide range of environments. It should be the case that a
single adaption rule would be transferable between environments. Each rule neural
network was based on feedback from the environment (in the form of kinetic energy),
therefore it was unlikely but not infeasible that an adaption rule evolved in a single
environment would also work in others.

Therefore, initially adaption in three different environments was investigated, the
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fitness of which was the distance travelled in the final episode in that single envi-
ronment. The three environments were selected to be distinct, but also range in
difficulty. Upon selection it was hypothesised that the Environment A (a flat hori-
zontal plane) would be the simplest landscape and Environment B (an uphill slope
of 15 degrees) a step up in complexity. The hypothesised most complex environ-
ment was selected to again be a slope of 15 degrees but this time the robot rotated
so the line of actuation pointed across the slope and it was this direction that the
robot was required to locomote. This environment (Environment C) was selected to
investigate how the neural network would be affected by asymmetry either side of
its central active voxel region. Figure 4.4 shows diagrams of all three environments.

(a) (b) (c)

Figure 4.4: Figure showing the three investigated environments a) In Environment A
the robot locomotes on a flat landscape. b) In Environment B the robot is required
to travel up a slope of 15 degrees. c) In Environment C the slope remains at 15
degrees but now the robot is required to locomote across the slope .

At this point it is important to describe in more detail the fitness function for the
robot. Initially the fitness was the distance traveled from a starting point in any
direction. Whilst this is adequate for Environment A, this fitness function is too
simple for Environment C. Preliminary testing in Environment C showed a well
performing solution was for the robot to rotate and locomote downhill rather than
across the slope. Therefore, the fitness function was updated to distance travelled
in direction of actuation and candidates which moved in a different direction were
penalised. An example of this is shown in Figure 4.5. This “direction in line of
actuation” fitness was used in all three environment for consistency.

For each environment the evolutionary algorithm was run 10 times with different
randomized initial populations.

4.3 Results

As discussed in the methodology section, for each environment the evolutionary
algorithm was run 10 times with different randomized initial populations. Figure
4.6 shows the average generational fitness (average over the 10 evolution runs) for
each of the three environments. To clarify, the fitness from the most successful
genomes from each of the repeated evolution runs were averaged and plotted against
generation number for each of the three different environments. From this graph it
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Figure 4.5: Figure showing a potential, undesirable behaviour that was witnessed
in preliminary testing for robots attempting locomotion in Environment C

can be seen that the evolutionary algorithm converges quickest in Environment A,
closely followed by Environment B (the point of convergence is marked by a line for
each environment). However, it takes longer to converge in Environment C.

This in itself is interesting as when selecting the environments it was hypothesised
that Environment A was the most simple and Environment C the most challenging
for the robot to successfully locomote. This evolutionary fitness graph appears to
confirm this.

Figure 4.9 shows the top genomes from each of the Environment A evolution runs
and their corresponding final sculpted morphology. In the case of the neural nets
(i.e., the genomes) red indicates a negative weighting whereas green indicates a pos-
itive weighting. For the final morphology red indicates a very stiff voxel, whereas
blue indicates a soft voxel. For Environment A, the majority of the final mor-
phologies have a very similar overall body shape – they have a stiff top front part
and stiff bottom back part. The front bottom voxels have been removed giving the
illusion of “hind legs”. However, given the similarities in the final morphologies, sur-
prisingly, there is a significant amount of variation between the individual weights
of the top genomes used to sculpt these morphologies. The final morphologies in
this environment are very successful; an unsculpted robot is only able to locomote
slightly backwards (-0.61 voxels) whereas these the top genomes sculpt robots able
to travel forward by 54 voxels in a single episode. Additionally, Figure 4.10 shows
the locomotion pattern of a typical final morphology, moving in Environment A.

In Figure 4.11 the successes of the top genomes from the environment A evolutionary
algorithm are shown in blue (the white star further indicates that it is environment
A for which these genomes were evolved). Also shown in this figure is the perfor-
mance of these genomes in the other two environments (i.e., the environments not
experienced during evolution). This was done to investigate how well the genomes
evolved in one environment transferred to another. It was initially expected that
whilst it is feasible for a genome specially evolved for one environment would be
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Figure 4.6: This graph shows a plot of the fitness for the average of the best genomes,
per generation, for each of the three environments. To clarify, the fitness of the
best genome for each of the 10 evolution runs in Environment A are averaged and
plotted at each generation in green. Note that the fitness is the distance travelled in
the final episode. Similarly the fitness of the best genomes for each of the 10 evolution
runs in Environment B are averaged and plotted in grey and Environment C in
orange. For each of the three different environments the point at which evolution
converges is marked by a line. Also note that although the evolutionary algorithms
were run for 150 generations, for readability only 100 generations are shown on the
graph. Shown with 95% confidence interval
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Figure 4.7: Box and whisker plot comparing evolution in the three environments.
Plots of the champions of the three evolutions are compared with the same number
of random genomes in each environment. The plots show that in each environment
the neural networks develop morphologies that outperform those developed from
unoptimised ANNs.

Figure 4.8: Box and whisker plot comparing the amount of passive voxels removed
depending on environment. The plot indicates that significantly more voxels are
removed in environment A than environment B. Additionally, more voxels are also
removed in environment B than environment C. T-tests (alpha = 0.05) were con-
ducted to confirm this resulting in p = 0.002 (environment A/C) and p = 0.03
(environment B/C)
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Figure 4.9: This figure shows the top ten neural networks evolved for environment
A, i.e., the top genomes from each of the evolutionary runs. Also shown is the final
morphology sculpted when using the neural network. In the case of the neural nets
red indicates a strong negative weighting whereas green indicates a strong positive
weighting. For the final morphology red indicates a very stiff voxel whereas blue
indicates a soft voxel.
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Figure 4.10: Figure showing a typical final morphology (in this case sculpted from
genome 1) locomoting in Environment A. See https://youtu.be/Mzlt-HRCAao for
video

able to sculpt successful morphologies in another it is very unlikely. Additionally, if
it was successful the resulting morphology would perform worse than if the genome
had also been evolved specifically for this second environment. In these “test” cases
the initial robot is simulated in environment B, but it uses the neural networks (the
genomes) evolved in environment A to dictate how it should adapt. Since the kinetic
energy input to the neural network is different for each environment a different final
morphology is sculpted. If the morphology created is successful in this environment,
i.e., one that the neural network was not evolved in, the neural network would be
transferable. A genome was considered to be successful if its fitness (i.e., its speed)
is greater than zero. Therefore, it is travelling in the direction of the actuation and
not turning or going backwards. As previously discussed it was anticipated that if a
genome was successful (i.e., it produced a morphology capable of some locomotion)
the performance would be poor as the genome had not been specifically evolved for
this new environment. From this figure (Figure 4.11) it can clearly be seen that the
only environment that these genomes are successful in is the one they experienced
during evolution, i.e., only the blue bars symbolising performance in Environment
A are positive. In Environment B and Environment C the final morphologies either
fall down hill (environment B) or turn and locomote downhill (environment C). This
is why the fitness in these environments are shown to be negative.

Additionally, an investigation into the frequency of the passive voxels final stiffness,
when developed in environment A was carried out. This is shown in figure 4.12. For
this environment, the final morphologies contain mostly stiffer voxels.

The same process for Environment B is now shown in Figures 4.13 and 4.14. Note
that an un-optimised robot with the same stiffness all over moves downhill (i.e.,
the opposite direction) a distance of -3.2 voxels. In Figure 4.13 the top genomes,
i.e., those that produced the best performing final morphologies in Environment B
are shown, along with the morphologies that they produce. Figure 4.14 shows how
these top genomes perform in the other two environments for which they were not
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Figure 4.11: This figure shows the ten champion neural networks from each of the
10 evolution runs evolved for environment A, simulated in all three environments.
To clarify these genomes are the results from the top evolution runs evolved for
environment A. As a reminder the genome is the weight of the neural network.
These neural networks are then used to sculpt morphologies, starting with the same
cubed robot, in the other two environments. The white star is used to indicate that
it is this environment for which the genome was originally evolved. Note that for
this environment, an un-optimised robot has a fitness of -0.61. Therefore it moves
slightly in the wrong direction.

Figure 4.12: Frequency plot of voxel stiffness in final morphologies, developed in
environment A. In this environment there is a strong bias towards stiffer voxels
than softer for the majority of final morphologies

82



evolved in. Figures 4.13 shows that in this environment there is more variation in
the final sculpted morphologies. In some cases (1,2,3 and 9) the final morphologies
are quite similar to those from Figure 4.13 with a stiff front and the bottom middle
voxels removed. An example of the way these type of morphologies locomote is
shown in Figure 4.16. Note that at the start of the simulation these morphologies
balance on the back voxels as a result of their interaction with the slope. When
the activation of the inner voxels begins the robot falls over onto its “back” and
continues locomotion from this position as shown. In other cases, such as 5,6,8 and
10 the overall morphologies contain much softer voxels (see Figure 4.15 for how these
final morphologies locomote. In two examples 4 and 7 almost all of the voxels are
removed bar the top front and back. It is hypothesised that these passive voxels
are required to balance the robot as when all the voxels are removed the robot falls
over shortly after the beginning of the episode. Similarly to the genomes evolved for
environment A, the individual weights of the neural nets are different for each of the
top genomes. For example, it is clear to see that genomes 4 and 7 produce the same
final morphology, however the weights of the neural network are very different.

Figure 4.14 show how the genomes which have been evolved in environment B per-
form in not only environment B (oranges bars with white stars) but also environ-
ments A and C. Remember that these genomes have only experienced environment
B during evolution. As with Figure 4.11, when these genomes are simulated in
environment B they perform very well - this is not surprising since this is the en-
vironment they were optimised for. However, with two exceptions (genomes 4 and
7), these genomes are also able to sculpt successful morphologies in environment A.
This is interesting as these genomes had not experienced this environment during
evolution. Additionally there is one genome (genome 1, highlighted by the red bar)
that is also able to sculpt a successful morphology for environment C.

Additionally, Figure 4.17 shows a frequency plot of the voxel stiffness for the final
morphologies evolved in environment B. In this environment there are more soft
voxels than stiffer (i.e., more blue/green voxels than red/orange). Indeed, when
a t-test (alpha =0.05) was carried out comparing number of red (above 8500N/m
stiffness) voxels, there were significantly more red voxels in the morphologies in
environment A than environment C (p = 0.0001).

Finally Figures 4.18 and 4.19, show the neural networks, the final sculpted mor-
phologies and the performance of these genomes in each of the three environment
for the genomes optimised for environment C. Note that an un-optimised simple
robot where all the voxels have the same stiffness has a fitness of -1.2 voxels. These
genomes all sculpt successful morphologies for the environments they were opti-
mised for (environment C), but also for environment A. When compared to the final
sculpted morphologies for environments A and B there is much more variation in
this environment (although as before there is little similarly in the neural network
weights). One similarity is that all these final morphologies do show is an asym-
metry. This was expected as there is clear asymmetry in the environment i.e., the
slope and therefore in the feedback. The voxels on the right hand side of the robot
(those further downhill) are either removed or are much softer than those uphill.
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Figure 4.13: This figure shows the ten champion neural networks from each of the 10
evolution runs for environment B, i.e., the top genomes from each of the evolutionary
runs. Also shown is the final morphology sculpted when using the neural network.In
the case of the neural nets red indicates a strong negative weighting whereas green
indicates a strong positive weighting. For the final morphology red indicates a very
stiff voxel whereas blue indicates a soft voxel.
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Figure 4.14: This figure shows the ten champion neural networks from each of the
10 evolution runs for Environment B, simulated in all three environments. To clarify
these genomes are the results from the top evolution runs evolved for environment B.
As a reminder the genome is the weight of the neural network. These neural networks
are then used to sculpt morphologies, starting with the same cubed robot, in the
other two environments. The white star is used to indicate that it is this environment
for which the genome was originally evolved. As a result all the genomes are able
to sculpt successful morphologies in environment B as this is the environment they
were evolved for. Note that an up-optimised robot locomotion in this environment
has a fitness of -3.2, i.e., it moves downhill.

Figure 4.15: This figure shows one of the typical locomotion patterns for the type
of final morphologies sculpted by genomes such as genome 6 in environment B. See
https://youtu.be/TjNg701Un9o for video
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Figure 4.16: This figure shows one of the typical locomotion patterns for the type
of final morphologies sculpted by genomes such as genome 1 in environment B.
https://youtu.be/TjNg701Un9o for video

Figure 4.17: Frequency plot for voxel stiffness in final morphologies developed in
environment B. In this environment there are slightly more soft passive voxels than
stiffer ones.
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Additionally, Figure 4.20 shows how a typically morphology evolved in environment
C locomotes and Figure 4.21 shows the frequencies of voxel stiffness for the final
morphologies developed in environment C.

Note that if just the final morphologies sculpted in environment C were then tested
in environment A, unable to adapt, they would be not successful. The asymmetrical
morphology on flat ground would cause the robot to move in circles; thus the distance
travelled from the starting point would be low. However, because it is the way that
the robot adapts to an environment that is evolved, when tested in environment
A the robot is able to sculpt a symmetrical morphology, even when following a
sculpting adaption system optimised in the asymmetric environment C.

When comparing the final morphologies developed in each of the three environments
there are some interesting observations. Firstly, those developed in environments
A and C tend to utilize stiffer voxels (i.e., reds and oranges) than those developed
in environment B (blues). Why this is the case is not inherently clear, it could be
speculated that the softer more compliant voxels are somehow useful in overcom-
ing the gravitational challenges of the uphill slope. However, this is simply initial
speculation and perhaps further research into why environment B seems to favour
softer voxels is required. Secondly, when comparing the amount of remaining pas-
sive voxels after sculpting, considerably more passive voxels remain in environment
C than those developed in the other environments. Here, t-tests were carried out
comparing the amount of remaining passive voxels and it was found that signif-
icantly more voxels are removed in environment A and B compared with C (p=
0.002 for environments A and C) and (p=0.03 for environments B and C). Here, it
is likely that the disparity is caused by the complex asymmetry of the environment
C as instead of losing voxels on both sides as is the case in the other two environ-
ment, the morphologies in environment C only remove voxels on one side to achieve
asymmetry.

Another interesting observation is the variety of sculpted morphologies produced
from the evolution in environment C. This would appear to agree with the results
from Bongard and Auerbach [5] where it has been shown that the more complex
the environment the robot is evolved in the more complex the morphology. In [5]
they directly evolve one fixed morphology for different environments whereas here I
evolve the methodology of adaption. However, there does seem to be a parallel. This
would indicate that the side slope (environment C) is the most complex environment
tested (as originally hypothesised), closely followed by environment B (uphill) and
then environment A (flat landscape). However, as previously discussed, this theory
is not supported by Figure 4.6 where the evolutionary algorithm converges first in
environment C. The most simple environment does appear to be environment A. Not
only is there little variation in final sculpted morphologies, the evolutionary algo-
rithm converges quickly. Furthermore the majority of the genomes that are evolved
in different environment are able to sculpt successful morphologies in environment
A without having experienced this environment during evolution.

However, the observation that there is more diversity in the morphologies developed
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Figure 4.18: This figure shows the top ten neural networks evolved for environment
C, i.e., the top genomes from each of the evolutionary runs. Also shown is the final
morphology sculpted when using the neural network. In the case of the neural nets
red indicates a strong negative weighting whereas green indicates a strong positive
weighting. For the final morphology red indicates a very stiff voxel whereas blue
indicates a soft voxel.
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Figure 4.19: This figure shows the top ten neural networks evolved for environment
C, simulated in all three environments. To clarify these genomes are the results
from the top evolution runs evolved for environment C. As a reminder the genome
is the weight of the neural network. These neural networks are then used to sculpt
morphologies, starting with the same cubed robot, in the other two environments.
The white star is used to indicate that it is this environment for which the genome
was originally evolved. As a result all the genomes are able to sculpt successful
morphologies in environment C as this is the environment they were evolved for.
Note that in this environment and un-optimised morphology locomotes -1.2 voxels.

Figure 4.20: Figure showing how a typical morphology, evolved for Environment C,
locomotes. See https://youtu.be/5f27h6tlMko for video
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Figure 4.21: Frequency diagram of voxel stiffness in final morphologies developed in
environment C.

in environment C than the other environments is simply by eye. A quantitative
investigation into the diversity has not been carried out. Although not included in
this thesis, a possible way of determining diversity in the final morphologies would be
to consider those which had common voxel locations. For example, when comparing
two different morphologies, for each possible voxel location, if both robots had a
voxel present they would gain a score of zero. Similarly, if both robots did not
have a voxel at a particular location then they would also gain a score of zero.
However, if one robot had a voxel at a particular location and the other didn’t,
they would increase their comparative score by one. Once all possible locations
had been considered, the higher the cumulative score the more ”different” the two
morphologies would be.

Another simpler approach to compare robot diversity is just to consider how many
passive voxels remain after development, and this is something that was carried
out earlier in the chapter (see figure 4.8). In this case it could be suggested that
environment B has yielded the most diverse robots as it has the largest range of
number of removed voxels (followed closely by environment C). Perhaps as expected,
environment A has a small range of number of removed voxels suggesting a lack of
diversity in this environment.

Out of the 30 genomes presented so far (the top ten from each environment) two
genomes worked in all three environments, i.e., they were capable of sculpting suc-
cessful morphologies in environments for which they were not optimised. Whilst is
it interesting that these two genomes are transferable it is worth noting that even
though all the genomes are based on feedback from the robots interaction with the
environment, evolving in one environment would be expected to find optimal adap-
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Figure 4.22: Figure shows the only genomes from each of the three evolutionary
algorithms carried out in a single environment that are able to sculpt successful
morphologies in all three environments. The white star symbolises which of the
environments the genome was originally evolved for.

tion rules specific to that particular environment. Just because the rule set is based
on the environmental feedback this isn’t enough to guarantee that it is transferable
to new environments. The 30 genomes that have been tested are the elite - the ones
that perform the highest in each particular environment. It could be that these high
performing genomes are too specialised, whereas those that are less successful in one
environment are more transferable between tasks. Thus the top 50 genomes from
each environment (150 genomes in total) were tested in the other two environments
to test this hypothesis. Here, the “best” genomes were those that were able to sculpt
successful morphologies in each of the three environments.

Figure 4.22 shows the genomes from this testing that were able to sculpt successful
morphologies for all three environments, as shown there were only 7 out of 150
genomes that were transferable between environments. The white star symbolises
which of the environments the genome was originally evolved for. Note that none of
these transferable genomes were originally evolved in environment A (flat ground).
Instead these transferable genomes all come from Environment B and Environment
C .The share between these two environments is quite equal (3 from Environment
C, 4 from Environment B).

These 7 transferable genomes are investigated further. Figures 4.23, 4.24 and 4.25
shows how these 7 genomes sculpt the initial robot over the 15 episodes of a lifetime.

In addition to Figures 4.23, 4.24 and 4.25, Figures 4.26, 4.27 and 4.28 show how the
distance travelled in each episode (the fitness) of each of the transferable genomes
varies over the lifetime of the robot for each of the different environments.

From Figures 4.26, 4.27 and 4.28 it can be seen that in each environment, for
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Figure 4.23: Figure shows how the 7 “transferable” genomes sculpt the initial robot
over the 14 episodes in environment A - the flat ground.
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Figure 4.24: Figure shows how the 7 “transferable” genomes sculpt the initial robot
over the 14 episodes in environment B - uphill.
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Figure 4.25: Figure shows how the 7 “transferable” genomes sculpt the initial robot
over the 14 episodes in environment C - across the slope.
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Figure 4.26: Graph showing how the distance travelled in each episode (the fitness) of
each of the transferable genomes varies over the lifetime of the robot for Environment
A.

Figure 4.27: Graph showing how the distance travelled in each episode (the fitness) of
each of the transferable genomes varies over the lifetime of the robot for Environment
B.
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Figure 4.28: Graph showing how the distance travelled in each episode (the fitness) of
each of the transferable genomes varies over the lifetime of the robot for Environment
C.

the first few episodes the distance travelled per episode increases gradually. When
considering the corresponding sculpting figures it can be seen that in the early
episodes no voxels are removed. Instead only the stiffness of the voxels change.
Firstly, this shows that actually the performance of the robot can be improved just
by altering the stiffness distribution. At approximately episode 8 (in some genomes
this occurs earlier, some later) the stiffness of some voxels is decreased to the point
where the voxels are removed. In the majority of cases this temporarily results in a
decrease in performance, especially prevalent in the more complex environments B
and C. The reason that this drop in performance is not as obvious in environment A
could be due to the simplicity of environment A – there is no slope to fall down so
any unbalance in the system would only cause a smaller loss in performance, rather
than falling down the slope.

A possible reason as to why the such a large drop in performance is suddenly ob-
served could be due to the threshold for removal. Although not tested, it could be
speculated that if this threshold value was set much lower, for example to zero, then
changes to the performance over the lifetime of the robot would be less pronounced.
However, as previously discussed, this was not tested due to errors in the simulation
software.

After these voxels have been removed the distance travelled per episode starts to
increase again. However very few other voxels are removed. Instead the increase in
performance is once again down to the change in stiffness. The voxels, especially
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those surrounding the removed voxels are stiffened (i.e., they become harder).

In some cases a “zig-zagging” effect can be observed, where after the initial drop in
performance the fitness increases in the next episode then decreases in the one after
before increasing again. It is hypothesised that this effect is caused by the either
the low resolution of voxels (216) or too large a scaling factor (alpha – figure 4.3
). The robot responds too much to a change in performance and over compensates
by adjusting the stiffness too much. As a result this change in stiffness causes the
robots performance to change once more, again causing a large change in stiffness.
If the scaling factor was reduced too much the stiffness change would be less and
therefore the performance would not be as affected. Similarly if the resolution of
the robot was greater, i.e., there were more voxels, the large stiffness change of one
voxel would not affect the global performance of the robot as much and therefore it
is likely that the zig-zagging effect would be reduced.

4.4 Further Evolution in Multiple Environments

A further area to explore is evolution of transferable genomes in all three environ-
ments. Therefore, in this section the genomes were evolved in all three environments
and the fitness was the weighted (with different weights depending on the environ-
ment) average distance travelled in the final episodes across all three environments.
The average was weighted to ensure that there is no bias towards one environment
during the evolution – for example the final morphologies in Environment A are
capable of locomoting over 5 times the distance of the morphologies in the other
two environments. Therefore the weighted average ensures that the evolutionary
algorithm doesn’t just find solutions that perform well in environment A.

The weighting system used to determine the overall fitness is given by the equation
below:

Overallfitness = DA/5 +DB +DC/3

Where DA is the distance travelled in the final episode n Environment A, DB is
the distance travelled in the last episode in Environment B and DC is the distance
travelled in the last episode in Environment C. These weighting were based on
how far the most successful sculpted robot traveled in each environment when the
genomes were evolved in that single environment.

The evolutionary algorithm was run ten times (i.e., with ten different randomised
starting populations). Each population had 30 genomes and the new generations
were formed as previously. However, this time the evolutionary algorithm was run
for 200 generations as preliminary testing showed that evolution in the three envi-
ronments took longer to converge than in a single environment.

Figure 4.29 shows the final morphologies created used the champion genome from
each of the ten evolution runs in all three environments. It can be seen that once
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again with the increase in task complexity (i.e., the requirement to successfully loco-
mote in all three environments) there is also an increase in morphological diversity.
Figure 4.30 shows the neural networks (the genomes) used to sculpt the initial robot
into its final morphology. As with the previous tests there seems to be very lit-
tle similarly between these genomes, although in this instance this could be less
surprising given the amount of diversity in the final morphologies produced.

Figure 4.31 shows the average generational fitness for each of the evolutionary algo-
rithms tested in one environment compared with the evolutionary algorithm tested
in all the environments. Note that the fitness for single environments is not strictly
comparable to the fitness for the multi-environment evolution as this fitness is a
weighted average of all three environments. However, what this graph does clearly
show is that when evolving in three environments, the evolutionary algorithm takes
over twice as long to converge as when it is only optimising for one environment.
Also note that the crosses at the end of each data series show the point at which
the evolutionary algorithm was terminated.

Figure 4.32 compares the success of the genomes evolved in all three environments
with the transferable genomes evolved in single environment. The top graph shows
the transferable genomes from the previous tests but the axis is scaled to allow direct
comparison with the bottom graph which shows the results from the evolution in
all three environments. On the top graph the star symbolises the environment for
which the genome was originally evolved for. It can be seen from the two graphs
that, unsurprisingly, those evolved in all three environments do perform better than
those that are evolved in a single environment. To quantify this increase the total
distance travelled in each environment, for each genome, was summed and averaged
across the two approaches. To clarify the total success of the 7 transferable genomes
through single environment evolution were averaged and compared to the average
total distance of the 10 found through evolution in all three environments. The
average total distance in the transferable genomes was 49 voxels, compared with an
average of 59 voxels for the genomes evolved in the three environments. However,
as previously stated evolving for success in 3 environments does take longer to find
an optimal solution than evolution in one environment.

Interestingly, despite the implementation of the average weighting there is one
genome that has been evolved in all three environments but actually doesn’t work
in Environment C. This can be seen in lower graph in Figure 4.32 where genomes
4 is highlighted by a red bar. This is because the genome has performed so well in
Environment B, which has the highest average weighting this it is able to counteract
the low score (negative) score in Environment C and still have a high overall fitness.

In Figure 4.33 the distance travelled by the robots, generated by the top 10 genomes
from evolution in all three environments, is shown for each of the three environments.
Here, there are a number of interesting differences between these graphs and those
produced for the 7 “transferable” genomes previously investigated. In the case of
environment A there is a lot more “zig-zagging” behaviour in the early episodes of
the genomes evolved for all three environments, whereas in Environment B there
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Figure 4.29: Figure shows the final morphology created by the best genomes from
each of the evolution runs where the fitness was dependant on all three environments.
Note that as before a red voxel represents a high stiffness, whereas a blue voxel
represents low stiffness. The corresponding fitness of each of these morphologies in
each environment are shown in Figure 4.32 and the neural networks used to develop
the morphologies in 4.30
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Figure 4.30: Figure shows the top 10 best performing genomes (neural networks)
from each of the evolution runs where the fitness was reliant on success in all three
environments. Here the strength of the synaptic weight is represented by the colour
of the connection; a strong negative synaptic weight is a bright red, whereas a
strong positive weight is a bright green. The morpologies produced by these neural
networks are shown in 4.29 and the fitness shown in Figure 4.32
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Figure 4.31: Figure showing the average generational fitness for each of the evo-
lutionary algorithms tested in one environment compared with the evolutionary
algorithm tested in all the environments. Note that the fitness for single environ-
ments is not strictly comparable to the fitness for the multi-environment evolution
as this fitness is a weighted average of all three environments.

is very little zig-zagging and instead the performance steadily, but slowly, increases
until the final episodes (with the exception of genome 4). Similarly in environment
C there is much less zigg-zagging during the starting episodes that in the previous 7
genomes that were evolved for a single environment. In these cases the majority of
the adaption is done by stiffness change only and it is not until the final few episodes
(10+) that voxels are removed. The stiffness of the remaining voxels then continue
to change to stabilise the robot.

To test the transferability of the top 10 genomes further, they were tested in 4 new
environments for which they were not evolved. These environments were; 1) a down-
hill slope of 15 degree, 2) a 2D bumpy environment, 3) a 3D bumpy environment
and 4) a “rolling hills” environment, as shown in Figure 4.34. These environments
were selected to present new and diverse landscapes to the robot. Both the 2D and
3D bump environments were chosen so there was a different initial ground reaction
force for the robot. Note that the difference between the 2D and 3D bump envi-
ronment. In the 2D environment the ground height only varies in the y direction,
the direction in which the robot is required to locomote. In the 3D environment
the ground height varies in both the x and y directions, which added asymmetry
and therefore added complexity to the environment. The rolling hills environment
was selected as an increase in challenge for the robot. Initially the robot is on a
small hill, directed downhill in the positive x direction. As the robot locomotes
in a straight line the slope of the hill changes so that it now goes downhill in the
negative x direction. These environments were also selected so that the height of
the “bump” was never more than twice the length of a voxel as this was considered
too unnecessarily challenging for the robot.

Figures 4.35, 4.36, 4.37 and 4.38 show the success of the top 10 genomes that were
evolved for Environments A, B and C in the new environments, D, E, F and G. Also
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Figure 4.32: Figure comparing the success of the genomes evolved in all three en-
vironments with the transferable genomes evolved in single environment. The top
graph (A) shows the transferable genomes from the previous tests but the axis is
scaled to allow direct comparison with the bottom graph which shows the results
from the evolution in all three environments. On the top graph the star symbolises
the environment for which the genome was originally evolved for. The bottom graph
(B) shows the genomes evolved for all three environments. The red bar highlights
an instance where the genomes was not successful for all three environments – it is
unable to locomote in the direction of actuation in Environment C and thus has a
negative fitness.
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(a)
(b)

(c)

Figure 4.33: Three figures showing how the far the robots, generated by the top
10 genomes from evolution in all three environments, travelled in each environment
(i.e., the fitness) varies per episode. A) shows this variation for environment A (flat
ground), B) shows it for Environment B (uphill) and c) for Environment C (side
slope). Note the change in axis scale in (b).

Figure 4.34: Figure showing the extra four environments for which the genomes
were tested to ascertain further transferablity. Note that the robots included in
these diagrams are not necessarily the most successful in these environments are
were selected randomly to show scale.
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Figure 4.35: This figure shows the success of the top 10 genomes that were evolved
for Environments A, B and C in the new environments D– downhill. Also shown in
this figure is the final morphologies sculpted for this environment. Note that in this
environment, the un-optimised morphology has a fitness of -3.2.

shown in these figures are the final morphologies sculpted.

Figure 4.39 shows a box an whisker plot comparing the key statistic from each of the
environments. However, the plot shows that there is no obvious difference between
the environments for which the genomes were evolved, compared with those for which
it was not. For comparison, the fitness of the un-optimised starting morphologies,
where the stiffness of each voxel is the same (5000N/m) for each environment are
shown in table 7.

The majority of the genomes that were previously evolved only in Environments
A, B and C were also able to find successful solutions in the later environments,
Environments D,E,F,G. There are some exceptions; for example, genome 4 strug-

Environment Fitness of Starting (un-optimised) morphology
A - Flat ground -0.6

B - Uphill -3.2
C - Side Slope -1.2
D - Downhill 3.2

E - 2D Bumps -3.5
F - 3D Bumps -1.9

G - Rolling Hills -5.8

Table 7: For comparison, the fitness of the un-optimised starting morphologies,
where the stiffness of each voxel is the same (5000N/m) for each environment are
shown here.
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Figure 4.36: This figure shows the success of the top 10 genomes that were evolved
for Environments A, B and C in the new environments E– 2D bump. Also shown
in this figure is the final morphologies sculpted for this environment. Note that in
this environment the un-optimised robot has a fitness of -3.5

Figure 4.37: This figure shows the success of the top 10 genomes that were evolved
for Environments A, B and C in the new environments F– 3D bump. Also shown
in this figure is the final morphologies sculpted for this environment. Note that in
this environment an un-optimised morphology has a fitness of -1.9.

105



Figure 4.38: This figure shows the success of the top 10 genomes that were evolved
for Environments A, B and C in the new environments G- Rolling Hills. Also shown
in this figure is the final morphologies sculpted for this environment. Note that in
this environment the un-optimised robot has a fitness of -5.8.

gles to find successful morphologies in the downhill environment. Remember that
genomes 4 did not work in environment C. However, at least 50% of these genomes
are successful in all these new environments.

Interestingly, it was initially assumed that the downhill environment would be easy
for the genomes to sculpt successful robots. It was expected that the final morpholo-
gies would roll or bounce downhill in an uncontrolled manner. However, this does
not appear to be the case. For three of the ten genomes the final morphology either
falls onto its side (genomes 4 and 8) or turns and walks across the slope, and is thus
penalised. Over the lifetime of the robot the success at each episode zig-zags from
being high to low in a similar way the other environments. This zig-zagging is not
necessarily negative, but it could be reduced by lowering the value of α or increasing
the resolution of the voxels as discussed area in this chapter. The exception of this is
for the genome 10, which only changes its stiffness and does not remove any voxels.

In the 2D bump environment the majority of the genomes were able to sculpt suc-
cessful morphologies, despite not being evolved for this environment, i.e., they are
transferable. For genome 9, the front of the robot is too stiff, and as a result the
robot gets stuck between the the bumps, i.e., in the valley. In the case of the genomes
9, which is also unable to sculpt a successful morphology, it could be argued that
this is simply due to the fitness metric used. In this the final morphology travels
a long distance from its starting point, however, it is not in a straight line in the
direction of actuation. As a reminder the fitness metric penalises the robot if it
does not move in the direction of actuation. However, it could be argued that in
this bumpy environment, genomes 7 is still successful as the final morphology does
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Figure 4.39: Box and whisker plot comparing the environments for which the robot
were not evolved in, with the Environments A,B, and C. The plot shows that there
are no conclusive findings.

not fall over or get stuck in the bumps and therefore the fitness metric may not
the appropriate in this environment. This fitness metric may also be the cause of
the “failure” of genome 6 in environment F (the 3D bump environment). When
observing the fitness graph (Figure 4.37) it can be seen that the final fitness for
genome 6 is very negative, i.e., it appear to perform very poorly. However, when
observing the final morphology it is able to locomote far from its initial starting
point, it moves in a straight line at an angle to the direction of actuation – which
is why it has such a negative fitness. In terms of the current fitness metric is has
failed, however in this situation whether or not the genomes has actually “failed” to
locomote is questionable.

Another interesting observation of the results from the 2D bump environment is that
for the majority of the genome only the stiffness changes for the first 10 episodes (i.e,
for a longer number of episodes than the other environments). It is hypothesised that
this is because of the lack of change in distance between episodes. It was observed
that initially the robots get stuck in the first valley and therefore the change in
distance between episodes, and only one of the inputs to the neural network is close
to 0. It is not until the stiffness distribution of the robot has changed by a large
amount that the robot is able to overcome this valley; at this point the neural
network receives a stronger input and the voxels start to be removed.

The final environment, the rolling hills, was selected to test how the gnomes dealt
with a non-homogeneous environment. The previous environments have all been
homogeneous, i.e., however far the robot travels the ground reaction force will be
the same. In the case of the rolling hills as the robot travels in a straight line this
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changes – the hills were designed so that there is a phase/wavelength mismatch
between the environment and the robot control. Therefore, this environment can
be used to tests how these genomes cope with a non-homogeneous environment.
Note that if the phase/wavelength of the environment was a multiple to that of
the robot, a result more akin to the 2D/3D bumps may occur. Given that it is
particularly challenging for the robot to regrow voxels, it could be that the voxels
that are removed at an early episode, where the slope goes downhill in one direction,
are required when the direction of the slope changes.

There are some genomes, such as genomes 2 and 3, that are able to cope with
this non-homogeneous environment, despite the fact that they did not experience
this type of environment during evolution. Although perhaps further transferability
could be gained by making it easier to grow voxels over the lifetime of the robot it
is shown that a final morphology can be sculpted to deal with this environment.

Just because these genomes are transferable between these 7 environments does not
mean that they would be successful in every possible environment. For instance,
the size of the ground perturbations in Environments E,F and G are relatively small
and it is unlikely that if the perturbations became too large the robot would still
be successful. However, these results suggest that the evolved genomes have good
adaptability to new environments.

4.5 Stiffness Adaption vs Voxel Removal

An observation from the results in the previous section shows that a gain in perfor-
mance can be achieved from just adapting the stiffness of the voxels. Additionally,
when a voxel is first removed the success of the robot is initially reduced. The re-
maining voxels then re-adapt to increase the success of the robot once more. This in
fact results in a robot that is more successful than before the removal of the voxel.

To test this observation further, the top 10 genomes from the previous experiments,
i.e., those from the evolution in Environments A, B and C, underwent a further
investigation. In each environment the adaption was re-run but without any voxel
removal. The stiffness of the voxel was capped at the threshold, so that the stiffness
remains the same, rather than the voxel being removed.

Figure 4.40 shows the results of these experiments. In this figure the episodic fitness
of the top 10 genomes (that were evolved in Environments A, B and C) are shown.
Note that these are the same graphs as shown in the previous section but are repeated
here for ease of comparison (i.e., Figures 4.26,4.27, 4.28). On the right hand side
is the episode fitness for the same set of genomes, but here only the stiffness were
allowed to adapt and no voxels were removed. It is easy to see that, in all cases,
adapting the stiffness of the robot results in worse performing final morphologies
than when the system is allowed to remove voxels. In fact many of the genomes
completely converge on a final morpholgy that were less than those using voxel
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removal. However, it can also be observed that no episodes produce values that
were highly negative and there is little zig-zagging between high and low values
over the course of a lifetime. This could be an advantage if the robot needs to
completely avoid an area outside its path and is destroyed if it deviates from its
path too much. For instance, although the final morphologies generated through
voxel removal would get along the straight path quicker. However, if they would
need the previous episodes to learn to sculpt this morphology and the robot would
have been destroyed in an earlier episode. However, as previously discussed, this
zig-zagging effect observed when voxels are removed could be reduced by increasing
the granularity of the robots, i.e., larger robots with more voxels. Then, when a
single voxel is removed, the overall effect on the robot is reduced.

Also, as previously discussed, a lower ‘threshold’ value was assigned to the voxels,
i.e., if the stiffness of a voxel was to be changed to below this threshold, instead the
stiffness would remain fixed. This threshold value was set in response to an observed
error in the simulation software; where the software would fail if trying to simulate
voxels with very low stiffness. It is feasible that if this threshold was set much lower,
just adapting the stiffness of the robot would be able to yield a better performance
than the one reported here.

4.6 Investigating Different Starting Populations

In this section, the idea of transfer of knowledge between evolution in environments
was investigated. The previous results indicated that there might be environments
that are more complex than other – for example, Environment A the flat ground
environment appear to be very simple. It should be easy for the evolutionary al-
gorithm to find a successful morphology. Furthermore, for the majority of cases
genomes evolved in Environments B and C (environments that could be considered
more complex) are usually transferable to Environment A.

In this section, I investigated whether there were any benefits from first evolving
genomes for one environment and then using the best genomes as a starting popula-
tion for another environment. For instance it could be hypothesised that solutions
that were first evolved in a simple environment could then accelerate evolution in a
more complex environment and perhaps result in a final better performing solution.
Alternatively, given that solutions evolved in Environments B and C already work to
some extent in Environment A, this could also result in better performing solutions
in Environment A.

Therefore, the top genomes found at the start of this chapter, i.e., those that were
evolved in the individual environments, were used as a starting population for the
other two environments. To clarify the top genomes from each of the evolution runs
in environment A were used as a starting population of 10 genomes for evolution in
Environment B. These 10 genomes were then tested in Environment B, ranked and
then mutated to form a new generation (population size of 40 as with the previous
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(a)
(b)

(c) (d)

(e)
(f)

Figure 4.40: This figure shows a comparison of the top 10 genomes, evolved from
testing in Environments A,B C when they are able to remove voxels and when the
only adapt stiffness. Graphs a,c,e show when voxel removal is allowed and graphs
b,d and f show when only the stiffness of the robot is allowed to adapt.
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experiments). This evolution process then continued for 100 generations. This
experiment was then repeated for Environment C. The results of these are shown in
Figure 4.41, a and b. Then the top genomes from the evolution in Environment B
were used as a starting population for evolution in Environment A and Environment
C. The results of this evolution is shown in Figure 4.41 c and d. Finally, the top
genomes from evolution in Environment C are used as a starting population for
evolution in Environment A and B. These results are shown in Figure 4.41, e and f.

As the starting population of each of the evolution runs is the same, i.e., not ran-
domised, the evolution runs were repeated 3 times for each testing environment.
This to to allow for randomisation in the mutations when creating the new popula-
tion for the next generation. Also shown on the graphs in Figure 4.41 is the mean
fitness from the initial evolutions in each environment (shown by the red dotted
line).

In some cases the evolutionary algorithms do converge on solutions much quicker
than when they were started with randomised populations. Additionally in almost
all the repeated runs the evolutionary algorithms were able to find solutions with a
similar or higher fitness to the mean found previously. However, these values are not
a lot higher. In some cases the amount of time taken to converge to these solutions
is similar or slightly longer than the original evolution runs.

Therefore, these results show that although there is very little benefit to first evolving
in one environment and then transferring the best solutions to another environment.
Additionally it does not appear to matter whether or not the original environment
was more or less complex than the later environment.
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(c) (d)

(e) (f)

Figure 4.41: Generational fitness of the evolutionary algorithms for when the starting
populations are the best genomes from other environments. Also shown in this figure
is the mean fitness from the original evolution This is represented by the red dotted
line.

112



4.7 Damage Recovery

As shown in the previous sections, the majority of the optimal genomes found follow
a similar “two-step” method of adaption. First the stiffness distribution in the robot
was changed; then at around episode 8 the softest voxels were removed. After these
initial voxels have been removed very few others follow. Instead, the remaining
voxels stiffened to stabilise the robot. This adaption method suggests that the
robot may have the capability to recover from damage by readjusting its stiffness.
Therefore, in this section, this hypothesis was tested. Firstly, the 7 transferable
genomes, i.e., those from the first part of the chapter were tested for damage recovery.
Remember, these genomes were those that were evolved in a single environment, but
happened to be able to find successful solutions in the other environments. These
genomes were tested to investigate whether their learning experience in a certain
environment affected their damage recovery.

The method used to test the damage recovery ability of these transferable sculpting
adaption systems is similar to the original sculpting methodology. The robot is first
simulated in its un-optimised form, i.e., a 6x6x6 cube of voxels with a stiffness of
5000N/m. Then, using the transferable sculpting adaption systems found previously,
the robot starts to adapt over a number of episodes as before.

Half way through the lifetime of the robot (episode 8), four voxels at the front left
of the robot were removed, i.e., the robot was damaged. The position and amount
of damaged (removed) voxels was selected as it was considered to be an acceptably
large enough challenge for the robots to recover from. Episode 8 was selected as
the time at which the voxels should be removed – this was the episode at which the
genomes would start to remove voxels themselves. The robots were then allowed to
adapt, again following the transferable rules.

It has previously discussed that many of the robots experienced a decrease in per-
formance after any voxels have been removed – even when this removal is part of
the adaption method. Therefore, I anticipated that allowing the robots to remove
voxels as part of the adaption method may be too large a challenge if also required to
perform damage recovery. Therefore, instead the lower stiffness value was capped.
If the stiffness of a voxel was to be decreased below the capped value, whereas previ-
ously the voxel would have been removed, in these experiments the voxel remained
but with a fixed lower stiffness. Therefore, the only voxels removed were those
deliberately removed, i.e., the front four.

Figure 4.42 shows how each of the 7 “transferable” genomes sculpted the initial
robot over the 15 episodes in environment A. In the figure it can be seen that at
episode 8, four voxels at the front right of the robot were removed, i.e., the robot
experiences damage. From then on each of the robots redistributed the stiffness of
the other remaining voxels, without removing any more voxels themselves, in an
attempt to maintain successful locomotion, i.e., to maximise the distance travelled.
Figure 4.43 shows the distance travelled in the x direction at each episode. It can
be seen that before episode 8 the distance travelled increases at each episode. When
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Figure 4.42: Figure shows how the 7 “transferable” genomes sculpt the initial robot
over the 15 episodes in environment A - the flat ground. After episode 8 four voxels
at the front right of the robot are removed. The robot then changes its stiffness in
an attempt to counteract this damage. In this instance only the stiffness is changed
and the robots are not allowed to remove voxels themselves.
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Figure 4.43: Figure shows the success of the 7 “transferable” genomes at each of
the episodes in environment A. At episode 8, four voxels are removed from the front
right of the robot. Note that only the stiffness of these robots are automatically
changed; the robots are not allowed to remove the stiffness themselves.

Figure 4.44: Figure shows the success of the final morphologies, developed using ten
champion genomes found from evolution in three environments but also incorporates
damage (voxel removal) in episode 8.
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the front right voxels were removed the performance decreased in the majority of
the robots. Although it is interesting to note that this decrease was delayed and
did not occur for a few episodes. In the majority of cases the loss of performance
was due to the fact the robot now twisted its body, when the central active voxels
expand and contract, towards the area of removed voxels as it faced less resistance
than the other side with the stiffer voxels. This means that the entire robot started
to locomote with a bend to the right (i.e., in the direction of the removed voxels).
It can be seen in the two robots formed by the genomes 2 and 3 that over the
episodes following the “damage” the voxels immediately surrounding the site of
removal started to stiffen up. Additionally, the back right hand voxels were also
stiffened more than the left hand side which further combated the twisting affect
caused by the removed voxels. Therefore, the robots following these two genomes
were able to re-adapt to counteract the damage. In contrast, the robots following
genomes 4-7 were unable to counteract the damage. Although they too adapt in
response to the loss of voxels, this time it is the voxels on the left, opposite to the
site of removal that were stiffened. This means that the active voxels had even more
resistance to expansion on the left hand side so twisted even further towards the
right. Therefore, over these final episodes the performance of these robots got worse
(as seen in Figure 4.43). Genome 1 performed differently to the other genomes.
The stability of genome 1 comes from its extremely soft body, rather than optimal
body sculpting. It is interesting to note that all the genomes that are successful in
combating “damage” are those that are initially evolved in Environment C, which
itself is asymmetric (similar to the area of voxel removal). If it is the case that the
genomes must have experienced an asymmetric environment then it would expected
that all the genomes from the next sets of testing (i.e, those evolved in all three
environments) should have the ability to recover from this damage. Therefore, to
test this hypothesis, the 10 champion genomes from each evolution run (where the
genomes were evolved in all three environments) underwent damage recovery testing.
That is they were allowed to only adapt their stiffness and at episode 8 four voxels
at the front left of the robot were removed. Additionally, as before, these genomes
were also tested for damage recovery in Environments B and C. Figure 4.44 shows
the results of this testing.

Given that the criteria for a “successful” genomes is one where the final morphol-
ogy has a positive fitness, 9 out of 10 of the champion genomes were successful in
Environment A. However, it should be noted that in some cases the fitness is very
small. Additionally in the other two environments very few of the genomes were
successful at all (only two in environment C). Therefore it can be hypothesised that
the second two environments are too challenging for the genomes to recovery from
damage in.

Finally, for a comparison the 10 champion genomes were again tested for damage
recovery in Environment A. However, this time the lowest stiffness value was not
capped and they were allowed to remove voxels themselves (in addition to the 4
voxels being removed at episode 8). For simplicity, only Environment A was tested.
The final morphologies produced are shown in Figure 4.45. Also shown in Figure
4.46 is the performance of the final morphology when the robot was not allowed to
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Figure 4.45: Figure shows the final morphology of the 10 champion genomes that
were damaged at episode 8, but were also allowed to remove voxels themselves
(instead of having their lower stiffness capped).

remove voxels itself.

From Figure 4.46 it can be seen that 7 out of 10 of the champion genomes were
able to recover from damage by removing voxels as well as adjusting their stiffness.
However, this could be misleading as in some cases (for example, genome 1) the
voxels removed as a result of “damage”, were going to be removed anyway by the
algorithm at around episode 8.

The results from this section are somewhat inconclusive. Whilst the tested genomes
show some ability to recover from damage, in general they only work in one environ-
ment (Environment A which is considered to be the most simple). Additionally, the
fact that these genomes are able to recover in one environment could indicate the
possibility of using a evolutionary algorithm to evolve specifically damage resistant
genomes capable of re-adapting their morphology after voxel removal.

4.8 Chapter Conclusions

In this chapter, evolving neural networks that use feedback from the environment
(in the form of kinetic energy) to adapt the stiffness of a voxel based robot (and
therefore sculpt a final morphology) was explored. The results from this chapter
show that a single neural network is capable of sculpting successful morphologies in
a number of discrete environments, including some for which it was not evolved for.

Also investigated in this chapter was whether or not there was a benefit to first
evolve adaption in one environment and then transfer the knowledge (i.e., using the
optimal genomes as a starting population) to a new environment. The results show
that there may be a slight benefit to using this approach.

Additionally, using the evolved adaption rules to enable damage recovery was inves-
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Figure 4.46: Figure shows the performance of the final morphologies created from
each of the 10 champion genomes. The blue data show the scenario where the
stiffness was caped at a lowest value -i.e., the robot was not allowed to remove its
voxels as part of its adaption methodology. The yellow data shows when the robot
was allowed to remove voxels as part of the adaption.

tigated. The results show that the evolved genomes are able to adapt the robot to
recover from damage in Environment A.

Whilst the results from this chapter show good potential, there are a number of
considerations for future work. These are discussed below.

One extension to this research would be to consider adding voxels as well as removing
them. This two way adaption (adding and removing body parts) has the potential
to create robots that are capable of even more sophisticated adaption. This could be
achieved by adding an additional rule to the existing infrastructure in which if the
stiffness of a voxel exceeded a certain threshold extra voxels, surrounding the “too
stiff” voxel in question, should be added. In the next episode these voxels would then
adapt their stiffness and have the potential to be removed if their stiffness became
to low. This mechanism for adding voxels to the robot may also be beneficial in the
damage scenario, as it would give the potential for the robot to simply regrow the
removed voxel. Although it is interesting to note that recovery of the robot can be
achieved simply by re-configuring the stiffness of the remaining voxels it would be
interesting whether the ability regain voxels would increase the speed and success
of recovery.

Although potentially adding the ability to “grow” voxels as well as remove them
would not required any changes to the system infrastructure, particularly the neural
network, another potential limitation of the work presented here is the simplicity
of the sculpting adaption system. Currently the neural network, which forms the
sculpting adaption system, has only one hidden layer and no recurring nodes, al-
though the role of the recurring nodes is fulfilled by the “change in distance” input
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to the neural network . It is therefore possible that more robust adaption mecha-
nisms could be produced if a more complicated neural network, perhaps with more
hidden layers, was used. Another option for adding complexity to the neural net-
work without adding extra hidden layers could be to consider the number of inputs.
In this work each voxel takes into account its own kinetic energy and only indirectly
considers the other parts of the robot through the use of the “difference to aver-
age kinetic energy.” As a reminder, the average kinetic for all the voxels during an
episode is calculated and then the input to the neural network is the difference be-
tween this average value and kinetic energy specific to the voxel in question. Whilst
it has been shown that this yields good results another interesting approach would
be to take inspiration from cellular automata and input the kinetic energy of the
voxel neighbours also into the neural network. The approach of using cellular au-
tomata to create virtual creatures, in general, has been previous explored, e.g. by
[16, 81, 18]. In these previous works one single rule is applied to each and every
cell in the robot and this rule dictates how the specific cell should alter its state
depending on the state of its neighbours. Whilst these studies have been successful
in generating diverse and well performing virtual creatures, only the state of the
surrounding neighbours is considered, rather than the neighbours interaction with
the environment. An extension to the work presented in this thesis would be to add
the kinetic energy of the voxels neighbours into the neural network as additional
inputs to explore whether this would result in more robust rule sets.

In this chapter, the sculpting methodology has only been tested on one initial mor-
phology with a single locomotion control system. Remember that in this chapter
the control system is the active voxels in the centre of the robot with a phase shift
applied front to back. As future work it would be interesting to study how the
effect these parameters have on the sculpting adaption system and the final mor-
phology produced. Is it possible to find a single adaption system that is capable of
sculpting success morphologies no matter the locomotion control system or starting
morphology? Additionally, the robots are all started with the same fixed orienta-
tion. It would be interesting if this starting orientation was also altered as it is my
expectation that this would result in an increase in final morphology diversity.

An interesting hypothesis, that has arisen from these findings and could be inves-
tigated in future work, is does this removal during development of a morphology
evolve better performing robots? If only the final morphology of the robot was
evolved, it could be hypothesised that an evolutionary algorithm may get stuck in
local optima and not be able to navigate through the area of poorer performing
robots to access the better solutions. Does evolution need damage during a develop-
mental stage to yield better performing robots? However, as previously discussed,
the requirement of damage during the development phase could only be necessary
if using a threshold value for voxel removal. This is a interesting hypothesis and
should be considered for future work.

One area that has shown promise in this chapter is the exploration into damage
recovery. Despite not being evolved for it, these robots are able adapt their mor-
phology to recover from damage. However, this has only been shown to work in one
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environment and with one scenario. Therefore, more research into directly evolving
damage recovery should be considered.

A potential limitation of the work presented in this chapter is the episodic learn-
ing approach. Although this approach has been shown to be powerful in creating
adaption methods capable of sculpting successful morphologies for different start-
ing environments. The sculpted robots are capable of locomoting large distances so
long as the environment they are in does not suddenly change. For example, if the
robot was initially sculpted in Environment A, and then the environment suddenly
changed to Environment B, it is not currently clear whether or not the robot would
be able to adapt to this changed environment. It may be successful using an offline
approach, i.e., episodic learning. However, it may require an online learning ap-
proach. An online learning approach could utilize a neural network with recurring
nodes (as suggested earlier in this section) and update the stiffness of the voxels
either homogeneously or after a fixed number of time steps.

As discussed earlier in this chapter, there are some limitation to the work presented
here. For example, the use of kinetic energy for the key parameter was chosen some-
what arbitrarily. Although the results in this chapter have shown kinetic energy to
produce robots capable of adapting over their lifetime to a variety of environments,
using a variable such as pressure would be more consistent to existing literature
(e.g., Kriegman et al. [62, 61]). Additionally pressure, or simply velocity, may be
easier to measure if the method presented in this thesis were to be explored in real
life (rather than simulation).

Another limitation is the design choices of the evolutionary algorithm. Using a
better designed EA may also yield better, more diverse results.

In conclusion, the main aim of this chapter was to use evolutionary algorithms to
find optimal method of adaption that allow a robot to change its morphology to
achieve success in a wide variety of environments.

120



5 Conclusions and Future Work

In this chapter, I will discuss the findings from the entire thesis and how these relate
to the current trends in the relevant research area of developmental robotics. I will
also discuss potential future areas of study, based on the research questions that
have been raised as a result of the work presented.

As first presented in the introduction section, the key aims and objectives of this
thesis were:

• To investigate the use of evolutionary algorithms to evolve methods of adapting
the morphology of compliant robots in order to achieve robust locomotion.

• To carry out the investigation of evolving methods of adaption in two contexts.
Firstly, using the theoretical Spring Loaded Inverted Pendulum model as a
“base robot”. Secondly, using a more complex voxel-based robot as a platform
for adaption.

• To determine how transferable, and therefore robust, the evolved methods of
adaption are in terms of performance in different starting environments and
different starting morpologies

I believe that throughout this thesis, the above aims and objectives have been met.
In chapters two and three, I investigated how the adaption of the morphology and
control of the theoretical Spring Loaded Inverted Pendulum model could improve its
overall robustness. In the first chapter, I devised a number of rule sets that changed
either the spring stiffness (the morphology) or the attack angle (the control) of a
Spring Loaded Inverted Pendulum model based on interactions with the environ-
ment. Remember that if the combination of morphological and control parameters
in the SLIP model are within a particular range, i.e., the J-Figure, the model will
be stable and be able to locomote indefinitely without falling over. In the first set
of experiments, the interaction with the environment was simply defined as the dis-
tance that the SLIP model was able to travel with the current set of morphological
and control parameters (i.e., the combination of the spring stiffness and attack an-
gle) before the pendulum fell over. The adaption took place episodically, that is the
SLIP model was allowed to fail, was reset, parameters updated, and locomotion was
attempted again. Each rule set uniquely dictated how the SLIP model should adapt
its parameters, based on the comparison between distance travelled in the current
episode with the distance travelled in the previous, in order to find stability.

In Chapter 2, the adaption rule sets were systematically tested to find the optimal
way of adapting the morphology and control of the robot separately, i.e., the optimal
rule sets found adapted either the spring stiffness or the attack angle, but initially not
both. The results from this chapter show that just the adaption of one parameter can
expand the amount of combinations for which the SLIP model could become stable.
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Crucially, the adaption via the proposed rule set methodology allowed the robot to
learn to become stable when started with an unstable combination of parameters.

The research in the Chapter 3 also related to the adaption of the SLIP model. In
the first part of Chapter 3, the episodic adaption was considered further – this time
both the stiffness and the attack angle were allowed to change simultaneously af-
ter each episode and an evolutionary algorithm was used to determine the optimal
“combined” rule set. Allowing both sets of parameters to adapt meant that the
amount of starting parameter combinations for this model could become stable in-
creased even more. For the tested starting combinations over 98% were now able
to be adapted so that the SLIP model became stable (compared with 3% when
no adaption was present in the SLIP model, 78% when only the attack angle was
adapted and 51% when only adapting the stiffness). The presented adaption via
rule set methodology has the potential to increase the robustness of robots based
on the SLIP model.

Whilst previously in literature, there have been a numerous of examples of work
extending the region of stability of the SLIP model, e.g., through extra leg segments
[98, 99], there were previously no models in place that allow the SLIP model to
adapt itself to become stable if started with unsuitable morpholgical and control
parameters. Whilst this is not necessarily a problem – a robot could be designed
with an appropriate spring and joint mechanism, over time the lack of ability for the
robot to adapt could become a problem. Mechanical parts such as springs and joints
are subject to wear and tear, for example, over time the stiffness of a spring could
decrease. A robot, based on the SLIP model, without the ability to adapt, would now
fail as the combination of its parameters are not within the stable range. However,
if an adaption system such as that described in this thesis was implemented, the
attack angle could be adapted and stability could be regained. The investigations
carried out in this thesis are entirely in simulation and the above damage scenario
is simplistic, however, it is hoped that the methodology I have presented could be
implemented on a real robot in the future, or used as a starting point, to increase
robustness in robots based on the SLIP model.

Also in Chapter 3, the case of online adaption was explored. Whilst the benefits of
the offline adaption (i.e., episodic, where the robot is allowed to fail and adaption
takes place after failure) have been discussed above, there are some limitation of
this approach. The main one is the requirement of failure – this could cause further
damage to any physical robot which has the potential to be catastrophic. Therefore,
the offline rule sets were adapted to allow for online learning, where the SLIP model
instead adapts its parameters between strides in order to find and maintain stability.
Whilst this online method is not able to find stability for as large a number of starting
parameter combinations as the offline approach, my results show that it is able to
cope with some environmental changes without failure. In addition, using optimal
rule sets the SLIP model is able to overcome large downward steps in ground level
without falling over by adapting both its stiffness and attack angle.

In these two chapters, investigation of optimising methods of adaption for the the-
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oretical Spring Loaded Inverted Pendulum model has been carried out, achieving
part of the second aim of this thesis. Furthermore, in Chapter 3, I used evolution-
ary algorithms to evolve these methods of adaption, completing the first aim of the
thesis. In both chapters I test how transferable these rule sets are, by considering
their performance over a large range of starting robot configurations. In Chapter 3
I also investigate how these rule sets are able to deal with environmental changes
(aim 3).

In Chapter 4, the concepts presented in the first half were explored in a new con-
text. The SLIP model is theoretical and simplistic, so the ideas of adaption were
explored on a more complex system - a modular (voxel) based robot. This part
helps to achieve the second key thesis aim. Also, the concept of adapting to differ-
ent environments was explored further achieving the third thesis aim. In this part
of the thesis I wanted to further determine whether or not it was possible to evolve
a method of adaption that would allow a robot to change its morphology, based on
its interaction with a particular environment. I also wanted to explore the potential
to adapt to a wider range of new environments. Additionally, instead of using “rule
sets” as a method of adaption, how the robot changes its morphology was dictated
by a simple neural network. It is the weights of the neural network that were evolved
via the evolutionary algorithm.

Chapter 4 shows that is it indeed possible to evolve single adaption methods (i.e.,
a single neural network), which alters the morphology of a robot based on its in-
teraction with the environment, to produce final morphologies, in a range of en-
vironments. This morphological adaption is achieved by adapting the stiffness of
each voxel until the stiffness is altered below a specified threshold and the voxel is
removed. The robot starts out as a cube of 6x6x6 voxels and a final successful mor-
phology is therefore sculpted out of this initial robot. The final morphology sculpted
in each environment is different, however the adaption method crucially is the same.
Not only does a single neural network sculpt successful morphologies for all three
environments for which it was evolved it, the found genomes show transferability.
That is they are able to sculpt successful morphologies for environments that they
did not experience during optimisation.

Also in Chapter 4, I investigated the benefits of first evolving adaption systems in
one environment and using the results from this evolution as a stepping stone (i.e,
a starting population) for evolution in the next. I also investigated the benefits of
removing voxels, versus just adapting the stiffness and whether the current evolved
adaption methods were able to be used for damage recovery.

When considering how the results from this thesis relate to currently published
literature, I argue that it most closely aligns with the work published by Kreigman
et al. [62, 61] which related to postnatal development of the stiffness of voxels in
a soft voxel based robot. In Kreigman’s work the stiffness of each voxel is linearly
changed over the lifetime of the depending on the pressure/stress of the voxel. It is
one of the few examples of where robots have changed their morphology after “birth”
based on environmental feedback. However, the morphological change of the robot
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is limited to stiffness change rather than overall body shape change, and the key aim
of the research is to improve robot locomotion in a single environment, rather than
to generate adaption between environments. Whereas, in my work presented in this
thesis, I evolve the way the robot interprets environmental feedback from different
environments through use of adaption rules/neural networks. It the first part of the
thesis, like Kreigman, I only adapt the stiffness of the robot morphology, albeit on
a simpler robot that Kreigman used. However, in the later chapter, I advance this
area of research further by allowing the robot to remove voxels and thus change its
shape.

In the later chapter regarding voxel based robots, the robots adapt to different
environments by, in some cases, removing up to 40% of their voxels. This large
amount of shape change is similar to origami robots which are also about to change
to different body shapes after initialisation, e.g., Miyashita et al. [75], Kotikian et al.
[59] etc. However, these origami robots usually snap between a few hand designed
morphologies which the human has determined optimal for the environment or task.
Whereas, in the work presented in this thesis, evolution is used to determine the way
the robot should use information to adapt (develop) to new environments. This way
a single evolution adaption system has the possibility to develop the initial robot
into a wide variety of different morphologies.

In both parts of this thesis the potential to use morphology as a way to recover from
potential damage is considered. In the case of the SLIP model this is based around
the idea that if the robot was damaged in a way that altered the attack angle, the
optimal rule set would be able to adapt the stiffness of the spring to regain stability.
In the second section this is investigated in more detail with the removal of voxels
and the observation that in some cases the robots are able to stiffen the remaining
voxels to combat the removal, i.e., the damage.

However, both these cases present an argument for adapting the morphology to
combat damage. In the SLIP model, they were able to re-adapt to become successful
without the need to change their control system; all the re-adaption takes place in
its morphology. Whilst in the case of the voxel based robot this adaption only
works for Environment A, note that the adaption systems were not evolved to deal
with damage recovery. This was an expected outcome of the evolution in different
environment. Therefore, I would argue that further damage recovery would be
possible if this was used as the fitness metric for the evolutionary algorithm.

The idea of using morphological adaption for damage recovery in robotics is only
starting to be investigated. Kriegman et al. [64] showed recently how deforming
the shape of a damaged robot can recover performance better than adapting the
control system. This is one of the few works that consider adaptive morphology for
damage recovery. Instead researchers (e.g. [80, 10, 2, 11]) have mostly focused on
adapting the control system in response to damage to the morphology. Being able
to adapt the morphology of a robot in response to damage would be a powerful tool
in creating robots that, for example, are capable of remote working, without the
need for over complicated control systems.

124



The preliminary results from this thesis showcase the potential of using morpholog-
ical adaption as an alternative, or in addition, to adapting the control system in
order to recover from damage.

The results from Chapter 4, showcase the benefits of using evolutionary algorithms to
evolve optimal methods of adaption. When considering the investigations regarding
the SLIP model, the fitness landscape relatively simple. The areas surround the
optimal stable parameter combinations show a strong fitness gradient, i.e. the closer
to the stable region the further the model will travel before it falls over. Whilst the
evolutionary algorithm clearly works well in order to find optimal rule sets, it could
be speculated that due to the obvious fitness gradient a method such as gradient
ascent would also yield good results. However, the results from the adaption of the
more complex voxel based robot suggest that a gradient based method would not
be as successful. During the first few episodes the voxel based robot only increases
its stiffness and the performance of the robot also increases more or less linearly,
as though it is following a clear fitness gradient. However, loss of voxels causes the
performance of the robot to decrease before it increases further to a final better
performance than if no voxels had been removed at all. Therefore, it could be
speculated that a learning metric such as gradient descent (or other gradient-based
learning algorithms, namely backpropagation that are typically used for training
neural networks) would work up until the point at which the voxels were removed.
They would then loose the fitness gradient which may cause them not continue in
the same direction in the fitness landscape which would have enabled them to find
the better solution (i.e., with the voxels removed). Evolutionary algorithms do not
rely on gradients within the fitness landscape and therefore are able to generate
adaption methodologies capable of traversing over areas of the landscape where the
fitness is low.

Therefore to summarize, the key finding/contributions of this thesis are:

• Implementation of a framework to use evolutionary algorithms to find optimal
rule sets capable of adapting the control and morphological parameters of the
theoretical spring loaded inverted pendulum model. Separate rule sets were
found for both an offline learning and online learning approaches. The offline
approach increased the percentage of starting configurations for which the
stability could be reached from 3.75% to 98.00%. For the online approach the
percentage is increased to 20.00%.

• Using an optimal online rule set, at some starting configurations, the SLIP
model is able to contact decreases in ground level of up to 14m.

• Implementation of a framework to use evolutionary algorithms to find optimal
sculpting adaption systems. Using a single optimal sculpting adaption system
the same starting robot is capable of successfully adapting to a number of
unique environments.

Whilst good results have been obtained throughout the thesis, as discussed a lim-
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itation of this research is the design choice of the evolutionary algorithms. After
reflection, I believe that these design choices could be improved and more suit-
able parameters and cross-over selection methods may have yielded better results.
This is also perhaps the case for the choice of kinetic energy as they key parameter
throughout the thesis. I acknowledge that the choice of kinetic energy was some-
what arbitrary (although it has produced good results in both the SLIP model and
voxel based robot.)

Finally, as discussed in the introduction, in machine learning there is the theory of
“no free lunch”. This is also true for the work presented here. In the final chapter
(regarding the voxel based robots), when the robots are evolved for a single environ-
ment they perform better in that environment than when evolved for multiple. The
more adaptive the robot becomes, the less specialised and successful and performing
single tasks. Additionally, whilst the voxel based robot shows good transferablity
between environments for which it was not optimised, there are environments it is
not successful in. I anticipate it is therefore likely that even if evolved for thousands
of environments, there would always be some for which the robot would not be suc-
cessful in. However, the results from this thesis do show that by adapting/developing
the morphology, the robot can be successful is a wide range of environments – many
more than if the morphology was fixed.

5.1 Further Work

In this section I discuss possible areas of future work that have arisen as a result of
this thesis work.

The first area of possible future work is investigation into simultaneous adaption of
a robots control and morphology. In the second and third chapters the interplay
between adaption of the control system (in this case the attack angle) and adaption
of the morphology (spring stiffness) was investigated. However in Chapter 4, i.e.,
relating to the voxel based robot, only the morphology was adapted. A further
extension would be to consider adaption of the control and morphology simultane-
ously – using a similar approach to that used to simultaneously adapt the attack
angle and spring stiffness of the SLIP model. The adaption of both the morphology
and control parameters showed an improvement in robustness when compared to
adapting just one of the parameters. Therefore, it could be hypothesised that also
allowing adaption of the control in the voxel based robots could yield an even more
robust adaption methodology capable of locomotion in a wider range of environment.
However adaption of control and morphology both via evolution or development is
highly challenging, as discussed in the introduction of this thesis. The same the-
ory of embodiment that stresses the importance of optimal morphology also implies
why co-evolution is such a challenge [15] as slightly changing the morphology dur-
ing evolution can have a large detrimental effect on the control system. Whilst
some researchers such as Lipson et al. (2016)[68], Cheney et al. (2018) [15] and
Stensby et al. (2021) [112] have explored ways to combat this, such as preserving
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the morphology of the robot for a number of generations whilst still evolving the
controller, co-evolution or co-development remains an open challenge. Whilst in my
thesis some level of co-adaption of control and morpholophy is achieved, this occurs
in the simplistic SLIP model and the two parts of the system are kept relatively
separate. In the more complex voxel based robot, I anticipate development of the
control and morphology would be a much greater challenge. Yet even the more com-
plex voxel robots explored in the later chapter are still much simpler than animals
and humans, due to their limited fixed control system. Whilst this thesis has shown
evidence of the benefits of an developmental morphology, I believe that to truly rival
the adaption observed in nature, both suitable morphology and control are required.
Although challenging, I believe this is an exciting area for future research.

The second area of possible future work is a transition from simulation to real world
robotics. Both parts of the thesis, i.e., regarding the SLIP model and the voxel based
robot, are carried out in simulation. In both cases this has produced results that,
it is hoped, will provide groundwork in the area of developmental morphological
robotics. However, robots considered to be physical systems and therefore some
discussion of how to transfer the knowledge gained from this thesis into the design
of physical robots needs to be provided.

With regards to the work relating to the SLIP model, there are already a number
of physical robots built on the area of the spring loaded inverted pendulum model
(e.g. see [125] for a review). It would therefore be easy to use one of these many
robots as a starting point and implement the best evolved rule sets within it. A
variable stiffness actuator could be used to adjust the spring stiffness and a stepper
motor the attack angle.

In the case of the voxel based robot, an obvious framework for this transfer would
be the system created by Kriegman et al [63, 43, 64]. In their work the simulated
voxels were replaced by physical, hollow, silicone voxels. The thicker the silicone
walls the stiffer the voxel. The active voxels are able to expand and contract by
altering the air pressure within the voxel. If the neural networks used in this thesis
instead used voxel pressure as an input rather than voxel kinetic energy it should be
feasible to incorporate pressure sensors into the physical system. After an episode,
or locomotion attempt pressure data could be inputted into previously evolved (via
simulation) neural network which would determine which voxels stiffen, which to
soften and which to eventually remove. The “adapted” robot would then be rebuilt
by hand, or in an automated way, for the next episode.
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5.2 Concluding Remarks

In conclusion, this thesis discusses the use of evolutionary algorithms to evolve
optimal ways of adapting the morphology of a robot in order to achieve its robustness
- both to damage of the robot itself and to changes in its environment. Although a
lot still needs to be done in this field, the evolutionary and developmental approaches
presented in this thesis have shown potential. It is hoped that these methods will
play some part in the exciting future of developmental robotics.
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