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ABSTRACT

In this thesis we present three new methods for probabilistic machine learning which
extend widely used algorithms for approximate Bayesian inference and phylogenetic
comparative methods. The first is a modification of Expectation Propagation (EP), called
∞-EP, which incorporates a bias term into the approximate factors. The advantage of do-
ing this becomes apparent when we adjust the coefficient ∞ of the bias term to maximise
the evidence, as ∞-EP is able to converge to solutions which make the data more probable.

The ∞-EP method also provides an efficient algorithm for training sparse Bayesian
linear classifiers. This makes it applicable to classification with repeated data points,
which EP cannot handle robustly. It is simple to implement as it only requires a few
modifications to the canonical EP algorithm. The ∞-EP algorithm is extended to use
kernel matrices and applied to oncogenic single nucleotide variant (SNV) classification.

The second method is a new phylogenetic regression model called Phylogenetic Relevance
Vector Machine (PhyRVM). We present the first analytical solution for the phylogenetic
signal ∏ and show the PhyRVM outperforms the widely used maximum likelihood ap-
proach Phylogenetic Least Squares (PGLS) on a simulated dataset and on the problem
of predicting optimal growth temperature of archaea. We pursue this application further
with the RVM as we investigate whether we can learn scientifically meaningful genomic
correlates using the most relevant features. Our trained RVM model achieves state-of-
the-art performance for archaeal OGT prediction and predicts a hyperthermophilic last
universal common ancestor. The final method we present is a new phylogenetic dimen-
sionality reduction technique called Phylogenetic Probabilistic Principal Components
Analysis (P3CA). The advantage of P3CA is that it is a probabilistic model so it can
optimise the phylogenetic signal ∏ by maximising the likelihood.

i





DEDICATION AND ACKNOWLEDGEMENTS

I would like to thank Colin Campbell and Tom Gaunt for giving me the freedom and
encouragement to follow my own research interests. I would like to thank Tom Williams
for introducing me to the fascinating world of phylogenetics and for many interesting
discussions on the mini milestones that made up this work.

I would like to thank Edmund Moody who first introduced me to the concept of ‘phyloge-
netic signal’ and who gathered the data and built the phylogenies necessary to test the
phylogenetic comparative methods developed in this thesis. I would like to thank Mark
Rogers for sharing with me the data for ‘CScape’. I would also like to thank Bastien
Boussau for hosting me in his lab at CNRS in Lyon and sharing with me his code for
ancestral sequence reconstruction in RevBayes. I would also like to thank Paul Kirk for
giving me the time and encouragement to finish any corrections while I was working at
the Biostatistics Unit in Cambridge.

It was a pleasure to work in the Buncaer and to be able to exchange ideas with somebody
from a completely different field while overlooking a picturesque view of Bristol.

iii









TABLE OF CONTENTS

Page

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approximate Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Evidence Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

3 Extensions of Gaussian Expectation Propagation 13
3.1 The Clutter Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Spherical Gaussian Expectation Propagation . . . . . . . . . . . . . . . . . . 15
3.3 Extensions of Gaussian Expectation Propagation . . . . . . . . . . . . . . . 19

3.3.1 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Basic Differential Multiplier Method . . . . . . . . . . . . . . . . . . 26

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Bayes Point Machines and Oncogenic Single Nucleotide Variants 29
4.1 Bayes Point Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Extensions of Gaussian Expectation Propagation . . . . . . . . . . . . . . . 33

4.2.1 Sparse Bayes Point Machine . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Kernel Bayes Point Machine . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Application: Oncogenic Single Nucleotide Variants . . . . . . . . . . . . . . 47
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



TABLE OF CONTENTS

5 Phylogenetic Linear Gaussian Models 55
5.1 Phylogenetic Comparative Methods . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Phylogenetic Relevance Vector Machine (PhyRVM) . . . . . . . . . 61
5.1.2 Phylogenetic Probabilistic Principal Components Analysis (P3CA) 70

5.2 Are ‘Relevant’ Genomic Features Correlated with OGT? . . . . . . . . . . . 74
5.3 Model Comparison for OGT Regression . . . . . . . . . . . . . . . . . . . . . 76
5.4 Ancestral Sequence & OGT Reconstruction . . . . . . . . . . . . . . . . . . . 79
5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Discussion 83

A Appendix 87
A.1 Bayes factors cannot systematically reject the truth . . . . . . . . . . . . . 87
A.2 Minimising the Kullback-Leibler divergence in the exponential family . . 88
A.3 Deriving the moment matching updates . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

viii



LIST OF TABLES

TABLE Page

3.1 Average mµ (± one standard deviation) for ADF, EP and ∞-EP (with average
maximum evidence ∞) on 50 samples with µ = 2 and n = 20 for various levels
of background clutter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Average mµ (± one standard deviation) for ADF, EP and ∞-EP (with average
maximum evidence ∞) on 50 samples with µ = 2 and n = 200 for various levels
of background clutter. Statistically significant results at the 1% level between
∞-EP and ADF are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Average mµ (± one standard deviation) for ADF, EP and ∏∞-EP on 50 samples
with µ = 2 and n = 200 in low clutter levels. Statistically significant results at
the 1% level between ∞-EP and ADF are shown in bold. . . . . . . . . . . . . . 28

4.1 Test error rate and average number of support vectors (± one standard devia-
tion) on the ‘Sonar’ (left) and ‘Breast’ (right) datasets. . . . . . . . . . . . . . . 40

4.2 Test error rate (± one standard deviation) on the ‘Breast’, ‘Heart’, ‘Ionosphere’
and ‘Pima’ datasets for ∞-EP, EP and SVM models. . . . . . . . . . . . . . . . . 44

4.3 P-values from a Wilcoxon paired signed rank test comparing average accuracy
of ∞-EP to EP and SVM. Statistically significant results at the 1% level are
shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Average predictive log-likelihood (± one standard deviation) on ‘Breast’,
‘Heart’, ‘Ionosphere’ and ‘Pima’ datasets for ∞-EP and EP models. . . . . . . . 45

4.5 P-values from a Wilcoxon paired signed rank test comparing average predic-
tive log likelihood of ∞-EP to EP. Statistically significant results at the 1%
level are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Leave-one-chromosome-out cross validation accuracy (± one standard de-
viation) for GBM, BPM, SVM and MKL classifiers and average leave-one-
chromosome-out predictive log likelihood (± one standard deviation) for BPM
classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



LIST OF TABLES

4.7 P-values from a Wilcoxon paired signed rank test between leave-one-chromosome-
out accuracy of BPM-MKL2 and GBM, BPM, SVM and SVM-MKL1 models
and between leave-one-chromosome-out predictive log likelihood of BPM-
MKL2 and BPM models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Average phylogenetic signal (± one standard deviation) estimated by PhyRVM
and PGLS with low true values of ∏ 2 {0,0.1,0.2,0.3,0.4}. The average marginal
likelihood (± one standard deviation) is below and root mean square error
in parenthesis. The best estimate of ∏ on average is underlined. The largest
evidence is in bold if it also has the better average ∏. . . . . . . . . . . . . . . . 67

5.2 Average phylogenetic signal (± one standard deviation) estimated by PhyRVM
and PGLS with high true values of ∏ 2 {0.5,0.6,0.7,0.8,0.9}. The average
marginal likelihood (± one standard deviation) is below and root mean square
error in parenthesis. The best estimate of ∏ on average is underlined. The
largest evidence is in bold if it also has the better average ∏. . . . . . . . . . . 67

5.3 Prediction of archaeal OGT using 20 amino acid proportions. 10-Fold cross
validation error (Test RMSE), training error (RMSE), marginal likelihood
(p(D)), (average) predictive log likelihood (Pred log-lik) and phylogenetic signal
(∏) for the PhyRVM-, PhyRVM+, RVM, PGLS and OLS models. . . . . . . . . 69

5.4 Average 10-fold cross validation error (± one standard deviation) and training
error in parenthesis for archaea and bacteria OGT prediction using simple
and multiple linear regression, SVR and RVM models. . . . . . . . . . . . . . . 78

5.5 P-values from a Wilcoxon paired signed rank test comparing cross validation
RMSE of RVM to Simple Linear Regression (SLR), Multiple Linear Regression
(MLR) and Support Vector Regression (SVR). Statistically significant results
at the 1% level are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



LIST OF FIGURES

FIGURE Page

3.1 Examples of fitting a single factor using ADF with the canonical update (left)
and the ‘reuse’ update (right) with µ = 2, m\i

i = 0 and v\i
i 2 {1,10,100} . . . . . 18

3.2 ADF approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 EP approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 A plot of the mµ trajectories for 5 different orderings of the ‘red’ sample. The

sample mean is given by the solid line. The true value of the mean is 2. In all
examples EP significantly worsens a good first iteration (ADF approximation). 20

3.5 Distributions of interest for the same three samples (red, blue, green) approx-
imating the true distribution (black) using ∞-EP with ∞=°1 (left) and ∞= 1
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Bayes point machine with ∞= 1 vs ∞=°1 (top) or vs SVM (bottom) on a toy
dataset both with ≤= 5 (left), ≤= 2 (right and bottom). . . . . . . . . . . . . . . 36

4.2 Plot of the rescaled N

© (4.24) (green) and rescaled N

© with ∞> 0 (red) error
functions, ‘hinge’ error (black), exponential error (violet) and ‘0-1’ error (blue). 37

4.3 Bayes point machine with ∞ = °1 vs ∞ = 1 and ≤ = 2 on a toy dataset both
with and without (top left) repeated data points. The data points in bold are
repeated 100 times. The support vectors for the BPM with ∞= 1 and Æ0 = 0.1
are circled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Number of irrelevant examples vs iterations for ∞-EP with ∞= 0.8 (left) and
∞= 0.75 (right) and ≤= 2 on the ‘Sonar’ dataset. . . . . . . . . . . . . . . . . . . 41

4.5 Average kernel coefficients ∏l for MKL1 (left) and MKL2 (right). . . . . . . . . 53

5.1 A simple phylogeny with 5 taxa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 The first two principal components of the 20 amino acids proportions of

archaea and bacteria using P3CA with ∏= 0 (left) and ∏= 1 (right). . . . . . . 74
5.3 Most ‘relevant’ whole genomic features for archaea (left) and bacteria (right). 75

xi



LIST OF FIGURES

5.4 Archaeal AC (left) and AG (right) dinucleotide proportion vs OGT. . . . . . . . 76
5.5 Sigmoidal relationship between AG proportion and thermophilic probability. 77
5.6 Predicted OGT vs Experimental OGT on archaea (left) and bacteria (right) data. 78
5.7 Number of GTR mixtures vs branch length variance (left) and branch length

(right). The LACA root branch is in red and the LBCA root branch is in black. 80
5.8 P3CA with ∏= 0 (left) and ∏= 1 (right). Archaea is in orange and bacteria is

in blue. LUCA, LBCA and LACA, in red and circled, all line up at the same
spot in the centre of the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Number of GTR mixtures vs OGT for LACA (left) and LUCA (right). . . . . . 81

xii



C
H

A
P

T
E

R

1
INTRODUCTION

“Solve the problem of interest, do not solve more general problem as interme-
diate one... In this paper I give up this imperative."

— Vladimir. N. Vapnik

1.1 Bayesian Model Comparison

A central task in the empirical sciences is to make statistical inferences from exper-
imental data. Given a statistical model which has some free parameters, fitting the
model to the data (often called learning or training) involves inferring the values of these
parameters. The parameters w can be inferred from the posterior distribution given the
observed data D using Bayes’ Theorem:

(1.1) p(w|D)= p(w,D)
p(D)

= p(D|w) p(w)R
p(w,D) dw

= Likelihood£Prior
Evidence

The integral in the denominator of (1.1) is called the evidence, marginal likelihood or nor-
malising constant and it is usually analytically intractable. The bulk of the computation
is therefore spent on sampling from the posterior which can lead to Bayesian inference
seeming too impractical for many high-dimensional problems [4]. In this thesis, we will
focus on ways of approximating Bayesian inference, which means reformulating the
learning task as an optimization problem, by approximating this integral with a simpler
one which is analytically tractable and iteratively updating the approximations. This
leads to learning algorithms which are fast, accurate and deterministic.
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CHAPTER 1. INTRODUCTION

The method of maximum likelihood is a common choice for making inferences about
parameters from the available training data [35]. The problem with fitting models to
data by maximising the likelihood function p(D|w) in (1.1) is that it suggests to use
the most complex1 models out of those under consideration. Overly complex models
(such as high order polynomials) will fit the training data much better than simple
models but can vary significantly between sub-samples of training data. In statistical
parlance, we say that the overly complex models have low bias and high variance or
overfit the training data [5]. On the other hand, overly simple models may not fit well
but will not vary much either - they have a high bias and low variance or underfit the
training data. The best model should minimise the trade-off between bias and variance
or overfitting and underfitting [5]. A straight-forward solution to select the best model
is to use out-of-sample prediction methods like cross-validation. The downside of these
approaches is that none of the models are trained on the full training data and cross
validation does not always select the best model [69].

An alternative solution is to use the evidence2 in Bayes’ Theorem to inform model
comparison. We will define the model as the functional form and set of all parameters in
the likelihood and prior. We will compute the posterior over one parameter (in this case
w); and we will call the other parameters in the model the hypothesis H . Given a set of
candidate hypotheses H i (from a hypothesis space), the posterior probability for each
hypothesis is [58]:

(1.2) p(H i|D)/ p(D|H i) p(H i)

The prior p(H i) expresses our prior belief in the plausibility of each hypothesis. Assum-
ing we have no reason to favour one hypothesis over any other (we say ‘assuming a flat
prior’), we can rank the hypotheses solely using the evidence p(D|H i). The evidence
naturally incorporates Occam’s razor which states that unnecessarily complex models
should not be preferred to simple ones. Bayesian model comparison allows several models
to be compared using the full training data in a consistent framework. The concept of
Bayesian model comparison can be stated simply as: the model with the largest evidence
will make the observed data most probable.

Note, equation (1.2) is not normalised. Therefore, the objective of Bayesian model com-
parison is most unlike cross-validation. It is not to pick the most adequate model from a

1Not to be confused with algorithmic complexity which measures the run-time of a model.
2Suppose for the moment that computing the evidence does not pose a significant hurdle.
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1.2. APPROXIMATE BAYESIAN INFERENCE

finite hypothesis space, but to find the true model by continually trying different models
and comparing them using the evidence. The process works because the true model will
on average have the maximum evidence (see proof in appendix A.1 due to MacKay [58]).

1.2 Approximate Bayesian Inference

In this thesis, we will consider two frameworks, Expectation Propagation (EP) [63]
and Evidence Approximation (EA) [58], to approximate posteriors using Gaussians.
In EA learning, we will assume a Gaussian likelihood and Gaussian prior, which is
a conjugate prior as it gives rise to a Gaussian posterior. We also assume a flat prior
over hypotheses p(H ), and at each iteration, the hypothesis is updated by the current
approximation to the posterior in order to maximise the evidence. This means EA
explicitly performs Bayesian model comparison to prevent overfitting. In EP learning,
the algorithm converges to the maximum of a particular (negative) energy function [63],
which is not the evidence. Therefore, each iteration (over the entire dataset) does not
necessarily improve the model. The EM-EP [50] algorithm provides a general framework
for combining EP with Bayesian model comparison to select H by maximising a lower
bound on the log evidence. EP has an advantage over Gaussian EA when the problem
requires a non-Gaussian likelihood. However, EP makes a strict assumption that the
samples are independent which is not appropriate for all types of data (e.g. biological
species).

1.2.1 Evidence Approximation

Traditionally, the Evidence Approximation (EA) has only been used to model data
assumed to have been drawn independently from a data generating distribution. However,
sometimes the independence assumption is a nuisance. One example, which we look
at in chapter 5 is phylogenetic comparative methods [38]. Here, the data represent
species which are assumed to share a common evolutionary history. The comparative
method is used to test whether a continuous phenotypic characteristic (or trait) of the
species also shares an evolutionary history. Recently, phylogenetic comparative methods
have been used to study relationships between feeding behaviour and brain volume in
Neotropical bats [97] and body mass and behavioural dominance in hummingbirds [10].
To do phylogenetic regression in an evidence approximation framework, we express the
evolutionary tree of the data (often called a phylogeny) as a covariance matrix [32] and

3



CHAPTER 1. INTRODUCTION

maximise the evidence to determine the value of a parameter ∏, due to Pagel [78], which
measures how much the phylogeny should be used (often called phylogenetic signal [92])
in the predictive model of the trait.

1.2.2 Expectation Propagation

To apply Expectation Propagation (EP), we assume that we already know the true values
of H which we want to use to approximate p(w|D,H ) using Bayes’ Theorem (1.1). This
is not as straightforward as it sounds as it still requires that we evaluate the evidence
which is often an intractable integral. Even by approximating the likelihood with a
product of independent distributions and using a Gaussian prior, there are too many
integrals to be analytically tractable. The solution to this problem became known as
assumed-density filtering (ADF), which appeared independently in the statistics [55],
control theory [60] and machine learning [8] [76] literature, and was later extended to
EP by Minka3 [64]. The idea is to update the posterior approximation for each data point
sequentially which only requires solving a single integral at a time. The only requirement
is that this integral is analytically tractable which is the case for the examples considered.
Nevertheless, assumed-density filtering is an online algorithm so it is necessarily biased
by the arbitrary order in which the data points are processed. The EP algorithm extends
ADF to make multiple passes through the data which can iteratively refine the posterior
approximations until convergence. In chapters 3 and 4, we apply the EP framework
on two different likelihoods, a mixture of signal and noise Gaussians called the clutter
problem and a sigmoidal confidence measure for binary classification, and show how
it can be improved by reformulating EP as a more general method which performs
approximate inference of approximate posteriors, where exact inference as in EP is a
special case. Minka [64] has shown that EP provides an approximation to the evidence at
every iteration. We can use the evidence to select models which approach and converge
to different local optima of a modified EP energy function.

1.3 Road map

Chapter 2 provides background material on the Bayesian Occam’s razor and other
frameworks for learning statistical models (maximum likelihood, VC dimension and
minimum description length). There is also an introduction to the exponential family of

3A very similar algorithm was also presented by Opper and Winther [75] derived using techniques
from statistical mechanics.

4



1.3. ROAD MAP

distributions and the Kullback-Leibler divergence for approximate inference.

Chapter 3 introduces a new parameter ∞ into the (Gaussian) canonical EP algorithm
which can be optimised with the evidence and applies the new approach, which we call
∞-EP, to the problem of separating Gaussian signal from Gaussian noise (called the
clutter problem) resulting in improved performance.

Chapter 4 applies ∞-EP to a logistic-type probit likelihood used for binary classifica-
tion, on which canonical EP has previously shown excellent predictive performance [63]
[90]. Remarkably, by setting ∞> 0, the linear classifier automatically ignores redundant
training examples. The ∞-EP approach is extended to non-linear classification and ap-
plied to classify oncogenic single nucleotide variants.

Chapter 5 applies Bayesian model comparison to phylogenetic comparative methods
for continuous traits using the evidence approximation. The phylogenetic relevance
vector machine (PhyRVM) is derived, including a new analytical update for Pagel’s ∏
by maximising the evidence. A new method for kernel dimensionality reduction called
phylogenetic probabilistic principal components analysis (P3CA) is developed with closed-
form solutions. We predict the optimal growth temperature (OGT) of prokaryotes and
reconstruct the OGT of the last universal common ancestor (LUCA).

Chapter 6 summarises the main results of chapters 3-5. By maximising the evidence to
select ∞ or ∏ for independent or evolutionarily dependent data respectively, the methods
developed in this thesis are able to determine whether exact or approximate inference
of Gaussian approximate posteriors is preferable. We also suggest some directions for
future work on the PhyRVM and sparse Bayesian classification using ∞-EP.

5
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2
BACKGROUND

“Nothing is more practical than a good theory."

— Vladimir N. Vapnik

This chapter describes the Bayesian Occam’s razor in more detail and compares it to
other commonly used statistical frameworks: maximum likelihood, VC dimension and
minimum description length. We also introduce the Kullback-Leibler divergence and
exponential family of distributions which are central to approximate inference methods
such as Expectation Propagation and Variational Inference.

Likelihood and Evidence: A central concept in Bayesian inference is marginalisation, in
which auxiliary variables are integrated out of a joint probability density. In the evidence
approximation, we assume a flat prior over hypotheses H , which leaves a single scalar
parameter w to be integrated out:

p(D|H )=
Z

p(D,w|H ) dw(2.1)

=
Z

p(D|w,H ) p(w|H ) dw(2.2)

The two terms in the integral are: the prior p(w|H ), which expresses prior belief in the
value of w; and the likelihood p(D|w,H ), which measures the predictions the model
makes about the observed data D for a particular value of w. As the number of samples
increases, the Gaussian posterior p(w|D,H )/ p(D|w,H ) p(w|H ) tends to be sharply
peaked at the true value of w [4]. The value of w at the peak is called the maximum a
posteriori estimate wMP . The evidence is given by the area under the un-normalised

7



CHAPTER 2. BACKGROUND

posterior which can be approximated by the height of the peak times its width ¢wposterior,
which represents the posterior uncertainty in w [58]:

(2.3) p(D|H )º p(D|wMP ,H ) p(wMP |H )¢wposterior

which can be restated as the product of the best fit likelihood p(D|wMP ,H ) and an Occam
factor p(wMP |H )¢wposterior [34]. By assuming that the prior p(w|H ) is uniform over a
large interval ¢wprior, the Occam factor=¢wposterior/¢wprior [58] and the evidence is:

(2.4) p(D|H )º p(D|wMP ,H )
¢wposterior

¢wprior

The maximum likelihood estimate is achieved by using a flat prior, which maximises
¢wprior, minimising the Occam factor and potentially causing the model to overfit. There-
fore, maximising the evidence is a trade-off between maximising the fit to the data
(likelihood) and the model complexity (Occam factor).

Minimum Description Length and Evidence: The minimum description length (MDL)
principle [94] approaches the model comparison problem from a completely different
angle, and yet nevertheless, it is very similar to the Bayesian approach. Suppose, a
sender wishes to send a dataset D to a receiver using the shortest message possible. The
naive approach would be to just transmit the data suitably encoded. A better solution
is to first transmit a model M for generating the data using a message of length L(M),
then a second message of length L(D|M) to correct the mistakes made by the model after
observing the data. If we measure the amount of information in a message using the
logarithm to the base e1, the total description length is [4]:

description length= L(D|M)+L(M)(2.5)

=°log[p(D|M) p(M)](2.6)

The description length has a very similar functional form as the (negative log) evidence
(2.3) and similarly it embodies Occam’s razor. The best fit likelihood is given by L(D|M)
and the Occam factor is L(M). A very simple model will provide a poor description
of the data leading to a large correction term; and a very complex model will require
fewer corrections but more information in the model term. Therefore, minimising the
description length is also a trade-off between fit to the data (likelihood) and complexity
(Occam factor).

1The units of measurement are ‘nats’.
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Akaike’s information criterion (AIC) [2] and the Bayesian information criterion (BIC)
[100] can be thought of as simple approximations to the MDL given by 2d°2logp(D|w,H )
and dlogn°2logp(D|w,H ) respectively (where d is the number of parameters and n is
the number of samples) [58]. Both AIC and BIC resemble a simple multivariate extension
to the approximation of the evidence (2.4) by assuming each parameter has the same
ratio ¢wposterior/¢wprior [5]:

(2.7) logp(D|H )º logp(D|wMP ,H )+dlog
µ
¢wposterior

¢wprior

∂

In this simple approximation the Occam factor penalty increases linearly with the
number of parameters. The correct expression for the multivariate Gaussian Occam
factor is [58]:

(2.8) Occam factor= p(wMP|H ) (2º)d/2 |ß|°1/2

where ß=rrlogp(w|D,H ) is the Hessian matrix which is the inverse of the posterior
covariance.

VC dimension and Evidence: An alternative to Bayesian model selection for binary
classification was given by Vapnik and Chervonenkis [117]. Binary classifiers learn a
mapping (often called a decision boundary) from n samples of d-dimensional data x 2R

to a binary label y = ±1. The VC dimension DV C is defined as the largest set of data
that the model can classify perfectly for any labelling (often called shattering). For a
linear classifier DV C = d [73]. Vapnik and Chervonenkis showed that if the number of
examples is much greater than DV C then a large difference between training error (the
classification error on the training set) and generalisation error (the probability of a
trained classifier misclassifying a test example x§) is very unlikely [73]. This motivates
increasing the amount of data and decreasing DV C (without significantly increasing the
training error). Furthermore, Vapnik [118] related DV C to a quantity called the margin,
Ω, which is the least distance from the decision boundary to the training data:

(2.9) DV C ∑ DS

Ω2

where DS is the diameter of the smallest sphere containing the training data. This bound
motivated the development of an algorithm which explicitly maximises the margin
called the Support Vector Machine (SVM) [18]. The SVM uses only the examples which

9



CHAPTER 2. BACKGROUND

lie on the margin, called support vectors, to construct a classifier2. The non-support
vectors do not contribute to the decision boundary. A link between the Bayesian and
maximum margin formalism was found by Herbrich and Graepel [43] who built on the
PAC (Probably Approximately Correct) Bayesian theorems of D. McAllester [61] and the
work of Herbrich, Graepel and Campbell [44]. For ± 2 (0,1] with probability at least 1°±
over a random training sample, the generalisation error of the Bayes optimal classifier,
R[Bayes(x§)], is bounded above by [44]:

(2.10) R[Bayes(x§)]∑ 2
n

µ
ln

µ
1

p(V (D))

∂
+2ln(n)+ ln

µ
1
±

∂
+1

∂

where p(V (D)) is the prior over classifiers which perfectly separate the training data.
The space of perfect separators is called version space. When we use the ‘PAC-likelihood’,
given by 1 for a correct classification and 0 otherwise, in Bayes’ Theorem, p(V (D)) is equal
to the evidence [40]. Therefore, by maximising the (negative) log marginal likelihood
(evidence) the bound (2.10) is minimised. There is also a PAC-Bayes margin bound for the
generalisation error. For this we will need to normalise the margin Ω by the norm of each
training example, Ω̄ = Ω/kxk to keep the margin within version space. For ± 2 (0,1] with
probability at least 1°± over a random training sample and h 2V (D), the generalisation
error of a linear classifier h correctly classifying n samples with a positive normalised
margin Ω̄ is bounded above by [43]:

(2.11) R[h]∑ 2
n

√
mln

√
1

1°
p

1° Ω̄2

!
+2ln(n)+ ln

µ
1
±

∂
+1+ ln(2)

!

where m = min(n,d). For maximum margin linear classifiers, Ω̄ = 1, the margin term
in (2.11) vanishes and similarly for maximum evidence classifiers, the (negative) log
evidence term in (2.10) becomes very small. Maximising the evidence or the margin leads
to better generalisation.

These inequalities belie a key difference between the Bayesian and maximum mar-
gin formalism. If all of the models under consideration are ill-suited to the data, then
the evidence may not be correlated with the generalisation error [58]. This sounds like a
strange flaw in the Bayesian framework but actually it is one of its greatest strengths.
Whereas, increasing the margin provably decreases the generalisation error [117], the
SVM practitioner is unaware if a better model is needed. But the Bayesian, after checking

2Technically, this is called a hard-margin SVM. The soft-margin SVM also includes data points which
lie within the margin and misclassifications as support vectors.
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the value of the evidence, is aware of this failure of the model and is motivated to search
for new models which predict the data with higher probability.

Exponential Family: The exponential family is a set of probability distributions p(x)
which can be written in a particular form given by:

(2.12) p(x)= 1
Z(¥)

exp
°
Tr[¥T(x)]

¢

where the trace (Tr) is included in the exponential for multivariate distributions. We call
T(x) the natural statistic of x, ¥ is the natural parameter and Z(¥)=

R
exp

°
Tr[¥T(x)]

¢
dx

is the normalising constant. The exponential family includes the Gaussian distribu-
tion among many other standard distributions. Consider the multivariate Gaussian
distribution as an example:

p(x)= 1
(2º)d/2|ß|1/2 exp

µ
°1

2
Tr[(x°µ)Tß°1(x°µ)]

∂
(2.13)

= 1
(2º)d/2|ß|1/2 exp

µ
°1

2
Tr[ß°1xxT °2µTß°1x+µTß°1µ]

∂
(2.14)

= 1
Z(¥)

exp
°
Tr[¥T(x)]

¢
(2.15)

where T(x) = (x,xxT) and ¥ = (µTß°1,°1
2ß

°1) and Z(¥) = (2º)d/2|ß|1/2exp
°1

2µ
Tß°1µ

¢
.

The expectation of the natural statistic is related to the normalising constant through
the formula [42]:

(2.16) r¥log(Z(¥))=
R£

r¥exp
°
Tr[¥T(x)]

¢§
dx

Z(¥)
= E[T(x)]

Kullback-Leibler Divergence: Suppose we have any arbitrary distribution p(x) and we
want to find the best Gaussian approximation q(x). To do this we will need to minimise
the dissimilarity between probability densities. The Kullback-Leibler divergence (KL-
divergence) [53] is a convenient quantity to use to measure dissimilarity because it is
always greater than or equal to zero (KL(p||q)= 0 if p = q):

(2.17) KL(p||q)=
Z

p(x)log
µ

p(x)
q(x)

∂
dx

The minimum of KL(p||q) where q(x) is in the exponential family is given by matching
expected natural statistics of q(x) to p(x) (often called moment matching) (see proof
in appendix A.2 [42]). Assumed-density filtering (ADF) performs moment matching
sequentially one data point at a time. Expectation Propagation (EP) extends ADF by

11



CHAPTER 2. BACKGROUND

iterating through the data points multiple times until convergence.

It is important to note that KL(p||q) 6= KL(q||p) and minimising KL(q||p) will lead
to a different family of algorithms called variational inference [82]. The log evidence
log(p(x)) can be decomposed into a lower bound L (q) and a KL divergence term:

(2.18) log(p(x))=L (q)+KL(q||p)∏L (q)

Variational inference maximises this lower bound (often called evidence lower bound
(ELBO) [6]) which is equivalent to minimising the KL(q||p) in (2.18). In Expectation
Propagation, it is a strict requirement that q(x) is an exponential family distribution
and that it factorises over the data (independence assumption). On the other hand,
variational inference does not have to make any strict requirements on q(x) [5] but often
it is assumed that it factorises over the variables (called mean-field theory approximations
[79]) and that q(x) is an exponential family distribution to make the optimisation have
simple analytical solutions. In practice, EP approximates the posterior moments well
(by moment matching), but it can be misled by multi-modal distributions as it tries to
average across all modes [5]. Mean-field variational inference provides a complimentary
alternative by capturing any individual posterior mode well but the approximations will
underestimate the posterior variance [6]. Finally, the KL-divergence is a member of a
more general family of alpha divergences [66]. The other divergences in this family may
be more difficult to optimise but may also improve accuracy [65].
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EXTENSIONS OF GAUSSIAN EXPECTATION

PROPAGATION

“The worth of an algorithm is not always what it seems."

— Thomas P. Minka

This chapter develops a proposed modification of the canonical Expectation Propagation
(EP) algorithm by including a new bias term in the approximate factors. The modified
EP algorithm, called ∞-EP, is equivalent to canonical EP when the coefficient of the bias
term ∞ is set to -1. The value of ∞ can be tuned by maximising the evidence to achieve
superior accuracy to canonical EP on the clutter problem.

3.1 The Clutter Problem

Empirical data gathered from sensor readings or laboratory experiments is the lifeblood
of the scientific enterprise. It is crucial that these measurements are made accurately
and consistently, because without that most statistical tools will be of little benefit, but
in certain special cases even a considerable amount of noise can be tolerated if it can
be modelled properly. One example which we will look at in this chapter is called the
clutter problem [64]. The clutter problem assumes that the signal (or distribution of
interest) is distributed by a Gaussian with mean µ and the noise is distributed by a
separate Gaussian such that the observed data is assumed to be distributed by a mixture
of both Gaussians. That is to say, the noise Gaussian is weighted by the known proportion
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CHAPTER 3. EXTENSIONS OF GAUSSIAN EXPECTATION PROPAGATION

w 2 [0,1] of zero-mean background clutter and the signal by one minus this proportion:

(3.1) p(x|µ)= (1°w)N (x|µ,I)+wN (x|0,aI)

A random variable x 2R
d distributed by a multivariate Gaussian N (x|m,V) is defined

entirely by its mean vector m and covariance matrix V through the probability density
function:

(3.2) N (x|m,V )=
exp(°1

2(x°m)TV°1(x°m)

|2ºV | 1
2

The classical result for the maximum likelihood estimate of m is the sample mean
(denoted by x̄):

(3.3) x̄= 1
n

nX

i=1
xi

If we try to estimate µ with the sample mean we will find that it gets worse and worse as
w ! 1 as it includes a greater proportion of noise to signal. A Bayesian treatment of the
problem will not only give an estimate of µ, but also the variance or uncertainty in the
estimates. A necessary addition in the Bayesian treatment is the prior which we choose
for convenience1 to be Gaussian over the d-dimensional mean vector µ:

(3.4) p(µ)=N (0,bI)

Typically, Bayesian inference is performed by building up an empirical approximation to
an exact posterior in such a way that the approximation gets more accurate over time
and exact in the infinite limit. These are known as Monte Carlo methods [5]. While
they have the theoretical advantage of asymptotic exactness, they are slow and the
approximations are non-deterministic.

Expectation Propagation (EP), which grew out of a method called assumed-density
filtering (ADF), is an approximate Bayesian inference technique that is fast and de-
terministic. It is deterministic because the posterior approximations can be calculated
analytically and it is fast because it converges very quickly to a fixed-point2 (of which
there can be multiple). The first iteration of EP is typically initialised to be equivalent to
assumed-density filtering (ADF) and further iterations can refine the posterior approxi-
mations. However, these further iterations are not guaranteed to improve the original

1The prior will be used as the initialisation of the posterior in ADF and EP.
2A fixed-point is reached when the input is equal to the output of each iteration.
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ADF approximation. They are not backed-up by Bayesian model comparison, for instance.
In this chapter, we develop a method called ∞-EP which encourages the EP iterations
to find other fixed-points which make the data more probable by maximising the evidence.

In section 3.2, we introduce spherical Gaussian assumed-density filtering, Expecta-
tion Propagation and a new EP update called ‘reuse’ and demonstrate its potential to
improve performance. In section 3.3, we demonstrate that EP iterations can lead to
a worse solution than ADF and derive the ∞-EP variant of EP (which is equivalent to
EP with ∞=°1). In section 3.3.1, we compare ADF, EP and ∞-EP for various levels of
background clutter. In section 3.3.2, we reformulate ∞-EP as a constrained optimiza-
tion problem to explain how it works by maximising the evidence and, using Lagrange
multipliers, introduce a new method called ∏∞-EP which gives statistically significant
performance improvements over ADF and EP in low clutter levels.

3.2 Spherical Gaussian Expectation Propagation

We will introduce the Expectation Propagation algorithm for the clutter problem using a
spherical Gaussian posterior approximation:

(3.5) q(µ)=N (µ|mµ,vµI)

The advantage of using a spherical Gaussian instead of a diagonal or full covariance
Gaussian is shorter run-time. Although a richer approximating distribution can capture
more of the posterior probability mass, if we can get performance which is as good by
only a single variance parameter, then we can make significant computational savings
when the posterior is very high-dimensional.

We assume the observed data, D = (x1, ..., xn) are independent so the likelihood is given
by a product of (3.1) for every data point and the joint distribution of D and µ is given by
the prior times the likelihood:

(3.6) p(D,µ)= p(µ)
nY

i=1
p(xi|µ)

We can also consider writing p(D,µ) as a product of independent factors:

(3.7) p(D,µ)=
nY

i=0
ti(µ)
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where t0(µ)= p(µ) and ti(µ)= p(xi|µ) for i = 1, ...,n. We will assume a = 10 and b = 100
as in [63] for direct comparison of our proposed modification to Minka’s canonical formu-
lation of EP.

Assumed Density Filtering (ADF) [64] makes one forward pass through the data and se-
quentially incorporates each factor ti step-by-step into a Gaussian approximation to the
posterior. The ‘new’ posterior at each step forms the prior (or ‘old’ posterior q\i(µ|m\i

µ
,v\i

µ
))

for the next step. The ‘new’ posterior is updated by minimising KL(q§||q\i) which is
called moment matching, where the exact posterior is given by:

(3.8) q§(µ)= ti(µ)q\i(µ)R
ti(µ)q\i(µ)dµ

The denominator of (3.8) is the normalising constant for each step which has an analytical
solution for Gaussian posteriors [64]:

(3.9) Zi = (1°w)N (xi|m\i
µ , (v\i

µ +1)I)+wN (xi|0,10I)

The moment matching update equations for the posterior mean and variance are given
by (see proof in appendix A.3 [41]):

mµ = m\i
µ +v\i

µ

@logZi

@m\i
µ

(3.10)

vµ = v\i
µ d° (v\i

µ )2

"ØØØØØ
@logZi

@m\i
µ

ØØØØØ

2

°2
@logZi

@v\i
µ

#
(3.11)

Moment matching with a full Gaussian covariance requires a matrix inversion, so ADF
takes O(nd3) time to solve the clutter problem. Whereas, using a spherical Gaussian
instead, ADF takes O(nd) time. There is no risk of overfitting by estimating the full
covariance matrix because it only improves the accuracy of the approximations for the
given class of posterior distribution (e.g. multivariate Gaussian). ADF is limited by
treating each factor ti exactly as it can only make one pass through the data before the
full posterior approximation is finished. Therefore, it is biased by the arbitrary ordering
of the data. A more powerful technique, called Expectation Propagation (EP) [64], begins
by approximating each of the factors ti(µ) with a Gaussian approximate factor t̃i(µ):

(3.12) q(µ)=
Q

i t̃ i(µ)RQ
i t̃ i(µ)dµ

While it is not possible to determine the approximating distribution q(µ) which minimises
KL(q§||q) as it would require averaging with respect to the true distribution [5], EP can
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3.2. SPHERICAL GAUSSIAN EXPECTATION PROPAGATION

make local approximations by updating the approximate factors sequentially. As each
approximate factor is updated independently of the order they appear, the algorithm can
iterate over all of the data points multiple times, refining the posterior estimates until
convergence.

The EP algorithm is initialised such that t̃ i(µ) = 1 for i = 1, ...,n. It then proceeds by
iterating the following three steps until all of the approximate factors converge.
For every data point i:
(1) Remove an approximate factor from the posterior to get an ‘old’ posterior:

(3.13) q\i(µ)/ q(µ)
t̃ i(µ)

(2) Compute ‘new’ posterior q(µ) via (3.10) and (3.11) by minimising KL(q§||q\i).
(3) Update the approximate factor:

(3.14) t̃ i(µ)= Zi
q(µ)

q\i(µ)
We suppose that by reusing the posterior mean as the approximate factor update, we can
achieve better accuracy. We call this update: ‘reuse’. As a motivating example, consider
the simple problem of estimating the mean of a stream of univariate Gaussian distributed
data without clutter. For this example we will focus on ADF. By defining approximate
factor updates as in canonical EP [63]:

v°1
i = v°1

µ °
≥
v\i
µ

¥°1
(3.15)

mi = m\i
µ + (vi +v\i

µ )
≥
v\i
µ

¥°1 ≥
mµ°m\i

µ

¥
(3.16)

The factor approximation is given by:

(3.17) t̃ i(µ)=
Zi(m\i

µ
,v\i

µ
)

N (mi|m\i
µ

, (vi +v\i
µ

))

√
vi +v\i

µ

vi

! d°1
2

N (µ|mi,viI)

The factor approximation is not a proper Gaussian, it is scaled by a constant and the
variance, vi, can be negative. Now, suppose we remove the vi term from (3.16), then we
find the individual approximate factor mean is equivalent to the approximate posterior
mean, giving the ‘reuse’ update:

(3.18) mi = mµ

In this case the factor approximation becomes:

(3.19) t̃ i(µ)=
Zi(m\i

µ
,v\i

µ
)

N (mi|m\i
µ

,v\i
µ

)

√
vi +v\i

µ

vi

! d
2
√

vi

v\i
i

! 1
2

N (µ|mi,viI)
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(a) m\i
µ
= 0, v\i

µ
= 1,mi = 2.27 (b) m\i

µ
= 0, v\i

µ
= 1,mi = 1.13

(c) m\i
µ
= 0, v\i

µ
= 10,mi = 2.27 (d) m\i

µ
= 0, v\i

µ
= 10,mi = 2.06

(e) m\i
µ
= 0, v\i

µ
= 100,mi = 2.27 (f) m\i

µ
= 0, v\i

µ
= 100,mi = 2.24

Figure 3.1: Examples of fitting a single factor using ADF with the canonical update (left)
and the ‘reuse’ update (right) with µ = 2, m\i

i = 0 and v\i
i 2 {1,10,100}
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Notice, the variance of the Gaussian in the denominator of (3.19) does not include
vi. If we hold m\i

i and v\i
i constant and run ADF, then (3.17), which includes vi, will

compensate for the error in v\i
i and t̃ i(µ) will remain the same for various settings of v\i

i ,
as shown in Figure 3.1 (a), (c) and (e). Whereas, the approximate factor (3.19) which does
not include vi, can vary significantly depending on the value of v\i

i , as shown in Figure
3.1 (b), (d) and (f). As v\i

i increases, the canonical EP update (3.16) gets closer to the
‘reuse’ update (3.18) and therefore q(µ) is attracted to t̃ i(µ) so Figures 3.1 (e) and (f) are
very similar. The ‘reuse’ update can lead to catastrophic approximations if the posterior
does not approximate ti(µ) very well, as shown in Figure 3.1 (b). However, when v\i

i = 10,
q(µ) passes through a very good approximation to ti(µ) in Figure 3.1 (d).

It is worth noting that the approximate factor updates can be written in a slightly
simpler form using natural parameters (¥i,øi). The natural parameters of a univariate
Gaussian are (¥i = miv°1

i ,øi =°1
2 v°1

i ). The øi update is identical to the vi update (3.15)
and the ¥i update is [90]:

(3.20) ¥i = mµv°1
µ °¥\i

µ

Similarly, we can also write ‘old’ posterior updates in terms of natural parameters
(¥\i

µ
,ø\i

µ
). However, the ‘reuse’ update cannot be seen in (3.20) and the ‘new’ posterior

updates (3.10) and (3.11) must be computed in the mean and variance representation.
Therefore, instead of swapping back and forth between expected natural statistics
and natural parameters, we will stick to using the mean and variance representation
throughout.

3.3 Extensions of Gaussian Expectation Propagation

So far we have introduced a new way to update the approximate factor means so that
they all converge to the posterior mean. Now, we will demonstrate the benefit of this.
The EP algorithm can be reformulated as a min-max optimization of a particular energy
function [63]. However, each iteration of canonical EP is not guaranteed to decrease
this energy function [5]. As spherical Gaussian EP is limited by sharing one variance
parameter across all dimensions, then depending on the sample, the EP iterations can
improve or ruin a good first iteration (or ADF approximation).

Consider the ADF and EP estimation of the distribution of interest (with mean µ)
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Figure 3.2: ADF approximation. Figure 3.3: EP approximation.

for three different random samples shown in Figures 3.2 and 3.3 respectively. The para-
meters used are w = 0.7, µ = 2 and n = 20. We have chosen three samples for which
the ADF estimates are all quite similar, fairly good and below µ (mred

µ
= 1.55,mblue

µ
=

1.31,mgreen
µ

= 1.38). Further EP iterations show improvements for the ‘blue’ and ‘green’
samples but the ‘red’ sample, which was the best for ADF, is now the worst for EP.
The sample means are: x̄red = 0.924, x̄blue = 2.85, x̄green = 3.43. Here, mEP

µ improves
on mADF

µ for samples with x̄ > mADF
µ and worsens mADF

µ for samples with x̄ < mADF
µ ,

as shown in Figure 3.4 for 5 different orderings of the ‘red’ sample corresponding to 5
different ADF estimates which all converge to the same EP fixed-point.

Figure 3.4: A plot of the mµ trajectories for 5 different orderings of the ‘red’ sample. The
sample mean is given by the solid line. The true value of the mean is 2. In all examples
EP significantly worsens a good first iteration (ADF approximation).
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Canonical EP makes a Gaussian approximation t̃ i to ti and then computes an exact
posterior including t̃ i:

(3.21) ‘new’ posterior= ‘old’ posterior+approximate factor

The new method, called ∞-EP, makes a Gaussian approximation t̃ i to ti and then computes
an approximate posterior including t̃ i with the ‘reuse’ update (3.18), where canonical EP
is a special case in which the ‘old’ posterior incorporates the bias term to recover (3.21):

(3.22) ‘new’ posterior= ‘old’ posterior+approximate factor+bias

We can force EP to find other fixed-points which make the data more probable by multi-
plying the bias term by a parameter ∞ and maximising the evidence to choose its value.

The ‘old’ posterior mean and variance in canonical EP are:

(v\i
µ )°1 = v°1

µ ° v°1
i(3.23)

m\i
µ = v\i

µ (v°1
µ mµ°v°1

i mi)(3.24)

= mµ+v\i
µ v°1

i (mµ°mi)(3.25)

By rearranging (3.24) we get a mathematical expression for (3.21):

(3.26) v°1
µ mµ = (v\i

µ )°1m\i
µ + v°1

i mi

The moment matching updates for the clutter problem used in ADF and EP are:

ri = 1° 1
Zi

wN (xi|0,10I)(3.27)

rm = ri
xi °m\i

µ

v\i
µ
+1

(3.28)

mµ = m\i
µ + v\i

µ rm(3.29)

vµ = v\i
µ ° 1

d
(v\i
µ )2 °(3.30)

where rm = @logZi
@m\i

µ

and rv = @logZi
@v\i

µ

and ° = rT
mrm ° 2rv. By multiplying vµ by the d-

dimensional identity matrix, we can use the Woodbury identity [81] to find its inverse:

(3.31) v°1
µ I= (v\i

µ )°1I + (°°1I°v\i
µ I)°1

Multiplying v°1
µ I by mµ gives:

v°1
µ Imµ = (v\i

µ )°1Im\i
µ + (°°1I°v\i

µ I)°1
h
m\i

µ +v\i
µ rm

i
+ rm(3.32)

= (v\i
µ )°1Im\i

µ + (vi)°1I
h
m\i

µ +v\i
µ rm + virm

i
(3.33)
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By comparing (3.33) with (3.26) we recover the canonical EP update equations (3.15) and
(3.16). By comparing (3.32) and (3.26), we recover the ‘reuse’ update (3.18) instead of
(3.16). This new update does not fully factorise. There is now an additive rm bias term.
It is interesting to note that rm is a function of ri (3.27), which is the probability of the
ith data point not being clutter. This means data points with high probability of being
clutter do not significantly contribute to the posterior approximations. To derive a new
expression for the ‘old’ posterior mean consistent with canonical EP, we start with (3.25)
and plug in the previous EP updates until we have it in terms of the ‘reuse’ update mreuse

i .

Plugging (3.16) into (3.25) gives:

(m\i
µ )new = mnew

µ +v\i
µ v°1

i (mnew
µ °mi)(3.34)

= mnew
µ +v\i

µ v°1
i (mnew

µ °m\i
µ + (vi +v\i

µ )(v\i
µ )°1(mµ°m\i

µ ))(3.35)

= mnew
µ +v\i

µ v°1
i (mnew

µ °mold
µ +vi(v\i

µ )°1(mµ°m\i
µ ))(3.36)

Plugging (3.29) into (3.36) gives:

(m\i
µ )new = mnew

µ +v\i
µ v°1

i (mnew
µ °mold

µ °virm)(3.37)

= mnew
µ +v\i

µ v°1
i (mnew

µ °mreuse
i °virm)(3.38)

Therefore, (3.38) and the ‘reuse’ update (3.18) is equivalent to using (3.25) and the
canonical update (3.16). We call this algorithm ∞-EP because we multiply the bias term
virm by a parameter ∞. Whenever we include the bias term, mreuse

i will be shortened to
mi. In section 3.2, we demonstrated that the ‘reuse’ update can outperform the canonical
update on a particular factor with an appropriate choice of v\i

µ
. The same is true for rm

(3.28) which is a function of v\i
µ

.

In order to derive (3.38) we have to remove an approximate factor t̃ i from the posterior
to get an ‘old’ posterior, where t̃ i is given by:

(3.39) t̃ i(µ)= si exp
µ
° 1

2vi
(µ°mi +∞virm)T(µ°mi +∞virm)

∂

We will show ∞-EP with ∞=°1 is equivalent to canonical EP. By ‘completing the square’
in the exponential for µ we get expressions for (m\i

µ
,v\i

µ
):

(3.40)
1
2

≥
(µ°mµ)Tv°1

µ I(µ°mµ)° (µ°mi +∞virm)Tv°1
i I(µ°mi +∞virm)

¥

=
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1
2

≥
(µ°m\i

µ )T(v\i
µ )°1I(µ°m\i

µ )° (m\i
µ )T(v\i

µ )°1Im\i
µ +mT

µ v°1
µ Imµ° (virm °∞mi)Tv°1

i I(virm °∞mi)
¥

where the ‘old’ posterior mean is given by:

m\i
µ = v\i

µ (v°1
µ mµ°v°1

i mi +∞rm)(3.41)

= mµ+v\i
µ v°1

i (mµ°mi +∞virm)(3.42)

which is equivalent to (3.38) with ∞=°1. The variance update v\i
µ

is the same as canonical
EP and is given by (3.23). By ‘completing the square’ in the exponential for virm and
using (3.23), we can express (3.40) entirely in terms of m\i

µ
:

°(m\i
µ )T(v\i

µ )°1Im\i
µ +mT

µ v°1
µ Imµ° (virm °∞mi)Tv°1

i I(virm °∞mi)

=

(mµ°m\i
µ )Tv°1

µ I(mµ°m\i
µ )+ (virm °∞(m\i

µ °mi))Tv°1
i I(virm °∞(m\i

µ °mi))

The ‘new’ posterior mean mµ and µ are centred on the ‘old’ posterior mean m\i
µ

. By
matching mµ with m\i

µ
, µ is centred on mµ. Furthermore, m\i

µ
is centred on mi, so the

posterior can be refined iteratively through the approximate factor updates. Minka
[64] suggested forcing negative vi ’s to some very large value (108) and setting vµ = v\i

µ

to improve canonical EP convergence and called this ‘restricted’ EP. He reported that
‘restricted’ EP leads to inaccurate posteriors however often it is necessary for convergence,
shown in Figures 3.5 (left). We find that convergence and accuracy with ∞ ∏ 0 can be
improved by using Minka’s EP restrictions on every data point, which we will call
‘restricted’ ∞-EP, shown in Figures 3.5 (right).

Figure 3.5: Distributions of interest for the same three samples (red, blue, green) approx-
imating the true distribution (black) using ∞-EP with ∞=°1 (left) and ∞= 1 (right).
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CHAPTER 3. EXTENSIONS OF GAUSSIAN EXPECTATION PROPAGATION

The ‘restricted’ ∞-EP algorithm for the clutter problem (with a = 10,b = 100).
1. Initialise: vi =1,mi = 0, si = 1,mµ = 0,vµ = 100,rm = 0.
2. Until (mi,vi) converges (change less than 10°4).
For i = 1,...,n:

Compute ‘old’ posterior:

(v\i
µ )°1 = v°1

µ ° v°1
i

m\i
µ = mµ+v\i

µ v°1
i (mµ°mi +∞virm)

Update ‘new’ posterior:

Zi = (1°w)N (xi|m\i
µ , (v\i

µ +1))+wN (xi|0,10)

ri = 1° 1
Zi

wN (xi|0,10)

mµ = m\i
µ + v\i

µ rm

vµ = v\i
µ ° 1

d
(v\i
µ )2 °

Update approximate factor:

mi = mµ

vi = v°1
µ ° (v\i

µ )°1

if ∞∏ 0

vµ = v\i
µ and vi = 108

if vi < 0

vµ = v\i
µ and vi = 108

si =
Zi

(2ºvi)d/2N (mi|m\i
µ
+∞virm, (vi +v\i

µ
)I)

Compute the evidence:

B =
mT

µ mµ

vµ
°

X

i

mT
i mi

vi

p(D)º (2ºvx)d/2 exp(B/2)
nY

i=1

≥
si(2ºvi)°d/2

¥

where rm = ri
xi°m\i

µ

v\i
µ
+1

, rv =° rid
2(v\i

µ
+1)

+ ri(xi°m\i
µ

)T (xi°m\i
µ

)
2(v\i

µ
+1)2

,

°=rT
mrm °2rv = rid

(v\i
µ
+1)

° ri(1° ri)
(xi°m\i

µ
)T (xi°m\i

µ
)

(v\i
µ
+1)2
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3.3.1 Bayesian Model Comparison

By inspecting the EP fixed-point, we can solve for si to get the update including the bias
term virm:

(3.43)
Z

t̃ i(µ)N (µ|m\i
µ ,v\i

µ ) dµ =
Z

ti(µ)N (µ|m\i
µ ,v\i

µ ) dµ

(3.44) si =
Zi

(2ºvi)d/2N (mi|m\i
µ
+∞virm, (vi +v\i

µ
)I)

We can then compute the evidence as in canonical EP [5]:

(3.45) P(D)º
Z nY

i
t̃ i(µ) dµ = (2ºvµ)d/2 exp(B/2)

nY

i

≥
si(2ºvi)°d/2

¥

where B = mT
µ mµ/vµ °

P
i
°
mT

i mi/vi
¢
. Table 3.1 compares the average posterior mean

mµ given by ‘restricted’ ADF (with ∞=°1), ‘restricted’ EP3 and ‘restricted’ ∞-EP4 (∞§ 2
[°1,1] was chosen using Brent’s method [9] to maximise the evidence (3.45)) for w 2
{0.2,0.4,0.6,0.8} over 50 samples of n = 20 data points where µ = 2. Except for w =
0.4, ‘restricted’ ∞-EP outperforms ‘restricted’ ADF on average. However, we tested the
statistical significance of these results with a Wilcoxon paired signed rank test and found
no statistical significance at the 1% significance level. We repeated the experiment with
n = 200, shown in Table 3.2. Although, only w = 0.4 showed a statistically significant
improvement between ‘restricted’ ∞-EP and ‘restricted’ ADF, ‘restricted’ ∞-EP has the
lowest average error for all clutter levels. However, the standard deviations are too high
for any of the other results to be significant. In particular, it is interesting to see that the
maximum evidence value of ∞ is 1 for all clutter levels.

Table 3.1: Average mµ (± one standard deviation) for ADF, EP and ∞-EP (with aver-
age maximum evidence ∞) on 50 samples with µ = 2 and n = 20 for various levels of
background clutter.

w 0.2 0.4 0.6 0.8

ADF 1.511 ± 0.822 1.318 ± 2.164 0.195 ± 3.329 -0.601 ± 5.166
EP 1.555 ± 0.880 1.141 ± 2.234 0.448 ± 3.235 -0.377 ± 5.495

∞-EP 1.784 ± 1.106
∞̄§ = 0.164

1.246 ± 2.100
∞̄§ = 0.357

0.494 ± 3.725
∞̄§ = 0.147

-0.534 ± 7.070
∞̄§ =°0.180

3Canonical EP did not converge.
4The optimisation was improved by removing the if-statement for ∞∏ 0.
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CHAPTER 3. EXTENSIONS OF GAUSSIAN EXPECTATION PROPAGATION

Table 3.2: Average mµ (± one standard deviation) for ADF, EP and ∞-EP (with average
maximum evidence ∞) on 50 samples with µ = 2 and n = 200 for various levels of back-
ground clutter. Statistically significant results at the 1% level between ∞-EP and ADF
are shown in bold.

w 0.2 0.4 0.6 0.8

ADF 1.60 ± 0.281 0.877 ± 1.17 0.634 ± 2.05 0.524 ± 3.29
EP 1.62 ± 0.229 1.18 ± 1.12 0.519 ± 2.23 0.680 ± 3.69

∞-EP 1.97 ± 1.14
∞̄§ = 1

1.75±1.64
∞̄§ = 1

1.47 ± 2.41
∞̄§ = 1

1.29 ± 3.64
∞̄§ = 1

3.3.2 Basic Differential Multiplier Method

There is a marked increase in standard deviation between EP and ∞-EP in Table 3.2 for
w = 0.2. In this chapter, we will seek to constrain ∞-EP to find a set of fixed-points with a
smaller standard deviation. Notice, the similarity between the moment matching update
for the Gaussian posterior mean and gradient ascent:

mµ = m\i
µ +v\i

µ

@logZi

@m\i
µ

(3.46)

ṁ\i
µ = @logZi

@m\i
µ

= ri
xi °m\i

µ

v\i
µ
+1

(3.47)

Zi =
t̃ i(µ)q\i(µ)

q(µ)
(3.48)

The ‘old’ posterior mean moves in the direction of steepest ascent of logZi for every data
point i, at a rate equal to the ‘old’ posterior variance, to give the ‘new’ posterior mean.
Including the bias term in (3.46) yields:

mµ = (m\i
µ )EP +v\i

µ

√
@logZi

@m\i
µ

+∏i∞
@logZold

i

@m\i
µ

!
(3.49)

ṁ\i
µ = @logZi

@m\i
µ

+∏i∞
@logZold

i

@m\i
µ

(3.50)

where (m\i
µ

)EP is the canonical EP update (3.25) and Zold
i is the normalising constant

from the previous iteration and ∏i is the Lagrange multiplier for the ith constraint
logZold

i ∑ 0 for i 2 {1, ...,n} which implies Zold
i ∑ 1. The gradient ascent (3.49) is a solution

to the n constrained optimisation problems:

maximise f i(m\i
µ )=

≥
logZi +∏i∞logZold

i

¥
(3.51)

subject to logZold
i ∑ 0(3.52)
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To update the value of ∏i, an auxiliary differential equation is required:

(3.53) ∏̇i =
@ f i

@m\i
µ

= ∞logZold
i

which performs gradient ascent on ∏i when ∞ > 0, though using the same sign for ∞

in (3.51) and (3.53) has been shown for general constrained optimisation problems to
not work well because it tends to get stuck in saddle points [83]. It is also crucial to
change the sign of the Lagrange multiplier in (3.51) because logZi will only be at a
maximum if its gradient is oriented towards the constrained region logZold

i < 0 so that
@logZi =∏i@logZold

i ∑ 0. Expectation Propagation provides a simple solution to this prob-
lem by setting ∞=°1 and ∏i = 1. When ∏i is not constant, the EP fixed-point does not
change for any ∞< 0 but it will take longer to converge as ∞ is decreased (and negative)
[83].

There are two types of solutions according to whether the fixed-point lies in the re-
gion logZold

i < 0 or on the boundary logZold
i = 0 [5]. In the first case, the constraint

is inactive, so ∏i = 0 and the stationary point is at @logZi = 0 which implies m\i
µ

= xi.
This case is equivalent to ∞-EP with ∞= 0 and the posterior mean is equivalent to the
sample mean at convergence. In the latter case, the constraint is active, so ∏ 6= 0 and
the stationary point is at logZold

i = 0 which implies Zold
i = 1. Therefore, the solution of

the optimisation problems (3.51) subject to (3.52) will have to satisfy the Karush-Kuhn-
Tucker (KKT) [49] [52] conditions: logZold

i ∑ 0,∏i ∏ 0,∏ilogZold
i = 0 for i 2 {1, ...,n}.

The iterations of ∞-EP may not converge with a poorly chosen positive value of ∞ in
(3.51), but can be made to converge by maximising the evidence. The iterations move in
the opposite direction to maximising logZi, due to the positive sign of ∞, but by choosing
the value of ∞ to maximise the evidence, the iterations can be forced into a neighbourhood
which maximises the objective (3.51) (because the log evidence is a function of

P
i logZi),

which means on the next iteration the constraint logZold
i will be close to zero and the

objective resembles canonical EP (with a small additive bias term).

Table 3.2 shows that the local maxima found by ∞-EP with ∞= 1 are consistently better
than EP and ADF on average. Although the standard deviations are too large for the
results to be statistically significant. In order to reduce the variance in posterior approx-
imations, we can also optimise the value of ∏i (rather than setting ∏i = 1 in ∞-EP). By
swapping the sign in (3.53), we get a gradient descent update for ∏i which resembles the
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CHAPTER 3. EXTENSIONS OF GAUSSIAN EXPECTATION PROPAGATION

Basic Differential Multiplier Method (BDMM) [83]. We will call this method ∏∞-EP.

We performed a similar comparison of ‘restricted’ ∏∞-EP, ‘restricted’ ADF and ‘restricted’
EP with n = 200 data points in Table 3.3. We restricted the comparison to low clutter
levels w ∑ 0.25 because in higher clutter levels, maximising the evidence failed to force
the iterations towards any local maxima. In fact, the iterations were directed to local
minima which catastrophically affected the approximations. The standard deviation for
∏∞-EP with w = 0.2 is significantly lower than ∞-EP in Table 3.2 and the value of ∞̄§

decreases as the value of w increases. Again, we tested the statistical significance of these
results with a Wilcoxon paired signed rank test and found ∏∞-EP gives a statistically
significant improvement over ADF and EP for w 2 {0.1,0.15,0.2}.

Table 3.3: Average mµ (± one standard deviation) for ADF, EP and ∏∞-EP on 50 samples
with µ = 2 and n = 200 in low clutter levels. Statistically significant results at the 1%
level between ∞-EP and ADF are shown in bold.

w 0.1 0.15 0.2 0.25

ADF 1.80 ± 0.095 1.70 ± 0.153 1.60 ± 0.281 1.48 ± 0.386
EP 1.80 ± 0.094 1.70 ± 0.144 1.62 ± 0.229 1.54 ± 0.322

∏∞-EP 2.12±0.389
∞̄§ = 0.734

2.08±0.450
∞̄§ = 0.669

1.92±0.454
∞̄§ = 0.575

1.63 ± 0.396
∞̄§ = 0.525

3.4 Concluding Remarks

In this chapter, we presented the ∞-EP modification to canonical EP and its application
on the clutter problem. We did not find that EP provides a statistically significant
improvement over ADF on average. We did find that the local maxima achieved by
maximising the evidence to select ∞ are superior to those found by canonical EP on
average for the examples considered. We developed an extension to ∞-EP using Lagrange
multipliers which achieved statistically significant improvements over ADF and EP in
low clutter levels. Here, we only looked at the one dimensional clutter problem. The ∞-EP
approach can be extended to d-dimensional µ by using a d-dimensional ∞ and using a
multi-dimensional optimisation method to maximise the evidence. The clutter problem
is only one possible application of Expectation Propagation, which is a general tool for
approximating posteriors with exponential family distributions. A thorough analysis of
∞-EP will require more applications on different likelihood functions.
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4
BAYES POINT MACHINES AND ONCOGENIC SINGLE

NUCLEOTIDE VARIANTS

“A failure of Bayesian prediction is an opportunity to learn."

— Edwin. T. Jaynes

This chapter applies the ∞-EP algorithm to binary classification. The classifier, called
a Bayes Point Machine (BPM), is an approximation to the Bayes optimal classifier [40]
with a single average classifier. As in the previous chapter, we show ∞ = °1 recovers
canonical EP. When ∞ > 0, the number of examples is reduced to a set of informative
support vectors. Furthermore, we apply the BPM to a challenging task of classifying
oncogenic (cancer causing) single nucleotide variants (SNVs) using a heterogeneous set
of genomic features.

4.1 Bayes Point Machines

In this chapter, we consider the supervised learning problem. The goal of supervised
learning is to learn a mapping from data to a target. Specifically, we consider binary clas-
sification for which the target is yi =±1. The Bayesian approaches to linear classification
are competitive with the popular Support Vector Machine (SVM) [18]. The advantages of
the SVM are its speed and sparsity. The SVM reduces the full training data (also called
examples) to a smaller number of support vectors without sacrificing the quality of the
classification output. The advantage of the Bayesian approach, called the Bayes point, is
that it has been proven to be optimal [120] but computing the Bayes point exactly is in-
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tractable as it requires solving an integral for every test input. Expectation Propagation
(EP) can be used to efficiently compute the Bayes point. However, it cannot be used to
remove redundant or noisy examples which can lead to EP failing spectacularly when
the posterior puts most of its probability mass on examples which are clearly redundant
(such as repeated examples). In this chapter, we present the ∞-EP algorithm for training
Bayes point machines, which is capable of learning sparse linear classifiers and can be
extended to non-linear classification.

Given a set of d-dimensional independent & identically distributed training data and
targets D = {(x1, y1), ..., (xn, yn)}, a linear classifier learns a d-dimensional vector w and a
scalar offset b to classify each data point xi using ỹ= sign(wTxi +b). We often incorpo-
rate the offset into the weight vector w= (b,w1,w2, ...,wd), giving a simplified decision
function ỹ= sign(wTxi), by appending a 1 to each data vector xi = (1, x1,i, x2,i, ..., xd,i).

Model comparison is central to supervised learning, and classification is no exception.
That is because for any particular mapping from training data to predicted class labels,
there are infinitely many possible values of w. Therefore, model selection criteria are
necessary to sort through the infinite set of classifiers and select the one which will
generalise best on out-of-sample test data.

In chapter 2, we introduced two complimentary model selection criteria, VC dimen-
sion and the evidence, and we showed that maximising either is optimal. The Bayesian
generalisation error bound (2.10) can be rewritten in terms of the maximum margin
generalisation error (2.11):

(4.1) R[Bayes(x§)]∑ R[h]° ln(4)
n

Thus, the improvement gained by maximising the evidence diminishes with increasing
surface volume of version space [40]. The Bayes optimal classifier or optimal perceptron
averages all classifiers in version space weighted by their posterior probabilities and for
a new data point x§ it is [40] [64]:

(4.2) Bayes(x§)= sign
Z

p(w|y)p( ỹ|x§,w) dw= sign
≥
E

h
sign(wTx§)

i¥

We can approximate the Bayes optimal classifier with the single average classifier by
interchanging sign and expectation in (4.2) [40]:

(4.3) sign
≥
E

h
sign

≥
wTx§

¥i¥
= sign

≥
E[w]Tx§

¥

30



4.1. BAYES POINT MACHINES

The idea is that if version space is almost point-symmetric with respect to E[w], which is
called the Bayes Point [64], then for each w in version space there exists another
weight vector w̃ = 2E[w]°w, also in version space, so sign

°
wTx§¢

+ sign
°
w̃Tx§¢

=
2 sign

°
E[w]Tx§¢

[40].

The likelihood for Bayes point classification with additive noise p(ª)=N (ª|0,v) is:

(4.4) p(y|w,ª)=
nY

i=1
£(yi(wTxi +ª))=

nY

i=1

8
<
:

1 yi(wTxi +ª)> 0

0 yi(wTxi +ª)< 0

The noise can be averaged out by marginalisation which amounts to modifying the
likelihood to a probit regression [77]:

p(y|w)=
nY

i=1

Z
p(y|w,ª)p(ª)dª(4.5)

=
nY

i=1
©

µ
yiwTxi

≤

∂
(4.6)

Zi =©(z)=
Zz

°1
N (z|0,1) dz(4.7)

where Zi =
R

ti(w)q\i(w)dw is the ith normalising constant after removing the ith
approximate factor, ©(z) is the error-function and ≤ is the noise variance which can be
chosen either by maximising the evidence or cross-validation. It is convenient to assume
a spherical Gaussian prior:

(4.8) p(w)=N (w|0,I)

We will use a full covariance Gaussian to give the best possible approximations to the
posterior and as there is no matrix inversion required, computing the Bayes Point takes
O(nd2) time (excluding computing the evidence which takes O(n3) time).

In section 4.2, we introduce and derive the ∞-EP algorithm for training Bayes point
machines (BPM). In section 4.2.1, we show that setting ∞ > 0 modifies the BPM loss
function (similar to the ‘hinge’ loss used in the SVM) and causes the influence of re-
dundant examples to become very small. In section 4.2.2 we extend the ∞-EP BPM to
non-linear classification. We demonstrate the effectiveness of ∞-EP against canonical EP
and the SVM on several benchmark classification datasets. In section 4.3 we combine
the BPM with a composite kernel using several heterogeneous data sources to classify
single nucleotide variants as oncogenic (cancer causing) or benign.
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The ∞-EP algorithm for the Bayes Point Machine.
To simplify notation we will write yixi/≤ as xi.
1. Initialise vi =1,mi = 0, si = 1,mw = 0,Vw = I,Æi = 0.
2. Until (mi,vi) converges (change less than 10°4).
For i = 1,...,n:

Compute ‘old’ posterior:

V\i
w =Vw + (Vwxi)(Vwxi)T

vi °xT
i Vwxi

m\i
w =mw + (V\i

w xi)v°1
i (xT

i mw °mi +∞viÆi)

Compute ‘new’ posterior:

zi =
xT

i m\i
wq

xT
i V\i

w xi +1

Æi =
1

q
xT

i V\i
w xi +1

N (zi|0,1)
©(zi)

mw =m\i
w +V\i

w Æixi

Vw =V\i
w °V\i

w (rmrT
m °2rv) V\i

w

=V\i
w ° (V\i

w xi) ° (V\i
w xi)T

Update approximate factor:

vi =°°1 °xT
i V\i

w xi

mi = xT
i m\i

w +xT
i V\i

w xiÆi = xT
i mw

si =
©(zi)

q
1+v°1

i xT
i V\i

w xi

exp
°
°1

2Æ
2
i (xT

i V\i
wxi °∞vi)(xT

i V\i
wxi +vi)°1(xT

i V\i
wxi °∞vi))

¢

Compute the evidence:

B =mT
wV°1

w mw °
X

i

m2
i

vi

p(D)º |Vw|
1
2 exp(B/2)

Y

i
si

where rm = @logZi
@m\i

w
=Æixi, rv = @logZi

@V\i
w

=°1
2

ÆixT
i m\i

w

xT
i V\i

w xi+1
xixT

i ,

°= Æi
°
(m\i

w )Txi+Æi(xT
i V\i

w xi+1)
¢

xT
i V\i

w xi+1
= Æi(xT

i mw+Æi)
xT

i V\i
w xi+1

= Æi(mi+Æi)
xT

i V\i
w xi+1
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4.2 Extensions of Gaussian Expectation Propagation

Each iteration of Expectation Propagation produces an estimate of the leave-one-out
error without any extra computation [87]. By using the ‘old’ posterior mean m\i

w to
approximate a classifier trained on (n°1) data points, we can predict a class label for
the ith data point and estimate the leave-one-out error En°1

error:

(4.9) En°1
error = 1° 1

n

nX

i=1
£

≥
yim\i

w xi

¥

where £(z) is the step function defined by (4.4). We can use En°1
error for model selection. Qi

et al. [87] tested this idea and found En°1
error to be a better model selection criterion than

others such as: evidence, feature sparsity and the margin. This is not surprising as the
leave-one-out error is an ‘almost’ unbiased estimate of the test error [57] [118] (it is only
‘almost’ unbiased because the sample size is n-1 instead of n). However, it is surprising
that they found maximising the margin to be misleading as En°1

error and the margin Ω are
intimately related by the following inequality [118]:

(4.10) En°1
error ∑ E

µ
SD
nΩ2

∂

where D is the smallest sphere containing the training data and S is a quantity called
the ‘span’ of the support vectors [118]. If we take {S,D,n} as constant, then minimising
En°1

error is equivalent to maximising Ω. In fact, Qi et al. even found the margin to decrease
as the evidence increased, which then led to the BPM overfitting. The optimal number of
EP iterations was found not to be correlated with maximising the margin or evidence.
They took this as proof that maximising the margin and evidence were not suitable
model selection criteria. However, this can also be understood as reflecting an error in
the underlying model assumptions. In chapter 2, we stated that when the evidence is not
correlated with the generalisation error, we should return to our modelling assumptions
and correct this failure to find a better model [58].

The BPM trained using EP seems to not automatically control complexity, unlike the
SVM which does so by maximising the margin. After all, we are assuming a fixed hypo-
thesis, which amounts to the prior p(w) and the noise variance ≤, and canonical EP does
not perform Bayesian model comparison. Given a sufficiently small value for ≤, we would
expect the EP iterations to eventually achieve zero training error (if possible with the
set of classifiers considered) even if that would worsen generalisation performance. And
yet, EP and related methods [74] achieve state-of-the-art generalisation performance for
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deterministic Bayesian binary classification without overfitting the training data.

However, when ≤ is set too high, EP will disastrously underfit. To remedy this we
introduce the ∞-EP modification for Bayes point machines. Once again, we start with a
‘reuse’ update for the approximate factor mean using the ‘new’ posterior mean:

mreuse
i = xT

i m\i
w + (xT

i V\i
w xi)Æi(4.11)

= xT
i mw(4.12)

Following similar lines as chapter 3 but with a full covariance matrix, we plug in the
previous EP updates until we have the ‘old’ posterior mean in terms of the ‘reuse’ update:

(m\i
w )new =mnew

w + (V\i
w xi)v°1

i (xT
i mnew

w °mi)

=mnew
w + (V\i

w xi)v°1
i (xT

i mnew
w ° (xT

i m\i
w + (vi +xT

i V\i
w xi)Æi))

=mnew
w + (V\i

w xi)v°1
i (xT

i mnew
w °xT

i mold
w °viÆi)

=mnew
w + (V\i

w xi)v°1
i (xT

i mnew
w °mreuse

i °viÆi)(4.13)

Therefore, EP with (4.12) and (4.13) is equivalent to canonical EP. This new expression
(4.13) incorporates a bias term viÆi into the ‘old’ posterior mean. Whenever we include
the bias term, mreuse

i will be shortened to mi.

In order to derive (4.13) we have to remove t̃ i from the posterior to get an ‘old’ pos-
terior, where t̃ i is given by

(4.14) t̃ i = siexp
µ
° 1

2vi

≥
wTxi °mi +∞viÆi

¥2
∂

and ∞ is the coefficient of the bias term viÆi, so ∞-EP with ∞ = °1 is equivalent to
canonical EP. By using Bayes’ Theorem with the approximate factor as the likelihood and
the ‘old’ posterior as the prior, we get an equation for the ‘new’ posterior. Rearranging
this equation, we get expressions for (m\i

w ,V\i
w ):

(V\i
w )°1 =V°1

w °v°1
i xixT

i(4.15)

m\i
w =V\i

w
°
xiv°1

i (∞viÆi °mi)+V°1
w mw

¢
(4.16)

=mw +Vwxi

≥
v°1

i (xT
i mw °mi +∞viÆi)

¥
(4.17)

The V\i
w update is the same as canonical EP. Rearranging (4.16), we can derive equations

for the Gaussian natural parameter V°1
w mw for canonical EP (4.18) and ∞-EP (4.19):

V°1
w mw = (V\i

w )°1m\i
w +xiv°1

i mi(4.18)

V°1
w mw = (V\i

w )°1m\i
w +xiv°1

i mi °∞Æixi(4.19)
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Now, we can derive V°1
w mw from the moment matching updates using the Woodbury

Identity [81] for canonical EP [41] and ∞-EP:

V°1
w = (V\i

w )°1 +xi

≥
°°1 °xT

i V\i
w xi

¥°1
xT

i(4.20)

V°1
w mw = (V\i
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¥°1 ≥
Æivi +xT
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= (V\i
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w +xi
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i V\i
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¥°1 ≥
xT

i V\i
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i m\i
w

¥∏
+Æixi(4.22)

By comparing (4.21) and (4.18), we get the fully factorised canonical EP approximate
factor mean and variance updates. By comparing (4.22) and (4.19), we see canonical
EP is equivalent to ∞-EP with ∞ = °1. But with ∞ = 0, there is an additive error term
rm =Æixi and with ∞= 1 the error term is 2rm. If the Æi ’s are initialised to 0, the first
iteration of ∞-EP is the same irrespective of the value ∞ and is equivalent to ADF. The
error term scales each data point by a particular error function given by [90]:

zi =
xT

i m\i
wq

xT
i V\i

w xi +1
(4.23)

Æi =
1

q
xT

i V\i
w xi +1

N (zi|0,1)
©(zi)

(4.24)

By inspecting the EP fixed-point, we can solve for si to get the update for ∞-EP:

(4.25)
Z

t̃ i(w)N (w|m\i
w ,V\i
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Setting ∞=°1 recovers the simpler form used in canonical EP:

(4.27) si =
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We can then compute the evidence as in canonical EP [5]:

B =mT
wV°1

w mw °
X

i

m2
i

vi
(4.28)

p(D)º |Vw|
1
2 exp(B/2)

Y

i
si(4.29)
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The decision boundaries of the BPM and SVM on a balanced two-class two-dimensional
toy dataset of 40 data points are shown in Figure 4.1. The true decision boundary is a
vertical line at -0.55. Canonical EP (or ∞-EP with ∞=°1) can estimate the approximate
posterior exactly. The posterior estimated by ∞-EP with ∞ = 1 comes with an additive
error term 2Æixi, which causes the classifier to overfit. With large ≤, (left), the overfitting
is helpful as canonical EP underfits the data. By lowering the ≤ parameter, (right), both
classifiers line up in the same ‘corridor’. We compare the soft-margin SVM to the BPM
with ∞= 1 (bottom). Both classifiers achieve the same training error but the SVM fails to
find the right ‘corridor’.

Figure 4.1: Bayes point machine with ∞= 1 vs ∞=°1 (top) or vs SVM (bottom) on a toy
dataset both with ≤= 5 (left), ≤= 2 (right and bottom).
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4.2.1 Sparse Bayes Point Machine

Figure 4.2: Plot of the rescaled N

© (4.24) (green) and rescaled N

© with ∞> 0 (red) error
functions, ‘hinge’ error (black), exponential error (violet) and ‘0-1’ error (blue).

Figure 4.2 shows a variety of error functions including N

© (green), N

© with ∞> 0 (red),
‘hinge’ (black), ‘exponential’ (violet) and ‘0-1’ (blue). All errors are functions of z̃ = yf (x),
where f (x) is a linear discriminant function, and N

© is rescaled to cross through the
point (0,1). Sparsity can be obtained by removing examples below a threshold on the
error function. Ideally, we only want to remove redundant examples, which carry no
extra information given the rest of the data. The error for redundant examples will be
approximately 0, depending on the function, so the threshold should be at most slightly
greater than 0. Applying a threshold to the N

© error only removes examples for which
z̃ > 2, if there are any at all. Whereas, with ∞> 0 the same threshold includes examples
closer to the separating hyperplane, which increases sparsity. This threshold defines
an asymmetric ‘soft-margin’ (with data points allowed to be within the margin). The
correctly classified examples within the margin of ∞> 0 are penalised less strongly than
the ‘hinge’ error and the penalty increases non-linearly with distance from the separating
hyperplane. However, the negative values of z̃ are penalised far more strongly than even
the exponential error which may lead to overfitting.

The linear classifier found by canonical EP can be catastrophically affected by repeated
data points [63]. This is in sharp contrast to the SVM which is designed to use only
non-redundant data points, the support vectors, and exclude those that are redundant.
Applying a threshold to the ∞-EP error function with ∞> 0 defines a ‘soft-margin’, but
the error function is defined in terms of the leave-one-out estimator xT

i m\i
w in (4.23). We
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will show that sparsity is preserved for the full posterior estimator xT
i mw also. To see

this, consider the expression for xT
i m\i

w :

xT
i m\i

w = xT
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where ±= xT
i V\i

w xiv°1
i (xT

i mw °xT
i mold

w ). Plugging ∞=°1 into (4.32) yields the trivial ex-
pression at convergence, xT

i m\i
w = xT

i (m\i
w )old, since ±! 0 when the algorithm converges.

Plugging ∞= 1 into (4.32) yields:

(4.33) xT
i m\i

w = 2xT
i mw °xT

i (m\i
w )old +±

where xT
i m\i

w = xT
i mw at convergence, i.e. the classifier is robust to the removal of any

data point. We can threshold the Æi ’s above a small value Æ0 and consider those to be
‘support vectors’ and the rest irrelevant data points. The orthogonal distance from the
ith data point to the separating hyperplane is ≤yi

mi
||mw||2 . The irrelevant data points are

the furthest from the separating hyperplane and will have large values of mi = xT
i mw,

so by (4.33) correct classifications will have Æi º 0 and incorrect classifications will have
Æi >Æ0. The relevant data points are closer to the separating hyperplane and will have
small values of mi = xT

i mw, so by (4.33) xT
i m\i

w will be small and positive or negative
and Æi >Æ0.

Figure 4.3 demonstrates the effect of ∞> 0 to produce sparsity on a balanced two-class
two-dimensional toy dataset of 40 data points. The ‘support vectors’ for the BPM with
∞= 1 and Æ0 = 0.1 are circled. (Top left) The BPM with ∞= 1 has overfitted to the pattern
in the centre whereas the canonical EP boundary is closer to the true decision boundary
which is a vertical line at -0.55. (Top right) One data point is repeated 100 times (shown
in bold). The BPM with ∞ = 1 is unaffected by the repeated data points whereas the
canonical EP boundary is skewed onto the other side. (Bottom) One ‘support vector’ is
repeated 100 times (shown in bold). The BPM with ∞= 1 1 is skewed slightly away from
the repeated data points whereas the canonical EP boundary is skewed dramatically to
place the majority of the data into the same class.

1Figure 4.3 (bottom right) The iterations became unstable and did not converge so we stopped ∞-EP
after 4 iterations. Alternatively, ∞ could be lowered to ensure convergence.

38



4.2. EXTENSIONS OF GAUSSIAN EXPECTATION PROPAGATION

Figure 4.3: Bayes point machine with ∞=°1 vs ∞= 1 and ≤= 2 on a toy dataset both with
and without (top left) repeated data points. The data points in bold are repeated 100
times. The support vectors for the BPM with ∞= 1 and Æ0 = 0.1 are circled.

To assess the accuracy of the proposed method we used benchmark classification
datasets from the UCI repository [23]. We demonstrate the performance of ∞-EP for
sparse linear classification against two popular algorithms, C-SVM [18] and ∫-SVM
[99], on the ‘Sonar’ (n = 208, d = 60) and ‘Breast’ (n = 569, d = 30) datasets. Each
dataset was randomly split 50 times, we trained on 60% of the data, validated on 10%
to select the SVM C 2 {10°3,10°2,10°1,1,10,102} and ∫ 2 {0.1,0.2,0.3,0.4,0.5,0.6} para-
meters and tested on the remaining 30%. The training data was normalised to have
zero mean and unit variance. We ran ∞-EP for 100 iterations or until convergence. The
evidence was often infinite; so we used the validation set to select ≤ 2 {0.1,1,10} and
∞ 2 {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} parameters in the first instance, and we used
the evidence to give a more precise comparison of parameter values when available and
the difference in validation errors was within 10°3. We compared two thresholds Æ0 on
the error function, 10°3 and 10°4. We call these models ∞-EP1 and ∞-EP2 respectively. To
improve canonical EP in the presence of redundant data, we could train it using only the
support vectors from an SVM. Minka stated in [64] that “this idea (of training canonical
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Table 4.1: Test error rate and average number of support vectors (± one standard
deviation) on the ‘Sonar’ (left) and ‘Breast’ (right) datasets.

Model Error # SVs Error # SVs

∞-EP1 0.248 ± 0.049 95.54 ± 15.09 0.035 ± 0.014 33.54 ± 9.99
∞-EP2 0.237 ± 0.048 102.16 ± 13.51 0.032 ± 0.012 39.00 ± 11.16
∫-SVM 0.241 ± 0.053 74.08 ± 1.64 0.024 ± 0.009 40.92 ± 1.29
C-SVM 0.243 ± 0.048 89.68 ± 3.11 0.024 ± 0.010 43.32 ± 3.07
EP + C-SV 0.231 ± 0.043 89.68 ± 3.11 0.039 ± 0.019 43.32 ± 3.07
EP + ∫-SV 0.243 ± 0.046 74.08 ± 1.64 0.042 ± 0.015 40.92 ± 1.29
EP 0.229 ± 0.046 124.80 ± 0.00 0.027 ± 0.011 341.4 ± 0.00

EP on the support vectors only) has not been tested yet.” We tried this with the C-SVM
and ∫-SVM and called it EP + C-SV and EP+∫-SVM respectively. The results are given
in Table 4.1. As ∞-EP is not a ‘compression scheme’, the Bayes point machines had to be
retrained using only the support vectors. We used canonical EP (or ∞-EP with ∞=°1) to
retrain the models as exact inference improved the validation error. ∞-EP2 has a lower
average test error than the SVM on the ‘Sonar’ dataset by using more support vectors
on average. The SVM outperforms ∞-EP on the ‘Breast’ dataset with a similar average
number of support vectors. Canonical EP has a lower average test error than ∞-EP on
both datasets but uses all available training data. Canonical EP with the C-SVM support
vectors performed surprisingly well, better than both ∞-EP and the C-SVM on ‘Sonar’.
However, it required more compute to optimize the SVM C parameter as well as the EP
≤ parameter. It also performed worse on the ‘Breast’ dataset suggesting the centre of
mass was further from the centre of the largest inscribable ball in version space [40].
Figure 4.4 shows that the number of irrelevant data points increases over the entire
∞-EP trajectory on the full ‘Sonar’ dataset. The iterations are more unstable with high
values of ∞, reducing the chance of converging, but with more iterations the number of
support vectors drops dramatically. The number of irrelevant data points for canonical
EP remained zero until convergence.

Several extensions of ADF have been suggested to obtain sparse solutions. The In-
formative Vector Machine (IVM) [56] combines ADF with greedy forward selection using
an entropy reduction heuristic up to a fixed maximum number of support vectors. Csató
and Opper [21] developed a more flexible method which combines forward and backward
selection for a fixed maximum number of support vectors. Expectation Propagation has
been extended to use ‘pseudo-inputs’, which could be the centers of K-means clusters,
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Figure 4.4: Number of irrelevant examples vs iterations for ∞-EP with ∞= 0.8 (left) and
∞= 0.75 (right) and ≤= 2 on the ‘Sonar’ dataset.

by a method called Sparse and Smooth Posterior Approximation (SASPA) [86]. Two
other state-of-the-art methods, sparse pseudo-input Gaussian Process (SPGP) [106] and
variable-sigma Gaussian Process (VSGP)2 [119], are special cases of SASPA [86]. It can
be informative to know which examples are most important. Furthermore, none of these
algorithms automatically learn the appropriate maximum number of support vectors for
the particular dataset.

The Relevance Vector Machine (RVM) [112] is a Bayesian framework for automatically
obtaining sparse solutions in linear regression and classification models. However, the
RVM places independent Gaussian priors (also called automatic relevance determination
(ARD)) over the feature weights so it can only produce sparsity in the features (with a
radial basis function kernel, the ‘features’ do correspond to data points). Polson and Scott
[85] developed a Bayesian SVM which can be trained with the usual tools of Gaussian
linear models such as Expectation Maximisation and Markov Chain Monte Carlo algo-
rithms. Both the SVM and Bayesian SVM maximise the margin which is equivalent to
finding the centre of the largest inscribable ball in version space [40], which is different
to the centre of mass (Bayes point). Recently, Uhrenholt, Charvet and Jensen [115]
have proposed using a point process prior on inducing points to train sparse Gaussian
Processes with stochastic variational inference. Interestingly, the evidence lower bound
derived in [115] is trading-off complexity and capacity in terms of the number of inducing
points drawn from the point process prior. This is similar in spirit to the Occam factor
arguments described in chapter 2.

2VSGP was derived for regression only.
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4.2.2 Kernel Bayes Point Machine

The Bayes point machine can also be extended to make use of the ‘kernel trick’ [7] [64].
Each weight vector can be written as a linear combination of basis functions ¡(xi):

(4.34) w=
X

i
Æi¡(xi)

In this way we can rewrite the linear classifier from the d-dimensional w to the n-
dimensional Æ, called the dual form. This linear classifier is then given by [40]:

(4.35) wT¡(x)=
X

i
Æi¡(x)T¡(xi)=ÆTK

where K is the n x n dimensional kernel matrix. The trick is that we do not have to
explicitly state the form of the (possibly infinite dimensional) basis function ¡, only the
kernel matrix K. A popular choice for the kernel matrix is the Gaussian kernel:

(4.36) Ki j = exp
µ
° 1

2æ2 (xi °x j)T(xi °x j)
∂

For the kernel Ki j, we have to separate xi and yi:

Ki j = yi yjK(xi,x j)

Before we outline the kernel BPM algorithm, we introduce some simplifying notation as
used by Minka [64] and Opper & Winther [77] (we will use xi when we mean ¡(xi)):

∏i = xT
i V\i

w xi, Ki j = xT
i x j, §= diag(v1, ...,vn), h\i

i = xT
i m\i

w , hi = xT
i mw

The central relations of the kernel BPM algorithm are given by:

XTVwXº
°
K°1 +§°1¢°1 =Ai j(4.37)

mw =Vw
X

j

x j(m j °∞vjÆ j)
vj

(4.38)

We can derive (4.37) by approximating (4.15) and using the Kailath Variant of the
Woodbury Identity [81]:

Vw =
≥
(V\i

w )°1 +X§°1XT
¥°1

(4.39)

º
≥
I+X§°1XT

¥°1
(4.40)

(K+§)°1 =§°1 °§°1XT
≥
I+X§°1XT

¥°1
X§°1(4.41)

º§°1 °§°1XTVwX§°1(4.42)

XTVwXº§°§ (K+§)°1§=Ai j(4.43)
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From the expression for V\i
w , we can derive an update for ∏i using the Woodbury Identity

backwards and from the expression for mw we can derive an update for hi:

∏i = xT
i Vwxi
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vi °xT
i Vwxi

!
(4.44)

= xT
i Vwxi

µ
vi

vi °xiV\i
w xi

∂
(4.45)

= xT
i Vwxi + (xT

i Vwxi)(I°v°1
i xT

i Vwxi)°1v°1
i xT

i Vwxi(4.46)

=
√

1
xT

i Vwxi
° 1

vi

!°1

º
µ

1
Aii

° 1
vi

∂°1
(4.47)
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(4.48)

We can then show that canonical EP is equivalent to (4.48) with ∞=°1 and mreuse
j = h j:
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X
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Ai j

m j
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In Expectation Propagation, it is also necessary to update hi by moment matching:

(4.52) hi = h\i
i +∏iÆi

To classify a new data point, x§, we compute the sign of the decision function:

(4.53) ỹ= sign
≥
mT

wx§
¥
= sign

√
X

i
yiÆiK(x§,xi)

!

The predictive distribution can be used to associate a probability measure with every
classification. The resulting classifier is called a Bayes machine [45] or Gaussian Process
Classifier [22]:

p(y§|x§)º
Z

p(y§|x§,w)p(w)dw=¡(z)(4.54)

z =
mT

wx§
p

(x§)TVwx§
=

P
i yiÆiK(x§,xi)p

(K(x§,x§)°K(x§,X)§°1(§°A)§°1K(X,x§)
(4.55)
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The expression in the denominator of (4.55) can be derived using the Woodbury Identity
with (4.40) and (4.42):

(x§)TVwx§ = (x§)T
≥
I+X§°1XT

¥°1
x§(4.56)

=K(x§,x§)°K(x§,X) (§+K)°1 K(X,x§)(4.57)

=K(x§,x§)°K(x§,X)§°1(§°A)§°1K(X,x§)(4.58)

Training the kernel BPM algorithm takes O(n4) time (O(n3) time to invert the kernel
matrix for each data point) plus the time to compute K and testing takes O(n2) per
new data point x§. Minka showed it is possible to reduce the training time to O(n3) by
updating A incrementally instead of (4.37) [64]:

Anew =A°
aiaT

i
±+aii

(4.59)

±=
√

1
vnew

i
° 1

vold
i

!°1

(4.60)

Table 4.2: Test error rate (± one standard deviation) on the ‘Breast’, ‘Heart’, ‘Ionosphere’
and ‘Pima’ datasets for ∞-EP, EP and SVM models.

Model Breast Heart Ionosphere Pima

∞-EP 0.038 ± 0.013 0.171 ± 0.032 0.135 ± 0.032 0.256 ± 0.026
EP 0.037 ± 0.013 0.169 ± 0.030 0.134 ± 0.032 0.239 ± 0.025
SVM 0.067 ± 0.022 0.169 ± 0.027 0.071 ± 0.021 0.236 ± 0.023

Table 4.3: P-values from a Wilcoxon paired signed rank test comparing average accuracy
of ∞-EP to EP and SVM. Statistically significant results at the 1% level are shown in
bold.

Breast Heart Ionosphere Pima

∞-EP:EP 8.7£10°1 8.7£10°1 9.2£10°1 2.7£10°3

∞-EP:SVM 7.1£10°13 8.6£10°1 < 2.2£10°16 1.2£10°4

We applied the same analysis to assess the accuracy of the kernel BPM as the linear
BPM against the SVM [117] on the ‘Breast’ (n = 569, d = 30), ‘Heart’ (n = 297, d = 13),
‘Ionosphere’ (n = 351, d = 33) and ‘Pima’ (n = 767, d = 8) datasets from the UCI repository
[23]. The validation set was used to select æ 2 {1,2,3,4,5} for the Gaussian kernel (4.36)
and ∞ 2 {°0.5,0,0.5} for ∞-EP which we compare against canonical EP (∞=°1). We also
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Table 4.4: Average predictive log-likelihood (± one standard deviation) on ‘Breast’, ‘Heart’,
‘Ionosphere’ and ‘Pima’ datasets for ∞-EP and EP models.

Model Breast Heart Ionosphere Pima

∞-EP 4.49 ± 0.005 3.96 ± 0.012 4.09 ± 0.012 4.92 ± 0.013
EP 4.49 ± 0.005 3.95 ± 0.011 4.08 ± 0.011 5.04 ± 0.020

Table 4.5: P-values from a Wilcoxon paired signed rank test comparing average predictive
log likelihood of ∞-EP to EP. Statistically significant results at the 1% level are shown in
bold.

Breast Heart Ionosphere Pima

∞-EP:EP 2.6£10°1 7.5£10°6 2.2£10°4 < 2.2£10°16

added a soft-margin constant ≤2 2 {10,100} to the main diagonal of the kernel matrix.
This is the square of the noise variance in (4.6) [77]:

(4.61) K≤ = E[(wTX+ª)(wTX+ª)T]°E[(wTX+ª)]E[(wTX+ª)T]=K+≤2I

and it is added to (4.58). Unfortunately, we could not use Bayesian model comparison
because the evidence is NaN. The results are given in Table 4.2. We found that ∞-EP does
not improve the accuracy of canonical EP in kernel classification. We tested the statistical
significance of the results using a Wilcoxon [122] paired signed rank test with a 1%
significance level, shown in Table 4.3. We found that the SVM significantly outperformed
the BPM on ‘Ionosphere’ and ‘Pima’ and the BPM outperformed the SVM on ‘Breast’.
Furthermore, EP outperformed ∞-EP on ‘Pima’. To get a more fine-grained comparison
we also computed the average predictive log likelihood for EP and ∞-EP, shown in Table
4.4. The average predictive log likelihood aggregates the classifier’s ability to quantify
uncertainty in the form of the probability of a correct classification over the 50 test sets.
The results of a Wilcoxon paired rank sign test on the average predictive log likelihoods
are shown in Table 4.5. Although, ∞-EP has a slightly higher test error than EP on ‘Heart’
and ‘Ionosphere’, it has a significantly better average predictive log likelihoods.
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The ∞-EP algorithm for the kernel Bayes Point Machine.
1. Initialise vi =1,mi = 0, si = 1,hi = 0,∏i =Kii,Æi = 0.
2. Until (mi,vi) converges (change less than 10°4).
For i = 1,...,n:

Compute ‘old’ posterior:

h\i
i = hi +∏iv°1

i (hi °mi +∞viÆi)

Update ‘new’ posterior and t̃ i:

zi =
h\i

ip
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∏i

N (zi)
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Æihi
°1

∂
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q
1+v°1

i ∏i exp
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1
2
Æ2

i (∏i °∞vi)(vi +∏i)°1(∏i °∞vi)
∂
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°
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4.3 Application: Oncogenic Single Nucleotide
Variants

In the final subsection of this chapter, we turn our attention to the binary classification
of oncogenic (cancer causing) single nucleotide variants (SNVs). The goal for this task
is to predict which SNVs of the human genome will ‘drive’ the growth of tumours by
assigning a +1 to an oncogenic SNV and a -1 to a non-oncogenic (neutral) SNV. The
classical mechanism for the development of cancer is that the genome contained in every
human cell is subject to random bursts of radiation and thereby over time accumulate
mutations including driver mutations that trigger the uncontrolled growth of tumours.
This mechanism makes four immediate predictions: that cancers will be more common
among the elderly, those who receive more radiation will be more likely to develop cancer,
that cancers are somatic and not inherited and that certain genes suppress the growth
of tumours, all of which have been confirmed and have become common knowledge.
What it leaves out is precisely which mutations drive the development of tumours. In
this subsection, we will set ourselves the ambitious task of building a classifier capable
of predicting which of the roughly 32 £109 possible SNVs of the human genome are
oncogenic.

The biggest obstacle to the application of predictive models to the cancer genome are the
quality of the labels and the choice of features but not the number of possible variants -
all of which can be predicted by the same classifier. It is patently true that we do not yet
know definitively which mutations drive the growth of tumours and which mutations
are simply along for the ride and appear afterwards as the cancer genome evolves. These
mutations are called passenger mutations. The theory of neutral evolution [51] suggests
that a majority of these passenger mutations, occurring not by selective forces, are
irrelevant for the growth and survival of the tumour. Any oncogenic SNV database is
a snapshot of a particular cancer genome at a single point in time. Therefore, we have
a very unclean dataset where the positive class of oncogenic SNVs is polluted with a
majority of label noise (passengers). There are tools [71] which seek to remove data
points with noisy labels to preserve a kernel of clean training data. However, even these
methods are not appropriate for this problem because we do not have a complete set of
features which define the cancer genome. Furthermore, we do not know without using a
priori assumptions which features are most appropriate for distinguishing cancer SNVs
from non-cancer SNVs [95]. Kernel methods map a finite set of features to an infinite
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dimensional feature space and could overcome some of the errors in the original feature
representation.

As every tumour evolves from a single normal cell, and accumulates selectively advan-
tageous mutations due to genetic instability [72], the evolutionary history of a specific
tumour exists on a continuum and that continuum is best represented by a phylogenetic
tree. Therefore, not only are tumours evolving by genetic drift, they are also adapting
to new selectively advantageous mutations, which may even replace the initial driver
mutations and thereby sweep away the cancer’s history like footsteps in the sand. This
analogy provides an intuition for the finding that the mean number of drivers does not
increase as the disease progresses [95].

The recurrence level, r, of an SNV is the number of independent patients with the
same variant at the same site of the genome. The recurrence level is widely used as a
proxy for the likelihood of a specific cancer variant being a driver [11]. However, this
assumption is often fallacious. As the database contains a mixture of different types
of cancers at different stages of tumour growth, increasing the recurrence level would
only purify the labels if the same drivers were common to all cancers. Even if there
are some drivers which are preserved at high recurrence levels, the data will be dom-
inated by passengers due to the saturation effect of only having 4 possible nucleotide
variants per site {A,C,G,T}. The probability of 2 genomes being identical is extremely
low but the probability of any 2 genome sites having the same variant is extremely high.
Furthermore, if high recurrence level variants were purified of passengers, we would
see a non-decreasing relationship between classification accuracy and the recurrence
level. Rogers et al. [96], using their predictor ‘CScape’ trained on neutral vs oncogenic
SNVs, show that this is not the case and the accuracy decreases as the recurrence level
is increased.

We aim to test whether the BPM can outperform the Gradient Boosting Machine (GBM)
[28] used by CScape on the same training data. Gradient Boosting is a sophisticated
ensemble learning algorithm that frequently outperforms other classification algorithms
in machine learning challenges. It works by sequentially optimizing an additive model
under an exponential error function [5]. In order to make kernel machines competitive
with ensemble learning classifiers, we can use a combination of multiple kernels. This
problem is called multiple kernel learning (MKL) and the task is to find an optimal linear
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combination of kernel coefficients ∏l for a given set of p kernel matrices {Kl : l = 1, ..., p}
to give a composite kernel K∏:

(4.62) K∏ =
pX

l=1
∏lKl

where
Pp

l=1∏l = 1,∏l ∏ 0 [16]. We will use the MKL algorithm ‘MKLdiv-dc’ [124]. The
MKLdiv-dc algorithm works by minimising the KL-divergence between N (0,K∏) and
N (0,K y = yyT). The target kernel, yyT , defines the ‘ideal’ kernel for the training data.
We call K y = yyT ‘ideal’ in the sense of kernel-target alignment [20], where the difference
between the sum of the between class distances and the sum of the within class distances
is equivalent to the alignment between K∏ and K y. The MKLdiv-dc algorithm defines
another type of kernel alignment using the KL-divergence. There are two different MKL
algorithms because the KL-divergence is not symmetric and the other algorithm is called
‘MKLdiv-conv’. MKLdiv-dc uses the same form of the KL-divergence as EP which we
have seen is equivalent to matching moments, K y = K∏, so we expect it to fit better to
the training data than MKLdiv-conv, which matches modes instead of moments. The
MKLdiv-dc algorithm is given by:

argmin∏KL(N (0,K y)||N (0,K∏))=°argmin∏
Z£

log(N (0,K∏))° log(N (0,K y))
§
N (0,K y) d y

= argmin∏
1
2

Z∑
log

µ |K∏|
|K y|

∂
° yTK°1

y y+ xTK°1
∏ x

∏
N (0,K y) d y

= argmin∏
1
2

log
µ |K∏|
|K y|

∂
° 1

2
Ey[yTK°1

y y]+ 1
2
Ey[xTK°1

∏ x]

= argmin∏
1
2

Tr[K yK°1
∏ ]+ 1

2
log|K∏|°

1
2

log|K y|°
n
2

where we have used the identity for the expectation of Gaussian quadratic forms [81] to
go from the third to fourth line. By adding a jitter term Ø to make the matrix inversions
more tractable and removing the constant terms we get the MKLdiv-dc optimisation
problem [124]:

(4.63) argmin∏Tr
°
K y(K∏+ØI)°1¢+ log|K∏+ØI|

for details on how to solve this problem see the original paper [124]. We used the R
package ‘Rsolnp’ to solve the optimization problem [30] [123]. Other multiple kernel
learning algorithms optimise different criteria such as maximising the margin. Lanckriet
et al. [54] pioneered this approach using semi-definite programming (SDP). Further
development included more efficient implementations [89] [107]. However, this approach
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is unsuitable for the Bayes point machine trained with EP as the MKL algorithm is
embedded within the SVM optimisation problem. Whereas, because MKLdiv-dc is per-
formed independently of the classifier by using the target kernel, it can be combined
with any kernel classifier, including the BPM trained with EP.

For the experiment we use the same dataset as used for CScape [96]. The (positive)
pathogenic labels for cancer SNVs were gathered from the COSMIC [108] database
and the (negative) non-cancer SNVs were gathered from the 1,000 Genomes Project
[1]. Rogers et al. [96] balanced the high bias of using a high recurrence level and the
high variance of using a low recurrence level and settled on r = 5 for coding regions.
We restrict our attention to coding regions as we’ve previously found MKL provides an
insignificant benefit in non-coding regions likely due to high level of noise in the labels.
For more details on the data pre-processing pipeline see [96].

All features are based on the GRCh37/hg19 version of the human genome. The fea-
tures for the coding regions are based on 4 ‘feature groups’ which Rogers et al. called
‘Evolutionary’, ‘Variant Effect Predictor (VEP)’, ‘Distance’ and ‘Spectrum’. Evolutionary
features include: PhastCons [104] conservation probability for each site, PhyloP [84]
conservation score and a range of features built from HMMER software package rep-
resenting the emission probabilities of each variant at each site of the alignment [102]
[103]. The VEP feature group includes 35 features which count the number of transcripts
such as: UTR, missense & TF binding sites that are impacted by a particular mutation
and two 20-element amino acid indicator features for the wild-type sequence and the mu-
tation. The Spectrum features are counts indicating how many times a specific pattern
is present in a window around a specific site. The possible patterns are the set of k-mers
below a certain length. For CScape, a window size of 3 is used and the maximum k-mer
size is 2. So there are 2 windows each contributing 20 features. We can then pass this
40-element feature vector through a Gaussian Kernel as in Rogers et al [96]. However,
we can also map these count vectors to a Spectrum kernel matrix, K§ [16]:

(4.64) K§
i j = xT

i x j

where xi is the ith Spectrum feature vector. The Distance feature group measures the
distance from each SNV to gene features annotated by ENSEMBL such as: start codon,
stop codon, gene, UTR, CDS and exon [96]. There is likely to be some redundancy be-
tween the VEP and Distance feature groups and this will be learned by the MKL kernel
coefficients.
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To evaluate our models, we used leave-one-chromosome-out cross validation (LOCO-CV)
in which one chromosome is held out as a test set and the models are trained on the
remaining 21 chromosomes (we leave the X & Y chromosomes out of all of the exper-
iments as they were not used by CScape). The data is cycled until every chromosome
has been classified and an average accuracy score is computed. We use three balanced
non-overlapping sets of 1,100 data points (50 data points per chromosome) to speed-up
the computations and find our results are within 3 percentage points of the original
CScape but it is the relative performance that we are interested in and not the minimum
achievable errors which can always be improved by training on the full datasets. We
used a separate validation set of 50 data points per chromosome to tune the Gaussian
æ 2 {3,5,7,9} in (4.36), the soft-margin constant ≤2 2 {20,100}, the SVM C 2 {10°1,1,10}
parameter and ∞ giving ∞ = °1, æ = 9 for BPM, æ = 5 for SVM-MKL1 and æ = 3 for
SVM, BPM-MKL1, BPM-MKL2 and SVM-MKL2, ≤2 = 20 and C = 1. The BPM-MKL1
& SVM-MKL1 models are trained with the Spectrum feature vector in an isotropic
Gaussian kernel. The Spectrum kernel, MKL2, performed better than MKL1 for BPM
but not for SVM. All other features are passed through the isotropic Gaussian kernel.
The results of the experiments are given in Table 4.6. Multiple Kernel Learning failed to
improve the SVM average accuracy but did improve the BPM. We see that the BPM is
the worst performing model but by combining it with MKL2 it outperforms the SVM and
SVM-MKL1. However, the BPM-MKL2 is still almost three percentage point worse than
gradient boosting and it has a lower average predictive log likelihood than the BPM.
We tested the statistical significance of the results using a Wilcoxon [122] paired signed
rank test with a 1% significance level, shown in Table 4.7. We didn’t find that any of
the LOCO-CV results were statistically significant, but the BPM showed a statistically
significant improvement in predictive log likelihood over BPM-MKL2. Figure 4.5 shows
the kernel coefficients ∏l for the MKL1 (left) and MKL2 (right) models. Surprisingly, we
see the spectrum kernel (MKL2) has a lower weighting than the spectrum vector passed
through a Gaussian kernel (MKL1).
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Table 4.6: Leave-one-chromosome-out cross validation accuracy (± one standard devia-
tion) for GBM, BPM, SVM and MKL classifiers and average leave-one-chromosome-out
predictive log likelihood (± one standard deviation) for BPM classifiers.

Chrom BPM BPM-MKL2 SVM SVM-MKL1 GBM

1 0.667 0.7 0.667 0.673 0.727
2 0.7 0.653 0.687 0.68 0.76
3 0.627 0.64 0.647 0.68 0.62
4 0.687 0.647 0.68 0.667 0.733
5 0.587 0.633 0.64 0.62 0.647
6 0.753 0.747 0.747 0.76 0.793
7 0.613 0.633 0.667 0.647 0.707
8 0.553 0.62 0.6 0.6 0.673
9 0.713 0.753 0.727 0.74 0.74
10 0.627 0.707 0.727 0.693 0.767
11 0.513 0.567 0.513 0.553 0.587
12 0.673 0.693 0.68 0.673 0.767
13 0.667 0.673 0.667 0.68 0.66
14 0.66 0.673 0.693 0.673 0.693
15 0.593 0.627 0.613 0.633 0.68
16 0.673 0.747 0.733 0.72 0.68
17 0.707 0.64 0.68 0.693 0.687
18 0.653 0.667 0.653 0.647 0.693
19 0.567 0.66 0.6 0.627 0.7
20 0.713 0.773 0.727 0.733 0.76
21 0.56 0.627 0.6 0.567 0.673
22 0.673 0.733 0.74 0.7 0.647
Av. acc 0.645 ± 0.062 0.673 ± 0.053 0.668 ± 0.058 0.666 ± 0.052 0.700 ± 0.052
Av. pll 3.30 ± 0.029 3.24 ± 0.008

Table 4.7: P-values from a Wilcoxon paired signed rank test between leave-one-
chromosome-out accuracy of BPM-MKL2 and GBM, BPM, SVM and SVM-MKL1 models
and between leave-one-chromosome-out predictive log likelihood of BPM-MKL2 and
BPM models.

BPM-MKL:BPM BPM-MKL:SVM BPM-MKL:SVM-MKL BPM-MKL:GBM

p-value acc 2.5£10°1 9.6£10°1 9.4 £10°1 7.7 £10°2

p-value pll 3.3£10°9
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Figure 4.5: Average kernel coefficients ∏l for MKL1 (left) and MKL2 (right).

4.4 Concluding Remarks

In this chapter, we used the ∞-EP algorithm to train Bayes point machines. We demon-
strated a key flaw in canonical EP for training linear BPMs - if any of the data points are
repeated, canonical EP cannot recognise the added redundancy which skews the decision
boundary away from the Bayes point. We found that setting ∞> 0 leads to a modified loss
function Æi which encourages sparsity and mitigates the problem greatly, even when the
support vectors are repeated. We compared the performance of ∞-EP for sparse linear
classification against the C-SVM and ∫-SVM as well as canonical EP trained with the
support vectors from the SVMs.

We also extended ∞-EP to non-linear Bayes point classification using kernel matri-
ces. However, the accuracy did not improve with ∞ 6=°1 and the sparsity demonstrated
for linear classifiers with ∞ > 0 does not remain in infinite dimensional feature space.
The Æi ’s are all equal at convergence. The linear Bayesian SVM has been extended
to use kernel matrices [39] and the point process prior approach [115] can also use
kernel matrices and automatically determine the number of support vectors. EP can be
combined with automatic relevance determination [24] to obtain sparsity for radial basis
function kernel classifiers using either the evidence or leave-one-out-error [88].

The results in this chapter do not account for label noise. Label noise can be modelled by
assuming an iid flip process with label error rate ∑ [77] which corresponds to a modified
loss function Æi in EP. The EM-EP [50] algorithm can be used to sequentially alternate
between EP iterations to approximate the posterior and updating ∑ by maximising a
lower bound to an approximation of the log marginal likelihood. D. Hernández-Lobabto
and J. M. Hernández-Lobato [45] gave another approach in which ∑ is updated within
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the EP algorithm, which they showed outperforms EM-EP.

We applied the BPM trained with EP to the problem of classifying oncogenic single
nucleotide variants. This is a difficult classification problem; not because the labels are
noisy, but because they’re of low quality. Certainly any labelling errors are not symmetric.
It is far more likely that non-oncogenic mutations are mislabelled as oncogenic than the
other way around. Nevertheless, we sought to combine EP with several heterogeneous
genomic data sources using multiple kernel learning (MKL). However, the BPM-MKL
could not outperform gradient boosting used in the CScape [96] classifier. Nevertheless,
the BPM-MKL could improve by the addition of more low quality feature groups which
is unlikely to improve gradient boosting.
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PHYLOGENETIC LINEAR GAUSSIAN MODELS

“The problem seems terribly complicated at present, because in all this detail
we do not know what is relevant, what is irrelevant... It might turn out that
prediction of biological activity requires about only a dozen separate factors,
instead of a million. If so, then one would have both the courage and insight
needed to attack more complicated problems. "

— Edwin. T. Jaynes

This chapter presents two new phylogenetic comparative methods used to correct for
the non-independence of related species in linear Gaussian models. The first method,
Phylogenetic Relevance Vector Machine (PhyRVM), estimates the phylogenetic signal
by maximising the marginal likelihood while automatically pruning irrelevant features.
It achieves superior estimates of phylogenetic signal than the widely used maximum
likelihood approach [78]. We apply the classical RVM [112] to predict prokaryotic op-
timal growth temperature (OGT). We also predict a hyperthermophilic last universal
common ancestor (LUCA). The second model, Phylogenetic Probabilistic Principal Com-
ponents Analysis (P3CA), is a probabilistic dimensionality reduction technique capable
of estimating phylogenetic signal by maximum likelihood.

5.1 Phylogenetic Comparative Methods

A phylogeny, or evolutionary/bifurcating tree, is a clustering of a set of related species
(called taxa) based on their genetic similarity. The underlying assumption of phyloge-
netic inference is that closely related species are more genetically similar than distantly
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related species [38]. However, the true phylogeny can never be known unless it is arti-
ficially constructed. Nevertheless, approximate phylogenies have found a wide range
of applications in computational and comparative biology [37] [19] and phylogenetic
inference methods are continually improving [48].

The comparative method in evolutionary biology consists of a suite of statistical meth-
ods for the analysis of phenotypic traits which aim to correct for the statistical non-
independence associated with related taxa. Furthermore, many parametric models
have been developed to measure evolutionary quantities such as rates of evolution
and strength of selection [36] and some biologists view the estimation of these microevo-
lutionary parameters as a more significant problem than correcting for non-independence
[59]. However, all of these more elaborate microevolutionary models must first success-
fully incorporate the phylogeny into a statistical model as well.

The successful incorporation of a phylogeny into a classical statistical model such as
linear regression [32] which is designed for independent data is not trivial. If one is not
careful, one can easily diminish the predictive power of the model by adding a phylogeny.
In the comparative biology literature, models are typically compared with statistics
gathered from the training data such as: training mean square error, R2 and the log
likelihood [27]. From these statistics alone it is not clear how important the phylogeny
of related taxa is to the statistical model. And yet, the comparative biologists are right
to persist and emphasise the importance of including a phylogeny in their statistical
models. The phylogeny is a very powerful tool which contains a lot more information
than any individual comparative dataset. It is clear the phylogeny is learning something
underlying all comparative problems.

A phylogeny of N taxa can be incorporated into statistical models by transforming
it into an N x N covariance matrix. The evolution of a trait is typically assumed to be
due to Brownian motion. The modelling assumptions we make under a Brownian motion
model are that: changes in the trait are independent of their previous state, the traits are
normally distributed with zero mean and the variances are proportional to the sum of
the branch lengths to the root. The Brownian motion model can represent traits evolving
under genetic drift and genetic drift with mutation [59]. From these assumptions we can
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derive the phylogenetic covariance matrix rule [59]:

Cov[ti, t j]= Cov
°
E[ti|ta],E[t j|ta]

¢
(5.1)

= Cov[ta, ta]=V ar[ta](5.2)

=æ2∫a(5.3)

where ti and t j are traits of two species, ta is a common ancestor, æ2 is the constant vari-
ance of the trait implying a constant rate of evolution and ∫a is the sum of branch lengths
from the root to the most recent common ancestor, that is, the amount of evolutionary time
two distinct species were latent in a common ancestor for a given phylogeny. An example
of a simple phylogeny with 5 taxa is shown in Figure 5.1. The phylogenetic covariance
matrix V constructed from this phylogeny is given in (5.4), where {∫A,∫B,∫C,∫D ,∫E}
are the tip lengths of branches A-E respectively and ∫A,B is the distance shared by
branches A and B to the root. The diagonal elements of V are the root-to-tip distances
for each taxon. The off-diagonal elements of V (the ith row and the jthe column such
that i 6= j) are given by the sum of the shared root to tip branch lengths between the ith
and jth taxa. Each off-diagonal element of the phylogenetic covariance matrix is called a
‘phylogenetic correlation’ and all of the off-diagonal elements taken together is called
the ‘phylogenetic signal’. From (5.3) we can see the phylogenetic correlation between two
species decreases linearly with the time since they diverged under a Brownian motion
model [59].

Figure 5.1: A simple phylogeny with 5 taxa.
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V=

0
BBBBBBB@

∫(A,B) +∫A ∫(A,B) 0 0 0
∫(A,B) ∫(A,B) +∫B 0 0 0

0 0 ∫(C,(D,E)) +∫C ∫(C,(D,E)) ∫(C,(D,E))

0 0 ∫(C,(D,E)) ∫(C,(D,E)) +∫(D,E) +∫D ∫(C,(D,E)) +∫(D,E)

0 0 ∫(C,(D,E)) ∫(C,(D,E)) +∫(D,E) ∫(C,(D,E)) +∫(D,E) +∫E

1
CCCCCCCA

(5.4)

V∏ =

0
BBBBBBB@

∫(A,B) +∫A ∏£∫(A,B) 0 0 0
∏£∫(A,B) ∫(A,B) +∫B 0 0 0

0 0 ∫(C,(D,E)) +∫C ∏£∫(C,(D,E)) ∏£∫(C,(D,E))

0 0 ∏£∫(C,(D,E)) ∫(C,(D,E)) +∫(D,E) +∫D ∏£ (∫(C,(D,E)) +∫(D,E))
0 0 ∏£∫(C,(D,E)) ∏£ (∫(C,(D,E)) +∫(D,E)) ∫(C,(D,E)) +∫(D,E) +∫E

1
CCCCCCCA

(5.5)

Pagel [78] developed a parametric modification to the phylogenetic covariance matrix
which allows the amount of phylogenetic signal in the residuals of a linear regression
model to be measured [92]. The modification is often called Pagel’s ∏ and it is a positive
scalar which is multiplied to all the off-diagonal elements of the phylogenetic covariance
matrix V∏ represented by (5.5). Therefore, ∏= 1 represents the original Brownian motion
tree and ∏= 0 represents the star tree in which all taxa radiate from the root at the same
time (though the branch lengths of the star tree can still differ). The star tree implies
the residuals contain no phylogenetic signal and are independent [92] and ∏ 2 [L,U],
where U is slightly greater than 1 and L is slightly less than 0. Therefore, Pagel’s ∏

typically has the effect of shortening the internal branches of the phylogeny and we will
often refer to ∏ as the phylogenetic signal. Negative phylogenetic signal does not have an
accepted biological interpretation because the branch lengths of the phylogeny measure
the expected number of amino acid substitutions per site along the branch [3].

Now, we will introduce the phylogenetic least squares (PGLS) [14]. For any vector of
N phenotypic traits t, we can express it as a sum of a linear combination of some N x
(M+1) matrix of input data X with an M+1-dimensional weight vector w and an additive
Brownian motion ‘error’ term ≤ defined by a zero mean multivariate Gaussian with
precision (inverse variance) ØV°1

∏ :

(5.6) t=Xw+≤

58



5.1. PHYLOGENETIC COMPARATIVE METHODS

The likelihood function of t is given by:

(5.7) p(t|w,Ø,∏)=N (t|Xw,Ø°1V∏)

Here, we have used a multivariate Gaussian instead of assuming the data points are
independent. We have also appended a column of ones to X and a bias to w. The value of
∏ is estimated using a numerical optimization procedure such as Brent’s method [9] to
maximise the log likelihood:

L= N
2

log(Ø)° N
2

log(2º)° 1
2

log|V∏|°ØE∏(w)(5.8)

E∏(w)= 1
2

(t°Xw)TV°1
∏ (t°Xw)(5.9)

Differentiating L with respect to w and Ø and setting the derivative to zero and rear-
ranging yields the simple expressions:

wML = (XTV°1
∏ X)°1XTV°1

∏ t(5.10)

ØML = N
2 E∏(w)

(5.11)

However, according to Freckleton, Harvey & Pagel “There is not a corresponding simple
expression for ∏" [27] or Revell “We do not have an analytic solution for this equation, so it
must be optimized numerically” [92]. This can be proved by using a novel representation
for V∏:

V∏ =∏V0 +Vii(5.12)

VD =V0 +
1
∏

Vii(5.13)

V∏ =∏VD(5.14)

V°1
∏ = 1

∏
V°1

D(5.15)

where V0 is a matrix with off-diagonal elements equal to V∏ and diagonal elements equal
to zero and Vii is the diagonal matrix of tip lengths. The interpretation of VD is opposite
to V∏: for ∏ 2 [0,1] the tip lengths extend but the interior branch lengths remain the
same. This is most striking as ∏! 0 and VD approaches a star tree with infinitely long
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tips. Now, we can rewrite the log likelihood in terms of VD :

L= N
2

log(Ø)° N
2

log(2º)° 1
2

log|∏VD |°
Ø

∏
ED(w)(5.16)

ED(w)= 1
2

(t°Xw)TV°1
D (t°Xw)(5.17)

and take the derivative with respect to ∏ and set it to zero:

@L
@∏

= ØED(w)
∏2 ° N

2∏
= 0(5.18)

∏new = 2ØED(w)
N

(5.19)

At first, it seems as though we have derived a new expression for ∏ML. However, by
rewriting (5.11) in terms of VD , we see nothing is gained:

Ø= N∏old

2ED(w)
(5.20)

∏new = 2ØED(w)
N

=∏old(5.21)

Therefore, whichever update, (5.20) or (5.21), comes second will be left unchanged. As
(5.10) and (5.11) are independent closed-form solutions [101], the maximum likelihood
method is non-iterative and we cannot refine our estimates of Ø and ∏ or remove their
dependence on the initial values. The method of maximum likelihood is inappropriate
for an analytical treatment of Pagel’s ∏ in comparative least squares and with this in
mind we turn our attention to Bayesian methods, specifically those which maximise the
marginal likelihood (evidence).

In section 5.1.1, we derive a new phylogenetic regression model by maximising the
evidence and give the first analytical solution for Pagel’s ∏. We show on simulated data
that maximising the evidence gives more accurate estimates of Pagel’s ∏ than maximis-
ing the likelihood and a lower root mean square error in cross validation on a real dataset
of prokaryotic optimal growth temperatures. In section 5.1.2, we extend Probabilistic
Principal Components Analysis to use phylogenetic covariance matrices. In section 5.2,
we evaluate the ‘relevant’ features of the Relevance Vector Machine (RVM) and find
that relevance does not imply correlation with the trait. In section 5.3, we train two
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RVM models to predict archaeal and bacterial optimal growth temperatures (OGT) using
genome derived features including amino acid proportions and find that the archaeal
model outperforms the state-of-the-art in the literature. In section 5.4, we reconstruct
the amino acid sequences of the ancestral prokaryotes to extant archaea and bacteria
and use an RVM to predict the OGT of the last universal common ancestor.

5.1.1 Phylogenetic Relevance Vector Machine (PhyRVM)

For a Bayesian treatment of phylogenetic regression we need a prior over the weights w.
We choose a Gaussian prior as it is conjugate to the Gaussian likelihood. Here, we use
an automatic relevance determination (ARD) prior [58] by placing a separate parameter
over each feature (including the bias):

(5.22) p(w|Æ)=
MY

i=0
N (0,Æ°1

i )

Each Æi represents an inverse-length scale of the covariance and learning these parame-
ters involves stretching the covariance in the dimensions providing the most uncertainty
and thereby contracting the covariance in the dimensions providing most information.
Therefore, Æ°1

i can be used to remove ‘irrelevant’ features and rank the rest by their
‘relevance’. The features with the largest value of Æ°1

i are the most relevant. This is why
the procedure is called automatic relevance determination and it is very widely used in
a variety of Bayesian machine learning models such as the Tipping’s Relevance Vector
Machine (RVM) [112]. By incorporating a phylogenetic covariance matrix into the RVM,
we derive a new algorithm which we call the Phylogenetic Relevance Vector Machine
(PhyRVM).

We could have instead explicitly separated the majority of irrelevant features from
the few relevant ones using a Bernoulli latent variable Zi. This prior forms a mixture of
a slab distribution (e.g. Gaussian when Zi = 0) and a spike distribution (e.g point mass at
wi = 0 when Zi = 1). The advantage of the spike and slab prior [67] over ARD is that the
few relevant features or slab are separated from the rest or spike producing truly sparse
solutions without using a threshold. However, computing the evidence is intractable
with this prior as it requires evaluating all 2n states of the Bernoulli distribution [12],
precluding analytic solutions. We can also specify a hyperprior over Æ. In the case of
ARD, a suitable choice is the Gamma distribution [112]. If we instead had chosen the
half-Cauchy distribution (C+(0,1)), we would have the horseshoe prior [17]. The name
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comes from the horseshoe shape density of the Beta distribution (Be(0.5,0.5)) for the
shrinkage weights ∑i:

(5.23) ∑i =
1

1+Æ°2
i

which means that total shrinkage (∑i = 1) and no shrinkage (∑i = 0) are both contained
in the same model. This creates a discontinuity that could be more appropriate to
distinguish between relevant and irrelevant features than ARD. However, similar to
ARD, a threshold is required to determine which features are relevant. An alternative to
the Bayesian sparsity inducing priors is the frequentist Lasso [111] given by adding an
L1 penalty term to the log likelihood:

(5.24) LLasso = L+¥
MX

i=0
|wi|

If ¥ is sufficiently large, some wi ’s will equal zero without the use of a threshold [5].

To make predictions in a fully Bayesian framework we define a predictive distribu-
tion over new traits t by marginalizing over w and hyperparameters Æ, Ø and ∏.

(5.25) p(t|t)=
ZZZZ

p(t|w,Ø,∏)p(w|t,Æ,Ø,∏)p(Æ,Ø,∏|t) dwdÆdØd∏

However, full marginalization over all these variables is analytically intractable. We can
either use sampling methods to build up an estimate of the predictive distribution or
make an analytical approximation. Here, we choose the latter alternative by making use
of the evidence approximation [58] and for the derivation of the PhyRVM we have made
use of the derivation of the evidence approximation for Bayesian linear regression given
by Bishop [5] and the derivation of the RVM given by Fletcher [25].

If the posterior over (Æ,Ø,∏) is sharply peaked around fixed values (Æ̂, Ø̂, ∏̂), which
will be the case for sufficiently large data sets when the posterior is Gaussian and the
fixed values approach the true values, then we can plug those fixed values into the
predictive distribution (5.25) so we are left with a marginalization over only w which is
analytically tractable. In order to compute these fixed values, we maximise the posterior
over (Æ,Ø,∏):

(5.26) p(Æ,Ø,∏|t)º p(t|Æ,Ø,∏)p(Æ,Ø,∏)

By assuming the prior is flat, we can maximise the posterior by maximising the marginal
likelihood p(t|Æ,Ø,∏) and thus determine the optimal fixed values (Æ̂, Ø̂, ∏̂). There is no
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closed form solution for (Æ,Ø,∏), so we resort to iterative re-estimation via a set of update
equations. The ∏new which maximises the evidence will not necessarily be the same
as the ∏ML which maximises the likelihood. The likelihood cannot be used for model
selection without any regularization to prevent overfitting as it directly measures the
fit (in terms of sum of squared errors) to the data. On the other hand, as we showed
in chapter 2, one of the main advantages of using a Bayesian framework is to use the
evidence for model selection.

In the evidence framework, the marginal likelihood p(t|Æ,Ø,∏) can be evaluated by
marginalizing over w:

p(t|Æ,Ø,∏)=
Z

p(t|w,Ø,∏)p(w|Æ) dw(5.27)

=
µ
Ø

2º

∂ N
2

µ
1

2º

∂ M+1
2

|V∏|°
1
2

MY

i=0
Æ

1
2
i

Z
exp(°E(w))(5.28)

E(w)=ØE∏(w)+ 1
2

wTAw(5.29)

where A is a diagonal matrix of Æi ’s and E(w) is a phylogenetic error function. We can
derive a distribution over w by completing the square:

E(w)= 1
2

≥
ØtTV°1

∏ t°2ØtTV°1
∏ Xw+wT(A+ØXTV°1

∏ X)w
¥

(5.30)

= 1
2

≥
ØtTV°1

∏ t+ (w°m)Tß(w°m)°mTßm
¥

(5.31)

= E(m)+ 1
2

(w°m)Tß(w°m)(5.32)

where ß= A+ØXTV°1
∏ X is the posterior precision matrix and m = Øß°1XTV°1

∏ t is the
posterior mean. This expression can be used to solve the integral in (5.28):

(5.33)
Z

exp(°E(w))dw= exp(°E(m)) (2º)
M+1

2 |ß|°
1
2
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Before evaluating the marginal likelihood, we shall rewrite E(m) by completing the
square:

E(m)= 1
2

≥
ØtTV°1

∏ t°mTßm
¥

(5.34)

=ØE∏(m)+ 1
2

mTAm(5.35)

E∏(m)= 1
2

(t°Xm)T V°1
∏ (t°Xm)

Now, we are ready to write the log marginal likelihood:

(5.36) logp(t|Æ,Ø,∏)= N
2

logØ° N
2

log(2º)° 1
2

log|V∏|°
1
2

log|ß|+ 1
2

X

i
logÆi °E(m)

We can then iteratively maximise (5.36) with respect to (Æ,Ø,∏) until all the hyperpa-
rameters converge to their fixed values. By differentiating the log marginal likelihood
for each Æi, setting the derivatives equal to zero and rearranging for Æi yields [112] [25]:

@

@Æi
logp(t|Æ,Ø,∏)= 1

2Æi
° 1

2
m2

i °
1
2
ß°1

ii = 0(5.37)

Ænew
i =

1°Æiß
°1
ii

m2
i

(5.38)

The derivative with respect to Ø is found to be:

(5.39)
@

@Ø
logp(t|Æ,Ø,∏)= 1

2

µ
N
Ø

° (t°Xm)T V°1
∏ (t°Xm)°Tr[ß°1XTV°1

∏ X]
∂
= 0

Simplifying the expression in the trace [25]:

ß°1XTV°1
∏ X=ß°1XTV°1

∏ X+Ø°1ß°1A°Ø°1ß°1A(5.40)

=ß°1
≥
ØXTV°1

∏ X+A
¥
Ø°1 °Ø°1ß°1A(5.41)

=
°
I°ß°1A

¢
Ø°1(5.42)

Plugging (5.42) into (5.39) and rearranging for Ø yields:

(5.43) Ønew = N °Tr[I°ß°1A]
2E∏(m)
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The Ænew
i update is equivalent to the corresponding RVM update and the Ø update

incorporates the phylogenetic covariance matrix but otherwise is also the same. The
update we have derived for ∏new is novel and has not appeared in the literature. First,
we shall rewrite the log marginal likelihood in terms of VD :

logp(t|Æ,Ø,∏)= N
2

logØ° N
2

log(2º)° 1
2

log|∏VD |°
1
2

log|ßD |+
1
2

X

i
logÆi °

Ø

∏
ED(m)

° Ø2

2∏2 mT
DAmD

ED(m)= 1
2

(t°Xm)T V°1
D (t°Xm)

where ßD =A+ Ø
∏XTV°1

D X is the skewed posterior precision matrix and mD =ß°1XTV°1
D t

is the skewed posterior mean. The derivative of the log marginal likelihood with respect
to ∏ is given by:

@

@∏
logp(t|Æ,Ø,∏)= 1

2

µ
2Ø
∏2 ED(m)+ Ø

∏2 Tr[ß°1
D XTV°1

D X]+ 2Ø2

∏3 mT
DAmD ° N

∏

∂
= 0

Simplifying the expression in the trace:

ß°1
D XTV°1

D X=ß°1
D XTV°1

D X+ ∏

Ø
ß°1

D A° ∏

Ø
ß°1

D A(5.44)

=ß°1
D

µ
A+ Ø

∏
XTV°1

D X
∂
∏

Ø
° ∏

Ø
ß°1

D A(5.45)

=
°
I°ß°1

D A
¢ ∏
Ø

(5.46)

Plugging (5.46) back into the trace and rearranging for ∏ gives a quadratic equation in ∏:

(5.47) ∏2 °
Tr[I°ß°1

D A]°N
¢
+∏

°
2ØED(m)

¢
+2Ø2mT

DAmD = 0

By employing the quadratic formula we can derive the update equation for Pagel’s ∏ in
the PhyRVM:

∏new =
°2ØED(m)±

q
4Ø2E2

D(m)°8Ø2
°
Tr[I°ß°1

D A]°N
¢
mT

DAmD

2
°
Tr[I°ß°1

D A]°N
¢(5.48)

If the value of Pagel’s ∏ is not independent of Ønew then we get a simplified formula:

(5.49) ∏new =
°
Tr[I°ß°1A]°N

¢
°
Tr[I°ß°1

D A]°N
¢∏old ±

q
E2

D(m)°2
°
Tr[I°ß°1

D A]°N
¢
mT

DAmD
°
Tr[I°ß°1

D A]°N
¢ Ønew
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To gain a better understanding of the hyperparameter updates, we can write ∞i =
1°Æiß

°1
ii . Notice, ∞i appears in all PhyRVM hyperparameter updates (5.38), (5.43),

(5.49). The value of ∞i 2 [0,1] measures how well the corresponding wi is determined
by the data [5] and

P
i ∞i measures how well the full model is determined by the data.

Therefore, when Æi is very large, ∞i will be very small, implying wi is not well determined
by the data and so the ithe feature is irrelevant. By using a threshold on Æi we can prune
irrelevant features with Æi !1. Similarly, we can plot Æ°1

i , called ‘relevance vectors’, in
a relevance vector plot. The update for Pagel’s ∏ (5.49) contains two terms and the term
on the left measures how well the weights w are determined by the data under the V∏

model in the numerator and the VD model in the denominator and the term on the right
is the phylogenetic correction.

Learning the PhyRVM requires iterating the hyperparameter updates (5.38), (5.43)
and (5.48) or (5.49) while updating the posterior statistics (m,ß) and the skewed poste-
rior statistics (mD ,ßD) until the evidence (5.36) converges. The ∏new update is dependent
on the initial value of ∏old and so unlike the other hyperparameters, we must optimize for
the initial value of ∏old with a numerical optimisation method such as Brent’s method [9].
At first, it seems we’ve replaced one optimization for another. However, as the PhyRVM
is an iterative algorithm, learning each hyperparameter depends on learning all of the
others so the algorithm will perform better if all the updates are allowed to adapt their
learning automatically as necessary rather than keeping ∏ fixed throughout. The update
(5.48) can be performed independently of Ænew and Ønew, however update (5.49) must
use Ønew.

To predict the trait t for a new data point, x§, we use the mean of the predictive
distribution with the learned hyperparameters:

p(t|t,Æ̂, Ø̂, ∏̂)=
Z

p(t|w, Ø̂, ∏̂)p(w|t,Æ̂, Ø̂, ∏̂)dw(5.50)

=N (t|Xm,Ø°1V∏+Xß°1XT)(5.51)

To test how well the PhyRVM can estimate phylogenetic signal, we simulated 10 phylo-
genies with 200 taxa using a uniform birth-death process and scaled the branch lengths
with known ∏ 2 {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} using the R package ‘geiger’ [80]. We
then simulated 11 Brownian motion trait variables using the R package ‘phytools’ [93]
to fit the phylogenetic comparative methods to one trait using the other ten. We used
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Table 5.1: Average phylogenetic signal (± one standard deviation) estimated by PhyRVM
and PGLS with low true values of ∏ 2 {0,0.1,0.2,0.3,0.4}. The average marginal likelihood
(± one standard deviation) is below and root mean square error in parenthesis. The best
estimate of ∏ on average is underlined. The largest evidence is in bold if it also has the
better average ∏.

∏ 0 0.1 0.2 0.3 0.4

PhyRVM-
∏= 0.598±0.089
-428 ± 18.9
(2.14 ± 0.192)

0.362 ± 0.276
-429 ± 19.3
(2.13 ± 0.248)

0.425 ± 0.259
-424 ± 20.2
(2.12 ± 0.282)

0.679 ± 0.442
-417 ± 20.2
(2.11 ± 0.318)

0.537±0.208
°411±21.5
(2.09 ± 0.340)

PhyRVM+
∏= 0.057±0.009
-428 ± 18.9
(2.14 ± 0.192)

0.033±0.029
-430 ± 21.0
(2.13 ± 0.247)

0.048±0.015
-428 ± 24.3
(2.11 ± 0.273)

0.047±0.018
-424 ± 24.9
(2.09 ± 0.294)

0.051 ± 0.015
-418 ± 28.4
(2.06 ± 0.310)

PGLS ∏= 0.500±0.00
(2.13 ± 0.192)

0.501 ± 0.506
(2.12 ± 0.252)

0.706 ± 0.367
(2.12 ± 0.286)

0.762 ± 0.339
(2.11 ± 0.317)

0.821 ± 0.241
(2.10 ± 0.348)

Table 5.2: Average phylogenetic signal (± one standard deviation) estimated by PhyRVM
and PGLS with high true values of ∏ 2 {0.5,0.6,0.7,0.8,0.9}. The average marginal
likelihood (± one standard deviation) is below and root mean square error in parenthesis.
The best estimate of ∏ on average is underlined. The largest evidence is in bold if it also
has the better average ∏.

∏ 0.5 0.6 0.7 0.8 0.9

PhyRVM-
∏= 0.663±0.137
°404±16.6
(2.08 ± 0.371)

0.560±0.246
°396±15.5
(2.04 ± 0.404)

0.715±0.143
°380±14.1
(2.03 ± 0.411)

0.665±0.164
°359±16.5
(1.98 ± 0.421)

0.859±0.190
°343±14.0
(1.95 ± 0.416)

PhyRVM+
∏= 0.051±0.011
-414 ± 25.8
(2.03 ± 0.319)

0.051 ± 0.011
-408 ± 26.5
(1.97 ± 0.311)

0.046 ± 0.015
-396 ± 26.7
(1.92 ± 0.318)

0.052 ± 0.007
-388 ± 23.9
(1.85 ± 0.301)

0.049 ± 0.008
-372 ± 23.8
(1.76 ± 0.263)

PGLS ∏= 0.867±0.176
(2.09 ± 0.378)

0.902 ± 0.135
(2.08 ± 0.407)

0.930 ± 0.102
(2.07 ± 0.436)

0.955 ± 0.068
(2.05 ± 0.464)

0.977 ± 0.032
(2.04 ± 0.488)

PGLS to estimate the maximum likelihood value of ∏ and the PhyRVM with (5.49) to
estimate the maximum evidence value of ∏. There are two solutions for the maximum
evidence ∏ due to the square root in the quadratic formula. We consider both solutions
where ‘PhyRVM-’ uses the negative phylogenetic correction and ‘PhyRVM+’ uses the
positive phylogenetic correction. The result are displayed in Tables 5.1 and 5.2.

PGLS greatly overestimated the phylogenetic signal in every test. The average PGLS
∏’s get more accurate as the true value increases. In fact, when true value is less than
0.7, the average PGLS ∏ can be improved by subtracting 0.5. This is most striking
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when the true ∏ is 0 because the PGLS ∏ is 0.5. The accuracy of the two PhyRVM
∏’s is distinguished by the amount of true phylogenetic signal. When the true ∏< 0.4,
PhyRVM+ gave the better ∏ on average and when the true ∏ ∏ 0.4, PhyRVM- gave
the better ∏ on average with a higher average evidence than PhyRVM+. Except for
∏= 0, PhyRVM- has a higher average evidence than PhyRVM+. The lower likelihood
solution is missing for PGLS because there is no analytical solution for the maximum
likelihood ∏. Therefore, maximum likelihood and Bayesian model comparison for ∏ will
be more useful on average when the true phylogenetic signal is high. However, none of
the differences in maximum marginal log likelihood are statistically significant using a
Wilcoxon [122] paired signed rank test at the 1% level. Use of PhyRVM- exclusively will
lead to potentially high Type I errors (although not as high as PGLS) but low Type II
errors. That is, high numbers of false positives but low numbers of false negatives. This
problem can be partially mitigated by applying a suitable threshold on the estimates of
∏ to be regarded as significant. From this study, it would seem that a significant amount
of phylogenetic signal should be ∏∏ 0.6 for PhyRVM- and ∏∏ 0.9 for PGLS, although
this will increase the number of Type II errors and further studies on real and simulated
data will be necessary to nail down an appropriate threshold. It is worth noting that the
low phylogenetic signal model PhyRVM+ has a lower RMSE than PhyRVM- in all true ∏
settings and the improvement gets larger as the true ∏ increases. This is less surprising
than it seems at first. The calculation of the RMSE is not weighted by a phylogeny so
maximising the independent data likelihood will still minimise the RMSE of traits even
if simulated on a phylogeny. This suggests that phylogenetic regression models will not
predict as well as classical linear regression models. To test this we performed a cross
validation study on a real dataset.

We compared PhyRVM-, PhyRVM+ and PGLS [14] against their classical counterparts
RVM and Ordinary Least Squares (OLS) respectively by predicting the optimal growth
temperature (OGT) of 209 species of archaea using input data given by the proportions
of each of the 20 amino acids in the proteomes of each archaeal species. By reducing
the entire archaeal genomes to the 20 amino acid proportions, we can afford a massive
computational and conceptual simplification without a massive loss of information (be-
cause the information lost is only non-protein-coding DNA). However, the 20 amino acid
proportions are limited by treating each amino acid individually, when in fact the order
they appear is as important as their quantity. In section 5.1.4, we will also add in the
dipeptide proportions which constitute the 400 possible pairs of amino acids. We used

68



5.1. PHYLOGENETIC COMPARATIVE METHODS

Table 5.3: Prediction of archaeal OGT using 20 amino acid proportions. 10-Fold cross
validation error (Test RMSE), training error (RMSE), marginal likelihood (p(D)), (aver-
age) predictive log likelihood (Pred log-lik) and phylogenetic signal (∏) for the PhyRVM-,
PhyRVM+, RVM, PGLS and OLS models.

PhyRVM- PhyRVM+ RVM PGLS OLS

∏ 0.056 -0.004 0 0.653 0
p(D) -671.4 -685.3 -691.6 NA NA
RMSE 5.41 5.38 5.25 6.73 5.21
Test RMSE 5.97 ± 1.03 5.81 ± 1.11 5.77 ± 1.19 6.84 ± 1.41 5.68 ± 1.15
Pred log-lik -67.8 ± 4.18 -67.5 ± 4.36 0.037 ± 0.085 NA NA

Brent’s method [68] to optimize the initial value of ∏old in the PhyRVM and L-BFGS-B
[15] to optimize ∏ in PGLS. For PGLS, we had to add a very small jitter constant in the
wML update to prevent singularity. The results are shown in Table 5.3. The genomic
features, traits and phylogeny used for this analysis were prepared by Edmund Moody1.
The phylogeny was inferred using IQTREE [70], the sequences were downloaded from
NCBI refseq [109] and the OGTs came from Sauer and Wang [98]. PGLS has overesti-
mated the phylogenetic signal and reduced its capacity to fit the training data. Hence,
it has the highest training and cross validation error on average. PhyRVM finds the
phylogenetic signal is very low in this dataset. PhyRVM- finds that ∏ is positive and
PhyRVM+ finds that ∏ is negative. A negative value of ∏ is difficult to interpret but could
suggest a convergent instead of divergent evolution because the branch lengths represent
the average number of amino acid substitutions per site along the branch [3]. PhyRVM+
has a lower RMSE than PhyRVM- but this is unlikely due to the sign of ∏ and more
likely due to its smaller magnitude. The PhyRVM has a higher evidence than the RVM
but also a higher RMSE. The predictive log likelihood for the PhyRVM is significantly
lower than the RVM. This is because the phylogenetic covariance matrix is included
in the predictive distribution for the PhyRVM (5.51). Ordinary least squares has the
lowest training and cross validation RMSE which is not surprising as it is minimising
the sum of square errors. However, we tested the statistical significance of the results
using a Wilcoxon [122] paired rank sign test at the 1% level and found none of the cross
validation results to be significant.

1A PhD student in Tom Williams’ lab at the University of Bristol.
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5.1.2 Phylogenetic Probabilistic Principal Components
Analysis (P3CA)

Principal components analysis (PCA) is a widely used dimensionality reduction tech-
nique in which a D-dimensional dataset is linearly projected onto a subspace of lower
dimension, M. PCA is commonly used in comparative biology to reduce the dimension of
a multivariate dataset to a handful of independent components for use in phylogenetic
regression analyses. However, if the components of PCA are not phylogenetically inde-
pendent, systematic errors can occur in the phylogenetic regressions [116]. Phylogenetic
PCA (pPCA) [91] has been developed as an improvement to PCA for comparative data by
incorporating an inverse phylogenetic covariance matrix into the data covariance matrix
producing phylogenetically independent components [91]. However, pPCA does not use
a likelihood function, so it cannot be used to find the optimal value of Pagel’s ∏. Here,
we present a novel algorithm called Phylogenetic Probabilistic Components Analysis
(P3CA) which incorporates a phylogenetic covariance matrix into a matrix Gaussian
latent variable model and can be solved by maximum likelihood. Advantages of P3CA
are: multivariate data can be naturally handled by the matrix Gaussian distribution,
Pagel’s ∏ can be optimised by maximising the likelihood, P3CA can be extended to use
the EM-algorithm for diagonal covariances (factor analysis [5]) and ARD via the evidence
approximation. P3CA is an extension of probabilistic PCA [113] for non-independent
data points and it is not limited to phylogenetic data. Any positive semi-definite kernel
matrix can be used, but for this chapter we will focus on phylogenetic covariance matrices.

We can define a matrix Gaussian [62] prior distribution over the M x N dimensional
latent variable Z:

p(Z)=N (Z|0,I,V∏)(5.52)

= |V∏|M/2

(2º)N/2 exp
µ
°1

2
Tr

h
ZTZV∏

i∂
(5.53)

Similarly, we can also define the matrix Gaussian conditional distribution of the D x N
dimensional data X given Z:

p(X|Z)=N (X|WZ+§,æ2I,V∏)(5.54)

= |V∏|D/2

(2ºæ2)N/2 exp
µ
° 1

2æ2 Tr
h
(X° (WZ+§))T(X° (WZ+§))V∏

i∂
(5.55)
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where W is a D x M dimensional transformation matrix and § is a D x N dimensional
mean matrix. The log joint distribution Y= (Z X) can be written as:

logp(Y)= logp(Z)+ logp(X|Z)(5.56)

=°1
2

Tr
h
ZTZV∏

i
° 1

2
Tr

h
(X°WZ°§)TØI(X°WZ°§)V∏

i
+const(5.57)

where Ø = æ°2 and const represents terms that don’t include Z or X. Consider the
exponent in a general matrix Gaussian distribution N (Y|µ,ß1,ß2):

(5.58) ° 1
2

(Y°µ)Tß°1
1 (Y°µ)ß2 =°1

2
YTß°1

1 Yß2 +Yß°1
1 µß2 +const

Notice, the coefficient of the second-order terms is ß°1
1 and the coefficient of the linear

terms is ß°1
1 µ (ignoring ß2 which can be factored separately). We can factor the second-

order terms in (5.57) to get the precision matrix cov[Y]°1 and then use the matrix
inversion formula [5] to find the covariance of Y:

cov[Y]°1 =
√
I+WTØIW °WTØI

°ØIW ØI

!
(5.59)

cov[Y]=
√

I WT

W WWT +æ2I

!
(5.60)

Similarly, we can factor the first-order terms in (5.57) and multiply by (5.60) to get the
expectation of Y:

(5.61) E[Y]=
√

0
§

!

By marginalizing over the latent variables and using (5.60) and (5.61) we can write the
marginal distribution p(X):

p(X)=
Z

p(X|Z)p(Z) dZ(5.62)

=N (X|E[X],cov1[X],cov2[X])(5.63)

E[X]=§(5.64)

cov1[X]=WWT +æ2I(5.65)

cov2[X]=V∏(5.66)
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When ∏ = 0 and the root to tip distance is 1, then the distribution p(X) in P3CA is
equivalent to PPCA. We will require cov1[X] for the posterior over latent variables. The
precision matrix (inverse covariance) can be found using the Woodbury identity [81] to
give:

cov1[X]°1 =æ°2I°æ°2WM°1WT(5.67)

M=WTW+æ2I(5.68)

This has the added benefit of reducing an O(D3) inversion of cov1[X] to an O(M3) inver-
sion of M. By using (5.60) and (5.61) and the standard formula for conditional Gaussians
[5], the posterior p(Z|X) can be written as:

p(Z|X)=N (Z|E(Z|X),cov1(Z|X),cov2(Z|X))(5.69)

E(Z|X)=M°1WT(X°§)(5.70)

cov1(Z|X)=æ2M°1(5.71)

cov2(Z|X)=V∏(5.72)

Once again, with ∏ = 0 and root to tip distance equal to 1, the posterior of P3CA is
equivalent to PPCA. The posterior mean (5.70) corresponds to the mapping from the
original data space to the lower dimensional latent space. Now, the foundation for P3CA
has been laid, we can learn the parameters (WML,æ2

ML,∏ML) by maximising the (log)
likelihood:

logp(X|W,§,æ2,∏)= D
2

log|V∏|°
ND

2
log(2º)° N

2
log|WWT +æ2I|

° 1
2

Tr
h
XT(WWT +æ2I)°1XV∏

i(5.73)

Note, the mean § is not definable for a single data matrix X. There are two options:
either the data matrix should be split into smaller, equally sized matrices or vectors
representing individual samples. Here, we choose the latter by using the sample mean
which is equivalent to normalising the data and setting §= 0. Applying the ‘trace trick’
to the log-likelihood (5.73) yields a simplified expression in terms of a phylogenetically
weighted sample covariance S∏:

logp(X|W,æ2,∏)= D
2

log|V∏|°
N
2

≥
Dlog(2º)+ log|WWT +æ2I|+Tr

h
S∏(WWT +æ2I)°1

i¥

S∏ =
1
N

XV∏XT

(5.74)
@

@W
logp(X|W,æ2,∏)= N(C°1S∏W°C°1W)
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where C=WWT +æ2I. At the stationary points:

(5.75) S∏C°1W=W

A trivial solution is W= 0, which is a minimum of the likelihood. A non-trivial solution
exists but it is more difficult to find:

(5.76) S∏ =CML

where CML is the maximum likelihood solution of C. Fortunately, the solution is in the
same form as PPCA [5], so we can make use of the closed-form solutions derived in
[113] by substituting the sample covariance for the phylogenetically weighted sample
covariance. The maximum likelihood solution for W is given by:

(5.77) WML =UM(LM °æ2I)1/2

where LM is an M x M dimensional diagonal matrix of the M largest eigenvalues, ∞i, of
S∏ and UM is an D x M matrix with columns given by the corresponding eigenvectors.
This result is proved for PPCA in [113]. Assuming the eigenvectors are arranged in order
of decreasing eigenvalues, where the M largest eigenvalues are ∞1, ...,∞M , the maximum
likelihood solution for æ2 is given by:

(5.78) æ2
ML = 1

D°M

DX

i=M+1
∞i

We can also derive a closed-form solution for the maximum likelihood estimate of Pagel’s
∏ using the representation (5.14) to rewrite the log likelihood in terms of VD :

@

@∏
logp(X|W,æ2,∏)= ND

2∏
° N

2
Tr

h
SD(WWT +æ2I)°1

i
(5.79)

∏new = D
Tr

£
SD(WWT +æ2I)°1

§ =∏old(5.80)

SD = 1
N

XVDXT(5.81)

Once again, we see that maximum likelihood is unsuitable for an analytical treatment
of Pagel’s ∏. To assess the effect of phylogenetic signal we projected 20 archaeal and
bacterial amino acid proportions onto the first two components using P3CA shown in
Figure 5.2 with ∏ = 0 (left) and ∏ = 1 (right). (Left) The first principal component is
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not phylogenetically independent as both archaea and bacteria are widely spread out
horizontally. However, the second principal component does show some phylogenetic
signal which can be related to traits. As bacteria and archaea are the simplest extant
living organisms there are not many traits to measure. One possibility is their optimal
growth temperature (OGT) which is the temperature at which their growth rate is
fastest under laboratory conditions. It is known that bacteria and archaea OGTs do
not follow the same distribution. Bacteria are predominantly psychrophiles (OGT < 10
degrees) and mesophiles (10 degrees ∑ OGT ∑ 50 degrees) and archaea are predominately
thermophiles (OGT > 50 degrees). This could explain why Groussin & Galtier [33] found
a strong correlation between the 2nd component and prokaryotic OGT. But this weak
signal is more an artifact of the fact that the majority of the variance is in the first
component. (Right) The components clearly separate archaea from bacteria vertically
and horizontally much better and by only using two components we can almost achieve
full separation. The places where they overlap could point to mistakes in the phylogenetic
inference, i.e. archaea misclassified as bacteria.

Figure 5.2: The first two principal components of the 20 amino acids proportions of
archaea and bacteria using P3CA with ∏= 0 (left) and ∏= 1 (right).

5.2 Are ‘Relevant’ Genomic Features Correlated
with OGT?

The prediction of the optimal growth temperature (OGT) of prokaryotes (archaea and bac-
teria) from genomic features began with the simple linear regression used by Zeldovich
et al. [125] and is now an active field of research with each paper increasing the number
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of species and the number of features. Yet, the extremely simple model of Zeldovich et
al. is still very appealing. They found that a particular subset of summed amino acid
proportions corresponding to Ile, Val, Tyr, Trp, Arg, Glu, Leu (IVYWREL) is most highly
correlated with OGT. The significance of summing the amino acid proportions is that
it creates an artificial binary classification between IVYWREL and the other 13 amino
acids. It is most fortuitous then that this set has real biological significance. The set
IVYWREL, called the ‘universal set’, contains only amino acids which are loaded to
tRNA by class I aminoacyl-tRNA synthetases [125]. This is a significant finding and it
is interesting to see whether automatic relevance determination (ARD) can be used to
identify individual correlates of OGT. For our analysis, we use the classical RVM as the
phylogenetic signal in this dataset was found to be insignificant.

Figures 5.3 shows the most relevant whole genome features for an RVM trained on
A) 213 archaea (left) and B) 1237 bacteria (right). The most relevant features for archaea
and bacteria are AC and CA respectively. These two dinucleotides, in opposite orienta-
tions, represent the same information biochemically but neither is strongly correlated
with OGT. Figures 5.4 shows the relationship between archaeal dinucleotide AC vs OGT
(left) and AG vs OGT (right). The dinucleotide AG is strongly correlated with OGT in
archaea and yet it is far less relevant. The scenario this implies is one in which the
features which are most correlated with OGT are themselves correlated with each other
- as many genomic features incontrovertibly are. This suggests that in the presence
of correlated features, the most ‘relevant’ features are not the ones which are most
correlated with the trait. The horizontal line in these plots at 37 degrees represents a
known bias in experimental recordings of prokaryotic OGT [31]. The bacteria data is far
noisier and there are no strong correlations between any individual feature and OGT.

Figure 5.3: Most ‘relevant’ whole genomic features for archaea (left) and bacteria (right).
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Figure 5.4: Archaeal AC (left) and AG (right) dinucleotide proportion vs OGT.

5.3 Model Comparison for OGT Regression

We want to test if we can train an RVM to be competitive with the state-of-the-art OGT
prediction models in the literature. We loaded N Gaussian basis functions over 20 amino
acids (where N is the number of species) and 400 dipeptide features for archaea and an
additional 104 genome derived features for bacteria into the RVM and let ARD prune
out the irrelevant features. The benefit of this approach over a kernel method is that by
constraining the model to be linear we are forcing it to find a linear representation in a
lower dimensional feature space (instead of finding a linear representation in a higher
dimensional feature space). In addition, we also spotted a simple sigmoid relationship
between three amino acids (D, Q, T) and one dinucleotide (AG) and archaeal OGT shown
in Figure 5.5. We used a logistic regression trained on these four features to classify
thermophiles (OGT > 50) from non-thermophiles. The logistic regression achieved 97.7%
training accuracy. The square of the prediction probability shows a strong linear rela-
tionship with OGT, with adjusted R2 = 0.9253, so we included it as an additional feature
in the archaea model. The positive correlation of dinucleotide AG proportion and OGT
has been reported previously in the literature [31] and offers some interpretation. AG
dinucleotides contribute to nucleic acid thermostability via base-stacking interactions
[31]. The bacterial dataset contains far more noise and we were unable to find any similar
simple nonlinear relationships between individual features and bacterial OGT.

We performed an extensive comparison of models from the literature for the prediction
of prokaryotic optimal growth temperature using genomic features against our RVM
model. The models include the simple linear regression [125], multiple linear regression
[98] and Support Vector Regression (SVR) with a Gaussian kernel on 20 amino acids
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Figure 5.5: Sigmoidal relationship between AG proportion and thermophilic probability.

and 400 dipeptides [29]. We performed 10-fold cross-validation. Nested cross validation
was used both to select optimal hyperparameters for SVR and RVM and to evaluate
performance. To avoid bias in cross validation, the logistic regression is not trained on
the validation data and thermophilic classification is based on only the training data
for each fold. The Sauer and Wang bacteria model was computationally singular and
could not be trained without a substantial amount of jitter. However, this problem did
not occur during cross validation, as the size of the training set was smaller. The results
are given in Table 5.4. The best performing models achieved less than 5 degrees cross
validation root mean square error. Our RVM model performed the best on the archaea
data and only used protein features (amino acids and dipeptides) and one dinucleotide
(AG) and the SVR with 400 dipeptides performed the best on the bacteria data (likely
because the bacteria data is much noisier which favours the SVR’s greater power to fit to
the peculiarities of the training data). We tested the statistical significance of the results
using a Wilcoxon [122] paired signed rank test in Table 5.5. The RVM only showed a
statistically significant improvement over the Zeldovich et al. simple linear regression
and the Sauer and Wang multiple linear regression models.

Figures 5.6 shows the predicted OGTs computed during cross validation plotted against
the experimental OGTs for archaea (left) and bacteria (right). The archaea RVM approxi-
mates the experimental values very well across the full range. For bacteria we see very
good performance in the thermophilic range 50-80 degrees. The model is significantly
weaker at predicting psychrophiles (OGT < 25). The concept of a psychrophile and its
relationship to OGT is not as clear as a mesophile or thermophile. It is hard to say
whether these species are environmental psychrophiles or psychrophiles in terms of OGT.
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By contrast, the inaccurate prediction on the hyperthermophile at the top of the plot is
straightforward as it is the only species of bacteria in our dataset with OGT above 90
degrees.

Table 5.4: Average 10-fold cross validation error (± one standard deviation) and training
error in parenthesis for archaea and bacteria OGT prediction using simple and multiple
linear regression, SVR and RVM models.

Model No. of features Predictive Performance
Archaea Bacteria

Simple Linear Regression 1 7.60 ± 1.33 (7.66) 8.60 ± 0.489 (8.60)
Multiple Linear Regression 22 (A), 23 (B) 5.85 ± 0.651 (5.18) 5.97 ± 0.367 (9.95)
Support Vector Regression 20 amino acids 5.20 ± 0.948 (3.44) 5.33 ± 0.372 (4.00)
Support Vector Regression 400 dipeptides 5.36 ± 1.15 (3.06) 4.97 ± 0.283 (3.27)
Relevance Vector Machine 261 (A), 662 (B) 4.62 ± 0.656 (3.28) 5.17 ± 0.255 (4.21)

Table 5.5: P-values from a Wilcoxon paired signed rank test comparing cross validation
RMSE of RVM to Simple Linear Regression (SLR), Multiple Linear Regression (MLR)
and Support Vector Regression (SVR). Statistically significant results at the 1% level are
shown in bold.

Model Archaea Bacteria

RVM:SLR 4.3£10°5 1.1£10°5

RVM:MLR 3.2£10°4 4.3£10°5

RVM:SVR(AA) 3.2 £10°1 3.2 £10°1

RVM:SVR(Dipeptides) 3.2 £10°1 3.2 £10°1

Figure 5.6: Predicted OGT vs Experimental OGT on archaea (left) and bacteria (right)
data.
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5.4 Ancestral Sequence & OGT Reconstruction

One of the most exciting open questions in microbial ecology is the determination of the
conditions under which the hypothetical last universal common ancestor (LUCA) thrived
and gave impetus to every extant living organism today. The LUCA is taken to be the
root of the prokaryotic phylogeny. We can also define a last archaeal common ancestor
(LACA) and last bacterial common ancestor (LBCA) as the two descendants of LUCA.
Using phylogenetic inference packages such as RevBayes [47], we can reconstruct the
amino acid sequences of these ancestral organisms. We can then derive genomic features
for the ancestors and predict OGTs using our RVM model trained on extant taxa. To
reconstruct the ancestral sequences we implemented a branch-heterogeneous amino
acid substitution model in RevBayes [47] with a relaxed molecular clock model using
Markov Chain Monte Caro (MCMC). The branch-heterogeneous model was based on the
node-discrete compositional heterogeneity (NDCH) model [26], where each interior node
of the phylogeny is fit to one of a finite set of GTR (Generalised Time Reversible) [110]
composition vectors with replacement. The overall model is a mixture of the different
GTR models. Ideally, we would use a separate GTR model for every branch but this would
be computationally impractical for even a modest number of species. If we can reduce
the number of mixtures without sacrificing the quality of reconstructions then we can
potentially scale the method to use larger numbers of species. To determine the effect of
the number of mixtures (GTR models) we performed ancestral sequence reconstruction
(ASR) with 1, 2, 4, 8 and 16 mixtures. Figure 5.7 shows the root branch lengths (right)
and their variances (left) for each number of mixtures used. The LACA root branch is
in red and the LBCA root branch is in black. Both LACA and LBCA are equidistant to
the root with 1 mixture. The LBCA root branch is shorter than the LACA root branch
suggesting LBCA was the first of the two to diverge from LUCA.

Before we apply a regression model to the ancestral species, it is important to know
whether the ancestral sequences follow a similar composition to the extant species in
the training data. Figure 5.8 shows the two P3CA plots for first 2 principal components
of the 20 amino acid proportions with the inclusion of LUCA, LBCA, LACA (in red and
circled) reconstructed using 8 mixtures of GTR models. We see that all three ancestors
overlap and lie precisely in the middle, where the vertical of the first component meets
the horizontal of the second (right). This is where we would expect it to be intuitively as
an average of extant archaea and bacteria sequences.
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Figure 5.7: Number of GTR mixtures vs branch length variance (left) and branch length
(right). The LACA root branch is in red and the LBCA root branch is in black.

Figure 5.8: P3CA with ∏= 0 (left) and ∏= 1 (right). Archaea is in orange and bacteria is
in blue. LUCA, LBCA and LACA, in red and circled, all line up at the same spot in the
centre of the plot.

We used an RVM with a Gaussian kernel over the 20 amino acids to predict the OGT of
LUCA, LACA and LBCA reconstructed with 1, 2, 4, 8 and 16 mixtures. The OGT of LBCA
did not vary significantly over the range of mixtures with a predicted OGT of 51 degrees.
Figures 5.9 shows the predicted OGTs of LACA (left) and LUCA (right) for the range of
mixtures considered. The predicted OGT of LACA is stable with 4 or more mixtures at
55 degrees. The predicted OGT of LUCA changes significantly with increasing number
of mixtures, ranging from 59 degrees with 1 mixture to 90 degrees with 8 mixtures.
Therefore, with 8 mixtures our RVM model predicts a thermophilic origin for archaea
and bacteria and a hyperthermophilic LUCA. These results are consistent with the
phylogenetic analysis [121] suggesting that LUCA contained reverse gyrase - an enzyme
only present in hyperthermophiles.
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Figure 5.9: Number of GTR mixtures vs OGT for LACA (left) and LUCA (right).

5.5 Concluding Remarks

In this chapter, we introduced an empirical Bayesian approach to estimate phylogenetic
signal of a continuous valued trait. While there is no analytic maximum likelihood
solution for Pagel’s ∏, we found that there is a solution for the maximum evidence. We
developed the phylogenetic relevance vector machine (PhyRVM) with this analytical
update to get more accurate estimates of Pagel’s ∏ by using Bayesian model comparison.
We developed Phylogenetic Probabilistic Principal Components Analysis (P3CA) which
is a matrix Gaussian latent variable model capable of estimating phylogenetic signal by
maximum likelihood.

There is still the problem of optimizing the initial value ∏old which will significantly
slow down the PhyRVM. Ho and Ané [46] developed an algorithm to speed-up the costly
computation of the determinant and inverse of the phylogenetic covariance matrix. This
same speed-up can be applied to the PhyRVM.

We built a state-of-the-art archaeal OGT prediction model using the RVM. It appears
linear modelling is sufficient to predict archaeal OGT. And yet, by only using protein
primary structure information. By including protein secondary structure information,
such as the proportions of amino acids in alpha helices, beta sheets and loops, we could
potentially improve the model and find out which protein region is most informative, or
most irrelevant, using ARD. We also used the RVM to predict the last universal common
ancestor (LUCA) was a hyperthermophile which is corroborated by independent studies
in the literature [121].
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DISCUSSION

“All models are wrong, but some are useful."

— George. E. P. Box

This thesis developed tools for approximating Bayesian inference for independent and
phylogenetically dependent data. Classical techniques, like Expectation Propagation
(EP) and Evidence Approximation (EA), perform exact inference on an approximate
posterior. We relaxed this requirement within the EP and EA frameworks by perform-
ing approximate inference on an approximate posterior, for which exact inference is a
special case. The approximation to EP was to incorporate an additive bias term into
the posterior natural parameter update. The approximation to EA was to incorporate
a phylogenetic covariance matrix into the likelihood function. A parameter was then
chosen by maximising the evidence to determine how far the new methods, called ∞-EP,
PhyRVM and P3CA, should stray from their classical counterparts, called EP, RVM and
PPCA respectively.

Chapter 3 derived the spherical Gaussian ∞-EP algorithm for the clutter problem,
extended it to use Lagrange multipliers, and achieved a statistically significant im-
provement over ADF and EP in low clutter levels. By maximising the evidence, ∞-EP is
able to determine the value of ∞ to find different local maxima to canonical EP which
make the data more probable.

Chapter 4 developed the sparse linear Bayes point machine using ∞-EP with ∞ > 0.
Experiments on real data from the UCI database showed that the support vectors found
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by ∞-EP are comparable to the support vectors found by the SVM in quantity and ac-
curacy of the classifier. The ∞-EP modification to the kernel Bayes point machine was
presented and combined with multiple kernel learning (MKL) to classify oncogenic single
nucleotide variants using several heterogeneous genomic data sources.

Chapter 5 developed the Phylogenetic Relevance Vector Machine (PhyRVM) and Phylo-
genetic Probabilistic Principal Components Analysis (P3CA) to incorporate phylogenetic
non-independence of extant taxa into two classical probabilistic machine learning models.
Experiments on simulated data showed that PhyRVM achieves superior estimation accu-
racy of Pagel’s ∏ to PGLS. A state-of-the-art predictor of archaeal OGT was developed
using an RVM. The ancestral OGT of the last universal common ancestor (LUCA) was
reconstructed to be a hyperthermophile.

We found the maximum evidence estimate of Pagel’s ∏ to be more accurate than the
maximum likelihood estimate in several simulations. It would be interesting to use the
PhyRVM to recompute published maximum likelihood estimates of ∏ and see if any
significant hypotheses are affected. More accurate estimates of ∏ should also be sought
either by using variational inference or Markov Chain Monte Carlo methods. An ideal
next step would be to derive a similar analytical ∏ update for the Variational RVM [114].
The PhyRVM presented in this thesis can only predict a single trait. It is also possible to
predict multiple traits using a matrix Gaussian distribution [27].

The ∞-EP modification sits within the canonical EP framework. Therefore, much of
the body of EP research developed since Minka’s original publication should be applica-
ble to ∞-EP as well. For example, instead of the KL-divergence, we could use the more
general Æ-divergence:

(6.1) DÆ(p||q)= 4
1°Æ2

µ
1°

Z

x
p(x)(1+Æ)/2q(x)(1°Æ)/2dx

∂

When Æ= 1, DÆ(p||q) is equivalent to KL(p||q) as used in canonical EP, and when Æ=°1,
DÆ(p||q) is equivalent to KL(q||p), as used in variational inference. Minka showed that
an extension of EP called Power EP [65], in which each approximate factor is raised to a
power 1/ni, is equivalent to using the Æ-divergence with Æi = (2/ni)°1. Power EP has
been used to unify [13] several previous sparse Gaussian Process classification methods
and furthermore, non standard values of Æ, such as 0.5, have been found to outperform
canonical EP and variational inference. It would be very interesting to test ∞-EP using
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the Power EP formalism. For example, do the quantity and quality of support vectors
change with different alpha divergences?

In this thesis we have presented new methods for approximating posteriors by selecting
a parameter to maximise the evidence. For EP, the parameter could push the iterations
towards better local maxima. Although, the iterations could become unstable and not
converge or even find local minima instead. For EA, the parameter controls how much
phylogenetic signal is in the residuals. Although, the inferred phylogeny may not be a
good representation of the true evolution of the species. Since the true model will have
the maximum evidence on average (see appendix A.1), it is interesting to see that the
approximate methods were often favoured.
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APPENDIX

“Beyond the well-traversed path, mathematics loses its bearings in a jungle of
unnamed special functions and impenetrable combinatorial particularities.
Thus, the mathematical technique can only reach far if it starts from a point
close to the simple essentials of a problem which has simple essentials."

— Jacob. T. Schwarz

A.1 Bayes factors cannot systematically reject the
truth

Suppose, we know the true hypothesis HT for a set of observed data and we want to
check that Bayesian theory gives preference to HT over an alternative HA. Further-
more, suppose (rather absurdly) that we do not use our prior knowledge of the true
hypothesis at all by assuming a flat prior. Then, we can compute the ratio of evidences
p(D|HT) / p(D|HA) (called the Bayes factor [5]) to determine which hypothesis is most
probable. It is possible to invent an example for which the evidence of the incorrect
hypothesis is greater even than the true hypothesis [105]. However, by averaging the
Bayes factor over the distribution of datasets with respect to the true distribution of the
data, we get a quantity called the Kullback-Leibler divergence:

(A.1)
Z

p(D|HT) log
p(D|HT)
p(D|HA)

dD

The KL-divergence is always positive and zero when the two distributions are equal.
Therefore, as the natural logarithm of the Bayes factor is positive, the Bayes factor must
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be greater than 1, so on average the Bayes factor cannot systematically reject the true
hypothesis [58].

A.2 Minimising the Kullback-Leibler divergence in
the exponential family

Consider the Kullback-Leibler divergence between any distribution p(x) and an expo-
nential family distribution q(x).

f (¥)=KL(p||q)=
Z

p(x)log
µ

p(x)
q(x)

∂
dx(A.2)

= Ep[log(p(x))]+Ep[log(Z(¥))]°Ep[¥T(x)](A.3)

= Ep[log(p(x))]+ log(Z(¥))°¥Ep[T(x)](A.4)

Plugging (2.16) into (A.4) at a minimum:

(A.5) r¥ f (¥§)= Eq[T(x)]°Ep[T(x)]= 0

To show that this solution is indeed a minimum, we take the second derivative of f :

rr¥ f (¥)= @2log(Z(¥))
@¥i¥ j

= @

@¥ j

R
Ti(x)exp(¥T(x))dx

Z(¥)
(A.6)

= Eq(Ti(x)T j(x))°Eq[Ti(x)]Eq[T j(x)](A.7)

This is the covariance matrix of T(x) which is positive semi-definite by definition [42].

A.3 Deriving the moment matching updates

Consider approximating any distribution p(x) with a multivariate Gaussian q(x) =
N (x|µ,ß) such that p(x)/ t(x)q(x) and Z =

R
t(x)q(x)dx. We will need to take deriva-

tives of q(x) with respect to the mean and variance.

rµq(x)=ß°1(x°µ)q(x)(A.8)

xq(x)=µq(x)+ßrµq(x)(A.9)

rßq(x)= 1
2

≥
°ß°1 +ß°1(x°µ)(x°µ)Tß°1

¥
q(x)(A.10)

xxT q(x)= 2ß(rßq(x))ß+
≥
ß+xµT +µxT °µµT

¥
q(x)(A.11)
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A.3. DERIVING THE MOMENT MATCHING UPDATES

Multiplying both sides of (A.9) and (A.11) by Z°1t(x) and integrating over x gives:

Ep[x]=µ+Z°1ß

∑
rµ

Z
t(x)q(x)dx

∏
(A.12)

=µ+Z°1ßrµZ(A.13)

=µ+ßrµlog(Z)(A.14)

Ep[xxT]=ß+2ß
°
Z°1rßZ

¢
ß+Ep[x]µT +µEp[x]T °µµT(A.15)

=ß+2ß (rßlog(Z))ß+Ep[x]µT +µEp[x]T °µµT(A.16)

=ß+2ß (rßlog(Z))ß+Ep[x]Ep[x]T °ß
≥
rµlog(Z)rµlog(Z)T

¥
ß(A.17)

Rearranging (A.17) and using the moment matching update for the covariance ß§ =
Ep[xxT]°Ep[x]Ep[x]T gives the required result [42].
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