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Abstract—We use blockchain technology to tackle the problem
of securing periodic double auctions for financial ‘dark pool’
trading, such that the privacy of pre-trade order information
is preserved and the behaviour of the auction operator can be
verified. A smart contract is used as a public audit trail without
revealing the order intention of traders. Auction matching is
performed off-chain, allowing alternative auction mechanisms
to be used without altering the smart contract code. A full sys-
tem implementation is deployed on the Harmony blockchain,
and comparative evaluation of the protocol demonstrates some
clear advantages over the closest published alternative.

Index Terms—blockchain, double auction, privacy, smart con-
tract

1. Introduction

Dark pools are financial trading venues where all order
information is non-displayed (i.e., hidden from view). Dark
pools are principally designed for large volume traders
to avoid market impact, a costly effect where the market
moves adversely when large volume orders are observed
on a displayed (or ‘lit’) order book used by an exchange.
However, the lack of transparency in dark pools is a concern
to regulators and, in 2018, European regulators introduced
rules to limit the amount of dark pool trading [1]. This has
resulted in a rise in popularity of ‘semi-transparent’ periodic
auctions, where non-displayed orders are matched at regular
intervals. In dark pools and periodic auctions, market im-
pact is only avoided if order information is not leaked or
misused, either accidentally or maliciously. Unfortunately,
on multiple occasions, dark pool operators have misused
order information or altered the auction rules, resulting in
operators paying hundreds of millions of dollars in fines [2].

Contribution: We present a novel smart contract pro-
tocol for implementing verifiable and privacy-preserving
periodic double auctions on a blockchain. Under the pro-
tocol, traders first place encrypted order commitments that
cannot be read by the operator. At the start of auction
matching, orders are revealed to the operator and the results
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of the auction (which is run off-chain, thereby allowing any
auction mechanism to be used without altering the smart
contract) are published. This provides traders with provable
guarantees about their order execution and eliminates front-
running and mechanism misuse by the operator. We imple-
ment the smart contract and demonstrate its efficiency and
flexibility.

2. Related Work

In standard auctions, buyers compete to purchase an item
by submitting a ‘bid’. The highest bidder wins the auction
and pays a price determined by the auction rules. The most
common auction types include sealed-bid (where all bids
are private) and open format (where all bids are observable).
Double auctions are more complicated, and bring buyers and
sellers together to transact some item. Orders from buyers
(‘bids’) and sellers (‘asks’) are submitted and a clearing
price (or transaction price) is determined by the double
auction rules. Double auctions can be periodic (orders are
submitted during an entry phase and then clearing takes
place to match those orders after some fixed interval), or
continuous (orders can be submitted and matched at any
time). Previous work on privacy-preserving sealed-bid auc-
tions have been surveyed at length elsewhere [3]. Here, we
focus our review on privacy-preserving double auctions.

In 2006, privacy-preserving double auctions were first
practically considered by Bogetoft et al. [4]. Their protocol
executed a one-shot periodic double auction between three
MPC parties, enabling buyers and sellers to trade multiple
units securely. Subsequently, in 2008, the double auction
protocols of Bogetoft et al. were deployed to secure the
annual Danish sugar beet auction; becoming the first real-
world implementation of a secure MPC auction [5]. In 2015,
Jutla [6] introduced protocols for repeated periodic double
actions using MPC, and suggested that a regulatory authority
could be included as an MPC party to reduce the likelihood
of collusion between operators. In 2019, Cartlidge et al. [7]
presented 2-party and 3-party MPC protocols for securing
dark pool trading venues. Three common mechanisms –
continuous double auction, periodic auctions, and a periodic
volume match – were empirically evaluated, with results
suggesting that the simplest volume match algorithm has
performance that could handle throughput required for a



real-world dark pool. In 2020 [2], the same authors extended
their work by implementing a secure MPC approximation
of the trading mechanism used by Turquoise Plato, Europe’s
largest dark pool. Their protocols were evaluated on simul-
taneous trading across 4000 instruments, demonstrating that
MPC approaches are finally capable of practical application
in securing financial trading venues.

In 2007, Thorpe and Parkes [8] presented a protocol for a
continuous double auction mechanism that uses homomor-
phic encryption along with a bulletin board to record all
activity. The purpose of the protocol is to ensure provably
correct behaviour of the auction operator. Traders encrypt
orders using the operator’s public key and post them to the
bulletin board, where they are timestamped and appended
with a unique identifier. The operator then decrypts and
matches the orders, before updating the bulletin board with
details of the trades, along with proofs of correctness so that
anyone can verify the operator’s actions. In 2009, the same
authors extended their work by proposing a protocol that
uses a commitment scheme to implement a combinatorial
securities exchange [9]. As suggested in [8], these protocols
can further improve security guarantees by using trusted
computing infrastructure. However, the issue of trusting the
trusted infrastructure remains.

A number of systems remove the need for a trusted third
party by implementing double auctions using blockchain
technology. Published between 2017-19, the main use case
of these works are electricity trading and smart grids [10],
[11], [12], [13], [14]. However, none of these systems are
concerned with keeping order information secret and there-
fore each acts as a lit market rather than a dark market.

Several works consider both MPC and blockchain ap-
proaches for securing double auctions. In 2017, Zhang
and Wang [15] introduced the Republic Network (REN);
a decentralised dark pool protocol that uses secure MPC to
provide a platform for trading cryptocurrencies and digital
assets. Also in 2017, Massacci et al. [16] introduced a secure
futures exchange (FuturesMEX) using a distributed ledger,
MPC, and non-interactive zero-knowledge proofs on com-
mitted inputs. The FuturesMEX protocol aims to replicate
the main functionalities of a futures exchange, such as the
Chicago Mercantile Exchange, and is implemented as a con-
tinuous double auction that is run by a centralised clearing
house. In 2020, Liu et al. [17] proposed a blockchain-based
fair and secure electronic double auction protocol (BFSDA)
that used MPC to guarantee fairness and improve security.

In 2021, Ngo et al. [18] introduced a protocol for
decentralised over-the-counter (OTC) dark pools using a dis-
tributed ledger and zk-SNARKs. Using Witness Key Agree-
ment (WKA), two parties are able to agree on a shared key
only if committed information meets a desired condition.
WKA enables traders to negotiate via a public bulletin board
(a blockchain), sending messages securely until a trade is
agreed. A theoretical estimate of the performance of the
system suggested each WKA operation takes less than 15s,
which would enable a throughput of messages expected
to result in approximately 50 trades/day, as seen in some
real world OTC markets. Also in 2021, Galal and Youssef
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Figure 1. System functionality overview, showing how the operator and a
client interact with the smart contact during each protocol phase.

[19] introduced a commitment scheme with zero-knowledge
proofs to achieve verifiable and secrecy-preserving double
auctions.

3. Protocol Overview

We introduce a novel protocol for periodic double auctions
that allows traders to trade secretly (no order information
is revealed prior to the auction) and verifiably (users can
verify that the auction protocol has executed correctly).1 The
key actors of the system are (i) the operator, who runs the
auction, (ii) the clients, who use the system to trade assets,
and (iii) the smart contract, which acts as a public bulletin
board where clients submit orders and the operator publishes
results. An overview is presented in Figure 1. In summary,
for each auction period, (i) client traders register, (ii) clients
send secret commitments (orders) to the smart contract, (iii)
at the start of the matching period, all orders are revealed to
the operator and the matching mechanism is performed off-
chain, (iv) the operator publishes auction results (matched
orders) to the smart contract, and (v) finally results can be
verified by the clients to ensure that the auction mechanism
was performed correctly. Note that since the auction match-
ing is performed off-chain, any matching mechanism can
be used by the operator, making the framework generally
applicable for any periodic double auction without changing

1. A full system implementation is available open source at the project’s
github repository: https://github.com/theodoros701/BlockAuction.

https://github.com/theodoros701/BlockAuction


the smart contract. Also, while the encryption scheme used
in the prototype is ECIES using secp256k1 and AES-256-
GCM, any other similar public key encryption scheme can
be substituted without changing the smart contract.

The system works like a commitment scheme with some
additional properties. The operator first registers clients on
the smart contract by assigning a specific public key pk(i)
to the address of each client, i. Client i then generates
orders of the form O(d, a, p, v,m), where d is the direction
(to buy or sell), a is the asset, p is limit price, v is
volume, and m the minimum execution size. A 32-byte
random bit-string nonce is then appended to order O and
the result is encrypted using the operator’s public key, giving
{O,nonce}pk(i). Each client then publishes commitment
C(i) = Hash({O,nonce}pk(i)) on the smart contract,
which ensures that the order is not revealed, not even to
the operator. At the end of the trading phase, clients reveal
orders only to the operator by publishing the ciphertext of
their order, R(i) = {O,nonce}pk(i). At this point, anyone
can verify that the published ciphertexts match the commit-
ments. To incentivise clients to reveal orders, a deposit is
provided by the client when commitment C(i) is sent; and
deposits are returned when reveal R(i) is sent. The system
can handle trading in any number of assets during the same
trading period. This has the advantage of ensuring that the
asset a client wants to trade is not revealed during order
submission. However, to simplify the implementation, we
only allow clients to submit one order per auction period.
Therefore, multiple assets can only be traded by a client over
multiple auction periods. This simplification can easily be
relaxed in future to allow either multiple orders each period
or an order type that combines multiple assets.

At the end of the reveal phase, the operator decrypts
each valid order and then matches the plaintext orders off-
chain, using a clearing mechanism that is publicly known
to the clients. We designed the system in this way so
that the smart contract is agnostic of the order clearing
algorithm. This makes the protocol modular and customis-
able, as new matching algorithms can be added on demand
without needing to alter and redeploy the smart contract. In
the software implementation we demonstrate three auction
clearing algorithms: (i) single clearing price that maximises
volume traded; (ii) ‘maximised matching’ [20] where orders
are cleared at different prices to maximise volume traded;
and (iii) a simple ‘volume match’ [7] where orders have
price value p = null and all trades execute at a price taken
from some external reference (e.g., the primary exchange).

Once matching is completed, the operator publishes the
results on the smart contract, revealing only the orders
that were matched (i.e., those that resulted in a trade),
along with the shared secret key sk(i) that was used to
encrypt the order. At this point, anybody can verify that
the published plaintext orders match the ciphertext orders
published earlier. Unmatched orders (i.e., those that did
not trade) remain secret to anyone apart from the client
who submitted the order and the operator. Any observer,
including the clients, can verify the published results to
make sure that the operator conducted the auction honestly.

For client j with unmatched order Oj , j can verify that Oj

was not competitive enough to execute by combining their
private information about Oj with the public information
in the smart contract. If a client detects that something
went wrong, they can notify the other clients through the
smart contract. Since every client is incentivised to verify
the auction for themselves and notify others if the operator
acted dishonestly, the clients as a collective can verify
the execution of the whole auction. This implies that if a
client verifies the auction with the information they have
available and also do not hear that another client had a failed
verification, then they can be confident that the operator was
honest. Where dishonesty is shown, the public record in the
blockchain can be used as evidence to prove a legal claim
against the operator (e.g., for precedent see [21]).

Currently, the protocol provides no way for an individual
to check the execution by themselves, without relying on
the collaborative checking of all participants. This can be
considered a limitation of the system, as some clients might
fail to perform their verification correctly or might choose to
omit verification entirely. However, this behaviour is most
likely to affect parties that failed to verify the auction as
other parties will detect fraud against them (as is the case for
the single clearing price periodic auction for example). Yet,
given that the system is flexible enough to allow the operator
to run any auction matching algorithm, there might be cases
where parties that verified the auction are affected if others
fail to do so. One way to prevent this is for the operator
to publish proofs of the correct execution of the protocol,
along with the results. We have not taken this approach,
but possible ways to implemented such proofs include MPC
in the head or zkSNARKs. In theory, both methods should
allow an operator to prove to anyone, in zero knowledge,
that the execution of the protocol was correct.

3.1. Harmony Blockchain Deployment

Ethereum is the primary smart contract blockchain and
offers the security of a large network and the maturity and
availability of development tools, resources, and community.
However, Ethereum’s Proof-of-Work consensus mechanism
makes it relatively slow (13 seconds per block) and ex-
pensive.2 Therefore, Harmony [22] blockchain was selected
for system deployment. Harmony is EVM-compatible, has
an Ethereum-like API, and uses Proof-of-Stake for fast
consensus and negligible transaction costs.3 Therefore, mi-
grating the smart contract between Etherium and Harmony
is straightforward. In future, for enterprise use, we suggest
that the protocol can be deployed on Hyperledger Fabric
[23], as the protocol performs like a permissioned system.

2. Gas cost estimates using ether prices in July 2021 suggest one
auction with 100 clients and 25 executed orders (∼ 29M gas) would cost
(combined for clients and operator) in the region of $1740 (0.87 ether).

3. Running the same auction in Harmony costs $0.02 (0.29 ONE).



TABLE 1. EXPERIMENTAL GAS COSTS FOR OPERATOR AND CLIENTS.

Operator Cost Client Cost

Deploy contract 3.70M Submit order 52k (67k)
Register client 87k Reveal order 171k
Initiate trading phase [29k, 94k] Change order 30k
Change phase [31k, 38k] Delete order 22k (19k)
Publish match 95k or 149k Claim fraud 25k
Assign new public key 38k
Delete order [20k, 37k]
Delete client [21k, 48k]

Ranges given where operations depend on other parameters.
Parentheses indicate special case where memory is allocated/released.

4. Protocol Analysis

We analyse the protocol theoretically and empirically. We
present theoretical results for an Ethereum implementation
to enable comparison with other protocols presented in the
literature. Gas costs are identical for Harmony as a similar
pricing strategy is used. However, the results for duration
require conversion as Harmony has a different block gas
limit. This conversion is trivial and explained below.

4.1. Theoretical Analysis of Gas Usage

In Ethereum, every transaction or operation carries a gas
fee. The gas cost of low-level operations is defined in the
Ethereum yellow paper [24, Appendix G]. The transaction
cost in ether depends on the gas cost of the transaction and
the gas price specified by the sender. So, when analysing
contracts, it is most sensible to consider gas cost (which
are fixed) rather than the cost in ether (which vary). We
empirically measured the gas cost of all contract functions.

There is a constant gas cost per client and a constant
cost per matching for the operator and so the gas cost
grows linearly on the number of clients and the number of
matchings. The minimum cost of an iteration of the protocol
for the operator equals the fixed costs to run the auction, plus
the cost to publish order matchings and to delete clients’
orders at the end. This can be estimated at:

Gas ≈ F + 149000×m2 + 95000×m1 + 35000× c (1)

where F accounts for fixed costs to switch between auction
phases (F ≈ 200k), m2 is the number of matchings with
two secret publications, m1 is the number of matchings with
one secret publication and c is the number of clients that
submitted orders. The cost of publishing a matching depends
on the number of orders that need their secret publication.
If an order was partially matched in a previous matching,
its secret does not need to be published again and so some
gas is saved. In practice, most publications are m1 because
if two orders are matched and one has leftover volume, it
is likely that the partially matched order will be matched
again. However, this depends on the matching algorithm,
so it may not be true in general. Contract deployment and
client registration are only performed once, so they are not
recurring costs and are not counted in the cost of an iteration.

TABLE 2. THEORETICAL MINIMUM PHASE DURATION.

Phase Minimum Duration (Blocks)

First Registration dc/172e
Trading dc/288e
Reveal dc/88e
Calculation (results publication) [de/201e, de/158e]
Results (buffer phase) 1
Registration (reset - case 1) d(c− e)/429 + e/405e
Registration (reset - case 2) d(c− e)/429 + e/200e
Registration (reset - case 3) d(c− e)/429 + e/111e
Registration (reset - case 4) d(c− e)/115 + e/111e

c is number of clients, e is number of executed orders

Gas costs for all operator functions are presented in the left
hand side of Table 1.

The clients bear a considerably smaller gas cost. If a
client does not participate in the auction, they will have
no fees to pay. A client that participates in the auction
must pay gas fees for submitting an order and then for
revealing it. The minimum cost of participation for a client
can be estimated at around 223k gas. Gas costs for all client
functions are presented in right hand side of Table 1.

4.2. Theoretical Analysis of Runtime Duration

Due to the nature of blockchain systems, it is difficult
to calculate the exact runtime of a protocol like the one
presented here. Predicting exactly when a block gets mined
is not possible and there are unpredictable network delays.
For this reason, instead of giving a concrete runtime we
provide the minimum runtime (in number of blocks) it takes
to complete a task as a function of a variable quantity, like
the number of clients or the number of executed orders
(orders matched by the protocol). A runtime (in seconds) can
then be estimated by multiplying the number of blocks by
the estimated time it takes for a block to be mined, which for
Ethereum is around 13 seconds and for Harmony is around
2 seconds. This is the best-case scenario, and in practice
additional delays can be expected. Finality [25] should also
be considered, as forks can take place and malicious parties
might try to take advantage if the protocol does not wait
for a certain number of confirmations. For Ethereum, it
is recommended to add another 25 blocks on each of the
phases, while Harmony finality takes only one block.

The smart contract acts as a state machine that keeps
track of the auction phase. There are five distinct phases
and so at least five blocks are needed for transitions. As-
suming that each phase requires one block, the protocol at
a minimum requires ten blocks to run. The Ethereum block
gas limit is currently 15 million, and so to calculate the
duration of a phase we divide 15 million by the gas cost
of the operations performed in that phase. For example,
submitting an order costs 52k gas so we calculate that a
block can process 15, 000, 000/52, 000 ≈ 288 submissions.
Therefore, if c clients submit an order, we will need at
least dc/288e blocks. Harmony has a larger gas limit of 80
million, so the results require adjustment. In practice, it is



TABLE 3. EXPERIMENTAL RESULTS USING HARMONY. TOP: SUM OF ALL PHASES; BOTTOM: INDIVIDUAL PHASES.

Full Trading Period Repeated Trading Period

Clients Matches Cost Duration (s) Blocks Transactions Cost Duration (s) Blocks Transactions

10 3 7,887,035 50 25 48 3,227,971 40 20 38
100 42 44,917,739 168 84 447 32,458,789 140 70 347
1000 704 438,954,083 1,818 909 4,709 348,362,209 1,556 778 3,709

Registration Trading Reveal Calculation Order Deletion

Clients Matches Cost Blocks Cost Blocks Cost Blocks Cost Blocks Process (s) Cost Blocks

10 3 0.96M 5 0.57M 5 1.74M 5 0.43M 4 0.79 0.46M 3
100 42 8.76M 14 5.24M 23 17.1M 20 5.45M 12 9.18 4.64M 12
1000 704 86.9M 131 51.9M 240 171M 209 78.3M 170 110.4 47.4M 155

highly unlikely that a single entity will be able to consume
all the gas of a block, unless they mine it themselves, so
duration will be higher as other people’s transactions will
be included in the same blocks. Finally, network delays and
other factors are not considered, although in practice they
can be considerable.

Table 2 presents theoretical minimum duration for each
phase, assuming all clients submit and reveal orders. The
first registration is where clients are registered, while the
other four registration cases are alternative options for con-
tract reset before the next trading period. Each case offers
a different level of privacy, secrecy, and cost. Case 1 is
the minimum where the operator simply deletes all orders.
In case 2, the operator deletes all orders and assigns new
public keys to clients whose orders were executed. This can
be done if forward secrecy is a concern. In case 3, all orders
and clients who took part are deleted, and those clients are
registered again with a new address. This helps to preserve
anonymity as an observer could track addresses to guess
the identity of a client from published orders. Finally, case
4 provides perfect anonymity but is the most expensive as
all clients are deleted and registered again.

In terms of number of transactions, the runtime of the
protocol is easier to calculate: each client (i) is registered;
(ii) submits an order; (iii) reveals the order; and finally (iv)
the order is removed from the contract. As each operation
takes one transaction, four transactions are needed per client.
There are additionally five transactions to transition between
the different phases of the protocol. Finally, there are the
order matching publications which can be thought of as a
variable quantity. This gives us an estimate of the runtime
in number of transactions as:

4× c+ 5 +m (2)

where c is the number of clients and m the number of match-
ing publications. If the operator wishes to assign new keys
or delete and re-register the clients this number increases to:

5× c+ 5 +m (3)

as one extra transaction per client is needed. For repeated
auctions, first client registration is not required again, giving:

3× c+ 5 +m or 4× c+ 5 +m (4)

4.3. Empirical Analysis of Harmony Deployment

To empirically test the performance of the protocol, we ran
three experiments on Harmony’s testnet, with 10, 100, and
1000 clients.4

For each experiment: (i) the contract was deployed; (ii)
all clients registered; and then (iii) one protocol iteration
took place, during which each client submitted and revealed
a random order; finally, at the end of the trading period,
(iv) the operator published the results of the auction and the
orders were deleted. A simple volume match algorithm [7]
was used as the periodic auction mechanism.

Results are presented in Table 3. Top: we see that the
number of transactions grows linearly with the number of
clients, c, with results for the full trading period verifying
equation (2) and results for a repeated trading period veri-
fying equation (4). Empirical gas costs verify equation (1).
Gas costs also increase linearly with c, apart from the full
trading day for 10 clients where cost is skewed by the
high initial cost of contract deployment. Bottom: we see
results for each individual phase. Here, we see gas costs
for each phase also increase linearly with c, apart from
the calculation phase, where the operator calculates and
publishes the auction results, which depends on the number
of matches, m.

Duration also follows a similar linear relationship, apart
from when c = 10, which is skewed by phase transitions.
Overall, results for the duration of each individual phase,
and therefore the whole trading period, deviate from the the-
oretical minima. This occurs because each block is not fully
filled with transactions from the protocol, as the theoretical
calculation assumed. One reason for this is interference
from other people using the testnet. More significantly,
experiments were performed using one computer to simulate
all clients. Therefore, there was not enough time to generate
enough transactions to fill each block. In reality, the trading
and reveal phases will be performed by multiple clients
in parallel, so duration will be significantly reduced. For
the other phases, conditions such as network delays and
processing speed on the operator’s machine will be a major
factor in protocol duration. Finally, the processing time for
the calculation phase denotes the time taken for the operator

4. See Harmony Block Explorer results for 10, 100, and 1000 clients.

https://explorer.pops.one/address/0xc7fce7b6048b2fce3d8617cbbd5f86562bf430c1
https://explorer.pops.one/address/0xfccbac67efc05d0f7af60eabe3a8a305cb90e203
https://explorer.pops.one/address/0x0af2ab50df46c1bdfcb0b165abf9e774751de2f6


to validate orders and perform matching. This also grows
linearly as the majority of time is spent validating orders
rather than calculating auction outcomes.

5. Comparative Analysis

The intersection of blockchain technology with secure dou-
ble auctions has not been extensively studied. Additionally,
most research in this general area tends to utilise blockchain
technology very differently to the protocol we present. One
notable exception is the work of Galal and Youssef [19],
who similarly use a commitment scheme in combination
with periodic auctions. We therefore present a comparison
between the key aspects of the two works. Henceforth, we
will use PGY to refer to the protocol in [19] and PBA to
refer to the Block Auction protocol introduced in this paper.

Broadly speaking, protocol PGY works as follows.5
Setup: First the operator deploys the contract and sets a
number of parameters including their public key, the du-
ration of each phase, and the number of commitments.
The operator, also provides a security deposit as collateral.
Phase 1: Each client commits to a bid (or ask) and provides
zero-knowledge proofs that verify that their commitment is
within a range. Within a specified time window, the clients
then submit their orders along with a security deposit. The
proofs are checked by the smart contract and if correct the
orders are stored in the list of bids (or asks). Phase 2:
Clients get the public key of the operator from the smart
contract and use it to encrypt their orders. They then submit
this ciphertext along with zero-knowledge proofs that the
ciphertext matches their commitment. The contract verifies
the proofs and emits events to notify the operator of the re-
veal. Phase 3: The operator collects the revealed orders from
the smart contract and performs the matching. The operator
then publishes the results along with a zero-knowledge proof
of correctness. Finally, the smart contract checks the proofs
and returns the collateral (the deposit) to the parties that
acted according to protocol.

5.1. Privacy and Verifiability

Security deposits are used as collateral in both protocols to
incentivise clients to reveal their orders.6 This also makes it
prohibitively costly for the operator to simulate fraudulent
clients and only reveal orders which benefit them.

In terms of privacy, the guarantees of PGY can be
considered worse than PBA during order submission. Sub-
mitting an order using PBA reveals no information about the

5. PGY code: https://github.com/Anonymousub/PeriodicAuction
6. Looking at the smart contract of PGY , we believe that the security

deposits do not work as described in [19]. The paper states that deposits
are refunded to unexecuted orders, and for executed orders deposits are
locked in the contract until they are settled. Additionally, if the operator
fails to clear the market all clients should be refunded. This functionality
does not seem to be present in the contract code as the only places where
deposits are returned are when disputes take place. More importantly, if the
operator is allowed to receive a client’s deposit by disputing their order,
this can lead to an exploit where the operator creates fraudulent clients and
submits multiple orders; then only those orders that benefit the operator are
revealed, and other orders are disputed to receive their deposits.

order. However, in PGY (i) the intention to trade a particular
asset and (ii) the order direction are revealed. This gives
valuable information to observers regarding the supply and
demand, and makes it easier for malicious parties, including
the operator, to guess a particular client’s trading intention.

The protocol verification guarantees of PGY are perhaps
better than PBA, since every action in PGY comes with a
zero-knowledge proof that proves its correctness. In PBA,
no such proofs are provided, however correctness proofs
are not necessary for order submission or order reveal as
those actions can later be proven by other means. The main
benefit of correctness proofs in PGY is so that the clients
can confirm the correct execution of the protocol at the end
of the trading period. In PBA, some guarantees are available
to individual clients, but complete verification of execution
is achieved through the cooperation of all clients.

5.2. Completeness

PGY is a functional protocol that achieves all the aims of its
authors. But, as presented, it is not a complete system. The
operator and the clients still need to manually interact with
the blockchain as no applications are provided to reduce
their work load. Additionally, it is not clear how the protocol
deals with permissions or how it should be reset between
each iteration. This is understandable, as the authors were
not aiming to produce a complete system, only a proof-of-
concept. On the other hand, we present PBA as a complete
system that can easily be deployed in a real world setting
with a few minor modifications.

5.3. Flexibility

PGY incorporates the single clearing price periodic auction.
To accommodate other clearing/matching algorithms, the
protocol would require adjustment since the proof of cor-
rectness provided by the operator is a zero-knowledge proof
that the sorting of the orders is correct. This proof works
with the single price periodic auction clearing method but
does not necessarily work with other clearing algorithms
and most probably a different proof will be needed for a
different algorithm. Also, as the proof is checked by the
smart contract, changing the clearing algorithm will require
the redeployment of the contract. In contrast, the smart
contract of PBA is agnostic of the clearing algorithm and
can work with any clearing algorithm that fits the periodic
auction model. In the current implementation for example,
three different clearing algorithms are presented but more
can be easily added. Additionally, in PGY each trading
period only works for a particular asset, while PBA enables
trading in any number of assets. These differences make
PBA more flexible than PGY .

5.4. Execution Cost

As the two protocols have different functions, only a small
subset of operations that perform a similar task can be

https://github.com/Anonymousub/PeriodicAuction
https://github.com/Anonymousub/PeriodicAuction/blob/master/contracts/Auction.sol


directly compared. Deployment of the contracts seems to
cost slightly less in PBA than PGY . However, this is of
little concern as the protocols would ideally be deployed
only once. In PGY , the costs for submitting and revealing an
order are presented as 276k and 49k, respectively. Accord-
ing to the authors, these are theoretical approximations as
they only take into account the cost for verifying the zero-
knowledge proofs and additional operations are not taken
into account. Running the provided demo shows the actual
gas costs for those operations are 234k gas for submitting
an order and 115k gas for revealing it. The same operations
in PBA cost 53k and 171k gas, respectively. As a client
needs to both submit and reveal their order to participate in
the auction, in PGY the client pays 350k gas, while in PBA

the client pays 223k gas. Therefore, PBA is more efficient
for clients.

The market clearing function of PGY and the match-
ing publication function of PBA are harder to compare as
they work differently. According to [19], the clear market
operation of PGY can theoretically process ∼ 728 orders
using a 10M gas limit, which translates to 14k gas per
order.7 This does not take into account any costs apart from
the costs for verification of the zero-knowledge proofs. In
practice, using the open source demo provided, we were able
to process only 106 orders before we reached the default
gas limit of Ganache (∼ 6.7M gas). This experimental
result translates to a cost per order of around 63k gas. As
each matching publication in PBA costs either 95k or 149k
gas, the operator using PBA would have to pay 74.5k gas
per matched order at best or 95k at worst. Note that the
unmatched orders should not be counted in the calculation
for PBA as only matched orders are published, while in
PGY all orders contribute to the cost. Using the experimental
results for both protocols, we can calculate that PGY is more
efficient than PBA for auctions where the ratio of executed
orders to all orders (REO) is greater than 0.66 (using 95k)
or 0.85 (using 74.5k). In practice, we think that the REO
of real-life auctions will rarely be that high, so PBA will be
more efficient most of the time. Additionally, PBA appears
to be more efficient for auctions with few orders as it takes
a while for PGY to converge to the 63k gas cost per order
mentioned above.

5.5. Scalability

Scalability is important for any practical protocol. Again,
due to differences in the way the two protocols work,
it is difficult to make precise scalability comparisons. As
mentioned before, it is not clear how PGY deals with
permissions, how it resets for the next iteration, or if it
should be deployed again. This is a critical comparison, as
a large number of transactions are needed in PBA for those

7. We noticed a small bug in the code of the clear market function of
PGY . If the clearing price is a decimal number, for example 100.5, then
101 (or 100) should be accepted as the contract does not work with decimal
numbers. But, from our experimentation, it seems that neither works, thus
the operator cannot clear the market in such cases.

operations and as we cannot evaluate this number for PGY

those comparisons will not be discussed.
Scalability for clients depends on order submission and

order reveal. For PGY , each order submission costs 234k
gas, so a maximum of 64 orders can be executed before
the gas limit of a single block is reached (for PBA, this
number is 288). For PGY , each order reveal costs 115k gas,
so 130 reveals can fit in a block (for PBA this number is
88). Therefore, the minimum duration, dur, of the order
submission and order reveal phases can be calculated as a
function of the number of clients, c, such that:

dur(PBA) =
⌈ c

288

⌉
+
⌈ c

88

⌉
≤ dur(PGY ) =

⌈ c

64

⌉
+
⌈ c

130

⌉
i.e., for any c, PBA’s order submission and reveal are
quicker.

The greatest differences lie in the actions of the operator.
In PGY , the operator only needs one transaction to clear
the whole market, while in PBA the operator publishes all
matched orders and one transaction is needed for each. In
this sense, PGY is clearly more scalable. However, since
one transaction clears the whole market, there is a maximum
number of orders that PGY can accommodate. The authors
of PGY state that this limit is ∼ 728 orders (using 10M gas
limit, which becomes ∼ 1092 orders using 15M limit), but
this value does not take into account any gas costs other than
the costs for verification of proofs. In practice, with a 6.7M
gas limit, we found this number to be 106. Adjusting for the
current 15M gas limit gives PGY an order limit of ∼ 238. In
comparison, PBA has no such limit as each match is cleared
individually. Therefore, while PBA scales linearly with the
number of orders, PGY just requires a constant time of one
for auctions with fewer than 238 orders and then cannot
continue scaling. This is a hard limitation on PGY .

5.6. Summary of Comparison

Both protocols have advantages and disadvantages in scala-
bility, and execution cost, PGY provides better verifiability
while PBA is superior in terms of privacy, flexibility and
completeness. Regarding verifiability, PGY provides ZK
proofs of auction execution, while PBA does not. Regard-
ing privacy, PGY reveals the asset and direction of an
order, while PBA does not. In terms of execution cost,
PGY is more efficient for the operator for auctions with
REO > 0.66 (worst case) or REO > 0.85 (best case).
For auctions with other REOs, and for the clients, PBA is
more cost efficient. PBA provides better scalability on the
number of clients, while PGY provides constant scalability
on the number of orders up to a limit (∼ 238). After this
point, PBA can continue to scale while PGY cannot. PBA

is more flexible as multiple auction clearing algorithms
are interchangeable while PGY only supports one auction
mechanism that is hard-coded in the smart contract. PBA

allows the trade of multiple assets while PGY can trade only
one. Finally, PBA is provided with a full implementation,
including dedicated client and operator applications, making
it a complete open source system ready for use. In contrast,
only the smart contract and a demo is provided with PGY .



6. Conclusion

We have presented a novel protocol for privacy-preserving
and verifiable periodic double auctions using blockchain
technology, and released a full system implementation. The
protocol is customisable to accommodate any periodic dou-
ble auction mechanism and can be easily transformed into
a commercial system. The protocol was evaluated both
theoretically and experimentally, with results demonstrating
clear advantages over the closest alternative protocol found
in the literature. Having a privacy-preserving double auction
with a publicly verifiable audit trail not only benefits dark
pool financial trading, but offers public benefit in application
areas such as government procurement.
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