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ABSTRACT: Background: The “dual syndrome
hypothesis” distinguished two subtypes in mild cognitive
impairment (MCI) in Parkinson’s disease: frontostriatal,
characterized by attentional and executive deficits; and
posterior cortical, characterized by visuospatial, memory,
and language deficits.
Objective: The aim was to identify resting-state func-
tional modifications associated with these subtypes.
Methods: Ninety-five nondemented patients categorized
as having normal cognition (n = 31), frontostriatal
(n = 14), posterior cortical (n = 20), or mixed (n = 30)
cognitive subtype had a 3 T resting-state functional mag-
netic resonance imaging scan. Twenty-four age-matched
healthy controls (HCs) were also included. A group-level
independent component analysis was performed to iden-
tify resting-state networks, and the selected components
were subdivided into 564 cortical regions in addition to
26 basal ganglia regions. Global intra- and inter-network
connectivity along with global and local efficiencies was
compared between groups. The network-based statistics

approach was used to identify connections significantly
different between groups.
Results: Patients with posterior cortical deficits had
increased intra-network functional connectivity (FC) within the
basal ganglia network compared with patients with fron-
tostriatal deficits. Patients with frontostriatal deficits had
reduced inter-network FC between several networks, includ-
ing the visual, default-mode, sensorimotor, salience, dorsal
attentional, basal ganglia, and frontoparietal networks, com-
pared with HCs, patients with normal cognition, and patients
with a posterior cortical subtype. Similar results were also
found between patients with a mixed subtype and HCs.
Conclusion: MCI subtypes are associated with specific
changes in resting-state FC. Longitudinal studies are
needed to determine the predictive potential of these
markers regarding the risk of developing dementia. © 2021
International Parkinson and Movement Disorder Society

Key Words: cognition; independent component analy-
sis; cognitive subtypes; dual syndrome hypothesis
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PD-NC Parkinson’s disease—normal cognition
PD-PC Parkinson’s disease—posterior cortical subtype

Mild cognitive impairment (MCI) is common and
heterogeneous in Parkinson’s disease (PD).1,2 Using a
data-driven approach, Williams-Gray and colleagues3

reported two distinct cognitive syndromes in PD:
(1) frontostriatal, characterized by deficits in attentional
and executive functions and related to the dopaminer-
gic dysfunction due, in part, to the loss of substantia
nigra neurons; and (2) posterior cortical, characterized
by deficits in visuospatial, memory, and language func-
tions and related to nondopaminergic dysfunction and
cortical Lewy bodies. This study generated the formula-
tion of the “dual syndrome hypothesis” in PD.4 Interest-
ingly, the posterior cortical subtype (PD-PC) was
associated with a higher risk of developing early
Parkinson’s disease dementia (PDD), whereas the fron-
tostriatal was not.3,5 It suggests a critical role of sub-
typing MCI in PD to detect at-risk patients and
personalize support. Up to now, no study has explored
functional markers associated with each subtype.
Resting-state functional connectivity (FC) can be used

to analyze intra- and inter-network connectivity. A
meta-analysis reported that PD-MCI and PDD patients
had reduced FC in cerebral regions associated with the
default-mode, the frontoparietal, the auditory, and the
sensorimotor networks compared to PD patients
with normal cognition (PD-NC) and/or healthy
controls (HCs).6 However, only two resting-state FC
studies have considered the heterogeneity of PD-MCI
and found FC alterations in the default-mode,
frontoparietal, dorsal attentional, and visual networks,
in amnestic and nonamnestic subtypes.7,8 Regarding
the dual syndrome hypothesis, Lang and colleagues9

reported decreased FC in the sensorimotor network
associated with a dysexecutive factor, whereas a poste-
rior cortical factor was associated with reduced FC in
the frontoparietal network and increased FC in the
temporo-limbic network. However, in this study,
although PD patients had lower cognitive performance
than HCs, it was not specified whether they met the
criteria for PD-MCI. Besides, only intra-network con-
nectivity was studied, whereas inter-network connectiv-
ity dysfunction has been found in PD and PD-MCI.10-12

Therefore, the aim of the present study was to identify
intra- and inter-network connectivity changes associ-
ated with each cognitive subtype defined in the dual
syndrome hypothesis in a PD-MCI population. Our
hypothesis was that, compared to HCs and PD-NC,
PD-MCI patients would display intra-network and
inter-network FC changes in distinct resting-state net-
works specific to their cognitive subtype. More specifi-
cally, we expected FC changes in networks, including
frontal and striatal regions in patients with a

frontostriatal subtype, whereas patients with a PD-PC
would have FC changes in networks, including poste-
rior regions.

Patients and Methods
Participants

One hundred and fifty-six consecutive PD patients
were recruited among outpatients of two independent
European movement disorder centers, in Lille, France
(n = 82), and Maastricht, the Netherlands (n = 76),
between March 2013 and August 2014.13 Patients
who met the United Kingdom Brain Bank criteria for
idiopathic PD14 and did not suffer from other neurolog-
ical disorder were included. For the present study,
patients with moderate to severe dementia (score > 1 on
the Clinical Dementia Rating Scale15) and meeting the
Movement Disorders criteria for PDD16 were excluded.
All participants provided informed consent. The study
was approved by the local institutional review boards
(CPP Nord-Ouest IV [2012-A01317-36] for Lille
[France] and METC azM/UM [NL42701.068.12] for
Maastricht [the Netherlands]; ClinicalTrials.gov identifier:
NCT01792843).
For neuroimaging analysis, data of HCs, acquired in

Lille (France) in the context of a different study
(n = 27), were also used. Inclusion criteria for HCs
were as follows: (1) no severe neurological or psychiat-
ric disorders, (2) no contraindications for magnetic
resonance imaging (MRI), and (3) no cognitive impair-
ment defined as a total score ≥ 28 on the Mini-Mental
State Examination.17 To improve age matching, HC
participants below 41 years were not included. HCs
provided permission to use their data in this study. The
study from which HC data were obtained had
been approved by the local institutional review board
(CPP Nord-Ouest IV [2013-A01758-37]).

Demographic and Clinical Variables
Age, sex, and duration of formal education were

recorded for all participants. Clinical data collected for
PD were disease duration, age at onset, and side of
onset. Moreover, the Movement Disorders Society-
Unified Parkinson Disease Rating Scale18 was used to
assess the severity of motor symptoms (part III), the dis-
ease severity (Hoehn & Yahr stage), and the presence
of hallucinations (part I, item 2). Depression, anxiety,
and apathy were also assessed using the Hamilton
Depression Scale,19 the Parkinson Anxiety Scale,20 and
the Lille Apathy Rating Scale,21 respectively. All anti-
parkinsonian medications were registered, and doses
were converted to levodopa equivalent daily dose.22

Frequencies of treatment with acetylcholinesterase
inhibitors, antipsychotics, antidepressants, or benzodi-
azepines were also recorded.
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Neuropsychological Assessment and Cognitive
Categorization

A full description of the comprehensive neuropsycho-
logical evaluation and the cognitive categorization pro-
cedure can be found in Devignes et al.23 Briefly, as
recommended by international diagnostic criteria,24 a
battery of tests were used to assess global cognition and
five specific cognitive domains: (1) attention and work-
ing memory, (2) executive functions, (3) verbal episodic
memory, (4) visuospatial functions, and (5) language.
Patients received their usual antiparkinsonian medica-
tion. A cognitive domain was considered impaired
when performance on at least two tests (or one test if
only one was used to assess the domain) was ≤5th per-
centile or ≤�1.645 standard deviations compared to
normative data.1 Patients were then assigned to a sub-
type: (1) normal cognition (PD-NC), that is, no cogni-
tive domain impaired; (2) frontostriatal subtype
(PD-FS), that is, deficits in attention/working memory
and/or executive functions without deficits in visuospa-
tial functions, episodic memory, and language;
(3) PD-PC, that is, deficits in visuospatial functions
and/or episodic memory and/or language without defi-
cits in attention/working memory and executive func-
tions; and (4) mixed subtype (PD-MS), that is, deficits
in attention/working memory and/or executive func-
tions with deficits in visuospatial functions, episodic
memory, and/or language.

MRI Analysis
A group-level independent component analysis with all

subjects was performed using the methodology described
by Varoquaux et al,25 resulting in eight resting-state net-
works (Appendix S1, Fig. S1) that were subdivided into
functional regions based on an atlas.26 Furthermore, we
added a basal-ganglia network, including caudate nuclei,
putamen, pallidum, and thalami from the atlas26 because
they are involved in the pathophysiology of cognitive dis-
orders in PD.27 Our analyses were therefore performed
on 590 regions (Appendix S1, Table S1). Finally, the time
course of the blood–oxygen level-dependent signal was
averaged among voxels within each area, and a Pearson
correlation coefficient was calculated between each pair
of regions, resulting in a 590 � 590 connectivity matrix
for each participant. Details regarding MRI acquisition,
preprocessing, and determination of regions of interest
are provided in Appendix S2.

Statistical Analyses
All the analyses were performed with the R software

version 4.0.328 and were corrected for multiple com-
parisons using a false discovery rate (FDR) fixed at
0.05,29 except the network-based statistics30 that were

performed using Matlab version R2020a (MathWorks,
Natick, MA, USA), and used a family-wise error (FEW)
correction. Corrected P-values <0.05 were considered
significant.
For demographic and clinical numerical variables,

group comparisons were performed using the
Kruskal–Wallis test and post hoc comparisons using
the Wilcoxon-Mann-Whitney test, whereas categori-
cal variables were compared using Fisher’s exact test.
For neuropsychological variables, comparisons
were performed using ANCOVA (analysis of covari-
ance) combined to a permutation test (number of
permutations = 10,000), with age, sex, and educa-
tional level as covariates.
Regarding MRI data, based on individual connectiv-

ity matrices, we computed the area under the curve
(AUC) representing the cumulative distribution of con-
nections as a function of correlation coefficients for the
entire connectivity matrix (global connectivity),
between regions within a network (intra-connectivity),
or between regions of a given network versus all the
other regions (inter-network connectivity). Higher AUC
represents lower region-to-region correlation coeffi-
cients (ie, lower FC) and vice versa. It is noteworthy
that the AUC is dependent on the number of regions
(ie, the higher the number of regions, the higher the
AUC values). Moreover, to study functional integration
differences between groups, we analyzed global net-
work metrics based on graph theory approach using
the Brain Connectivity Toolbox31: (1) the global effi-
ciency and (2) the local efficiency. The efficiency of a
graph is inversely proportional to the shortest distance.
Therefore, the global efficiency of a network represents
the average inverse shortest path length when consider-
ing all regions, whereas the local efficiency represents
the average inverse shortest path length among the first
neighbors of an area when it is removed. Pairwise com-
parisons between the five groups were performed on
the AUC and global/local efficiency values using
ANCOVA and a permutation test (number of
permutations = 10,000). Finally, we used the network-
based statistics approach30 to identify functional con-
nections showing differences between groups. Pairwise
comparisons between the five groups were performed
using the t test and permutation test (number of
permutations = 10,000). For each significant compari-
son, the mean effect size was computed from the effect
sizes (Cohen’s d) of significant connections. The MRI
analyses were controlled for age, sex, educational level,
and center of recruitment.
For visualization, we used the BrainNet toolbox32 to

project peak coordinates (in the Montreal Neurological
Institute space) of major brain regions involved in sig-
nificant between-group comparisons.

1This value for standard deviations corresponds to the fifth percentile.
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Results
Population

The flowchart of the study is shown in Appendix S1,
Figure S2. Twelve patients meeting criteria for PDD as
well as 30 patients whose MRI scan was nonexploitable
were excluded. Moreover, 9 participants had pro-
nounced motion displacement. Finally, 13 participants
were excluded for poor-quality preprocessed data. Ana-
lyses were thus performed on 119 participants.
Comparisons between HC and PD patients on major

variables and MRI quality criteria are presented in
Table S2. The only significant result was lower Mini-
Mental State Examination17 total score in PD patients
compared to HCs (pFDR = 0.022).

PD-MCI Subtype Categorization
In total, 31 (32.63%) PD patients were PD-NC, whereas

64 (67.37%) had a PD-MCI. Within the PD-MCI group,
14 (21.87%) had a PD-FS subtype, 20 (31.25%) a PD-PC
subtype, and 30 (46.88%) a PD-MS subtype. PD-FS
patients were mainly characterized by executive deficits
(92.86%), PD-PC by visuospatial deficits (60.00%), and
PD-MS by executive (93.33%) and visuospatial (86.67%)
deficits. Frequencies of impaired cognitive domains are pro-
vided in Table 1.

Demographic and Clinical Characterization of
PD-MCI Subtypes

Results on demographic and clinical variables are
presented in Table 2. Sex ratio was lower in PD-MS
compared to PD-NC and PD-FS, with more men in
these last two groups. Formal education was shorter
in PD-MS compared to the other three groups and in
PD-PC compared to PD-FS. The total score on the
Parkinson Anxiety Scale20 was higher in the three
PD-MCI subgroups compared to PD-NC. Finally, the
Lille/Maastricht ratio was lower in PD-NC compared
to PD-PC and PD-MS and lower in PD-FS compared to
PD-MS (Table S3 for demographic and clinical data
according to the recruitment center).
Regarding cognitive variables (Table 1), PD-MS had

lower global cognitive efficiency than PD-NC and
PD-PC. As expected, PD-FS had lower performance in
attention/working memory and executive functions
than PD-NC and, to a lesser extent, PD-PC. PD-PC had
lower performance in visuospatial functions, episodic
memory, and language than PD-NC. Finally, PD-MS
had lower performance in all cognitive domains com-
pared with PD-NC, in frontostriatal domains compared
with PD-PC, and for visuospatial functions compared
with PD-FS.

FC Analyses
Global Connectivity and Global and Local
Efficiencies

There were no significant between-group differences
for global connectivity (Appendix S1, Fig. S3 and
Table S4), global efficiency (Appendix S1, Fig. S4), and
local efficiency.

Intra- and Inter-Network Connectivity

Results for intra-network connectivity are shown in
Figure 1 (Appendix S1, Table S4 for details). PD-PC
patients had a smaller AUC compared with PD-FS
(pFDR = 0.028) within the basal ganglia network
(Fig. 1, top left). To better characterize this difference,
we computed the AUC between the regions composing
the basal ganglia network and compared the AUC
between PD-PC and PD-FS. This analysis showed
smaller AUC in PD-PC compared to PD-FS in 16 of
26 basal ganglia regions: the anterior and ventral parts
of the left caudate; the ventral part of the right caudate;
the bilateral pallidum; the anterior part of the left puta-
men; the dorsolateral, ventromedial, and anterior parts
of the right putamen; and almost all regions composing
the bilateral thalami (Table S5). Finally, PD-PC patients
tended to have smaller AUC compared with PD-NC
within the basal ganglia network (pFDR = 0.066)
(Fig. 1). For inter-network connectivity, there was no
significant comparison (Appendix S1, Fig. S5 and
Table S4).

Functional Connections

The analysis with the network-based statistics
approach30 revealed significant functional connection
differences for HC > PD-FS (pFWE = 0.012; mean effect
size = 1.19), PD-NC > PD-FS (pFWE = 0.010; mean effect
size = 1.13), PD-PC > PD-FS (pFWE = 0.010; mean effect
size = 1.14), and HC > PD-MS (pFWE = 0.047; mean
effect size = 0.95) comparisons. Connectograms are pres-
ented in Figure 2 (see Appendix S1, Fig. S6 for details).
For the HC > PD-FS comparison, 92.28% were inter-
network connections. These connections involved 440 of
590 selected regions and were mainly part of the five fol-
lowing networks: visual network (51.6%), default-mode
network (34.4%), salience network (23.0%), sensorimotor
network (21.6%), and frontoparietal network (19.1%).
For the PD-NC > PD-FS comparison, 91.31% were inter-
network connections. These connections involved 453
regions and were mainly part of the five following net-
works: visual network (43.5%), sensorimotor network
(33.9%), dorsal attentional network (30.4%), salience net-
work (28.0%), and default-mode network (21.3%). For
the PD-PC > PD-FS comparison, 90.22% were inter-
network connections. These connections involved 474
regions and were mainly part of the five following
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networks: salience network (36.0%), visual network
(31.1%), default-mode network (29.3%), sensorimotor
network (24.8%), and basal ganglia network (24.7%).
Finally, for the HC > PD-MS comparison, 96.44% were
inter-network connections. These connections involved
308 regions and were mainly part of the five following
networks: visual network (62.7%), default-mode network
(29.0%), sensorimotor network (27.1%), language net-
work (26.0%), and frontoparietal network (16.1%).
Regarding the spatial location of the involved regions
(Fig. 3), significant differences between PD-FS and
HC/PD-NC as well as between HC and PD-MS concerned
mainly posterior cortical regions, whereas significant dif-
ferences between PD-FS and PD-PC concerned mainly
striatal and frontal regions (see Appendix S1, Table S6
and Fig. S7 for more details).

Discussion

The aim of the present study was to determine
whether subtypes in PD-MCI, as determined by the

dual syndrome hypothesis, were associated with specific
FC modifications. We showed for the first time that
(1) PD-PC patients had higher FC within the basal
ganglia network compared with PD-FS patients and
(2) PD-FS and PD-MS patients had reduced FC in sev-
eral resting-state networks compared with HC, PD-NC,
or PD-PC. These changes were independent of age, sex,
and education as well as disease duration and severity
of motor symptoms. As global connectivity did not sig-
nificantly differ between groups, our functional results
were also independent of this variable.

FC Modifications Are Associated with MCI and
Not PD Itself

No significant between-group differences were found
between HCs and PD-NC, whereas there were signifi-
cant differences between HC/PD-NC and PD-MCI sub-
types. Overall, these results suggest that our results are
related to the presence of cognitive impairment and not
to the mere presence of PD itself. Although previous
studies reported significant FC differences between HCs

FIG. 1. Representation of intra-network connectivity for each network according to the subgroup. The boxplots represent the distribution of the average
area under the curve values. The thick bars represent the medians and the crosses the outliers. *pFDR < 0.05; AUC, area under the curve; FDR, false
discovery rate; HC, healthy control; PD-FS, Parkinson’s disease—frontostriatal subtype; PD-MS, Parkinson’s disease—mixed subtype; PD-NC,
Parkinson’s disease—normal cognition; PD-PC, Parkinson’s disease—posterior cortical subtype. [Color figure can be viewed at wileyonlinelibrary.com]
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and PD patients, there were inconsistencies.33 More-
over, if most of the studies excluded PDD patients,
often based on a screening score, they did not check for
MCI in their study population, making it difficult to
know if these changes were due to the potential pres-
ence of MCI.
Besides, resting-state FC alterations in PD-MCI have

been more consistently reported.6,34 Regarding cognitive
subtyping, only two studies have considered the cognitive
heterogeneity of PD-MCI when analyzing FC.7,8 Their
results showed decreased FC in various networks, includ-
ing the default-mode, frontoparietal, dorsal attentional,
and visual networks, in PD patients with amnestic or
nonamnestic MCI compared with HC and/or PD-NC.
However, in these studies, most PD-MCI patients had

deficits in several cognitive domains, including memory,
attentional, executive, and visuospatial functions.
According to the dual syndrome hypothesis, these sub-
types could therefore be considered as mixed given the
presence of frontostriatal and posterior cortical deficits.
Finally, as no previous study used the dual syndrome
hypothesis to determine PD-MCI subtypes, our results
are difficult to compare with the literature.

Posterior Cortical Deficits Are Associated with
Higher FC within the Basal Ganglia Network
Intra-network FC within the basal ganglia network

was increased in PD-PC compared to PD-FS patients.
This increased FC concerned most basal ganglia

FIG. 2. Connectograms of significant intra- and inter-network connections for each significant between-group comparison. The thickness and color of
the links represent the number of significant connections. The spherical links indicate the presence of significant intra-network connections. BG, basal
ganglia network; DAN, dorsal attentional network; DMN, default mode network; FPN, frontoparietal network; HC, healthy control; LAN, language
network; PD-FS, Parkinson’s disease—frontostriatal subtype; PD-MS, Parkinson’s disease—mixed subtype; PD-NC, Parkinson’s disease—normal
cognition; PD-PC, Parkinson’s disease—posterior cortical subtype; SAL, salience network; SMN, sensorimotor network; TLN, temporo-limbic network;
VIS, visual network. [Color figure can be viewed at wileyonlinelibrary.com]
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regions, suggesting that all basal ganglia structures play
a role in the manifestation or presentation of cognitive
symptoms. There was also a trend toward increased
intra-network FC within the basal ganglia network in
PD-PC patients compared to PD-NC. Overall, these
results suggest that patients with isolated posterior cor-
tical deficits have hyperconnectivity within the basal
ganglia network. Besides, there was no significant dif-
ference between HC/PD-NC and PD-PC. This result
was unexpected, especially as we showed recently that
PD patients with posterior cortical deficits, isolated or
not, exhibited more frequent and more abundant struc-
tural alterations compared with PD-NC and, to a lesser
extent, PD-FS patients, notably in the caudate nuclei,
the right thalamus, and several white matter tracts.23

Moreover, Lang and colleagues9 reported a significant
association between a posterior cortical factor and
decreased FC within the frontoparietal network in PD
patients. Therefore, our assumption was that PD-PC
patients would have reduced FC compared to HCs and
PD-NC patients, especially in networks including poste-
rior cortical regions, but such alterations were not
found. Nevertheless, the structural alterations found in
PD-PC in our previous study were subtle and referred
to local modifications observed with accurate neuroim-
aging methods.23 There was no advanced gray matter
atrophy nor loss of white matter integrity as observed
in PDD, which is typically associated with FC alter-
ations.35-37 Furthermore, the differences between our

results and those of Lang and colleagues9 can be
explained by methodological discrepancies. Indeed,
Lang and colleagues9 used a data-driven approach to
determine their cognitive factors. Moreover, meeting
PD-MCI criteria24 was not an inclusion criteria in their
study, whereas it was in ours. Finally, we assigned the
language domain to the PD-PC subtype, whereas this
domain was associated with the dysexecutive factor in
Lang and colleagues.9

Regarding the increased FC in our PD-PC subtype, pre-
vious studies showed increased FC in PD-MCI.10,38,39

Baggio and colleagues10 found increased FC between the
default-mode network and parieto-occipital regions in
PD-MCI compared to HC and PD-NC, which was associ-
ated with poor visuospatial performance. Interestingly,
these regions presented a cortical thinning especially in PD-
MCI, suggesting a potential relation between structural
alterations and increased FC. Zhan and colleagues38

reported increased FC between the posterior cingulate cor-
tex and the middle frontal gyrus, the posterior cerebellar
lobe, the middle temporal gyrus, and the left precuneus in
PD-MCI compared to PD-NC. Interestingly, their PD-MCI
group had language, memory, and visuospatial deficits,
and the authors suggested that increased FC could reflect
resource recruitment to address cognitive impairment.
Recently, Li and colleagues39 found increased FC between
the thalamus and the cingulate cortex in PD-MCI com-
pared to PD-NC along with reduced thalamic volume. The
increased FC was negatively correlated with global cogni-
tive efficiency, suggesting that the more the FC increased
between these regions, the worse the cognitive performance
was. Finally, Lang and colleagues9 reported a significant
association between a posterior cortical factor and
increased intra-network FC within the temporo-limbic net-
work in PD patients but no significant result regarding the
basal ganglia network. In addition to the methodological
discrepancies between this study and ours mentioned ear-
lier, it is noteworthy that results regarding the temporo-
limbic network should be interpreted with caution given
that it includes brain regions that are highly sensitive to
magnetic resonance susceptibility.40 Therefore, given the
structural changes in the caudate nuclei and the right thala-
mus found in PD-PC,23 the increased FC within the basal
ganglia network in our PD-PC patients may potentially be
explained as a compensatory mechanism preventing this
subtype from having frontostriatal deficits. Such mecha-
nisms may also explain why PD-PC patients had no
reduced FC compared with HCs and PD-NC patients.

Frontostriatal Deficits Are Associated with
Reduced Inter-Network FC

Our results revealed reduced FC in PD-FS compared
to HC, PD-NC, or PD-PC and in PD-MS compared
with HC. This mainly concerned inter-network connec-
tions. As in the meta-analysis by Wolters and

FIG. 3. Spatial location of brain regions for each significant comparison.
The MNI coordinates of the barycenter of the region were projected on
a smoothed MNI template, with colors representing between-group
comparisons. Only regions with at least 25 significant connections are
reported. HC, healthy control; L, left; MNI, Montreal Neurological Insti-
tute; PD-FS, Parkinson’s disease—frontostriatal subtype; PD-MS,
Parkinson’s disease—mixed subtype; PD-NC, Parkinson’s disease—
normal cognition; PD-PC, Parkinson’s disease—posterior cortical
subtype; R, right. [Color figure can be viewed at wileyonlinelibrary.com]
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colleagues,6 we found reduced FC in the default-mode,
the frontoparietal, and the sensorimotor networks in
PD-FS and PD-MS compared with HC and/or PD-NC
but no significant results regarding PD-PC. These
results particularize those of Wolters and colleagues6

and suggest that reduced FC in these networks may be
present in PD patients with frontostriatal deficits only.
We did not find a pattern of reduced FC specific to
PD-FS or PD-MS. Although the proportions of signifi-
cant connections per network differed between both
subtypes, all networks were systematically involved.
Lang and colleagues9 reported a significant association
between a dysexecutive factor and decreased intra-
network FC within the sensorimotor network. Although
we also found significantly reduced FC in this network in
PD-FS and PD-MS patients, most significant connections
were inter-network connections. However, Lang and col-
leagues9 did not assess inter-network connectivity in their
study. Regarding location of the involved regions, our
results are inconsistent with our hypothesis. Indeed, signif-
icant results in PD-FS and PD-MS compared with HC
and/or PD-NC concerned mainly connections with poste-
rior brain regions, whereas anterior regions could have
been expected given their frontostriatal deficits. Further-
more, Dubbelink and colleagues41 reported that reduced
FC in posterior brain regions was associated with subse-
quent cognitive decline in PD after a 3-year follow-up,
suggesting a core role of these regions regarding the risk
of developing dementia.
Interestingly, we found significant differences between

PD-FS and PD-PC in several resting-state networks,
whereas, using the same population, we found only
slight structural differences between these subtypes.23

Our results suggest that resting-state FC can discrimi-
nate the two cognitive subtypes described in the dual
syndrome hypothesis.4 The basal ganglia network
seems to be a network of interest as about one quarter
of the significant inter-network connections between
PD-FS and PD-PC concerned this network.
Finally, we found reduced FC in a fewer number of

connections in PD-MS than in PD-FS compared with
HC. As we found in a previous study that patients with
posterior cortical deficits, especially in patients with a
mixed subtype, had more abundant and more extensive
structural alterations,23 we expected to find reduced FC
in more connections in PD-MS patients. Besides, this
subtype had lower global cognitive efficiency, and cog-
nitive decline is associated with FC alterations.6,41

Given the major presence of both executive and visuo-
spatial deficits, the PD-MS subtype seems to overlap
with the PD-FS and PD-PC subtypes, having reduced
FC as the former but in fewer connections, which may
potentially be explained by the same compensatory
mechanism at play in the latter. Further studies are
needed to decipher the pathophysiological mechanisms
associated with each cognitive subtype in PD-MCI.

Strengths and Limitations
The main strength of our study was to use several

methods to investigate FC brain modifications in
PD-MCI subtypes. Moreover, we used consensual inter-
national diagnostic criteria for PD-MCI, which facili-
tates inter-study comparisons. Finally, confounding
variables were strictly controlled in our functional MRI
analyses.
The main limitation was the fact that HC data were

collected in only one center (Lille), whereas PD data
were collected in two centers (Lille and Maastricht).
Therefore, the control of this variable in our statistical
analyses may have prevented some differences from
being significant. Moreover, the number of subjects in
the PD-FS patient group was relatively small (n = 14).
However, differences between this subtype and the
others were significant, suggesting that this small sam-
ple size did not prevent from significant results.

Conclusions and Perspectives
In PD-MCI, patients with posterior cortical deficits

have increased intra-network FC within the basal gang-
lia network, whereas patients with frontostriatal deficits
have reduced inter-network FC between various
resting-state networks. This implies that resting-state
FC may potentially be able to discriminate the cognitive
subtypes as determined by the dual syndrome hypothe-
sis.4 Confirmation is needed from longitudinal studies
to determine the predictive power of these functional
modifications regarding the risk of developing PDD.
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