% Maastricht University

A Real-Time Method for Detecting Temporary Process
Variants in Event Log Data

Citation for published version (APA):

Chouhan, S., Wilbik, A., & Dijkman, R. (2021). A Real-Time Method for Detecting Temporary Process
Variants in Event Log Data. In A. Polyvyanyy, M. T. Wynn, A. van Looy, & M. Reichert (Eds.), BUSINESS
PROCESS MANAGEMENT (BPM 2021) (Vol. 12875, pp. 197-214). Springer International Publishing.
Lecture Notes in Computer Science Vol. 12875 https://doi.org/10.1007/978-3-030-85469-0_14

Document status and date:
Published: 01/01/2021

DOI:
10.1007/978-3-030-85469-0_14

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 06 Oct. 2022


https://doi.org/10.1007/978-3-030-85469-0_14
https://doi.org/10.1007/978-3-030-85469-0_14
https://cris.maastrichtuniversity.nl/en/publications/4ebee21a-843b-4b5c-8d65-121dabffb1d0

®

Check for
updates

A Real-Time Method for Detecting
Temporary Process Variants in Event
Log Data

Sudhanshu Chouhan!®*9@®, Anna Wilbik?®, and Remco Dijkman®

! Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
{s.g.r.chouhan,r.m.dijkman}@tue.nl
2 Maastricht University, Maastricht 6229 GT, The Netherlands
a.wilbik@maastrichtuniversity.nl

Abstract. During the execution of a business process, organizations or
individual employees may introduce mistakes, as well as temporary or
permanent changes to the process. Such mistakes and changes in the
process can introduce anomalies and deviations in the event logs, which
in turn introduce temporary and periodic process variants. Early iden-
tification of such deviations from the most common types of cases can
help an organization to act on them. Keeping this problem in focus, we
developed a method that can discover temporary and periodic changes
to processes in event log data in real-time. The method classifies cases
into common, periodic, temporary, and anomalous cases. The proposed
method is evaluated using synthetic and real-world data with promising
results.

Keywords: Process discovery - Fuzzy clustering * Process variant

1 Introduction

In flexible business processes, such as in hospitals and administrative offices,
the executions of the activities are not always according to the defined process.
In such processes, it is possible that the workplace employees deviate from the
defined process and follow a different process per case. It is also possible that for
a certain period of time they deviate from the defined process for most cases. For
example, the employees may temporarily skip some process steps when there is a
high workload. When the workload goes back to normal, they follow the normal
process again. This temporary deviation from the defined process may cause
temporal deviations in the event log data. Another example is that the rules
and regulations pertaining to the processes may change with time, which can
lead to a permanent shift in the way in which the process is normally executed.
This permanent shift may induce a persistent deviation in the event log data.
It may be interesting to remark that what is “normal” is usually not exactly
clear, because there may be frequent deviations from the defined process flow as
(© Springer Nature Switzerland AG 2021
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well. There may even be deviations from the process flow that are anomalous,
but are not considered deviations because there is no temporal aspect to them.
Identification of temporary and periodic process variants introduced by such
temporal and permanent deviations from the most common type of cases followed
in the process can help a business get better understanding of their actual process
as it changes periodically or over time. It also enables them to take appropriate
actions, if necessary.

While there exist methods for detecting anomalous cases in business pro-
cesses, these methods will not detect different variants of the process, as we will
also show in the evaluation section of the paper. Nonetheless, the detection of
such temporary process variants caused by temporal deviations is important. For
example, because they may point to some problem that must be solved, some
policy that employees use that should be made explicit in the process, or cases
that must be filtered from the log before doing an analysis of the performance
of the business process.

To fill this gap, this paper proposes a method to discover, in real time, tem-
porary and permanent changes to the process from event log data, in addition
to anomalies. The method classifies cases in an event log into four categories:
(i) common cases (type of cases which are most followed in the process), (ii)
temporary cases (type of cases which are followed temporarily in the process),
(iii) periodic cases (type of cases which are followed at certain times in the pro-
cess), and (7)) anomalous cases (type of cases which are anomalous). At the core
of this method lies a clustering approach using Non-Euclidean Relational Fuzzy
c-Means (NERFCM) supported by Correlation Cluster Validity (CCV). CCV is
used to determine possible number of clusters existing in the event log data and
NERFCM is used to form those clusters. In addition, the proposed method also
includes a feature to forget a cluster when no new case falls in it for a defined
period of time.

Against this background, the remainder of the paper is organized as follows:
Sect. 2 presents a review of the literature related to this topic. Section 3 briefly
discusses theoretical concepts involved in working of the proposed method.
Section 4 details the proposed method. The evaluation of the proposed method
is presented in Sect. 5. Section 6 provides conclusions and suggestions for future
work.

2 Related Work

The roots of process mining can be traced back to about half a century ago
[17,28,32] but it emerged only in the last decade [42,43]. Even after this rapid
emergence, in the last decade, the topic of anomaly detection was not frequently
researched [2,3]. In context of event logs, it is interesting to observe that after
years of research, the literature still has not settled on a unified definition of
anomaly. Despite not having a formal definition, the literature has developed
an intuition and suggests on what can be considered anomalous; an anomaly is
“some kind of unlikely or infrequently occurring behaviour” [7]. It is well known



A Real-Time Method for Detecting Temporary Process Variants 199

that the analysis of the event logs is influenced by noise and irregular behaviour
of a process [27], which can also be considered anomalous. The research done on
the topic of anomaly detection in event logs in the last decade proposed using
process discovery algorithms in order to mine a reference process model from
business process event logs, and then use the discovered model for conformance
checking to detect presence of anomalous behaviour.

Compared to the previous decade, there is a noticeable boom in the research
outputs on this topic. The authors of [11] and [5] presented a frequency-based
algorithm which finds less occurring and never occurring process executions and
considers them anomalous. The authors of [12] presented a similar approach
by using integer linear programming for detection and removal of infrequent
behaviour observed in an event log. In [26] another approach is proposed using
frequent pattern outlier factor which intends to use empirical rule of statistics
to differentiate between normal and anomalous instances of a process. Mov-
ing forward from frequency-based algorithms, [6] presented a multi-perspective
anomaly detection method which is based on likelihood of occurrence of execu-
tion events. [22] presented a similar approach of filtering out infrequent events
based on expectation of occurrence of an activity.

Clustering algorithms from the domain of data science have also been applied
and tested in the domain of process mining [19], for example, k-nearest neigh-
bour [21,40], and use of density based clustering [41]. Use of neural networks has
recently caught attention of researchers in process mining which has resulted
in some of the best anomaly detection algorithms [29]). Other approaches for
anomaly detection in event logs are as follows: dynamic threshold algorithm
based on conformance threshold [4], based on Bayesian network [31,34], based
on Markov model [1,18,24], based on association rule mining [8,35], based on
correlation analysis [30], and based on Needleman—Wunsch algorithm [9].

The anomaly detection methods found in the related work can be distin-
guished into two types: (i) online methods (to detect anomaly in a running
case) [29,41], and (i) offline methods (to detect anomaly in historic event
log) [5,6,31]. Moreover, in both the approaches, anomalies are detected as infre-
quent cases, or some kind of improbable combination of event attributes. We
found that these methods do not give any indication of changes in the process
overtime. In literature we also found research done on real-time detection of con-
cept drift [25], process discovery [44], and conformance checking [45], but these
methods try to discover the process and changes in the process overtime while
not considering anomalous executions of the process. The method we propose
can work both online and offline and is able to categorize the cases as common,
periodic, temporary, and anomalous.

3 Background

The proposed method employs NERFCM clustering algorithm and CCV index,
therefore in the next sub-sections we introduce them briefly.
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3.1 Non-Euclidean Relational Fuzzy C-Means (NERFCM)

NERFCM is a clustering algorithm, an adaptation of k-means algorithm that
generate fuzzy clusters (i.e. a cluster member can belong to more than one
cluster) based on a dissimilarity matrix D between the data points. [20]. The
dissimilarity matrix D expresses the pairwise distinction between two traces. In
context of event logs, a trace is nothing but a concatenated sequence of activities
occurred in a case. For example, in a case if three activities Activity_A, Activ-
ity_B, and Activity_C were performed one after another, then their respective
trace could be ‘abc’. If we consider other traces ‘abed’ and ‘acde’, then comput-
ing distances among all the three traces we could obtain a dissimilarity matrix
of order 3 x 3.

Typical distance types used to measure non-euclidean distances between two
data points are Jaccard and Levenshtein distances [13]. NERFCM can handle
such distances.

In addition to D, the NERFCM algorithm requires three other parameters as
input: fuzzifier m, convergence criteria epsilon, and number of clusters c. For a
specified number of clusters ¢ and fuzzifier m € (1, o) the output of NERFCM
is a fuzzy c-partition U which is an approximate local minimizer of a global
squared-error type criterion, similar to k-means method. For more elaborate
description of NERFCM algorithm please refer to [20].

Number of clusters ¢ sets the number of clusters the input set of traces will
be clustered into. This ¢ is computed using a correlation cluster validity index
as discussed in the following sub-section.

3.2 Correlation Cluster Validity (CCV)

NERFCM requires from a user a parameter, that is the number of clusters to be
created, c. In order to determine number of clusters we are using Cluster Cor-
relation Validity (CCV) [33]. CCV is an universal cluster validity measure that
can be applied to partitions obtained by any relational or object data cluster-
ing algorithm (NERFCM in our case). The reason of choosing CCV over other
validity indices such as Davies-Bouldin index, Xi-Beni Index [46] or Relational
Xi-Beni [36] is that CCV is better at finding number of clusters in a dataset
compared to all other validity indices [33].

The CCV index adopted in this method is Spearman CCV Index (veeys);
based on Spearman’s Correlation Coefficient (CC), which quantifies the linear
relationship between the n(n—1)/2 dissimilarity pairs with i#j after ordering the
clements of D and D(U) as vectors in ®*("~1)/2, This is accomplished without
actually ordering the elements using Eq.1 [23,33].

1
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where D is the input dissimilarity matrix (or reference matrix), and D(U) is the
dissimilarity matrix between the partition matrix rows. CCV index can be used
to evaluate and compare different partitions. A partition with a highest value of
the index represents the best clustering. One can generate partitions for different
number of clusters ¢ = 2,3,... and select one with the highest value of CCV
index.

4 Proposed Method

This section presents our proposed method for finding periodic and temporary
process variants in the event log data while simultaneously detecting anomalies.
First we list the input parameters and then we provide a brief overview of the
proposed method followed by an in depth step-by-step explanation on how the
proposed method works.

4.1 Input Parameters

The proposed method takes the following parameters as inputs: event_log - the
event log dataset, distance_type - for now Jaccard Distance only, initial_cases
- number of cases for initial clustering, merging_criteria - if any two clusters
have this much similarity then they will merge (range 100% similarity to 0%
similarity), forgetting_type - Yes, if clusters are to be forgotten. No, if clusters
are not to be forgotten, forget_after - number of days after which a cluster is
to be forgotten or anomalies are to be saved. Two other input parameters are
for NERFCM, m - fuzzifier (default value 2) and epsilon - convergence criteria
(default value 0.0001) [20].

4.2 Overview of Proposed Method

This subsection provides a brief overview of the steps elicited in Algorithm 1.
First, the user defines the number of initial cases (initial_cases) to be used
to form initial clusters. A distance matrix D is computed for the initial_cases
using the selected distance_type. Then CCV algorithm is applied on the selected
number of cases. The result of CCV algorithm is the probable number of clus-
ters ¢ that exist in initial_cases. Next, the NERFCM algorithm is applied
on the selected number of cases, and initial clustering is performed using D
and ¢ as input. The formed clusters are saved in cluster_list. At this stage the
cut_off_size_for_new_cluster is also computed - it tells us how large a new cluster
should be to qualify as a cluster (explained in initialize_clusters()). Once the
initial clustering is done, when a new case arrives and it falls under the radius of
any of the existing clusters then is added to that cluster, otherwise it is stored
in anomaly_list (explained in update_clusters()). Simultaneously, it is checked if
there are new clusters forming inside the anomaly_list. If at any point a cluster
in anomaly_list becomes larger than the cut_off_size_for_new_cluster, then it is
removed from the anomaly_list and added to the main cluster_list (explained in
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form_new_clusters()). Next, if at any point in time the similarity between any
two or more clusters in the cluster_list becomes greater than the merging_criteria
then those clusters are merged (explained in merge_clusters()). If no new case
is added to a cluster in cluster_list for forget_after days, then that cluster is
removed from the cluster_list and is added to cluster_list_forgotten (explained in
forget_clusters()). At last, if no new case is added to the anomaly_list for for-
get_after days, then all the cases are removed from the anomaly_list and are saved
in anomaly_list_saved (explained in save_anomalies()). Then the algorithm waits
for a new case to arrive and implements all the functions from update_clusters()
to save_anomalies(). A detailed explanation of each step is provided in
subsection 4.3.

4.3 Steps

The steps detailed inside the While loop in Algorithm 1 produce the following
output: cluster_list - a list of all the formed clusters, cluster_list_forgotten - a list
of all the clusters that were forgotten after forget_after days, anomaly_list - a
list of all the cases that were detected anomalous, anomaly_list_saved - a list of
all the cases that were saved as anomalies after forget_after days. Cases in these
clusters are then categorized as common, periodic, temporary, and anomalous
in the post analysis step.

Brief overview of the steps of the proposed method is presented in Algo-
rithm 1, followed by detailed textual description of each step.

Algorithm 1: Steps included in the proposed method

initialize_clusters()

while True do

update_clusters()

if len_current_anomaly_list > len_last_anomaly_list then

| form_new_clusters()

if similarity between any two clusters >= merging_criteria then
| merge_clusters()

if mo new case added to an existing cluster in forget_after day then
| forget_clusters()

if no new case added to the anomaly_list in forget_after day then
| save_anomalies()

end
post analysis

initialize_clusters(): In order to form initial clusters, a number of initial cases
need to be picked, i.e. the parameter initial_cases. The value of parameter ini-
tial_cases is dependent on the user and the dataset. For example initial_cases
can be number of all the cases completed within one week from beginning of
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the process. Then the distance matrix D is computed for the initial_cases, and
using CCV initial number of clusters ¢ is determined. After finding c, the value
of parameter cut_off-size_for_new_cluster is computed as initial_cases/ c; value is
useful in implementing function form_new_clusters(). It is to be noted that the
proposed method assumes that all the incoming cases are completed and contain
an end-timestamp. It is important that the cases are complete because unless a
case is completed, it cannot be assigned to any cluster. The end-timestamps are
important to know the order of arrival of the cases.

Next, NERFCM algorithm is implemented using D and c¢ to obtain a partition
matrix U. It is to be noted that initialization of prototypes in NERFCM is not
random which makes this method deterministic. Next, using D and U, c initial
clusters are formed among the initial_cases. Since in a partition matrix each data
point belongs to each partition with a certain degree of membership, therefore
each trace is only kept in the cluster with which it has the highest degree of
membership. After the creation of initial clusters, their respective cluster_center
and cluster_radius are determined. For each cluster, the cluster member with
the highest degree of membership to a cluster is selected as its cluster_center.
For each cluster, the weighted average distance between the cluster center and
each cluster member is computed; longest of all these distances is selected as
cluster_radius. Finally, all the traces falling outside their respective cluster radius
are added to anomaly_list.

update_clusters(): When a new completed case arrives, its activities are com-
bined to form a trace (newTrace), and its similarity with all existing clusters is
checked. If newTrace falls in any of the existing clusters then it is added to that
cluster, else it is added to the anomaly_list.

form_new_clusters(): In this step, existing anomaly list is explored to find if
there exist any clusters in the anomaly_list. For this purpose, similar process as
initialize_clusters() is carried out but on the traces in anomaly_list. A distance
matrix D, is computed for all the traces in anomaly_list and using CCV ini-
tial number of clusters ¢, is determined. After finding ¢,, NERFCM algorithm
is implemented using D, and ¢, to obtain a partition matrix U,. Using D,
and U, ¢, clusters are formed and saved in a temporary list of clusters clus-
ter_list_temp. Similar to initialize_clusters(), each trace is only kept in the cluster
with which it has the highest degree of membership. Next, cluster center and
cluster radius are determined, and all the traces falling outside their respective
cluster radius are added to a temporary list of anomaly anomaly_list_temp. Once
all the temporary clusters are formed then the temporary clusters which are
larger or equal in size to cut_off_size_for_new_cluster are added to the main clus-
ter_list and the contents of these clusters are deleted from the main anomaly_list.
The idea behind computation of cut_off-size_for_new_cluster is that if ¢ clusters
exist in initial_cases, then on average each cluster has initial_cases/c traces; so,
when a cluster formed in anomaly_list has equal or more traces than that average,
then it can be considered as a valid cluster.
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merge_clusters(): Any two clusters are merged on satisfaction of either of the
two following conditions: (3) if distance between the two clusters is less than
or equal to the parameter merging_criteria, or (ii) if the overall percentage of
number of common elements in the two clusters exceed I—merging_criteria. In
case two clusters are merged, then cluster center and radius is computed for the
merged cluster. Also, the traces which do not fall under the new cluster radius
are added to the anomaly_list.

forget_clusters(): If value of parameter forgetting_type is set to ‘Yes’ and if no
newTrace is added to any existing cluster for forget_after days, then that cluster
is removed from the main cluster_list and added to the cluster_list_forgotten.

save_anomalies(): If value of parameter forgetting_type is set to ‘Yes’ and
if no newTrace is added to anomaly_list for forget_after days, then the cases
existing in anomaly_list are removed from the anomaly_list and added to the
anomaly_list_saved.

Once all the steps are completed, the algorithm wait for arrival of a new case.
As soon as a new case arrives, it calls update_clusters() function and continues
the while loop. When all the cases are processed, the user must go through post
analysis of the output.

Post Analysis: Based on the performed clustering, the completed cases of an
event log are categorized into the following four categories:

1. Common Cases: cases in main cluster_list are considered common since
they were never forgotten or saved as anomalies.

2. Periodic Cases: cases in cluster_list_forgotten are considered periodic if they
reappear again in main cluster_list or in cluster_list_forgotten.

3. Temporary Cases: cases in cluster_list_forgotten are considered temporary
if they do not reappear in the main cluster_list or in cluster_list_forgotten;
they were probably used for some special cases.

4. Anomalous Cases: at any given time, cases in anomaly_list_saved and
anomaly_list are considered anomalous since they never belong to any cluster
(whether forgotten or not forgotten).

5 Method Evaluation

In this section, first we discuss the event logs used to evaluate the method and the
anomalies that are introduced to those event logs. Next we discuss the param-
eters selected to evaluate the method, followed by the results obtained from
applying the proposed method on the selected event logs.
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5.1 Event Logs

To assess the performance of an anomaly detection algorithm, it is necessary to
know which traces in a process are anomalous and which traces are not anoma-
lous. For this purpose we require synthetic event logs where we already know the
process. We used PLG [10] to create six process models and their event logs with
varying complexity of number of activities, breadth, and width. These event logs
are the same as used in [29]. In addition to the synthetic event logs, we also used
9 real-life event logs from the Business Process Intelligence Challenge (BPIC) -
BPIC12 [16], BPIC13 [37-39], and BPIC15 [15]. In the remaining of this paper,
the event logs are referred by their names as defined in Table 1.

Table 1. Overview of event Logs

Name Number of Logs | Number of Activities | Number of Cases | Number of Events
Small 1 41 5k 45.2k
Medium |1 65 5k 29.8k
Large 1 85 5k 55.6k
Huge 1 109 5k 40.6k
Gigantic | 1 154-157 5k 31.5k
Wide 1 68-69 5k 30.4k
BPIC12 |1 24 13k 262.8k
BPIC13 |3 11-27 0.8k—7.5k 4k—-81k
BPIC15 |5 422-486 0.8k—1.4k 46k—-62k
Alpha |1 78 3.5k 32k

To test the effectiveness of the proposed method, we needed to use an event
log in which we know where common, periodic, and temporary cases occur.
For this reason we created another synthetic event log which was created using
combination of three event logs from Table 1, namely Large, Gigantic, and Huge.
We named this synthetic event log ‘Alpha’. The Alpha event log contains total
3500 cases: 2000 cases from Large, 1000 cases from Gigantic, and 500 cases from
Huge. To induce periodicity in the Alpha event log, 500 cases from Gigantic
are added at 14 days from the beginning of the event log, and the remaining
500 cases are added 14 days after that. Whereas, to introduce temporal nature
in the event log, all of the 500 cases from Huge are added at 4 weeks from the
completion of first case in the event log.

Moreover, random anomalies of type Rework, Skip, Early, Late, and Insert
were introduced to the datasets, using the approach proposed by Nolle et al. [29]
to make the event log dataset more realistic. The introduction of anomalies is
done for the purpose of completeness.

5.2 Experiment Setup

To test the working of the proposed method, a set of values for the input parame-
ters (Sect. 4.1) needed to be defined. For the first input parameter, distance_type,
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we selected Jaccard Distance because it is computationally more efficient than
Levenshtein Distance (linear versus quadratic time complexity) [14]. For ini-
tial_cases, we propose three variants - small, medium, and large. Variant small
selects all the cases ending within one week from the starting date of the first
case; for medium variant this range is till two weeks from the starting date of
the first case; and for large variant it is four weeks. The values of fuzzifier m and
converging criteria epsilon were set to their default values. For merging_criteria,
we use three distinct values - 90%, 80% and 70% similarity. Both ‘Yes’ and ‘No’
values are tested for parameter forgetting_type. The value of forgel_after is set
to 7 days.

It is to be noted that the evaluation of the method is done mainly by varying
values of the parameters initial_cases, merging_criteria, and forget_type. Con-
sidering the values of these parameters to be set as mentioned in the previous
paragraph, we obtain 18 distinct combinations. Since it would be impractical to
discuss results from all 18 combinations for each of 16 event logs (18 x 16 = 288
combinations), therefore, for brevity, we only present in-depth results for the
Alpha event log.

5.3 Results

Using the selected parameters, we receive a set of results for Alpha event log as
shown in Fig. 1 and Table 2. Figure 1 shows a visual comparison between results
obtained by setting the parameter forgetting_type as ‘No’ and ‘Yes’. In the Fig. 1
each row represents a cluster, where cluster C_n represents common cases, cluster
PC_n represents periodic cases, cluster TC_n represents temporary cases; where
n is the number of cluster. For instance, C_1 shows the first cluster in the main
cluster_list. The last row in both Fig. 1a and Fig. 1b shows the anomaly_list_saved
(ALS). The horizontal axis represents the arrival of cases in the order of their
time of completion. Each vertical bar in a cluster shows the assignment of case
to that cluster. The legend in each cluster shows the number of cases that were
added to that cluster. For instance, Fig. la shows that 812 cases were added to
the first cluster, and 583 cases were added to the anomaly list.

In Fig.1b, PC_1-PC_5 and TC_1 are the clusters which were forgotten from
the main cluster list at some point in time since no new case was added to them.
In the post analysis of the results, it is found that a similar cluster to PC_1
reappeared again in PC_2, PC_3 and part of PC_4. Also, part of PC_4 reappeared
in PC_5. Since, all these reappearing clusters are similar to each other and they
were forgotten after some time, therefore, by definition of Periodic Cases (in
Subsect. 4.3) they are categorized as periodic cases. On the other hand, TC_1
is a cluster of cases which was forgotten after some time but no similar cluster
ever reappeared in main clusters or forgotten clusters. For this reason, the cases
in TC_1 are categorized as temporary cases. Furthermore, in Fig. la, all the
periodic and temporary cases are included in the main cluster. Cases falling in
these clusters makes up of periodic and temporary process variants.

In Table 2, the first thing we observe is that when value of parameter ini-
tial_cases is kept constant (e.g. small), the number of clusters formed at the
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Fig. 1. Comparison of forgetting_type = No versus forgetting_type = Yes. Blue bars are
common cases, Green bars are periodic case, Orange bars are temporary cases, and
Red bars are cases marked anomalous. (Color figure online)

start of the run is always the same. For example, in S.No. 1 to S.No. 6, the
number of clusters at start is always 9. This is always true even if other param-
eters are changed. The reason behind this consistency is that the initial clusters
are formed using initial_cases (in initialize_clusters()); so as long as the value of
initial_cases is unchanged, the number of clusters formed at the beginning will
always be same.

Additionally, in comparison to using forgetting_type as ‘Yes’, the number of
clusters formed in the end is always more when using forgetting_type as ‘No’.
This gives us a hint that in the entire duration of the event log generation, the
process being followed is not always the same. Moreover, it indicates that there
may exist periodic and temporary cases in the event log data. The presence of
periodic and temporary cases is confirmed when exploring the results further. It
can be observed that when the method is not set to forget clusters, it does not
detect any periodic and temporary cases. To be noted that forgetting_type ‘Yes’
may not always detect periodic and temporary cases unless the data suggests so.

In Table 2, P, R, and F1 refer to Precision, Recall, and F1-Score calculated for
detection of periodic, temporary and anomalous cases. It can be observed that
precision for detecting periodic and temporary cases is high. Also, compared
to small and medium variant of initial_cases, the recall for the large variant is
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Table 2. Evaluation of the proposed method on Alpha event log with varying param-
eters

S. No. |init. cases | merge crit. | forget type|c Periodic cases |Temporary cases | Anomaly cases
Start | End | P R F1 |P R F1 P R F1
1 Small 90% No 9 20 |- - - - - - 1.00/0.01|0.02
2 Small 90% Yes 9 4 1.00/0.94|0.97|1.00/0.76 | 0.86 0.26|0.02|0.04
3 Small 80% No 9 19 - - - - - - 1.00|0.01|0.02
4 Small 80% Yes 9 3 1.00/0.94/0.97|1.00|0.76 | 0.86 0.55/0.01|0.02
5 Small 70% No 9 18 |- - - - - - 1.00/0.01|0.02
6 Small 70% Yes 9 3 1.00/0.94|0.97|1.00/0.76 | 0.86 1.00|0.01/0.03
7 Med 90% No 9 23 - - - - - - 1.00|0.030.06
8 Med 90% Yes 9 9 1.00|0.94/0.97|1.000.77|0.87 |1.00|0.02|0.04
9 Med 80% No 9 16 |- - - - - - 1.00/0.04|0.08
10 Med 80% Yes 9 7 1.00/0.91/0.96|1.00|0.75|0.86 0.47/0.07|0.12
11 Med 70% No 9 16 - - - — - — 1.00|0.040.08
12 Med 70% Yes 9 3 1.00/0.93/0.96|1.00/0.77/0.87 |0.96|0.04|0.08
13 Large 90% No 5 6 - - - - - - 0.16/0.19|0.18
14 Large 90% Yes 5 3 1.00/0.65|0.79|1.00/0.27|0.42 0.15/0.16|0.15
15 Large 80% No 5 6 - - - - - - 0.16|0.19|0.18
16 Large 80% Yes 5 3 1.00/0.65/0.79|1.00|0.27|0.42 0.15/0.16|0.15
17 Large 70% No 5 6 - - - - - - 0.16]0.19/0.18
18 Large 70% Yes 5 3 1.00/0.65|0.79|1.00|0.27|0.42 0.15/0.16|0.15

significantly small. Moreover, precision for anomalous cases is high for small and
medium variants, and very small for the large variant. The reason for this that
for the large variant the radii are larger since initial clustering was done on a
large number of cases. So, the arriving anomalous cases may be considered not
different enough and hence fall in the cluster.

The results also show that the anomalous cases introduced by us are not well
detected by our method. The reason we found is that since they are too similar
to an existing cluster center, thus they are added to an existing cluster. Please
note that we used Jaccard distance, in which order of activities performed is
ignored. For example, for our method, traces ‘abcde’ and ‘bdcea’ are same since
Jaccard Distance between them is zero.

Similar results can be observed when the method was tested with other event
logs considered in the study (Table 3).

Table 3 shows the results of the clustering performed on other event logs,
including BPIC event logs. Since we do not know if periodic and temporary
cases are present in these event logs, we cannot comment on precision, recall
and Fl-scores for these event log. For this reason we present how many cases
were categorized as common, periodic, temporary, and anomalous (also in how
many clusters). We take this opportunity to present the utility of this clustering
method. For instance, considering BPIC12 event log: we form 5 clusters which
consist of 12881 common cases. This tells us that there are 5 types of most
common processes followed during the generation of this event log. These 5 types
of processes are nothing but the cluster centers of those 5 clusters (as shown in
Table4). Other cases that lie in these 5 clusters have (1 — cluster_radius)% of
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Table 3. Evaluation of the proposed method on other event logs with parameters
initial_cases = small, merging_criteria = T0%, forgetting_type = Yes, forget_after =
7 days

Name ¢ Common Periodic Temporary | Anomalous
cases cases cases cases
(clusters) (clusters) (clusters)
Start | End
Small 2 |2 14832(2) |0(0) 0 (0) 49
Medium |3 6 4814 (6) 0 (0) 0 (0) 48
Large 3 5 4946 (5) 0 (0) 0 (0) 36
Huge 3 10 14948 (10) |0 (0) 0 (0) 24
Gigantic |2 |7 4867 (1) |83 (1) 0 (0) 51
Wide 4 4 [1924 (1) |46 (1) 0 (0) 48
BPIC12 |2 5 12869 (1) 0 (0) 0 (0) 217
BPIC13.1|7 1 1394 (1) 0 (0) 0 (0) 27
BPIC13.2 | 6 1 |73731)  |0(0) 0 (0) 175
BPIC13.3 | 5 1 |668 (1) 40 (2) 0 (0) 142
BPIC15.1 |4 0 0 (0) 138 (31) 863 (48) 183
BPIC15.2 | 4 4 7 (4) 105 (21) 589 (124) |63
BPIC153 |2 |3 |199 (3) 0 (0) 933 (12) | 277
BPIC15.4 | 4 5 96 (5) 137 (23) 774 (131) |49
BPIC15.5|3 3 202 (3) 197 (9) 588 (27) 172

similarity to their respective cluster centers. For example, trace ‘abuucddddsd’
only lies in the first cluster (with 66.67% similarity), whereas trace ‘abuucuddsd’
lies in both first and third cluster because its distance to both cluster centers is
less than their cluster radius (0.33 and 0.42 respectively). We observed similar
results while testing the method on all the other event logs but for brevity they
are not discussed in this paper.

Table 4. Cluster centers for BPIC12 event log showing the most common type of cases
followed in the process

Cluster | Trace Case | Cluster radius

1 abuuuusu 173856 | 0.50

2 abcddddddegthijdjkljlwlwwwww 176596 | 0.12
wwlwlllomnpl

3 abcddabtd 178167 | 0.50
addefghijdjqt;j 175976 | 0.50
abuucdudddddefghijdjjjkljlwlwwww 174261 | 0.12
wwwwwlwlsvl
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Overall, the proposed method is able to discover common, periodic, and
temporary process variants in the event log data with a high precision by cat-
egorizing the cases as common, periodic, and temporary, while simultaneously
marking infrequent cases as anomalous.

6 Conclusions

In this paper we presented a real-time method of discovering different process
variants in the event log data which categorizes cases into four categories: com-
mon, periodic, temporary, anomalous. The method is able to produce at run-
time an update on which type of cases are being executed at present by assigning
cases to clusters. After testing on an artificially generated event log, it was found
that the proposed method is able to categorize the event log data into the four
categories with high precision.

Detecting different process variants in an event log data is an easy task if
the entire event log data is known beforehand. It becomes challenging when the
event log data is unknown. This is why we designed this method to work in
real-time as soon as any new case is completed. Another reason to make the
method process cases in real-time is that we wanted to capture the periodic and
temporal nature in the event log data. Also, we wanted to capture the evolution
of the clusters with time. Note that this method can also be used offline. A
possible application of this method could be to use the obtained clusters in real-
time process discovery and solving problem of spaghetti like models. This can be
done by discovering the process model by using only the cluster representatives.
Each cluster representative may also indicate a sub-process. Furthermore, we
have information on periodic cases which can be used to discover periodic (sub-)
process models.

As good as the method is in categorizing cases into the first three cate-
gories, we found out that it is not very efficient at detecting anomalies. Since
many non-anomalous cases are categorized as anomalous, we suggest that the
detected anomalies need to be further analysed by experts. This further analysis
is necessary because the method only categorizes a case as anomalous if it is
significantly different from rest of the cases executed prior to its completion. We
realise that it is difficult to qualitatively assess the amount of the required expert
input, and therefore we have identified a need for explanation of anomalies.

Moreover, all the forgotten clusters also need to be validated with the help
of experts to understand whether that is how those cases were supposed to
processed. This validation by experts is important because it is possible that the
organisation recently made some changes to the process on purpose and they
want to standardize those sub-processes. In this case, the process expert may
mark a forgotten cluster as a main cluster. The same validation is also important
for the detected anomalies.

Since the method proposed in this paper is able to cluster any new kind of
case in real-time, it also provides a basis for providing explanation about when
certain type of cases are used in a process. Our future work will be mainly
focused on the explanation of anomalies.
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One may argue that temporary cases can also be considered anomalous since
they only happens once in a series and never again. We think it is a valid argu-
ment, but we believe the domain expert should have the freedom to make this
decision.

A limitation of the proposed method is that it includes a uni-perspective
anomaly detection method. As discussed earlier, the method discovers the struc-
ture in the event log data and also detects some anomalies as its byproduct.
However, this is not a multi-perspective anomaly detection method since it only
uses activities performed in each case. In future we want to include a multi-
perspective view to the proposed method by providing weights to resources and
other attributes associated with the activities.

Another limitation of this method is that when using Jaccard Distance, the
method is good at finding the structure but detects less anomalies. In future
work we would like to modify the method to work with Levenshtein Distance.
In this work Levenshtein Distance is not used as it introduces two challenges:
(i) Tt is difficult to decide on merging_criteria as, unlike Jaccard Distance, the
Levenshtein Distance does not lie in the range [0, 1], which makes it difficult to
define a global value of merging_criteria. (i) As mentioned earlier in this paper,
for larger data sets, using Levenshtein Distance increases computation time.

To overcome these challenges, we plan to use the study by Dolev et al. [14] to
find a relation between Jaccard and Levenshtein distances and use that relation
instead of computing Levenshtein distance every time a new case arrives.

As part of our future work we identify a need to make the parameter for-
get_after adapt to change in the frequency of arrival cases. The reasoning behind
this need is explained in the following example. Let us assume value of the
parameter forget_after is set to 7days, and cut_off_size_for_new_cluster is 40. If
we assume that generally we have an average of 50 cases arriving per day, but in
summer time, because it is holiday period, we have an average of 5 cases arriving
per day. It may be the situation that the cases completed in the summer time
were added to the anomaly_list because they were different from the most com-
mon cases. As a result, all 25 cases execute in the last week were added to the
anomaly_list and in the following 7 days they were saved as anomalies. Now even
if the method detected a new cluster of 25 cases in the anomaly_list, it would
not have qualified to be added to the main cluster_list because 25 is less than
the cut_off_size_for_new_cluster, i.e. 40. For such situations, in a period of low
frequency of arrival of cases, we think it is important that the method adapts to
the situation and extends the window of forget_after days. This extension will
give more chance to formation of a new cluster in such periods of low frequency
of cases.
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