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1  |  INTRODUCTION

It is well known that the distribution of achievements in 
scientific research is highly skewed, with a small group 
of scientists responsible for a disproportional share of 

research output, in terms of quantity as well as qual-
ity (e.g., Azoulay et al., 2014; Lotka, 1926; Rosen, 1981). 
These star scientists, as leaders within their research field, 
also act as important nodes in global scientific networks 
(Luo et al., 1981; Murray, 2004). These characteristics 
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Abstract
While their expertise and scientific excellence make academic star scientists at-
tractive collaboration partners for firms, this study indicates that firms face diffi-
culties in capturing value from collaborations with academic stars. Stars are time 
constrained, may be less committed to commercialization, and can be a source 
of undesired knowledge spillovers to other firms. The purpose of this study is 
to recognize the contingencies under which collaboration with star scientists is 
positively associated with a firm's ability to produce valuable patents (invention 
performance). We analyze a panel data set on the collaborations in basic research 
(publication data) and invention performance (patent output) of 60 prominent 
pharmaceutical firms. We find that basic research collaboration with academic 
stars is on average not associated with a performance premium above the overall 
positive influence of collaborating with academia. We only observe this premium 
if the star scientist abstains from simultaneous collaboration with other firms 
(‘dedication’) and extend her collaboration with the firm to involve not only basic 
but also applied research (‘translation’). Extending prior work that has focused 
on corporate star scientists, we find that if the collaboration involves an internal 
firm star scientist, a translational contribution of the academic star is no longer 
a prerequisite, and may even be detrimental to inventive performance. Our find-
ings inform the literatures on industry- science links and firms’ (scientific) ab-
sorptive capacity by revealing the crucial contingencies for firms to benefit from 
partnering with the best and brightest among academic scientists.
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make star scientists interesting hires or collaboration 
partners for firms in science- based industries involved in 
intense competition to develop innovative products and 
technologies. Prior studies have focused attention on the 
performance benefits that in- house star scientists might 
bring (Almeida et al., 2011; Hess & Rothaermel, 2011, 
2012; Grigoriou & Rothaermel, 2014; Kehoe & Tzabbar, 
2013, 2015; Rothaermel & Hess, 2007; Subramanian et al., 
2013). However, only a small minority of star scientists 
is employed by private firms. For instance, Zucker et al. 
(1998) noted that 98% of the star scientists within the 
Genbank were affiliated to a university or research institu-
tion. Star scientists generally appear reluctant to commit 
themselves to work in the private sector where restric-
tive company policies may hamper the freedom to pub-
lish and define one's own research agenda (Murray, 2004; 
Sauermann & Stephan, 2013; Stern, 2004). For many firms 
this leaves collaboration with star scientists employed by 
universities (from here on referred to as academic star sci-
entists) as the most common strategy to get access to their 
skills, network, and expertise.

The rationale behind firms’ interest in reaching out to 
those who are on the scientific frontier is rooted in extant 
research, which has emphasized the importance of basic 
research in generating inventions in science- based indus-
tries (Arora et al., 2018; Cassiman et al., 2008; Della Malva 
et al., 2015; Fabrizio, 2009; Fleming & Sorenson, 2004; 
Gambardella, 1992; Mansfield, 1995, 1998; Rosenberg, 
1990). In the context of the pharmaceutical industry, basic 
research can lead to patented inventions on chemical or 
biological drug compounds, which can further lead to 
the commercial introduction of drugs on the market if 
the compounds prove effective in an elaborate clinical 
trial process (e.g., Cockburn, 2007; Kola & Landis, 2004). 
Prior studies have generally shown positive performance 
effects of (basic) research collaboration with universities 
(e.g., Almeida et al., 2011; Belderbos et al., 2004, 2016; 
Cockburn & Henderson, 1998; Fabrizio, 2009). In the 
particular context of biotechnology, research has shown 
an important role of (collaborations with) academic star 
scientists in the formation and success of biotechnology 
firms (Zucker et al., 1998, 2002).

Despite the importance for firms of joint basic research 
with universities, it remains unclear whether involving 
academic star scientists in such collaborative research 
offers firms greater benefits than collaborating with non- 
star academics. We argue that achieving an invention 
premium in collaborating with academics stars in com-
parison to academic non- stars may not be straightforward. 
On the one hand, prior literature (Hess & Rothaermel, 
2012; Zucker et al., 2002) stressed the benefits for firms 
from collaborating with academic stars in basic research. 
Their unique human capital helps deepening firms’ 

fundamental scientific insights, signal firms’ scientific 
excellence and embed their research efforts in the larger 
scientific community. On the other hand, we posit in this 
article that firms may also have difficulties in extracting 
value from collaborating with academic star scientists 
in basic research. First, star scientists are likely to have 
a taste for pure and open science, which may conflict 
with firms’ commercialization objectives. Second, given 
their reputation and academic excellence, and the often- 
abundant financial resources that come with their status, 
star scientists have multiple options for industry collabo-
ration (Stephan & Audretsch, 1996) and they may utilize 
this bargaining power to select and shape collaborations 
according to their own interests. In particular, when star 
scientists collaborate with multiple firms, there is an in-
creased risk that knowledge of one collaboration partner 
spills over to other firms. Third, star scientists’ ambitious 
research agendas and extensive responsibilities may also 
imply a lack of time and commitment to make substan-
tive contributions to joint research with an industrial 
partner. Hence, whether collaboration with academic star 
scientists in basic research is to be preferred over collab-
oration with other (non- star) academic scientists is likely 

Practitioner points
• Intuitively we may expect that collaborating 

with the very top among academics benefits 
firms, yet collaborating with these academic 
star scientists also entails important challenges.

• Organizations seeking to benefit from the ex-
traordinary expertise of academic star scien-
tists should take into account two important 
conditions:

◦ The top academic should be a dedicated col-
laboration partner, and avoid simultaneous 
collaboration with other firms.

◦ The top academic should not only be in-
volved in basic research but also in applied 
research collaboration with the firm, en-
hancing her ability to assist the firm in the 
translation of research into a marketable 
product.

• When the firm also employs a star scientist who 
is engaged in the collaborative research with 
an academic star scientist, the translation of 
the joint research is better performed by the in-
ternally employed star scientists instead of the 
academic star scientist.
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to depend on how such collaborations are arranged to ad-
dress potential incongruences with the invention objec-
tives of the firm.

The current study examines the conditions under 
which collaboration with academic star scientists in basic 
research is associated with an invention premium for the 
firm in comparison to collaboration with academic non- 
star scientists. By invention premium we refer to the in-
vention performance effects of star collaboration over and 
above the average performance effects of collaboration 
with non- stars. We argue that three conditions may be of 
particular relevance. First, the benefits of collaboration 
may depend on whether the star has a dedicated rela-
tionship with the focal firm and abstains from simulta-
neous collaboration with other firms. Dedication is likely 
to increase commitment and trust building (Coleman, 
1988; Colyvas et al., 2002; Granovetter, 1985) while lim-
iting risks of knowledge spillovers to potential rival firms 
(Gianiodis et al., 2016). Second, the benefits of collabora-
tion may be greater if the firm can collaborate with the ac-
ademic star scientist not only in basic research but also in 
applied research, aiding the translation of basic research 
findings (Agrawal, 2006) into valuable inventions. Finally, 
as collaborating firms may employ internal star scientists, 
involvement of these scientists in collaborative research 
with academic stars may also be related to the success of 
the collaboration. In particular, we expect that involving 
internal stars, with their deep knowledge of firms’ inven-
tion needs provide the firm with a high level scientific ab-
sorptive capacity (e.g., Belderbos et al., 2016; Melnychuk 
et al., 2021) to collaborate effectively with external stars, 
and will benefit the firm in particular if a collaboration 
with the academic star scientist is lacking a translational 
(applied research) dimension. If translation becomes the 
sole responsibility of the internal star scientist, knowl-
edge redundancies (Hess & Rothaermel, 2011) and po-
tential conflicts due to ill- defined roles (Cattani et al., 
2013; Groysberg et al., 2011) in collaboration with aca-
demic stars may be reduced and invention performance 
enhanced.

Empirically, we analyze a panel data set (1995– 2002) 
containing detailed information on patents and scien-
tific publications of 60 of the most prominent American, 
European, and Japanese firms in the pharmaceutical in-
dustry. We use information on co- publications in basic and 
applied research journals to measure collaborations be-
tween firms and academic star scientists and identify star 
scientists as leaders in their scientific field both in terms 
of publication and citation performance. We estimate 
pseudo- fixed effects models relating citation- weighted 
patent performance to firms’ prior engagement in aca-
demic star collaborations under different contingencies, 
while controlling for a range of relevant firm, star, and 

star- firm collaborative project characteristics. To guide 
hypothesis development, the quantitative analysis is in-
formed by extant literature and a series of interviews with 
eight academic star scientists and five firm R&D managers 
conducted in 2014– 2016. The academic star scientists had 
their residence in Belgium, collaborated with industry, 
and received a European Research Council (ERC) grant 
within the life sciences. The R&D managers were em-
ployed in five large pharmaceutical firms in our sample 
(Johnson & Johnson, GSK, Novartis, UCB and Ajinomoto) 
and were closely involved in relationship management of 
their firm with university partners.

Our study contributes to the literature streams on firms’ 
engagement with star scientists (Almeida et al., 2011; Hess 
& Rothaermel, 2011, 2012; Grigoriou & Rothaermel, 2014; 
Kehoe & Tzabbar, 2015, 2015; Rothaermel & Hess, 2007; 
Subramanian et al., 2013), on the importance of basic re-
search for firm invention (Arora et al., 2018; Cassiman 
et al., 2008; Della Malva et al., 2015; Fabrizio, 2009; 
Fleming & Sorenson, 2004; Gambardella, 1992; Mansfield, 
1995, 1998; Rosenberg, 1990), on industry- science link-
ages through collaborative research (Almeida et al., 2011; 
Belderbos et al., 2004; Cockburn & Henderson, 1998; 
Fabrizio, 2009), and the literature on firms’ (scientific) 
absorptive capacity (Belderbos et al., 2016; Cassiman & 
Veugelers, 2006; Cohen & Levinthal, 1990).

2  |  THEORETICAL BACKGROUND 
AND HYPOTHESES

2.1 | Basic research and collaborations 
with academia

Basic research is an important driver of invention in 
science- based industries (Mansfield, 1998; Narin et al., 
1997). Firms search for fundamental insights to conduct 
well- informed experiments and to identify promising 
research directions (Cassiman et al., 2008; Rosenberg, 
1990). Numerous studies have shown the importance of 
basic research in improving firms’ invention performance 
(Belderbos et al., forthcoming; Cockburn & Henderson, 
1998; Fleming & Sorenson, 2004; Gambardella, 1992). 
Prior research has also suggested that the benefits of per-
forming basic research are greater when it is conducted in 
collaboration with universities (Cockburn & Henderson, 
1998; Fabrizio, 2009; Zucker et al., 2002). As firms find it 
difficult to remain up- to- date with all scientific advances, 
firms turn to university partners to provide guidance and 
scientific expertise in research areas relevant to the firm 
(Cassiman & Veugelers, 2006). Firms’ engagement of aca-
demic scientists in their invention activities comes in vari-
ous guises such as collaborative research, contract research, 



4 |   JOURNAL OF PRODUCT INNOVATION MANAGEMENT

consulting and informal relationships (Perkmann et al., 
2013). In this study, we focus on the modalities that govern 
collaborative research and, in line with prior research, we 
measure it through firm- academia co- publications.

While firms may endeavor to do joint basic research 
with academic stars, such university- industry collabora-
tions face numerous obstacles. The defining character-
istics of academic science, such as the rapid disclosure 
and wide dissemination of research results as well as the 
recognition- based reward system, are different from the 
performance goals and incentive systems in firms (Arora 
& Gambardella, 1994). The contrasting views that aca-
demia and industry have on science can lead to conflict-
ing research goals and priorities for joint research projects 
(Bruneel et al., 2010; Dasgupta & David, 1994; Tartari 
et al., 2012). Collaborations in basic research in this re-
gard pose particular difficulties, as they require close in-
teraction and understanding to transfer tacit and complex 
knowledge across organizations (Bruneel et al., 2010; 
Plewa et al., 2013; Tartari et al., 2012). The high levels of 
uncertainty that are defining basic research, combined 
with difficult- to- monitor knowledge generation and trans-
fer, rule out complete contracting to govern basic research 
collaborations. Instead, trust and mutual interdependence 
are crucial (Faems et al., 2008).

2.2 | The value and challenges of 
collaborative basic research with academic 
star scientists

Among university- industry collaborations, academic star 
scientists may be particularly attractive research partners 
because of their extraordinary human and social capital. 
The benefits embodied by the collaborating star scientist 
may accrue to the firm in several ways. First, stars may 
convey valuable tacit knowledge beyond what is codified 
in journal articles (Arora & Gambardella, 1990; Cockburn 
& Henderson, 1998) and they may disclose preliminary 
research results, on which collaborating firms can build 
their own applied research, faster than rival firms can 
without access to the star (Fabrizio, 2009). Second, given 
the expertise and deep knowledge of the academic star 
scientist, collaboration may be instrumental to enhance 
the quality of firms’ basic research and their understand-
ing of the relevant technological landscape (Gambardella, 
1992), helping them in the selection of fruitful research 
avenues, thus avoiding costly research trials (Fabrizio, 
2009; Fleming & Sorenson, 2004; Rosenberg, 1990). Third, 
interaction with academic star scientists can enhance the 
research capabilities of firms’ R&D departments, not only 
by helping them to interpret results of internal research 
(Rosenberg, 1990) but also to identify and understand the 

results and implications of externally conducted basic 
research (Cockburn & Henderson, 1998; Gambardella, 
1992). Fourth, academic star scientists occupy central po-
sitions in international research networks and have large 
networks of research partners (Hess & Rothaermel, 2012) 
which can be activated in collaborations with firms. These 
benefits of working with academic stars are not restricted 
to any given collaboration but affect the effectiveness of 
basic research at the level of the firm (Della Malva et al., 
2015).

Collaboration with star scientists also poses significant 
challenges. These include the aforementioned challenges 
common to all firm– university collaborations: overcoming 
the differences in work practices and incentives, achiev-
ing trust between the partners, and dealing with potential 
knowledge spillovers to other firms given the public good 
characteristics of knowledge. Firms’ collaborations with 
star scientists are likely to face additional difficulties. A first 
relevant characteristic of such collaborations is the stronger 
independence of academic star scientists relative to non- 
stars. Star scientists tend to have good access to support 
from funding agencies and collaboration partners from ac-
ademia and industry, and are less likely to depend on a sin-
gle collaboration partner for funding their research. Hence, 
they can be more selective in choosing their research part-
ners (Stephan & Audretsch, 1996) and will be better able to 
negotiate collaboration contracts that meet their own inter-
ests. One of the interviewed star scientists illustrates this:

They [firms] can collaborate with us if they 
are interested, and if they are not, then we will 
just proceed with other partners, if necessary.

One of the interviewed R&D managers confirmed the dif-
ficulty of attracting star scientists for industrial collaboration:

Big names can be quite demanding and have 
got high expectations. […] Sometimes it's much 
more pleasant to work with young and upcom-
ing professors who haven't made their name yet, 
but are very open and eager to work with others.

Second, star scientists often take up additional mana-
gerial responsibilities and tasks in addition to their broad 
research portfolio, limiting available time to perform col-
laborative research with firms. In the life sciences, star sci-
entists often manage large research laboratories (Woolston, 
2016), involving responsibilities such as funding acquisition 
and people management. Furthermore, star scientists are 
often involved in editorial work for journals and frequently 
attend international conferences. The time pressure result-
ing from these broader responsibilities may force star scien-
tists to limit their efforts and commitment to collaborative 
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research, which may harm the contribution to the inventive 
performance of the collaborating firm.

These hurdles characterizing firms’ collaboration in 
basic research with academic star scientists are likely to 
imply important contingencies for firms to realize an in-
vention premium from collaboration. Inspired by insights 
from the literature and our interviews with star scientists 
and R&D managers, we argue that firms can increase the 
invention benefits accruing from these collaborations by 
engaging in a “dedicated” collaboration— where the star 
scientist abstains from simultaneous collaboration with 
other firms— and “translational” collaboration— where 
the research collaboration is not limited to basic research 
but also includes applied research. We use the term “trans-
lational research” to refer to the commonly used ‘bench- 
to- the- bedside’ interpretation,1 describing a process in 
which basic research, through follow- up applied research 
(e.g., on effectiveness, dosage, transportation inside the 
human body, etc.) produces new drugs for patients. 
Finally, we argue that the co- involvement of internal star 
scientists in collaborative research with academic star sci-
entists is less likely to benefit the firm if the collaboration 
with the academic star scientist is lacking a translational 
(applied research) dimension.

2.3 | Dedicated collaboration with the 
academic star

A dedicated collaboration, with the focal firm being the 
only industrial research partner of the academic star sci-
entist, may alleviate a number of concerns and difficulties 
pertaining to collaborative research with academic star 
scientists. These arguments relate to the threat of knowl-
edge spillovers, the time constraints academic star scien-
tists face, and trust building.

First, an important issue a firm has to deal with when 
working with academic scientists, is the partial public 
good nature of scientific knowledge (Arrow, 1962; Nelson, 
1959). While the development of scientific knowledge re-
quires significant investments, knowledge spillovers can 
lead to competitors’ free riding on these investments at 
limited learning costs. Moreover, these learning costs drop 
considerably with proximity to the scientist possessing 
such knowledge (Zucker et al., 2002). Hence, rival firms 
engaged in parallel research with the same academic star 
scientist may experience significantly lower learning costs, 
and may pose a serious threat to the collaborating firm in 

the race to establish patented inventions. Even contrac-
tual limitations on sharing certain pieces of knowledge 
developed in collaboration with a star may not completely 
avoid knowledge from spilling over, since the transfer of 
knowledge— in particular if it is tacit in nature— is hard 
to monitor and, consequently, contract breaches are hard 
to legally enforce. The interviewed R&D managers recog-
nized the risk of knowledge spillovers:

It's sometimes a very thin line to know which 
information scientists really need to have and 
how far do you go in sharing information. 
It's finding the right balance to create trust 
and have a very collaborative environment 
in which you can both operate and exchange 
information, but not going beyond what is 
essential for both parties to do what they're 
supposed to be doing and not turn them into 
a competitor.

You have to assess very carefully what that 
person's level of involvement with a compet-
itor is.

If the university star scientist solely collaborates with 
the focal firm, this may considerably limit the proba-
bility of knowledge spilling over to competing firms— 
accidentally or due to opportunistic behavior by the 
academic scientist (Gianiodis et al., 2016)— as there is 
no parallel knowledge exchange with other firms. Even 
if other firms face only temporarily restricted access to 
the academic star scientist this may help the focal firm to 
gain a competitive advantage in patent and drug devel-
opment races. Without direct interactions with the aca-
demic star scientist, other firms are less likely to obtain 
the tacit knowledge to put the results of basic research to 
productive use in new inventions (Arora & Gambardella, 
1990; Cohen & Levinthal, 1990). Similarly, the dedicated 
star scientist will be less restricted in her communica-
tion with the scientists of the focal- collaborating firm 
as she is not hindered by secrecy agreements stemming 
from other projects, and there is less need to worry about 
inadvertently disclosing confidential information across 
collaborations.

A second hurdle to successful firm- academic star col-
laboration is the independence of star scientists and the 
alternative opportunities they have to pursue research 
and to get funding. Star scientists can be selective when 
choosing research partners and make strong demands 
during negotiations. They may negotiate collaborative 
contracts that put an upper bound on the time they 
invest in the collaboration, or they may economize on 
time invested once the collaboration is in place. An 

 1This definition is commonly used in both the biomedical scientific 
literature (e.g., Woolf, 2008) and in industry (e.g., “Translational 
research is the fusion of basic lab work and the clinic”— Dr. Thompson, 
CEO of Oncolytics Biotech, cited in PharmaVOICE, 2014).
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interviewed star scientist expressed this tendency to 
economize on time:

Well, my preference would be the least 
amount of face- time. I mean, frequent meet-
ings chew up a vast amount of my week and 
having to attend an extra meeting or a regular 
meeting would be a negative.

The competition for a star's time was also raised by an 
interviewed R&D manager:

If they're very busy and collaborating with a 
lot of others there will be time constraints.

Time constraints are likely to make it more difficult for a firm 
to engage in frequent and profound interactions with the star 
scientist that are conducive to successful collaboration. While 
collaborations among academic partners tend to be more flexi-
ble and informal, collaboration with industrial partners is often 
subject to strict planning and time management with contrac-
tually determined deadlines and milestones (Du et al., 2014). 
Hence, if the star scientist has multiple industrial collaboration 
partners competing for her attention, it will be more difficult to 
devote sufficient time to each partner, which may reduce learn-
ing effects and collaboration benefits for the firms.

Finally, dedicated collaborative relationships are more 
likely to be characterized by improved knowledge sharing 
and trust. Firms that enjoy dedicated access to a star scien-
tist are likely to commit more strongly to the relationship 
(Colyvas et al., 2002) and invest in relationship- specific as-
sets (e.g., Elfenbein & Lerner, 2012) due to the privileged 
access and associated better knowledge appropriation 
prospects. The increased availability and commitment of 
both the star scientist and the firm, and the reduced con-
cerns about unwanted knowledge disclosures, may lead 
to stronger interpersonal relationships and the buildup 
of trust, mutual understanding, and goodwill (Coleman, 
1988; Granovetter, 1985). Strong social relationships in 
turn enhance the depth of knowledge sharing and the 
effectiveness of research collaborations (Bruneel et al., 
2010; Plewa et al., 2013; Tartari et al., 2012).

The above arguments suggest that, taken as a whole, 
dedication may mitigate problems associated with aca-
demic star collaboration and strengthen potential benefits.

Hypothesis 1 (Dedication) The invention premium a firm 
may reap from basic research collaborations with aca-
demic star scientists relative to working with non- stars 
is positively associated with the degree to which these 
collaborations involve dedicated stars (i.e., star scien-
tists with no other industrial collaboration partner 
than the focal firm).

2.4 | Translation: Extending basic 
research collaboration to applied research

A key challenge for firms is the ‘translation’ of basic re-
search to applied research focusing on successful tech-
nology development. Applied research benefits from tacit 
knowledge related to the basic research process, such as 
the trial and error process that has led to scientific findings, 
which is relevant information to establish critical condi-
tions for successful experiments (Agrawal, 2006; Fuller & 
Rothaermel, 2012; Sorenson et al., 2006). Knowledge on the 
basic research process resides in the minds of the discover-
ing scientists who have an information advantage toward 
others in implementing this knowledge into successful 
inventions (Jensen & Thursby, 2001). As the translation 
process is highly uncertain, it is impossible to determine 
in advance when and what knowledge a firm may need 
during applied research. It will therefore be important for 
firms to stay in close contact with the discovering academic 
star scientists to discuss solutions if applied research faces 
obstacles. One of the interviewed star scientists referred to 
his deep understanding of the invention process as a rea-
son to remain involved during applied research:

[we may remain involved in applied research 
because] we are sometimes the experts who 
are more knowledgeable on how something 
works, how the drug should be developed. 
From their side, they [the corporate scien-
tists] are of course the experts in technically 
realizing the development. In the best case, 
this is accomplished in collaboration.

The interviewed R&D managers also referred to the ben-
efits of involving academic star scientists in both basic and 
applied research:

The academic partner may have some very 
deep, fundamental knowledge about some-
thing and we understand the development 
process better. There is a mutual enrichment 
at work here. I would say in the long run it's 
good to keep the originating principal investi-
gator on board as long as possible. It might be 
that certain questions in applied research ac-
tually can be addressed with the basic re-
search know- how that a person has.2

 2There is evidence that biopharmaceutical firms increasingly rely on 
partnerships with academia not only to identify promising pathways for 
novel drugs through basic research, but also to guide their translation 
into clinical development of medical products (Milne & Malins, 2012).
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In general, firms face the problem that excellence in 
basic science does not automatically imply valuable in-
vention. The criteria of what constitutes good academic 
research and what defines a good invention are not the 
same (Foray & Lissoni, 2010; Gittelman & Kogut, 2003). 
Academic star scientists who engage in both basic and 
applied research with a focal firm get acquainted with 
both perspectives and develop competences to recognize 
opportunities in basic research that are worth to pursue 
further by the focal firm. Although star scientists differ in 
their ‘taste’ for applied research and commercialization 
(Sauermann & Roach, 2012; Sauermann & Stephan, 2013; 
Stokes, 1997) some stars are willing to engage in collabo-
rative applied research, as this may provide valuable feed-
back for their basic research and allows them to see their 
research materialize in actual inventions (Rosenberg, 
1990; Sauermann & Roach, 2014). The latter motivation 
is illustrated by a quote from a star scientist, Prof. Dr. 
Carmeliet, winner of the Ernst Jung Prize in medicine 
(Oncurious, 2015):

Working with [biotech firm] Oncurious gives 
me the occasion to remain very closely in-
volved in the process of developing a drug for 
clinical use.

The above arguments suggest that an academic star 
scientist who can span the basic- applied boundary within 
collaborative research can align her expertise in basic 
research with the development practices and invention 
needs of the firm. Hence, basic science collaboration is 
more likely to be associated with a positive invention per-
formance premium for the firm if the collaboration ex-
tends to applied research:

Hypothesis 2 (Translation) The invention performance 
premium a firm may reap from basic research collab-
orations with academic star scientists relative to work-
ing with non- stars is positively associated with the 
degree to which these collaborations are translational 
(i.e., the star scientists are also involved in applied re-
search collaboration with the focal firm).

2.5 | Involving internal star scientists in 
academic star collaboration

Prior studies have reported both positive (Almeida et al., 
2011; Subramanian et al., 2013), negative (Zucker et al., 
2002), and insignificant (Hess & Rothaermelm, 2011, 
2012; Rothaermel & Hess, 2007) effects of internally 
employed star scientists on firms’ invention perfor-
mance. We complement this prior work on the general 

performance implications of internal star scientists by 
examining whether the involvement of internal star 
scientists in collaborative basic research with academic 
stars affects the contingencies under which academic 
star scientist collaboration is expected to be associated 
with a performance premium. There are both positive 
and negative influences to be expected of involving in-
ternal star scientists in basic research collaboration with 
external academic star scientists.

On the one hand, having a star scientist on both sides of 
the partnership may enhance collaborative performance. 
First, the balance in terms of scientific excellence by in-
volving an internal star may improve the understanding 
and absorption of the knowledge and expertise that the 
external star brings to the table, leading to more effec-
tive communication and collaboration. The internal star 
with her expertise can serve as a form of high- level scien-
tific absorptive capacity (e.g., Belderbos et al., 2016, 2017; 
Cassiman & Veugelers, 2006; Melnychuk et al., 2021) 
required to work with the best and brightest in science. 
This is especially the case when knowledge is character-
ized by a high level of tacitness and knowledge transfer 
requires close personal interactions (Zucker et al., 2002).

Second, considering the social circles within academia, 
top scientists might be more likely to connect and interact, 
be it formally or informally, with other top scientists. Such 
prior interaction is known to enhance trust and psycho-
logical safety which facilitates coordination (Cattani et al., 
2013; Huckman et al., 2009; Reagans et al., 2005; Salas 
et al., 2018) and stimulates knowledge- sharing (Bercovitz 
& Feldman, 2011; Bruneel et al., 2010; Huckman et al., 
2009; Plewa et al., 2013; Salas et al., 2018; Tartari et al., 
2012), especially of sensitive information and creative 
thoughts. Even without prior interaction, the solid scien-
tific reputation of both the internal and academic star sci-
entists is also likely to increase mutual trust and respect, 
which stimulates knowledge- sharing and communication. 
The interviewed academic star scientists and R&D manag-
ers experienced these communication benefits:

There are a couple of key advantages [of 
working with an internal star scientist]. 
One is they speak the same language. […] 
[Second,] they also understand more of your 
[the academic star’s] motivations and what it 
is that you want out of a collaboration.

[Collaborating with a star scientist within the 
company] turns a one way interaction into a 
two way interaction.

They [the academic star scientist and the 
internal scientists] need to understand each 
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other well. That is why we [the company] 
have an expert talking to a university expert.

On the other hand, involving internal star scientists in 
collaborative research with academic star scientists may 
also result in knowledge redundancy or, in the worst case, 
conflict. First, academic star scientists possess the research 
expertise and access to the academic community that inter-
nal star scientists can also bring to a research collaboration. 
Hence, both types of star scientists can be considered as 
substitutive sources of knowledge in a collaboration (Hess 
& Rothaermel, 2011; Subramanian et al., 2013) and the mar-
ginal benefit of an academic star scientist may be smaller 
if an internal star is also involved. More so, when the stars 
are socially linked, not only are they likely to share the same 
knowledge, they are also likely to share the same perspec-
tives, potentially reducing creativity during collaborative 
interactions (Dan et al., 2008; Granovetter, 1983). Second, 
accommodating top performers within the same team may 
lead to inefficiency and even conflict (e.g., Cattani et al., 
2013; Groysberg et al., 2011) for instance about allocation 
of resources (Prato & Ferraro, 2018). Teams tend to benefit 
from some hierarchy and clear roles, as this brings clarity 
to social interaction, assigns accountability for task accom-
plishment and sets rules for the distribution of resources 
within the team. In teams with more than one star, a clear 
hierarchy is missing and egos may get in the way of decision- 
making and knowledge- sharing (Groysberg et al., 2011). 
During the interviews, the importance of complementarity 
in skills and knowledge was brought forward:

If we [academic star scientists] look for a col-
laboration partner within a company then I 
would more likely search for someone who 
can make the difference within the company 
instead of someone with a similar profile.

If we [the academic star scientist and the in-
ternal scientist] would have the same knowl-
edge and skills, there would be no need for a 
collaboration. […] It is the lack of knowledge 
and skills that forms the basis of collabora-
tion, otherwise you can do it yourself.

The arguments above do not suggest an unambiguous 
effect of internal star scientist involvement in collaborative 
research with academic star scientists, but we argue that 
joint involvement of internal and external stars is likely to 
be less beneficial if it involves applied research. An internal 
star scientist is familiar not only with what needs to happen 
to be successful in drug development but also with the firm's 
precise research approach, which puts her in a good posi-
tion to take up the role of translating basic research from 

‘the bench’ to ‘the bedside’. The presence of an internal star 
in the collaboration then only results in a clear task division 
if the academic star scientist's involvement remains limited 
to basic research, for which her added value is undisputed 
and for which the match with an internal star may actually 
be beneficial in terms of shared scientific understanding 
and trust building. Conversely, involving both an internal 
and academic star in the subsequent translational step is 
more prone to lead to conflicts due to the combination of 
two high- status scientists, with the academic star stepping 
onto the internal star's turf. In other words, if the collab-
oration includes an internal star, the benefits of involving 
an academic star in translational activities (as proposed in 
Hypothesis 2) are less likely to hold. We hypothesize:

Hypothesis 3 (translation and internal star involve-
ment) The positive association between transla-
tional collaboration and the invention premium the 
firm may reap from collaborations with academic 
star scientists relative to working with non- stars under 
Hypothesis 2 is weaker when these collaborations in-
volve internal stars.

3  |  DATA, VARIABLES,  AND 
METHODS

We test our hypotheses by relating the invention perfor-
mance of pharmaceutical firms to their past (collaborative) 
basic research activities and the characteristics of such 
collaborations. Collaboration may stimulate invention 
performance not only directly through the development of 
collaboration- specific patents based on the collaborative 
research, but also through more general knowledge trans-
fer and learning from collaboration, affecting the broader 
R&D invention portfolio of the firm (e.g., Cassiman et al., 
2008). Hence, the (full) effects of (star) scientist collabora-
tion are best captured by invention at the firm level, and 
we take this as our level of analysis.

Firms select academic stars to collaborate with, and 
stars select firms. The selection process underlying star- 
firm collaboration of various types may lead to different 
invention outcomes due to the specific characteristics of 
the academic star, firm, and collaborative project, and 
this may bias inferences on the role of the hypothesized 
contingencies. We address this by estimating elaborate 
models controlling for a range of firm characteristics, star 
characteristics, and characteristics of the collaborative 
research projects of firms and stars that are likely to be 
relevant in the selection process and may affect inven-
tion performance. In particular, the analysis controls for 
prior star- firm experience in collaboration, which may 
influence selection and may at the same time improve 
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the effectiveness of collaboration, and an indicator of the 
quality of the star- firm collaborative projects, which could 
be associated with the choice for specific collaboration 
types. In a supplementary analysis, we also examine the 
robustness of our findings when controlling for particu-
lar characteristics of a firm and its academic partner that 
may make matches more productive (Banal- Estañol et al., 
2018; Mindruta, 2013). Although our detailed analyses do 
not suggest that heterogeneity in project quality or pat-
terns of matching between firms and star scientists play 
a role as confounders, the difficulty in finding suitable in-
struments for the set of focal variables precludes us from 
interpreting our findings as causal relationships. We inter-
pret the partial correlations as associations.

3.1 | Data

We constructed a panel data set on the patent and publi-
cation activities of 60 of the most prominent pharmaceuti-
cal firms in the world from 1995 to 2002. The firms have 
headquarters in the United States, Europe, or Japan and are 
the largest R&D spenders (in absolute terms) in the phar-
maceutical industry as reported in the 2004 EU Industrial 
R&D Investment Scoreboard. This ranking lists the top 500 
corporate R&D investors based in Europe, and the top 500 
companies based outside Europe (mainly in the US and 
Japan), in 2003. A list of the sample firms is provided in 
the Appendix. We rely on an unbalanced panel data set of 
406 observations in our empirical analyses, as some sam-
ple firms were only created after 1995 (e.g., Novartis was 
formed as a result of a merger of Ciba- Geigy and Sandoz in 
1996) and due to some missing values for R&D expenses.

The characteristics of research by the major players in the 
pharmaceutical industry makes this a particularly interesting 
context for investigating academic star- firm collaborations. 
The science- based nature of research in the pharmaceutical 
industry and the high patenting and publication rates allow 
examining research collaboration processes and outcomes 
through quantitative analysis. The major pharmaceutical 
companies are involved in the entire process from basic to 
applied research (Campbell, 2005), with the interplay be-
tween basic and applied research being an important aspect 
of firm performance. Finally, the ongoing debate on the 
productivity crisis in the pharmaceutical sector (e.g., Rafols 
et al., 2014) calls for deeper insights on the characteristics of 
effective research (collaboration) strategies.

3.2 | Invention performance: Patent data

Following related work (e.g., Rothaermel & Hess, 2007; 
Zucker et al., 2002), we utilize patent data to measure 

firms’ invention performance. Patent data are extracted 
from the PATSTAT database (2011 update), which con-
tains information on patents from all major patent of-
fices worldwide. Patents are a good indicator in our 
context as the propensity to patent inventions is high in 
the pharmaceutical industry (Arundel & Kabla, 1998). 
We weigh patent counts by the number of forward pat-
ent citations to control for differences in the economic 
value of patents (Gambardella et al., 2008; Hall et al., 
2005; Trajtenberg, 1990). We consider citation- weighted 
patent counts as a reflection of (collaborative) research 
success, before other capabilities of the firm related to 
brand management, distribution, advertising, pricing 
etc. come in. We note that patents are only awarded if 
there is convincing evidence of industrial applicability, 
and forward citations to patents in the pharmaceutical 
industry are associated with a chemical or biological 
compound being tested (successfully) in clinical trials. 
Research (Chiou et al., 2016) on molecular entities in-
dicates a strong correlation between the citation rate 
of pharmaceutical patents and the successful introduc-
tion of drugs based on these patents. Hence, there are 
also arguments to consider the citation- weighted patent 
counts as an indicator of innovation performance, and 
prior work using this measure also adopted such a ter-
minology (e.g., Belderbos et al., 2016; Cloodt et al., 2006; 
Kaiser et al., 2018). In the current article, we use the term 
invention and invention performance, as it is closest to 
the actual measure used. The citation- weighted patent 
count is based on a fixed 4- year window of forward cita-
tions to establish a comparable citation window across 
patents (Hall et al., 2005; Trajtenberg, 1990). For the 
calculation of citation counts, both the citing and cited 
patents are integrated at the DOCDB PATSTAT patent 
family level to avoid double counting patents on similar 
inventions (Martinez, 2011).

Patent data are collected at the consolidated parent 
firm level by searching for patents under the name of the 
parent firm as well as all their majority- owned subsidiar-
ies. For this purpose, yearly lists of companies’ subsidiar-
ies were used, as reported in corporate annual reports, 
yearly 10- K reports filed with the SEC in the US, and, for 
Japanese firms, information on foreign subsidiaries pub-
lished by Toyo Keizai in the yearly ‘Directories of Japanese 
Overseas Investments’. Acquired firms and their patent 
stocks are considered part of a parent firm from the year 
the acquisition transaction was completed.

3.3 | Basic research: Publication data

We draw on information contained in publication data 
on pharmaceutical research in the PubMed database to 
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construct indicators of firms’ research activity and col-
laborative behavior. Publication counts are strong and 
timely indicators of firms’ levels of involvement in re-
search in science- based industries (Arora & Gambardella, 
1990; Gambardella, 1992) since the turn- around time of 
publications in life sciences is typically only a few months 
(Kaplan et al., 2003). As with patent data, publication data 
are also collected at the consolidated firm level. We relate 
invention (citation- weighted patent) performance of firms 
to (collaborative) basic research activity in the past 4 years 
(t−4 to t−1). This time window is likely to be sufficient, 
as most patents are applied for relatively early in the drug 
discovery phase (Campbell, 2005). Since we are interested 
in firms’ collaborative basic research focusing on com-
pound (drug) discovery we use the CHI journal classifica-
tion scheme to distinguish applied research (levels 1 and 
2) from basic research (levels 3 and 4) (Hamilton, 2003; 
Thursby & Tursby, 2011).

3.4 | Collaboration with (star) 
academics: Co- publications

We draw on information from co- publications to build 
collaboration measures for the sample firms (Cockburn 
& Henderson, 1998; Fabrizio, 2009). We identify aca-
demic co- authorship by a string- matching algorithm that 
recognizes affiliations of universities or research institu-
tions. Prior research has validated co- publications as a 
reliable indicator of collaborative research (Cockburn & 
Henderson, 1998; Fabrizio, 2009). Most collaborations re-
sult in co- authored publications (Melin & Persson, 1996), 
and most co- publications do reflect actual research col-
laborations (Hicks et al., 1996).

Among the academic co- publications of firms, we 
identify collaborations with academic star scientists. We 
draw on disambiguated author names in the Authority 
data set of Torvik and colleagues (Torvik et al., 2005; 
Torvik & Smalheiser, 2009), which has uniquely iden-
tified authors on PubMed publications. The authors of 
the firm (co- )publications can be compared with all au-
thors within PubMed on the basis of their complete pub-
lication records. We follow the definition of Rothaermel 
and Hess (2007) and identify star scientists as those 
authors whose publication and citation performance 
are both three standard deviations above the means in 
their scientific field. We apply the criterion in a dynamic 
manner, using a moving 4- year window to allow for 
changes in star scientist status due to retirement or ca-
reer changes (e.g., Groysberg & Nanda, 2004; Groysberg 
et al., 2008). Star scientist status is assessed per scien-
tific field to control for discipline- specific publication 
and citation patterns (e.g., Kelchtermans & Veugelers, 

2013). Based on the journal categorization of Thomson 
Reuters in 2014, we consider 44 distinct fields in the sci-
entific domains “Medicine” and “Life Sciences”. If the 
scientist has, in at least one of these fields, publication 
and citation counts that both exceed the aforementioned 
threshold she is considered a star scientist. Since the ar-
guments for hypothesis three hinge upon internal and 
academic stars being of comparable status, we apply the 
same threshold for both groups.

In total, from among 2,478,517 scientists with at 
least one publication in PubMed in the broader fields 
of “Medicine” or “Life Sciences”, we identified 26,586 
(1.1%) star scientists. For the sample firms, among the 
126,325 authors listed on their basic research publica-
tions, 7340 (5.8%) were identified as stars. This set of 
star scientists consists of both scientists employed in-
ternally by the firms and those employed by a research 
institution or university. To identify star scientists work-
ing in academia we applied specific string- matching al-
gorithms on three types of affiliation data: first- author 
addresses, email- addresses (Torvik et al., 2005; Torvik 
& Smalheiser, 2009) and addresses listed on the corre-
sponding Web of Science publications of the PubMed 
publications. In line with previous studies (e.g., Zucker 
et al., 1998), we find that most star scientists listed on 
the publications of the sample firms are academics 
(6554 or 89%). Among the 60 firms in the sample, 34 
firms also employ internal star scientists, who author a 
total of 7681 basic research publications. Of these, 2172 
are in collaboration with an academic star scientist. The 
sample firms’ basic research collaborations with aca-
demic star scientists not involving internal stars is about 
six times that number (13,622). Our measure of collab-
oration with academic star scientists includes both col-
laboration with an individual star scientist working at 
a university, and collaboration through a research con-
sortium or a funded research center to which the star 
scientist is affiliated.

An academic star- firm basic research collaboration is 
considered “translational” if the collaboration not only 
includes joint basic research but if the star scientist has 
also published applied research in collaboration with 
the focal firm in the same 4- year window. An academic 
star- firm collaboration is categorized as “dedicated” if 
the star scientist is not mentioned as co- author on any 
publication (basic or applied) of another (bio) pharma-
ceutical firm during the observation period of 4 years. 
We consider the 60  largest R&D- spending pharmaceu-
tical firms in the sample in addition to 76 of the largest 
R&D- spending biotechnology firms in 2004 as the rele-
vant players within the (bio) pharmaceutical industry to 
determine whether a star is “dedicated” to a single focal 
firm.
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As dedication and translation are not mutually ex-
clusive characteristics of collaboration, we identify four 
types of collaboration with academic stars: dedicated 
and translational, dedicated and non- translational, 
non- dedicated and translational, and non- dedicated 
and non- translational. The set- up with four exclusive 
categories provides the most detailed insights into the 
performance effects of different configurations of ded-
icated and translational collaborative research, allow-
ing the disentanglement their individual influences. 
We furthermore distinguish combinations of these four 
collaboration types with or without the involvement of 
internal stars, such that we arrive at eight exclusive cate-
gories of academic star collaborations in our full regres-
sion model.

The construction and descriptive statistics of the col-
laboration variables are shown in Figure 1. About 58% of 
firms’ basic research publications are co- authored with 
academics. On average, a quarter of these collaborative 
basic research publications are co- authored by an aca-
demic star, while about three percent of these publica-
tions involve only internal stars. Non- star collaborations 
form the majority of basic research collaborations with 
academia (72%). Among the collaborations involving 
academic stars, about 8% also involve internal stars. If 
we further disentangle these two categories of academic 
star collaborations, we see that in case of involvement 
of academic stars only, the collaboration type ‘non- 
dedicated and non- translational’ is the most common 
(60.1%), followed by dedicated and non- translational 
(23.8%), non- dedicated and translational (10.9%), and 
dedicated and translational (5%). For academic star col-
laborations also involving internal stars, the shares of 
the four types of collaborations are broadly comparable, 
although the share of dedicated translational collabora-
tions is higher at roughly 10%.

3.5 | Empirical model and variables

We opt for count data models as they take into account 
the non- negativity and discreteness of our dependent 
variable: firms’ citation weighted patent count. We es-
timate quasi- maximum likelihood Poisson models that 
are robust to over- dispersion and against distributional 
misspecification (Cameron & Trivedi, 2009). To control 
for time- invariant heterogeneity across firms that is not 
captured by the model variables, we estimate pseudo- 
fixed effects models by including the pre- sample average 
of the dependent variable. The advantage of the pseudo- 
fixed model is that it does not require strict exogeneity of 
the error terms, as is the case for conventional fixed ef-
fects models (Blundell et al., 1995), provides consistent 

estimates, and preserves degrees of freedom. The pseudo- 
fixed effect is measured as the natural logarithm of the 
firms’ patents five to eight years before the start of the 
observation period. This relatively long pre- sample period 
avoids convolution with the explanatory variables in the 
model, such as the basic research collaborations meas-
ured one to four years prior to the first observation on in-
vention performance.

In order to identify the relationships under study 
limiting multicollinearity concerns, while controlling 
for other key research characteristics of the firm, we 
employ a cascaded model setup. Firms’ resources spent 
on R&D, which should have a direct relationship with 
invention output, enter in absolute terms. The impact of 
in- house basic research is subsequently included as the 
ratio of the number of basic research publications in the 
previous four years over R&D expenditures, while the 
general effect of performing such basic research jointly 
with academia is measured by the ratio of collaborative 
to all basic research publications of the firm. The focal 
variables indicating academic star- firm collaborations 
under various contingencies are subsequently included 
as shares of basic research collaborations with academia 
(as illustrated by Figure 1), with collaboration with aca-
demic non- star scientists as the reference group. Hence, 
the focal variables on collaboration types measure the 
‘invention premium’ of collaborating with stars under 
various contingencies compared to the average effect 
of collaborating with non- star academic researchers, as 
formulated in our hypotheses.

3.6 | Control variables

The models include a range of control variables at the 
firm, academic star, and firm- star collaboration level to 
isolate the effects of star collaboration and its contin-
gencies. Besides R&D, basic research, and collaboration 
with academia in basic research, we include a control 
for the technological diversity of a firm's technology port-
folio, which in prior research has been shown to relate 
in a non- linear way to firms’ invention performance 
(e.g., Leten et al., 2007). Technological diversity is meas-
ured as the inverse Herfindahl index of the distribu-
tion of the four- year prior patent portfolio over 3- digit 
IPC patent classes. To allow for a non- linear relation-
ship, this variable is included in both linear and quad-
ratic form. The analysis also controls for the number of 
inter- firm research alliances and associated inter- firm 
knowledge transfers (e.g., Belderbos et al., 2016; Hess & 
Rothaermel, 2011; Mowery et al., 1996; Owen- Smith & 
Powell, 2004) during the past four years (taken from the 
SDC Platinum database), scaled by R&D expenditures 
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in the previous year. Further, we include a dummy vari-
able indicating if the firm employs an internal star scien-
tist (Hess & Rothaermel, 2011; Zucker et al., 2002). We 
also include two additional academic research charac-
teristics of the firm that may relate to invention perfor-
mance: the quality of the firm's research (measured by 
the average yearly citation weighted number of publi-
cations in the prior four years), and the firm's research 
diversity (the Blau index of the distribution of publica-
tions across the 44 scientific fields within Medicine and 
Life sciences during the previous four years). Finally, we 
control for firm age as a firm variable that may affect 
invention performance (e.g., Soh & Subramanian, 2014). 
Firm age is calculated as the first year that a patent filing 
of the firm is recorded.

Two other control variables incorporate characteristics 
of the collaborating academic stars, to take into account 
possible residual heterogeneity among these extraordinary 
scientists. While our study focuses on partnerships with 
scientists in the upper tail of the quality and productivity 
distribution, there may still be star scientist heterogene-
ity influencing collaborative invention performance out-
comes. We include the research quality (the average yearly 

citation weighted number of publications in the prior four 
years) and the research diversity of the collaborating stars’ 
during the previous four years (the Blau index of the dis-
tribution of publications across 44 scientific fields during 
the previous four years).

The analysis also includes two key characteristics at 
the star- firm collaboration level. First, firms and stars may 
select the ex- ante most promising projects for collabora-
tion and star scientists might be more willing to take on a 
specific collaboration configuration if the expected (scien-
tific) impact of the collaborative project is promising. To 
control for this potential influence of heterogeneous proj-
ect quality, the model includes the average forward cita-
tion rate of the collaborative publications. Second, new 
firm- star collaborations may be partially driven by prior 
collaborative research and such experience may have pos-
itive performance implications. Empirical studies have 
found a positive relationship between team performance 
and prior team interaction (Huckman et al., 2009) or prior 
social links between team members (Bercovitz & Feldman, 
2011). At the same time, negative repercussions have also 
been reported (Dan et al., 2008; Salas et al., 2018), as re-
peated interaction may limit the amount of new 

F I G U R E  1  Construction and descriptive statistics of the collaboration variables

basic research 
without academia

basic research 
collaboration
with academia

solely non-star co-authors
(reference group)

co-authored by
academic stars

1: co-authored by 
academic stars only

1a: dedicated and 
translational

1b: dedicated and 
non-translational

1c: non-dedicated 
and translational

1d: non-dedicated 
and non-translational

2: co-authored by both
internal and academic 

stars

2a: dedicated and 
translational

2b: dedicated and 
non-translational

2c: non-dedicated 
and translational

2d: non-dedicated
and non-translational

3: co-authored by internal stars only

Basic research collaborations Basic research collaborations with academia                                   mutually exclusive collaboration modes 

71.8 %

25.3%

8.1% µ= 0.024

91.9 % µ= 0.213

60.1%               µ= 0.124 

58.7%              µ= 0.014

9.9%                 µ= 0.002

10.9%              µ= 0.024

16.9%               µ= 0.004

2.9 % µ= 0.027

5.2%                µ= 0.015

23.8%              µ= 0.050

14.5% µ= 0.004 

58.4%    µ= 0.584

41.6%

%: share of the category

µ: mean value of corresponding variable in the empirical model
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information that can be obtained through collaboration. 
We include in the models a measure of prior collaborative 
firm- star experience: the average number of co- 
publications of the focal firm and the collaborating aca-
demic stars in the four- year period prior to the period of 
the focal star- firm collaborations.3 Finally, in addition to 
the pseudo- fixed firm effects, all models include year- fixed 
effects to control for time- specific shocks.

Table 1 reports descriptive statistics. Almost all sam-
ple firms (55 out of 60) collaborated at least once with an 
academic star scientist during the sample period. Most 
of these firms (53) engaged in the most common type of 
academic star- firm collaboration: non- dedicated and non- 
translational collaboration with the academic star and not 
involving internal stars. Even the least frequent collabo-
ration type, dedicated and translational, is still practiced 
by 39 of the sample firms if this collaboration does not 
involve internal stars. In contrast, if internal stars are 
involved, only 13 firms have dedicated translational star 
collaborations. Of the 32 firms that employ internal star 
scientists, 29 involve them at least once in collaborations 
with academic stars.

Table 2 contains the correlation matrix. There is no ev-
ident multicollinearity concern regarding the focal vari-
ables that are simultaneously included in the empirical 
models. A relatively high correlation is observed between 
R&D expenditures and the firm- level pseudo- fixed effect, 
which is related to the relatively stable R&D budgets of 
firms over time.

4  |  EMPIRICAL RESULTS

Table 3 reports the regression results. Model 1 is the base-
line model including only the control variables. In addi-
tion to the significant pseudo- firm fixed effect (p < 0.000), 
firms that invest more in R&D (p < 0.000), that collabo-
rate more frequently with academia in basic research 
(p  =  0.003) and that have a higher research quality 
(p = 0.034) have a higher invention performance. Firms’ 
research and technological diversity show no significant 
association with invention performance at conventional 
(p < 0.05) significance levels. Firm age appears positively 
related to invention performance (p  =  0.001 in model 
3), although only slightly in models 1 (p = 0.090) and 2 
(p = 0.101). The academic star controls (research quality 
and research diversity) have significantly negative and 
positive coefficients, respectively, but this significance 

disappears in the full specification of model 3. The qual-
ity of collaborative research with star scientists is positive 
and significantly associated with invention performance 
(p = 0.009) in all models, while prior collaboration experi-
ence is also positive and significant in models 2 and 3.

Model 2 includes the share of co- publications in basic 
research with academic stars. The insignificant coefficient 
(p = 0.141) suggests that on average, star collaboration is 
not associated with an invention performance premium 
over and above the positive influence of collaborating with 
academia. This overall effect warrants further investiga-
tion of the potential heterogeneities in the performance 
benefits of collaboration with academic star scientists, as 
hypothesized.

Model 3 includes the variables representing the 
shares of the eight specific collaboration types to exam-
ine the contingencies under which academic star scien-
tist collaboration may be associated with a performance 
premium. There are marked differences between the co-
efficients of the shares of different collaboration types. 
For basic research collaborations with academic stars but 
without internal stars (coefficients β1), there is a positive 
and significant coefficient (p < 0.000) for dedicated and 
translational collaboration (β1a) and a negative and signif-
icant coefficient (p = 0.001) for non- dedicated and non- 
translational collaboration (β1a). Among the four shares 
of collaborations that involve both academic and internal 
star scientists (β2), the only positive share (p = 0.010) is 
for dedicated and non- translational academic star col-
laboration (β2b), while significantly negative coefficients 
(p < 0.000) are observed for the two non- dedicated collab-
oration categories (β2c, β2d).

In order to test our hypotheses, we conduct chi- 
squared tests (reported in Table 4) on sums of coefficients 
that capture a given collaboration mode. The sum of co-
efficients of the shares of dedicated academic star scien-
tist collaboration is higher than the sum of coefficients 
of the shares of non- dedicated collaboration (χ2 = 14.82, 
p < 0.000), indicating that there is a beneficial influence 
of dedication. This confirms hypothesis 1. A test compar-
ing coefficients of collaboration shares with and without 
a translational component also indicates a statistically 
significant difference (χ2 = 9.63, p = 0.002), but indicates 
that the involvement of the star in translation is negatively 
associated with invention performance, rejecting hypoth-
esis 2. In order to test for Hypothesis 3, we examine the 
consequences of involving internal star scientists in aca-
demic star- assisted translational research (collaborations 
extending to applied research). Specifically, the test is 
whether the difference between the coefficients of trans-
lational and non- translational collaboration is greater for 
collaborations not involving internal stars than for collab-
orations that do involve internal stars. The test shows that 

 3We note that we are not able to control for the geographic location or 
geographic proximity of collaborating stars, because the Pubmed 
database does not contain the 1- on- 1 correspondence between authors 
and affiliations.
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T A B L E  1  Descriptive statistics (406 observations)

Name Mean SD Min. Max.
# firms with 
value >0

Dependent variable

1 Citation weighted patent countt 644.63 893.91 0 4551 60

Key variables

2 Log (R&Dt−1, in million USD) 5.22 1.69 0.20 8.49 60

3 Basic research publicationst−4 to t−1/
R&Dt−1, in Million USD

0.77 0.98 0.00 11.89 59

4 Basic research co- publ. with academiat−4 to 
t−1/Basic research publicationst−4 to t−1

0.55 0.21 0.00 1.00 57

Share of basic research co- publications with academiat−4 to t−1

5 … with academic stars 0.24 0.16 0.00 1.00 55

… without internal stars and with 
academic stars

0.21 0.14 0.00 1.00 55

6 … which are dedicated and translational 0.02 0.06 0.00 1.00 39

7 … which are dedicated and 
non- translational

0.05 0.05 0.00 0.33 47

8 … which are non- dedicated and 
translational

0.02 0.04 0.00 0.25 43

9 … which are non- dedicated and 
non- translational

0.12 0.09 0.00 0.57 53

…with internal stars and with academic 
stars

0.02 0.05 0.00 0.25 29

10 … which are dedicated and translational 0.00 0.01 0.00 0.05 13

11 … which are dedicated and 
non- translational

0.00 0.01 0.00 0.09 20

12 … which are non- dedicated and 
translational

0.00 0.01 0.00 0.14 20

13 … which are non- dedicated and 
non- translational

0.01 0.03 0.00 0.16 27

14 …with internal stars and without academic 
stars

0.03 0.07 0.00 0.25 32

Firm controls

15 Technological diversityt−4 to t−1, IPC3 6.87 3.04 0.00 19.15 60

16 Research alliancest−4 to t−1/
R&Dt−1, in million USD

0.04 0.10 0.00 1.43 54

17 Presence of internal start−4 to t−1 0.54 0.50 0.00 1.00 32

18 Log (firm age) 3.82 0.71 0.00 4.67 60

19 Firm research qualityt−4 to t−1 309.67 62.04 0.00 345.18 59

20 Firm research diversityt−4 to t−1 0.28 0.08 0.00 0.37 59

Academic star controls

21 Research quality of academic starst−4 to t−1 94.58 65.07 0.00 276.20 55

22 Research diversity of academic starst−4 to 
t−1

0.43 0.21 0.00 0.73 55

Star- firm collaboration controls

23 Quality of basic collaboration with 
academic starst−4 to t−1

0.64 0.61 0.00 4.36 53
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the association between invention performance and trans-
lational collaboration is stronger (χ2 = 15.33, p = 0.000) 
for collaborations without internal stars, confirming hy-
pothesis 3.

Hypothesis 2 was rejected, suggesting that there is no 
overall positive association between firms’ invention per-
formance and translational collaboration with academic 
stars. However, the difference in the role of translational 
collaborations with and without internal star involvement 
(H3) may suggest that a positive association may hold 
after all, but only for the subset of collaborations without 
internal stars. A test on the coefficients of collaboration 
shares with and without translation but not involving in-
ternal stars does show that translational collaboration has 
a stronger (χ2 = 6.17, p = 0.013) positive association with 
invention performance than non- translational collabo-
ration (Table 4). Conversely, a similar test for collabora-
tion shares involving internal stars shows a significantly 
negative difference between the coefficients of transla-
tional versus non- translational collaboration (χ2 = 13.22, 
p = 0.000). Hence, once we condition on the presence of 
internal stars, we find qualified support for hypothesis 
2, i.e., there is a positive association between invention 
performance and the degree to which academic star col-
laborations extend to applied research, but only if these 
collaborations do not involve internal stars. These condi-
tional tests also help to better understand the results of 
the test for Hypothesis 3. In particular, they show that the 
benefit from involving academic stars in applied research 
is material, but disappears and is even reversed once these 
collaborations involve internal stars.

It is important to examine the economic significance 
of the estimation results. Exponentiated coefficients in 
the negative binomial model can be interpreted as pseudo- 
elasticities (incidence ratios). We infer that a standard de-
viation increase in the share of translational and dedicated 
star collaborations not involving internal stars is associated 
with a 14- percent increase in invention performance. In 
contrast, increasing the share of non- translational and non- 
dedicated star collaborations not involving internal stars by 
a standard deviation is associated with a 22% decrease in 
performance. For collaborations involving internal stars, 
the coefficients suggests an 8% increase in performance 
(dedicated non- translational), and a decrease of 11% and 

14% (non- dedicated translational and non- dedicated non- 
translational, respectively). However, these effects have to 
be assessed against the background of a simultaneous and 
sizeable positive effect of collaboration in basic research 
with academics, where a standard deviation increase is as-
sociated with a performance increase of 19%.

Is collaboration with academic stars in basic research 
by the sample firms overall positively associated with firm 
invention performance? This question rises given the ob-
served negative influences of specific types of academic 
star scientist collaboration, in conjunction with the posi-
tive influence of academic collaboration in basic research 
in general. Simulations at the firm level show that for 
about 9% of firm- year observations (43 of 460), the par-
ticular configuration of basic research collaboration with 
academic stars is negatively associated with invention per-
formance, although this negative association only shows 
statistical significance (p < 0.05) for two observations. In 
contrast, for around 71% of firm- year observations (287 
out of 406), academic collaboration has a positive associa-
tion with performance; while for 168 of these observations 
this association is statistically significant (p < 0.05). These 
findings suggest that while academic star scientist collab-
oration in basic research under unfavorable contingencies 
may lead to significantly negative performance premiums 
compared to non- star collaboration with academia, there 
is no evidence for an overall negative association between 
academic star scientist collaboration and firm invention 
performance. At the same time, under favorable contin-
gencies the results suggest clear positive effects of aca-
demic star scientist collaboration.

4.1 | Supplementary analysis

We performed a number of supplementary analyses to 
examine the robustness of our findings. We briefly sum-
marize the tests and outcomes here. First, we examined 
the robustness of our findings if we controlled for prior 
collaboration experience specifically of the team of inter-
nal and academic stars, measured as the degree to which 
prior firm- star collaborations also involved such internal 
stars. We did not find an additional significant effect for 
the internal- academic star collaboration experience, and 

Name Mean SD Min. Max.
# firms with 
value >0

24 Collaborative experience firm and 
academic starst−4 to t−1

0.60 1.81 0.00 17.31 46

Firm pseudo- fixed effect

Firm pseudo- fixed effect 4.70 1.92 0.00 8.44 59

T A B L E  1  (Continued)
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adding this variable had no material effect on the main 
variables of interest. Second, the emerging literature on 
matching in research collaborations has suggested that 
particular matches between the capabilities of a firm and 
its academic partner may be more productive (Banal- 
Estañol et al., 2018; Mindruta, 2013). Expansion of the 
model to include such matching characteristics— positive 
assortative matching on research quality and basic re-
search orientation; negative assortative matching on re-
search diversity— did not indicate that these influences 
play an additional role, while the focal results remained 
unchanged.

Third, we estimated expansions of our model including 
eight project quality variables, one for each type of star- 
firm collaboration, and eight prior experience variables, 
with no qualitative impact on the influence of the focal 
variables.4 Fourth, we have expanded our model with a 
variable measuring the (average) opportunities for re-
search in the domains in which the focal firm collaborates 
with stars. Opportunities are measured by the worldwide 
growth in publications in the 44 scientific domains that 
we also use to identify stars. Adding this variable did not 
produce significant results, while the core results re-
mained unchanged. Fifth, we added a measure of the col-
laborative network size of academic stars to our model, 
measured as the average of the total number of co- authors 
of the academic stars in the Authority data set (Torvik 
et al., 2005; Torvik & Smalheiser, 2009). No significant ef-
fect was found for the collaborative network size of stars, 
and core results were unaffected.

Sixth, we addressed the concern that our co- publication 
variables may partly pick up scientists’ mobility between 
universities and firms rather than collaborative research, 
and that this may be disproportionally the case for dedi-
cated collaboration. We identified as a possible indicator 
of such mobility the co- publications in which the num-
ber of affiliations is larger than the number of authors, 
which represent cases of multiple affiliations of at least 
one of the authors, and possibly but not necessarily, the 
academic star. Multiple affiliations may occur if a star 
moves from academia to the firm, keeping (perhaps tem-
porarily) her university affiliation on her publications. 
This applied to close to four percent of the firm collabora-
tions with academic stars. These multiple affiliations were 
not more prevalent for star collaborations with dedication: 
no significant differences could be observed between ded-
icated and non- dedicated star collaborations in its occur-
rence (with means of 3.74% and 3.89% respectively, and 
the p value of the difference at 0.57). Finally, employing 

an extended eight- year citation window to measure patent 
quality, rather than a four- year window, did not produce 
any notable differences in the empirical results. Finally, 
leaving out the three firms that did not collaborate with 
star scientists during the observation period and/or that 
did not engage in basic research also produced similar 
results.

5  |  CONCLUSION AND 
DISCUSSION

Our analysis of the relationship between pharmaceutical 
firms’ invention performance and their basic research 
collaborations with academic star scientists revealed 
that such collaborations on average are not associated 
with an invention performance premium compared to 
academic collaborations not involving stars. This find-
ing is surprising, certainly against the backdrop of prior 
literature (Zucker et al., 2002) that has stressed the ben-
efits for firms of working with the best and brightest ac-
ademic scientists. Working with academic star scientists 
does however not only provide advantages to firms, but 
may face important obstacles related to the full agenda 
and stronger independence of the star— which may lead 
to reduced commitment and interaction, a lesser em-
phasis on translation, and undesired knowledge spillo-
vers to other firms.

Our findings highlight that it is crucial for firms to 
manage collaborations with academic star scientists by 
creating the right conditions for increased invention per-
formance, although firms may not always be in a position 
to demand such conditions. We find that dedication and 
translation jointly are key conditions to observe an inven-
tion performance premium of academic star collaboration 
in comparison with non- star collaboration— provided that 
no internal star scientists are involved. Dedication (the ac-
ademic star abstains from collaboration with other firms) 
promotes commitment and trust and reduces the threat 
of knowledge dissipation to other firms. Translation (the 
collaboration with the academic star in basic research 
extends to applied research) is important to fruitfully 
apply insights from basic research to applied research 
trajectories.

If  the basic research collaboration with an ac-
ademic star also involves an internal star scientist, 
applied research involvement of the academic star is 
not required, and can even turn out to be detrimental 
for a performance premium, presumably because the 
internal star can fulfill this translational role. Only 
one configuration of basic research collaboration in-
volving both internal and academic star scientists is 
associated with a performance premium, namely a 

 4The only exception concerned the test for a premium of translational 
collaboration in case no internal stars are involved, which turned 
insignificant in the specification with eight experience variables.
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T A B L E  3  Academic star collaboration in basic research and firms’ invention performance: Pseudo- fixed effects poisson panel regression 
results

Model 1 Model 2 Model 3

Coef.
z- value 
(p- value) Coef.

z- value 
(p- value) Coef.

z- value 
(p- value)

Key variables

Log (R&D) 0.23 3.66 0.24 3.88 0.19 3.15

(0.000) (0.000) (0.002)

Basic research publications/R&D 0.04 0.85 0.05 0.96 0.03 0.52

(0.398) (0.335) (0.601)

Basic research co- publications 
with academia/Basic research 
publications

1.06 3.00 1.06 3.02 0.83 2.45

(0.003) (0.002) (0.014)

Share of basic research co- publications with academia

… without internal star and without 
academic stars

Reference group

… with academic stars −0.59 −1.47

(0.141)

… without internal stars and with academic stars

… which are dedicated and 
translational

β1a 2.12 3.58

(0.000)

… which are dedicated and 
non- translational

β1b 1.30 1.51

(0.132)

… which are non- dedicated and 
translational

β1c 0.46 0.44

(0.662)

… which are non- dedicated and 
non- translational

β1d −2.17 −3.18

(0.001)

… with internal stars and with academic stars

… which are dedicated and 
translational

β2a −6.21 −1.71

(0.086)

… which are dedicated and 
non- translational

β2b 8.07 2.59

(0.010)

… which are non- dedicated and 
translational

β2c −10.26 −4.13

(0.000)

… which are non- dedicated and 
non- translational

β2d −4.45 −4.02

(0.000)

… with internal stars and without 
academic stars

−0.11 −0.17

(0.867)

Firm controls

Technological diversity −0.01 −0.15 −0.02 −0.19 0.00 0.00

(0.879) (0.852) (0.999)

Technological diversity2 0.00 −0.44 0.00 −0.41 0.00 −0.59

(0.659) (0.679) (0.554)

Research alliances/R&D 0.50 0.84 0.50 0.79 0.23 0.52

(0.403) (0.428) (0.603)

Presence of internal star 0.02 0.2 0.07 0.63 0.13 1.13

(0.838) (0.528) (0.257)
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Model 1 Model 2 Model 3

Coef.
z- value 
(p- value) Coef.

z- value 
(p- value) Coef.

z- value 
(p- value)

Log (firm age) 0.18 1.7 0.17 1.64 0.34 3.30

(0.090) (0.101) (0.001)

Firm research quality −0.01 −2.12 −0.01 −2.09 −0.01 −2.34

(0.034) (0.037) (0.019)

Firm research diversity 1.73 0.52 1.72 0.51 2.87 0.87

(0.607) (0.610) (0.386)

Academic star controls

Research quality of academic stars 0.00 −4.88 0.00 −4.32 0.00 −1.47

(0.000) (0.000) (0.142)

Research diversity of academic stars 0.95 2.55 1.06 2.85 0.55 1.33

(0.011) (0.004) (0.183)

Star- firm collaboration controls

Quality of basic collaborations with 
academic stars

0.17 2.61 0.17 2.62 0.17 2.91

(0.009) (0.009) (0.004)

Collaborative experience of firm and 
academic stars

0.01 1.42 0.02 2.07 0.05 3.53

(0.156) (0.039) (0.000)

Pseudo firm- fixed effects and year dummies

Pseudo firm- fixed effects 0.58 10.77 0.58 10.79 0.54 10.56

(0.000) (0.000) (0.000)

Year dummies Yes Yes Yes

Constant 1.89 3.73 1.9 3.74 1.68 3.43

(0.000) (0.000) (0.001)

Log likelihood −31,484.56 −31,349.61 −26,995.97

LR test improved model fit (vs. Model 1) 2758.03 (0.000) 8977.18 (0.000)

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  3  (Continued)

T A B L E  4  Tests for the hypotheses on invention performance benefits due to research collaboration with academic stars

Coefficients χ2 (Prob > χ2) Answer

Hypothesis 1 Are performance benefits greater in case of dedicated collaboration?

β1a + β1b + β2a + β2b − β1c − β1d –  β2c − β2d = 0 (2.12) + (1.30) + (−6.21) + (8.07) 
− (0.46) − (−2.17) 
− (−10.26) − (−4.45) = 21.70

14.82 (0.000) Yes

Hypothesis 2 Are performance benefits greater in the case of translational collaboration?

Across all star collaboration modes: 
β1a + β1c + β2a + β2c − β1b − β1d − β2b − β2d = 0

(2.12) + (0.46) + (−6.21) + (−10.26) 
− (1.30) − (−2.17) − (8.07) 
− (−4.45) = −16.64

9.63 (0.002) No (reduced 
benefit)

Star collaboration modes not involving internal stars: 
β1a + β1c − β1b − β1d = 0

(2.12) + (0.46) − (1.30) − (−2.17) = 3.45 6.17 (0.013) Yes

Star collaboration modes involving internal stars: 
β2a + β2c − β2b − β2d = 0

(−6.21) + (−10.26) − (8.07) − (−4.45) = −16.67 13.22 (0.000) No (reduced 
benefit)

Hypothesis 3 Are performance benefits of translational collaboration greater when academic star collaboration does not involve internal 
stars?

β1a  + β1c − β1b − β1d − (β2a − β2c + β2b + β2d) = 0 (2.12) + (0.46) − (1.30) − (−2.17) − (−6.21) 
− (−10.26) + (8.07) + (−4.45) = 20.12

15.33 (0.000) Yes
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collaboration in which academic stars are dedicated 
but not involved in applied collaborative research. 
The lack of more general invention performance 
benefits in case of joint involvement of internal and 
academic stars may indicate problems related to 
knowledge redundancy, hierarchy and conflicts, with 
non- dedicated collaboration furthermore increasing 
the risk of knowledge dissipation. Overall, the ob-
served patterns indicate that dedication is the most 
crucial condition to safeguard the invention returns 
of collaborations in basic research with academic star 
scientists, with positive influences regardless of the 
involvement of internal stars.

Our study emphasizes the difficulty of transferring 
and safeguarding knowledge in the context of university- 
industry collaboration, the connected roles of basic and 
applied research, and the specific role of internal star 
scientists for invention performance. In doing so, our re-
search contributes to both the broad stream of research 
on collaboration between firms and academia and the lit-
eratures on the role of firms’ engagement with (in- house) 
star scientists and basic research. Few studies in the liter-
ature on industry- science collaboration have investigated 
contingencies of the collaboration- performance relation 
(Bogers et al., 2017) and paid attention to the role of the 
collaborating scientists. Our work addresses this gap by 
suggesting the importance of dedication and translation 
as crucial contingencies for firms to achieve an inven-
tion premium when collaborating with academic star 
scientists compared to non- stars in basic research. The 
importance of dedication has implications for our un-
derstanding of the organization of knowledge networks 
that span the institutional boundary between academia 
and industry. More specifically, linkages among organiza-
tions have been conceptualized on a continuum between 
‘closed conduits’ where only the linked entities benefit 
from the exchanged knowledge, and ‘porous channels’ 
that allow for knowledge spillovers to external entities 
(Owen- Smith & Powell, 2004). We find that dedicated 
collaborations with academic star scientists— reflecting 
the aforementioned ‘closed conduits’ rather than ‘porous 
channels’— result in an invention advantage for firms. 
The fact that firms benefit more from partnering with ac-
ademic stars who are not embedded in a large network 
of collaborations with other firms contrasts with extant 
literature (e.g., Ahuja, 2000) that has emphasized the 
benefits of integration of firms’ research into large net-
works through their collaboration partners. The impor-
tance of translation is consistent with the notion in the 
literature of the role of ‘Pasteur’ or ‘bridging’ scientists 
(Baba et al., 2009; Gittelman & Kogut, 2003; Subramanian 
et al., 2013) as important collaboration partners of firms. 

However, our study suggests an important nuance, as 
the role of translational academic star scientists depends 
on whether such translational capabilities are available 
among collaborating in- house star scientists. Results of 
our study also confirm the importance of in- house basic 
research for firms’ invention performance, in particular 
when it involves collaboration with academia (Arora 
et al., 2018; Cassiman et al., 2008; Fabrizio, 2009; Fleming 
& Sorenson, 2004; Gambardella, 1992) and star academ-
ics under certain conditions.

Our study contributes new insights to the literature on 
firms’ absorptive capacity (e.g., Cassiman & Veugelers, 
2006; Cohen & Levinthal, 1990). Our work on internal 
star scientists with their deep knowledge of scientific 
discovery can be regarded as a special case of firms’ ab-
sorptive capacity, namely to work effectively with external 
academic stars. We argue that it is ‘scientific absorptive 
capacity’ (e.g., Belderbos et al., 2016, 2017; Melnychuk 
et al., 2021) that is required to benefit from star collabo-
ration. This absorptive capacity is only built up with in-
vestments in in- house scientific research and employing 
internal (star) scientists. Yet having in- house the same cal-
iber of star scientists as an indicator of absorptive capacity 
does not necessarily improve firm performance. In order 
to capitalize on their internal stars in collaborations with 
external stars, firms need to take into account their char-
acteristics, deal with issues like trust and status, and avoid 
extending collaborations to translational research. While 
absorptive capacity in extant literature tends to be con-
ceptualized in rather abstract, knowledge- related terms 
(Cassiman & Veugelers, 2006; Cohen & Levinthal, 1990), 
we show that, next to the knowledge dimension, there is 
also an important behavioral aspect to absorptive capacity 
if it concerns teaming up with star scientists. We suggest 
that this behavioral dimension receive more attention in 
future research.

Our study also contributes to the debate on the role 
of internal star scientists by highlighting that when 
they are involved in collaborations with academic stars, 
a specific configuration of the collaboration is required 
to bring out benefits. Our study provides a first analysis 
of the interactive roles of internal and academic star 
scientists, which have been examined only separately 
in prior work (e.g., Almeida et al., 2011; Grigoriou & 
Rothaermel, 2014; Hess & Rothaermel, 2011, 2012; 
Kehoe & Tzabbar, 2015, 2015; Rothaermel & Hess, 
2007; Zucker et al., 2002). Our findings show that this 
interplay is of importance, as the internal star scientist 
seems able, and is possibly even more capable than the 
academic star, to take up the translational role within an 
academic star- firm collaboration in basic research. Our 
findings confirm the notion that internal and external 
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star scientists can be considered as substitutive sources 
of knowledge (Hess & Rothaermel, 2011; Subramanian 
et al., 2013), leading to underperformance of collabora-
tion. Whereas prior studies focusing on the role of in-
ternal star scientists have suggested potential negative 
effects due to diseconomies when firms simultaneously 
rely on internal stars and collaborate with ‘upstream’ 
biotech firms (Hess & Rothermael, 2011), our findings 
suggest a different mechanism of diseconomies tied to 
internal stars, namely when they collaborate with ex-
ternal stars on translational research. We highlight that 
this substitution effect can be mitigated and positive 
collaboration premiums can be realized if there is a 
proper task division in the collaboration, with the in-
ternal star focusing on translation.

In closing, we note the most salient limitations of 
our study. First, our study focuses on large, R&D inten-
sive pharmaceutical firms, and is not representative for 
smaller, specialized (biotechnology) firms for which ties to 
academic star scientists may be of a different nature due to 
the closeness of the biotech and university communities 
(Powell et al., 1996). Our findings for the pharmaceutical 
industry may neither be representative of basic research 
collaborations with star scientists in other science- based 
industries, such as ICT, drawing on scientific research in 
natural sciences. These industries are called ‘complex’, in 
the sense that firms tend to hold fragmented knowledge 
and need to cross- license to arrive at commercialization of 
products (Cohen et al., 2002; Czarnitzki et al., 2020). This 
contrasts with the ‘discrete’ nature of the pharmaceutical 
industry where a single patent can protect an entire com-
mercial drug development trajectory. One can envisage 
that in complex industries exclusive access (dedication) to 
a star scientist may be less important, but this should be 
examined in future research.

Second, given the limited scope of our panel (1995– 
2002) our analysis does not allow the study of recent 
trends. While we cannot rule out that firms have changed 
their approach to collaborating with academic star sci-
entists, the available evidence suggests that their reli-
ance on excellence in basic research conducted at 
universities is still important, if not greater than during 
our observation window. The number of partnerships in 
biomedical sciences between corporate and academic or 
government institutions more than doubled from 12,672 
in 2012 to 25,962 in 2016 according to the Nature Index 
(2019). Pharmaceutical firms have also taken many ini-
tiatives to further institutionalize these collaborations in 
order to more efficiently turn academic basic research 
into new drugs, such as Pfizer's Global Centers for 
Therapeutic Innovation or Merck & Co.’s structural part-
nership with the California Institute for Biomedical 
Research (Schuhmacher et al., 2016) to name just a few 

examples.5 Whether these new collaboration initiatives 
have better succeeded in mitigating the concerns of ded-
ication and translation revealed in our analysis is a 
question that we cannot answer with the available data 
and we leave it as a topic for follow- up research. Another 
evolution that has gained prominence after our observa-
tion period is the use of collaborative information tech-
nology in corporate innovation processes (Marion & 
Fixson, 2021). While digitization has undeniably af-
fected the way people collaborate— also across the 
academia- industry boundary— it may be unlikely that it 
has fundamentally changed how companies establish 
partnerships with star scientists or the dedicated and/or 
translational nature of these collaborations. Yet also 
here, further research using more recent data could ex-
plore the role of digitization on the organization of col-
laboration between firms and star scientists.

Third, our analysis used a firm's citation- weighted pat-
ent count as dependent variable. A promising approach 
for future research would be to examine different perfor-
mance measures that could specifically zoom in on rad-
ical invention with technological novelty as proposed in 
Verhoeven et al. (2016) and Strumsky and Lobo (2015). 
Alternatively, measures that are closer to innovation and 
commercialization performance would be of interest, al-
though here the lags between research and performance 
can be rather long.

Fourth, although we used an elaborate specification 
that includes controls at the level of firms, stars and firm- 
star scientist collaborations to ensure that our findings are 
not confounded by selection bias, we cannot fully exclude 
the possibility of additional heterogeneity in projects and 
the related ‘matching’ between firms, star scientists, and 
collaborative contingencies. Our research methodology 
did not allow interpreting the results as causal relation-
ships; finding a set of suitable instruments for not only 
the propensity to collaborate with star scientists but also 
the particular contingencies under which these collabora-
tions takes place will remain a challenging task for future 
research. Fifth, our analysis focused on the individual and 
did not explicitly examine team effects: star scientists often 
manage laboratories and employ other scientists who may 
take up specific collaboration tasks. Given the difficulties 
in characterizing a very large group of individual non- star 

 5Our interviews did not signal major changes in the way that these 
collaborations work. Pharmaceutical firms are explicit about their 
continued ambition to team up with leading academic scientists: “We 
know we can't do it all ourselves internally, and there is so much excellent 
research externally, especially within academia. For us, it's absolutely 
critical to work with the leading experts in their fields of research to drive 
the development of innovative therapeutics.” (Dr. Seeto, head of 
partnering and strategy at MedImmune of AstraZeneca, 
PharmaVOICE, 2014).
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co- authors, our analysis did not examine potential compa-
rable influences of collaboration types for basic research 
not involving star scientists.

Sixth, although controlling further for prior collabo-
ration between internal and external stars did not show 
measurable effects, it is conceivable that the internal and 
external stars had prior personal and professional relation-
ship before working in the research team of the firm. This 
may generate trust and psychological safety (e.g., Bruneel 
et al., 2010; Salas et al., 2018) and creates familiarity with 
each other's expertise and communication styles (Cattani 
et al., 2013; Reagans et al., 2005), allowing the team to 
function better. Studying such longitudinal individual 
scientists’ informal interactions and their influence is an 
interesting topic for future research but will require the 
collection of individual survey data. Seventh, collaboration 
effectiveness may be facilitated by geographic proximity 
(Crescenzi et al., 2017; D’Este et al., 2013), but we were not 
able to measure the spatial context in our analysis. On the 
other hand, there is evidence that distance is less import-
ant compared to research quality in university- industry 
collaboration (Laursen et al., 2011) in particular for larger 
firms (Fantino et al., 2015) that benefit from clear advan-
tages of scale and scope due their central research labo-
ratories (Belderbos et al., forthcoming). Future research 
should aim to investigate the role of geographic proximity 
in firms’ collaboration activity with academic stars.

Finally, our hypotheses and tests focused on hetero-
geneous conditions under which collaborations with star 
scientists can deliver benefits to collaborating firms, since 
the special status and capabilities of stars make collabora-
tion under the right conditions essential. We acknowledge 
as a limitation that our analysis only examined the condi-
tions pertaining to star collaboration compared with the 
average performance benefits of collaboration with non- 
stars. A challenging task of future research is to measure 
the same conditions for all individual non- star collabo-
rative efforts of the firm in order to examine to what ex-
tent similar constraints and opportunities applies to these 
collaborations.

Our analysis focused on the two contingencies of ded-
ication and translation since these were brought up in the 
interviews with practitioners involved as important, and 
because they both emanate from the core perceived differ-
ences between stars and other scientists: their higher op-
portunity costs and their extraordinary strengths in basic 
research. We acknowledge that other motivations for spe-
cific arrangements may play a role as well. For instance, we 
imagine that there can be dedicated star collaboration be-
cause the star wishes to limit collaboration with firms in the 
first place, or that arrangements do not include translation 
because the particular strength of stars is in basic research. 
Yet, these alternative explanations would rather predict 

negative associations between the contingencies and firm 
invention performance. Perhaps the lack of an overall posi-
tive relationship between a firm's engagement in star scien-
tist collaboration and its invention performance is related 
to the presence of other, broader, collaboration objectives 
such as signaling research competence to potential new 
employees, hiring PhD students of star scientists, and gen-
eral reputation building. Hence, even if specific types of 
star collaboration are negatively associated with direct in-
vention success, longer term effects may compensate, and 
the motivation for star collaborations may lie elsewhere. 
Motivations for, and implications of, basic research col-
laboration arrangements and in particular dedication and 
translation will also be different if examined from the per-
spective of the academic star scientist. We hope that future 
research can provide more systematic insights into the vari-
ety of drivers of basic research collaborations, in particular 
from the perspective of the (star) scientists. The limitations 
of our study suggest a rich agenda for future research.
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APPENDIX 
This appendix reports details on a number of robustness 
tests and alternative specifications. The final table lists the 
firms included in the sample.

Heterogeneity in collaboration experience 
across types of collaboration projects
We examined whether there is heterogeneity in the influ-
ence of past collaboration experience depending on the 
type of collaboration. While our main models control for 
the average collaboration experience of the firm and aca-
demic stars, we also explore a model expansion in which 
we include eight variables that capture the collaboration 
experience for each type of star scientist collaboration.

Table A1 reports the empirical results if eight collabo-
rative experience variables are included, one for each 
academic star collaboration type. The results show no 
contingency- specific collaborative experience effects at 
conventional significance (5%) levels. The focal results 
and tests for the hypotheses are not affected, but we do 
note that the test statistic for a performance premium of 
translational collaboration without internal star involve-
ment becomes insignificant, which likely reflects a lesser 
ability to estimate coefficients with precision.

Partner matching
The emerging literature on matching in research collabo-
ration has suggested that particular matches between the 

T A B L E  A 1  Academic star collaboration in basic research and firms’ innovation performance: Collaborative research experience 
heterogeneity

Coef.
z- value 
(p- value)

Key variables

Log (R&D) 0.15 2.15

(0.032)

Basic research publications/R&D 0.01 0.11

(0.916)

Basic research co- publications with academia/Basic research 
publications

0.72 2.07

(0.039)

Share of basic research co- publications with academia

… without internal star and without academic stars Reference group

… without internal stars and with academic stars

… which are dedicated and translational β1a 1.92 3.18

(0.002)

… which are dedicated and non- translational β1b 1.46 1.64

(0.100)

… which are non- dedicated and translational β1c 0.06 0.06

(0.949)

… which are non- dedicated and non- translational β1d −1.85 −2.71

(0.007)

…with internal stars and with academic stars

… which are dedicated and translational β2a −5.52 −1.46

(0.145)

… which are dedicated and non- translational β2b 9.63 3.18

(0.002)

… which are non- dedicated and translational β2c −9.47 −3.24

(0.001)

… which are non- dedicated and non- translational β2d −3.94 −3.09

(0.002)

…with internal stars and without academic stars −0.21 −0.32

(0.746)

(Continues)  
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Coef.
z- value 
(p- value)

Firm controls

Technological diversity −0.01 −0.13

(0.898)

Technological diversity2 0.00 −0.48

(0.629)

Research alliances/R&D 0.25 0.55

(0.583)

Presence of internal star) 0.10 0.89

(0.376)

Log (firm age) 0.36 3.19

(0.001)

Firm research quality −0.01 −2.28

(0.022)

Firm research diversity 2.76 0.87

(0.383)

Star controls

Research quality of academic stars 0.00 −1.77

(0.077)

Research diversity of academic stars 0.55 1.34

(0.180)

Star- firm collaboration controls

Quality of basic collaborations with academic stars 0.16 2.73

(0.006)

experience co- publications between firm and academic stars of …

… collaborations without internal stars, with dedicated and translational 
academic stars

0.02 1.88

(0.061)

… collaborations without internal stars, with dedicated and non- 
translational academic stars

0.07 1.04

(0.298)

… collaborations without internal stars, with non- dedicated and 
translational academic stars

0.04 1.88

(0.060)

… collaborations without internal stars, with non- dedicated and non- 
translational academic stars

−0.03 −0.66

(0.511)

… collaborations with internal stars, with dedicated and translational 
academic stars

−0.01 −1.17

(0.242)

… collaborations with internal stars, with dedicated and non- 
translational academic stars

−0.02 −0.90

(0.370)

… collaborations with internal stars, with non- dedicated and 
translational academic stars

−0.02 −1.41

(0.159)

… collaborations with internal stars, with non- dedicated and non- 
translational academic stars

0.02 0.73

(0.465)

Pseudo firm- fixed effects and year dummies

Pseudo- fixed effects 0.57 11.60

(0.000)

T A B L E  A 1  (Continued)
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capabilities of a firm and its academic partner may be more 
productive (Banal- Estanol, 2018; Mindruta, 2013). These 
studies focused on the entire spectrum of firms and aca-
demics rather than on the very top of the distribution (star 
scientists). Nevertheless, it is worthwhile investigating 
whether the suggested performance- enhancing influences 
are observed in the context of our study. Based on these prior 
studies, we augment the model with measures of positive 
assortative matching on research quality and basic research 
orientation (Banal- Estañol et al., 2018) and negative assorta-
tive matching on research diversity (Mindruta, 2013). The 
matching variables are constructed by assessing, for each 
star- firm collaboration, how the star (and firm) scores rela-
tive to the mean for all stars (firms) on these dimensions. If a 
star and firm score similarly (i.e., both are above or below the 
mean) on a dimension, the star- firm collaboration is classi-
fied as positive assortative matching for this dimension, and 
vice versa for negative assortative matching. The matching 
variables measure the share of star collaborations for which 
there is positive assortative matching (research quality and 
basic research orientation) and negative assortative match-
ing (research diversity) between the firm and the star.

The results are shown in Table A2. The empirical re-
sults do not suggest a further influence of matching, while 
the focal results and hypothesis tests remain unchanged. 
This is likely to be related to our focused and selective con-
text of star scientist collaboration in the pharmaceutical 
industry and the fact that the analysis already controls for 
collaboration quality and experience.

Heterogeneity in the scientific quality of 
types of collaboration projects
We examine more in detail whether the choice for cer-
tain types of academic star scientist collaborations may 
be associated with the underlying quality of the proposed 

research collaborations. While our main models control 
for the average quality of collaborative basic research with 
academic star scientists, we also explore an expansion of 
the model in which we include eight variables that cap-
ture the quality of the projects for each type of star sci-
entist collaboration, measured by the forward citations to 
the associated co- authored papers.

Table A3 shows that variation in collaboration type- 
specific research quality explains some residual variation 
in innovation benefits for non- dedicated collaborations 
involving internal stars, while there appears to be a nega-
tive association between research quality and innovation 
for non- dedicated non- translation collaboration without 
internal star involvement. The focal results of our analysis 
do not change, with Hypotheses 1 and 3 supported, while 
support for Hypothesis 2, as before, is confined to collabo-
rations without internal star involvement.

Heterogeneity in opportunities across 
research domains
The presence of star scientists might be concentrated in 
particular fields, arguably those fields with greater re-
search opportunities. As similarly firms’ might be more 
active in fields with greater research opportunities, the 
analysis shown in Table A4 controls for the (average) re-
search opportunities in the domains in which the focal 
firm collaborates with stars. Opportunities are measured 
by the worldwide growth in publications in the 44 scien-
tific domains that we also use to identify stars. Adding this 
variable did not produce significant results, while the core 
results remained unchanged.

Collaborative network of academic stars
Beside human capital, social capital is regarded an impor-
tant asset of star scientists. While the included controls 

Coef.
z- value 
(p- value)

Year dummies Yes

Constant 1.71 3.62

(0.000)

Log likelihood −25,963.03

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 14.84 (0.000) Yes

H2 all collaborations 9.66 (0.002) No (reduced 
benefit)

Collaborations without internal stars 3.07 (0.080) No

H3 14.04 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

TABLE A1 (Continued)
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T A B L E  A 2  Academic star collaboration in basic research and firms’ innovation performance: Firm- star matching

Model 1 Model 2 Model 3

Coef.
z- value 
(p- value) Coef.

z- value 
(p- value) Coef.

z- value 
(p- value)

Key variables

Log (R&D) 0.23 3.70 0.24 3.86 0.18 2.99

(0.000) (0.000) (0.003)

Basic research publications/R&D 0.03 0.62 0.03 0.72 0.01 0.27

(0.532) (0.472) (0.787)

Basic research co- publications 
with academia/Basic research 
publications

1.04 3.10 1.04 3.13 0.82 2.46

(0.002) (0.002) (0.014)

Share of basic research co- publications with academia

… without internal star and without 
academic stars

Reference group

… with academic stars −0.44 −1.08

(0.278)

… without internal stars and with academic stars

… which are dedicated and 
translational

β1a 2.26 3.74

(0.000)

… which are dedicated and 
non- translational

β1b 1.94 2.09

(0.037)

… which are non- dedicated and 
translational

β1c 0.46 0.44

(0.663)

… which are non- dedicated and 
non- translational

β1d −2.15 −3.14

(0.002)

… with internal stars and with academic stars

… which are dedicated and 
translational

β2a −6.09 −1.83

(0.067)

… which are dedicated and 
non- translational

β2b 7.31 2.39

(0.017)

… which are non- dedicated and 
translational

β2c −10.30 −4.36

(0.000)

… which are non- dedicated and 
non- translational

β2d −4.41 −4.11

(0.000)

… with internal stars and without 
academic stars

0.09 0.14

(0.890)

Firm controls

Technological diversity −0.02 −0.19 −0.02 −0.21 0.00 0.01

(0.850) (0.831) (0.994)

Technological diversity2 0.00 −0.41 0.00 −0.39 0.00 −0.63

(0.684) (0.699) (0.529)

Research alliances/R&D 0.40 0.62 0.41 0.61 0.11 0.23

(0.538) (0.543) (0.816)

Presence of internal star 0.04 0.36 0.08 0.68 0.13 1.10

(0.717) (0.495) (0.272)
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for the stars’ publication, citation, and domain diversity 
already captures this heterogeneity among stars, we added 
a measure of the collaborative network size of academic 

stars to our model in Table A5. The collaborative net-
work size is measured as the average of the total number 
of co- authors of the academic stars in the Authority data 

Model 1 Model 2 Model 3

Coef.
z- value 
(p- value) Coef.

z- value 
(p- value) Coef.

z- value 
(p- value)

Log (firm age) 0.18 1.64 0.17 1.60 0.34 3.39

(0.101) (0.109) (0.001)

Firm research quality −0.01 −2.16 −0.01 −2.16 0.00 −1.82

(0.031) (0.030) (0.069)

Firm research diversity 2.66 0.77 2.70 0.78 1.89 0.56

(0.442) (0.438) (0.573)

Star controls

Research quality of academic stars −0.01 −4.76 −0.01 −4.43 0.00 −2.13

(0.000) (0.000) (0.033)

Research diversity of academic stars 1.91 2.40 1.88 2.37 1.71 2.34

(0.016) (0.018) (0.019)

Star- firm collaboration controls

Quality of basic collaborations with 
academic stars

0.21 3.04 0.21 3.01 0.21 3.06

(0.002) (0.003) (0.002)

Experience between firm and 
academic stars

0.01 1.72 0.02 2.16 0.05 3.66

(0.086) (0.030) (0.000)

Star- firm matching controls

Share of basic coll. with academic stars

… positive assortative matching on 
research quality

−0.84 −2.01 −0.84 −2.04 −0.40 −1.03

(0.045) (0.041) (0.305)

… positive assortative matching on 
basic research focus

−0.96 −0.97 −0.90 −0.91 0.52 0.54

(0.331) (0.363) (0.589)

… negative assortative matching on 
research diversity

0.95 0.80 1.01 0.85 −1.39 −1.19

(0.423) (0.397) (0.234)

Pseudo firm- fixed effects and year dummies

Pseudo firm- fixed effects 0.59 10.86 0.58 10.88 0.54 10.36

(0.000) (0.000) (0.000)

Year dummies Yes Yes Yes

Constant 1.90 3.87 1.90 3.86 1.70 3.53

(0.000) (0.000) (0.000)

Log likelihood −31,725.63 −30,790.44 −26,476.61

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 16.75 (0.000) Yes

H2 all collaborations 10.20 (0.001) No (reduced benefit)

Collaborations without internal 
stars

4.35 (0.037) Yes

H3 14.56 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  A 2  (Continued)
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T A B L E  A 3  Academic star collaboration in basic research and firms’ innovation performance: Collaborative research quality 
heterogeneity

Coef. z- value (p- value)

Key variables

Log (R&D) 0.20 3.29

(0.001)

Basic research publications/R&D 0.02 0.31

(0.755)

Basic research co- publications with academia/Basic 
research publications

0.78 2.30

(0.021)

Share of basic research co- publications with academia

… without internal star and without academic stars Reference group

… without internal stars and with academic stars

… which are dedicated and translational β1a 2.16 3.63

(0.000)

… which are dedicated and non- translational β1b 1.22 1.44

(0.151)

… which are non- dedicated and translational β1c 0.42 0.42

(0.676)

… which are non- dedicated and non- translational β1d −2.13 −3.02

(0.003)

…with internal stars and with academic stars

… which are dedicated and translational β2a −5.01 −1.16

(0.248)

… which are dedicated and non- translational β2b 7.95 2.55

(0.011)

… which are non- dedicated and translational β2c −9.68 −4.35

(0.000)

… which are non- dedicated and non- translational β2d −4.48 −3.96

(0.000)

…with internal stars and without academic stars −0.02 −0.03

(0.980)

Firm controls

Technological diversity 0.01 0.05

(0.957)

Technological diversity2 0.00 −0.63

(0.531)

Research alliances/R&D 0.28 0.60

(0.548)

Presence of internal star 0.08 0.70

(0.484)

Log (firm age) 0.32 3.06

(0.002)

Firm research quality −0.01 −2.22

(0.026)

Firm research diversity 2.69 0.81

(0.419)
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Coef. z- value (p- value)

Star controls

Research quality of academic stars 0.00 −1.01

(0.311)

Research diversity of academic stars 0.55 1.32

(0.187)

Star- firm collaboration controls

Experience between firm and academic stars 0.04 3.29

(0.001)

Quality of

… collaborations without internal stars, with dedicated 
and translational academic stars

0.00 −0.06

(0.948)

… collaborations without internal stars, with dedicated 
and non- translational academic stars

0.02 0.43

(0.667)

… collaborations without internal stars, with non- 
dedicated and translational academic stars

0.01 0.72

(0.470)

… collaborations without internal stars, with non- 
dedicated and non- translational academic stars

0.00 0.05

(0.958)

… collaborations with internal stars, with dedicated and 
translational academic stars

−0.14 −1.59

(0.111)

… collaborations with internal stars, with dedicated and 
non- translational academic stars

0.05 0.98

(0.325)

… collaborations with internal stars, with non- dedicated 
and translational academic stars

0.05 1.11

(0.266)

… collaborations with internal stars, with non- dedicated 
and non- translational academic stars

0.08 1.49

(0.136)

Pseudo firm fixed effects and year dummies

Pseudo firm fixed effects 0.55 10.48

(0.000)

Year dummies Yes

Constant 1.68 3.43

(0.001)

Log likelihood −26,854.04

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 13.45 (0.000) Yes

H2 all collaborations 7.11 (0.008) No (reduced 
benefit)

Collaborations without internal stars 7.11 (0.008) Yes

H3 12.68 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  A 3  (Continued)
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T A B L E  A 4  Academic star collaboration in basic research and firms’ inventive performance: Controlling for research opportunities in 
the research domains of collaborations with academic stars

Coef. z- value (p- value)

Key variables

Log (R&D) 0.19 3.12

(0.002)

Basic research publications/R&D 0.03 0.52

(0.600)

Basic research co- publications with academia/Basic 
research publications

0.83 2.44

(0.015)

Share of basic research co- publications with academia

… without internal star and without academic stars Reference group

… without internal stars and with academic stars

… which are dedicated and translational β1a 2.13 3.59

(0.000)

… which are dedicated and non- translational β1b 1.29 1.50

(0.134)

… which are non- dedicated and translational β1c 0.47 0.44

(0.659)

… which are non- dedicated and non- translational β1d −2.17 −3.18

(0.001)

… with internal stars and with academic stars

… which are dedicated and translational β2a −6.19 −1.71

(0.087)

… which are dedicated and non- translational β2b 8.13 2.60

(0.009)

… which are non- dedicated and translational β2c −10.27 −4.13

(0.000)

… which are non- dedicated and non- translational β2d −4.46 −4.02

(0.000)

…with internal stars and without academic stars −0.12 −0.17

(0.865)

Firm controls

Technological diversity 0.00 0.01

(0.993)

Technological diversity2 0.00 −0.61

(0.543)

Research alliances/R&D 0.23 0.52

(0.603)

Dummy (presence of internal star) 0.13 1.13

(0.257)

Log (firm age) 0.34 3.30

(0.001)

Firm research quality −0.01 −2.33

(0.020)
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set (Torvik et al., 2005; Torvik & Smalheiser, 2009). No 
significant effect was found for the collaborative network 
size of stars, and core results were unaffected.

Extension of the patent citation window
We examined whether the results are sensitive to the 
choice of the citation window for the innovation perfor-
mance measure. Employing an extended eight- year cita-
tion window, we observed no substantive differences in 
the empirical results, as shown in Table A6.

Results when omitting 3 firms without star 
collaboration
We estimated the model once more with 3 firms for which 
no collaboration with academic stars was observed during 
the window of analysis omitted. All three of these omit-
ted firms had five or more years without a basic research 
publication. The second column of Table A7 contains the 
estimation results, which show similar results as the main 
model. The final rows of this Table also confirm that all 
findings are robust for this alternative sample.

Coef. z- value (p- value)

Firm research diversity 2.92 0.87

(0.383)

Stars controls

Research quality of academic stars 0.00 −1.30

(0.193)

Research diversity of academic stars 0.52 1.19

(0.236)

Star- firm collaboration controls

Experience between firm and academic stars 0.17 2.62

(0.009)

Quality of basic collaborations with academic stars 0.05 3.48

(0.001)

Research opportunities in domains of collaboration with 
academic stars

0.00 0.25

(0.800)

Pseudo firm- fixed effects and year dummies

Pseudo- fixed effects 0.54 10.59

(0.000)

Year dummies Yes

Constant 1.68 3.43

(0.001)

Log likelihood −26,993.08

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 15.04 (0.000) Yes

H2 all collaborations 9.61 (0.002) No (reduced benefit)

Collaborations without internal stars 6.15 (0.013) Yes

H3 15.33 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  A 4  (Continued)
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T A B L E  A 5  Academic star collaboration in basic research and firms’ inventive performance: Controlling for the star scientists’ 
collaborative network

Coef.
z- value 
(p- value)

Key variables

Log (R&D) 0.18 3.07

(0.002)

Basic research publications/R&D 0.02 0.46

(0.648)

Basic research co- publications with academia/Basic research 
publications

0.85 2.48

(0.013)

Share of basic research co- publications with academia

… without internal star and without academic stars Reference group

… without internal stars and with academic stars

… which are dedicated and translational β1a 2.17 3.58

(0.000)

… which are dedicated and non- translational β1b 1.29 1.48

(0.139)

… which are non- dedicated and translational β1c 0.43 0.41

(0.685)

… which are non- dedicated and non- translational β1d −2.14 −3.11

(0.002)

… with internal stars and with academic stars

… which are dedicated and translational β2a −6.32 −1.73

(0.083)

… which are dedicated and non- translational β2b 8.13 2.61

(0.009)

… which are non- dedicated and translational β2c −10.28 −4.12

(0.000)

… which are non- dedicated and non- translational β2d −4.50 −4.02

(0.000)

…with internal stars and without academic stars −0.06 −0.09

(0.928)

Firm controls

Technological diversity 0.00 0.01

(0.996)

Technological diversity2 0.00 −0.61

(0.544)

Research alliances/R&D 0.25 0.56

(0.573)

Dummy (presence of internal star) 0.12 1.04

(0.299)

Log (firm age) 0.35 3.32

(0.001)

Firm research quality −0.01 −2.35

(0.019)
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Coef.
z- value 
(p- value)

Firm research diversity 2.92 0.88

(0.379)

Stars controls

Research quality of academic stars 0.00 −1.48

(0.139)

Research diversity of academic stars 0.59 1.39

(0.165)

Collaborative network of academic stars 0.00 −0.67

(0.504)

Star- firm collaboration controls

Experience between firm and academic stars 0.17 2.9

(0.004)

Quality of basic collaborations with academic stars 0.05 3.53

(0.000)

Pseudo firm fixed effects and year dummies

Pseudo fixed effects 0.54 10.54

(0.000)

Year dummies Yes

Constant 1.69 3.45

(0.001)

Log likelihood −26,981.26

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 14.84 (0.000) Yes

H2 all collaborations 9.76 (0.002) No (reduced 
benefit)

Collaborations without internal stars 6.17 (0.013) Yes

H3 15.49 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  A 5  (Continued)
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T A B L E  A 6  Academic star collaboration in basic research and firms’ innovation performance: 8- year citation window for the dependent 
variable

Coef.
z- value 
(p- value)

Key variables

Log (R&D) 0.13 2.17

(0.030)

Basic research publications/R&D 0.02 0.45

(0.651)

Basic research co- publications with academia/Basic research 
publications

0.59 1.75

(0.081)

Share of basic research co- publications with academia

… without internal star and without academic stars Reference group

… without internal stars and with academic stars

… which are dedicated and translational β1a 2.36 3.51

(0.000)

… which are dedicated and non- translational β1b 1.35 1.45

(0.147)

… which are non- dedicated and translational β1c 0.45 0.45

(0.654)

… which are non- dedicated and non- translational β1d −2.30 −3.13

(0.002)

… with internal stars and with academic stars

… which are dedicated and translational β2a −4.57 −1.34

(0.179)

… which are dedicated and non- translational β2b 7.58 2.39

(0.017)

… which are non- dedicated and translational β2c −9.56 −3.89

(0.000)

… which are non- dedicated and non- translational β2d −3.94 −3.60

(0.0037)

…with internal stars and without academic stars −0.67 −0.95

(0.344)

Firm controls

Technological diversity −0.03 −0.28

(0.779)

Technological diversity2 0.00 −0.31

(0.756)

Research alliances/R&D −0.01 −0.02

(0.987)

Dummy (presence of internal star) 0.15 1.28

(0.201)

Log (firm age) 0.36 3.34

(0.001)

Firm research quality −0.01 −2.27

(0.023)
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Coef.
z- value 
(p- value)

Firm research diversity 2.71 0.90

(0.366)

Stars controls

Research quality of academic stars 0.00 −1.48

(0.140)

Research diversity of academic stars 0.55 1.41

(0.159)

Star- firm collaboration controls

Experience between firm and academic stars 0.16 2.64

(0.008)

Quality of basic collaborations with academic stars 0.04 3.61

(0.000)

Pseudo firm- fixed effects and year dummies

Pseudo- fixed effects 0.59 11.88

(0.000)

Year dummies Yes

Constant 2.00 4.47

(0.000)

Log likelihood −39,167.58

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 15.96 (0.000) Yes

H2 all collaborations 7.37 (0.007) No (reduced 
benefit)

Collaborations without internal stars 7.61 (0.006) Yes

H3 13.41 (0.000) Yes

Notes: All models have 406 observations. p- value of robust standard errors in parentheses.

T A B L E  A 6  (Continued)
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T A B L E  A 7  Academic star collaboration in basic research and firms’ innovation performance: Omitting 3 firms without star 
collaboration

Coef. z- value (p- value)

Key variables

Log (R&D) 0.22 3.64

(0.000)

Basic research publications/R&D 0.04 0.88

(0.380)

Basic research co- publications 
with academia/Basic research 
publications

1.06 3.23

(0.001)

Share of basic research co- publications with academia

… without internal star and without 
academic stars

Reference group

… without internal stars and with academic stars

… which are dedicated and 
translational

β1a 2.08 3.52

(0.000)

… which are dedicated and 
non- translational

β1b 1.18 1.35

(0.178)

… which are non- dedicated and 
translational

β1c 0.41 0.39

(0.694)

… which are non- dedicated and 
non- translational

β1d −2.04 −3.00

(0.003)

… with internal stars and with academic stars

… which are dedicated and 
translational

β2a −6.54 −1.84

(0.066)

… which are dedicated and 
non- translational

β2b 8.33 2.60

(0.009)

… which are non- dedicated and 
translational

β2c −10.37 −4.15

(0.000)

… which are non- dedicated and 
non- translational

β2d −4.69 −4.26

(0.000)

…with internal stars and without 
academic stars

0.02 0.03

(0.977)

Firm controls

Technological diversity 0.01 0.06

(0.949)

Technological diversity2 0.00 −0.63

(0.527)

Research alliances/R&D 0.23 0.50

(0.615)

Dummy (presence of internal star) 0.13 1.15

(0.251)

Log (firm age) 0.33 3.20

(0.001)

Firm research quality 0.00 −1.59

(0.112)
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Coef. z- value (p- value)

Firm research diversity −0.90 −0.26

(0.798)

Stars controls

Research quality of academic stars 0.00 −1.43

(0.152)

Research diversity of academic 
stars

0.57 1.37

(0.170)

Star- firm collaboration controls

Quality of basic collaborations with 
academic stars

0.17 2.78

(0.005)

Experience between firm and 
academic stars

0.05 3.59

(0.000)

Pseudo firm- fixed effects and year dummies

Pseudo- fixed effects 0.52 10.15

(0.000)

Year dummies Yes

Constant 1.43 3.06

(0.002)

Log likelihood −25,971.13

Hypotheses tests

χ2 (Prob > χ2) Answer

H1 14.76 (0.000) Yes

H2 all collaborations 10.13 (0.002) No (reduced benefit)

Collaborations without internal 
stars

6.00 (0.014) Yes

H3 15.83 (0.000) Yes

Notes: The model has 387 observations. p- value of robust standard errors in parentheses.

T A B L E  A 7  (Continued)
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List of sample companies

Table A8 lists the firms included in our sample.

T A B L E  A 8  Firms included in the sample

Company name R&D expenditures in 2002 in million US dollars
Headquarter 
location

Abbott Laboratories 1561 US

Ajinomoto 215 JP

Allergan 233 US

Altana 347 EU

Astrazeneca 3047 EU

Aventis 3218 EU

Barr Laboratories 75 US

Becton Dickinson 220 US

Boehringer Ingelheim 1227 EU

Bristol Myers Squibb 2217 US

Dade Behring 28 US

Daiichi Pharmaceutical 440 JP

Dainippon Pharmaceutical 121 JP

Egis Pharmaceuticals 194 EU

Eisai 476 JP

Eli Lilly 2149 US

Fujisawa Pharmaceutical 497 JP

Galen 19 EU

Gedeon Richter 35 EU

Glaxosmithkline 4360 EU

Guerbet 21 EU

Ipsen 122 EU

Ivax 1 US

Johnson & Johnson 3956 US

Kissei Pharmaceutical 108 JP

Kyowa Hakko Kogyo 233 JP

Lundbeck 190 EU

Merck Co 2677 US

Merck KGaA 572 EU

Mitsubishi Pharma 401 JP

Mochida Pharmaceutical 69 JP

Mylan Laboratories 58 US

Novartis 278 EU

Novo Nordisk AS 499 EU

Ono Pharmaceutical 242 JP

Pfizer 5175 US

Pliva 64 EU

Recordati 33 EU
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Company name R&D expenditures in 2002 in million US dollars
Headquarter 
location

Roche 3022 EU

Sankyo 691 JP

Sanofi Synthelabo 1146 EU

Santen Pharmaceutical 101 JP

Schering 891 EU

Schering Plough 1424 US

Schwarz Pharma 116 EU

Seikagaku 29 JP

Sepracor 243 US

Shionogi 249 JP

Shire Pharmaceuticals 201 EU

Skyepharma 46 EU

Stada Arzneimittel 15 EU

Taisho Pharmaceutical 235 JP

Takeda Chemical 990 JP

Tanabe Seiyaku 186 JP

Teva Pharmaceuticals 163 IL

UCB 246 EU

Watson Pharmaceuticals 81 US

Wyeth 2080 US

Yamanouchi Pharmaceutical 533 JP

Zambon 27 EU

T A B L E  A 8  (Continued)


