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Based Optimization of Distillation Processes Using an Extended Cutting Plane Algorithm, Computers
and Chemical Engineering (2021), doi: https://doi.org/10.1016/j.compchemeng.2021.107655

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.compchemeng.2021.107655
https://doi.org/10.1016/j.compchemeng.2021.107655


1 

 

Simulation-Based Optimization of Distillation Processes Using an 

Extended Cutting Plane Algorithm 

Juan Javaloyes-Antóna*, Jan Kronqvistb,c, José A. Caballeroa 

aInstitute of Chemical Process Engineering. University of Alicante, Alicante, Spain. 

bOptimization and Systems Theory, Department of Mathematics. KTH Royal Institute of Technology, Stockholm, 

Sweden. 

cDepartment of Computing. Imperial College London, London, United Kingdom. 

javaloyes.anton@ua.es, jankr@kth.se  

Highlights 

 

● A novel framework for optimizing nonconvex simulation-based MINLP problems 

● The method combines the ECP algorithm with techniques tailored for black-box problems 

● No-good cuts and backtracking techniques are implemented for simulation failures 

● Heuristic strategies designed to improve practical performance for nonconvex problems 

● Expansion of the search space and restarting techniques for nonconvex problems 

 

 

 

 

 

Abstract 

The use of commercial flowsheeting programs enables straight-forward use of rigorous, but user hidden, mathematical 

formulations of chemical processes. The optimization of such black-box models is a challenging task due to 

nonconvexity, absence of accurate derivatives, and simulation convergence failures which can prevent classical 

optimization procedures from continuing the search. Here, we present an optimization framework based on the 

extended cutting plane algorithm with additional heuristic techniques and strategies designed to improve its practical 

performance for solving nonconvex simulation-based MINLP problems. The new algorithmic features include two 

approaches for dealing with nonconvexities; the first technique expands the search space to restore feasibility of the 

MILP subproblems, and the second is a restarting technique to avoid premature termination to non-optimal solutions. 

We also propose two approaches for handle simulation failures, based on no-good cuts and backtracking. The proposed 

optimization framework is successfully applied to four case studies dealing with the economic optimization of 

distillation processes.  
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1 Introduction 

Chemical process simulators or flowsheeting programs have reached a level of maturity that they have become an 

everyday tool for chemical engineers in industry and academic institutions. These software packages include 

thermodynamic libraries and tailored numerical models for a variety of unit operations that lead to accurate predictions 

for a variety of simulated processes. While chemical process simulators are widely used in analysis, sizing, or cost 

estimation, they have traditionally only been used in the final stage of process synthesis and design as a validation 

tool. In recent years, researchers have studied the advantages of using chemical process simulators also in the first 

stage of chemical process synthesis and they have proposed different approaches to deal with the closed modular 

structure of the commercial process simulators. 

Due to the demand of synthesis tools, process simulation companies have implemented some optimization routines in 

their products. For example, Aspen Plus incorporates an optimization tool for solving nonlinear programming (NLP) 

problems, including two optimization algorithms. The Complex algorithm, which is a feasible path black-box pattern 

search that does not require derivative information, and a sequential quadratic programming (SQP) method utilizing 

gradient information. The Complex algorithm only handles inequality constraints and cannot be used in problems with 

recycle loops, while the SQP method can handle both inequality and equality constraints in problems with recycle 

loops (AspenTech, 2003). Aspen HYSYS has several optimization solvers for NLP problems, including derivative 

free algorithms and an SQP solver among others (AspenTech, 2011). However, the optimization capabilities of process 

simulators are still limited for optimization problems involving integer variables. 

Integer variables are especially important in the first stage of chemical process synthesis since they enable distinct 

decisions, such as on/off, number of units, and out of service/in service, to be included in optimization problems. Such 

optimization problems with both nonlinear functions and integer variables are commonly referred to as mixed-integer 

nonlinear programming (MINLP) problems. There are several MINLP solvers available in general purpose 

optimization tools and modelling frameworks (Kronqvist et al., 2019), such as AIMMS, GAMS, and Pyomo. 

However, in process simulators the use and availability of MINLP solvers is still limited. Aspen Plus does not include 

MINLP solvers, but Aspen HYSYS includes two MINLP solvers. The first is a stochastic approach based on the 

simulated annealing algorithm, and the second is based on a branch and bound (BB) algorithm. Still, these MINLP 

solvers offers limited flexibility. For example, to the authors best knowledge it is not possible to model the 

optimization of the number of trays and feed location of a distillation column. 

In this paper, we study how the extended cutting plane (ECP) algorithm (Westerlund and Pettersson, 1995) can be 

applied to synthesis problems based on process simulators. We develop techniques to address the challenges of using 

the algorithm on problems where some variables or function values are provided by a process simulator, and 

techniques to improve the algorithms performance for these nonconvex MINLP problems. We focus on the synthesis 

and design of distillation columns, but the techniques presented within the paper are applicable to more general 

synthesis problems based on process simulators. There are known challenges related to the calculation of the 

derivatives with process simulators but is has been shown that derivative-based solvers can still efficiently be 

employed. A brief literature review of different approaches for solving optimization problems with process simulators 

embedded is given in Section 2. As far as the authors are aware, previous work has mainly focused on using the outer 

approximation (OA) (Duran and Grossmann, 1986) algorithm to solve the MINLP optimization problem. However, 
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for problems including black-box functions the ECP algorithm has two main advantages over algorithms such as OA 

and BB. First, the ECP algorithm does not need to evaluate the functions at fractional solutions. This gives an 

advantage since it may not be possible to evaluate the process simulator at non-integer solutions, e.g., using 8.3 trays 

in a distillation column. Secondly, it has been shown that the ECP algorithm can require significantly fewer function 

evaluations for problems where derivatives need to be calculated numerically by finite differences (Emet and 

Westerlund, 2004). For the problems considered in this paper, some function evaluations involve running a scenario 

with the process simulator, making it a timewise expensive operation. In general, the ECP algorithm has a slower 

convergence rate than method such as OA, Q-OA (Kronqvist et al., 2020), and center-cut (Kronqvist et al., 2017) , but 

the NLP subproblems utilized by these methods can result in significantly more function evaluations. Therefore, the 

ECP algorithm can be well suited for these optimization problems.  

MINLP problems are in general difficult to solve, and additionally the simulation-based optimization problems 

considered here involve following challenges: nonconvex functions, nonsmooth functions, inaccurate derivatives, and 

convergence issues of the simulator. The nonsmooth functions can easily be handled with the ECP algorithm (Eronen 

et al., 2015), but the non-convexity and convergence issues are major challenges. Both ECP and OA are intended for 

convex problems, and they can even fail to find a feasible solution to non-convex problems. Here we use some simple, 

but efficient, techniques to improve the performance of the ECP algorithm for non-convex problems. The techniques 

improve the algorithm’s capability of finding feasible solutions, result in better solutions, and help to mitigate effects 

of inaccurate derivatives. Convergence failure of the process simulator is here a major challenge that cannot be 

ignored, as it interrupts the optimization procedure. For example, the simulator might be given an infeasible variable 

combination, or it may fail to converge due to numerical difficulties. Here, we develop a framework for dealing with 

simulator convergence issues to enable the optimization procedure to continue; first we try to automatically converge 

the simulator and secondly, we derive cutting planes through backtracking and exclude variable combinations 

resulting in convergence failure. Together these techniques allow us to find high-quality solutions to our case studies 

on optimizing distillation processes.  

 

The remainder of this work is organized as follows. Section 2 describes the main challenges when commercial 

sequential modular process simulators are used as calculation engines for optimization purposes, and gives a brief 

overview of different approaches presented in literature. Section 3 provides a background of the MINLP extended 

cutting plane algorithm. Section 4 describes in detail the heuristic techniques proposed to improve the performance of 

the ECP algorithm for nonconvex simulation-based optimization problems. Section 5 describes the implementation of 

the proposed framework. Section 6 shows the application of the proposed simulation-based approach to optimize four 

distillation-based separation processes. In Section 7 the results obtained with the proposed approach based on the ECP 

algorithm are compared with results obtained with a derivative-free particle swarm optimization algorithm. Finally, 

some concluding remarks are discussed in Section 8.   

2 Using process simulators as calculation engines within optimization problems 

In the following paragraphs we outline how a modular process simulator can be used as a calculation engine for solving 

chemical process synthesis problems. 

In sequential modular process simulators, it is possible to define a superstructure using a State Task Network (STN) 

representation (Yeomans and Grossmann, 1999). The approach consists of assuming that a given task can be carried 

out by a single piece of equipment/unit operation. The connectivity between the different tasks can be done through 
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mixers and splitters and can be used as logic nodes. All the mixers and splitters do not necessarily exist in the final 

solution, but they are used to model different process configurations. The superstructure can be drawn in the actual 

process simulators. 

The next step consists of forming an optimization problem and develop a methodology to solve it. Generalized 

Disjunctive Programming (GDP) (Raman and Grossmann, 1994) offers a natural framework for modeling such 

optimization problem. However, GDP problems are typically also transformed into MINLP problems to solve the 

problem by MINLP solvers (Trespalacios and Grossmann, 2014), and here we directly model the optimization tasks 

as MINLP problems. We now need to deal with the optimization of a black-box MINLP problem, which give rise to 

a set of known problems (Cozad et al., 2014) described in the following paragraphs. 

Lack of derivative information and numerical errors: Due to the black-box problem architecture, gradient 

information can only be obtained by numerical differentiation, i.e., derivatives are calculated by perturbing the 

independent variables. This significantly increases the number of evaluations of the simulation model, and 

consequently, increases the computation time. More importantly, some unit operations inherently include numerical 

noise (Caballero and Grossmann, 2008). The noise can be negligible from the simulation or design point of view, but 

may result in poor estimates of the derivatives. Inaccurate derivatives can cause erratic solver behavior, as ascent 

directions may incorrectly be considered as descent directions and the KKT (Karush-Kuhn-Tucker) conditions might 

not even be satisfied at an optimal solution. The effect of the numerical noise in the calculation of derivatives is 

illustrated with the simulation experiment described in Supplementary Material.  

The experiment shows that accurate derivatives can be estimated by selecting an appropriate perturbation parameter 

and Equilibrium/Energy error tolerances in the simulator. Evidently, the tighter the tolerances, the better the 

derivatives. However, very small tolerances often increase the simulation time and can even lead to convergence 

failure for the simulator. For a given value of the error tolerances, the quality of the derivatives gets worse (more 

noise) as the perturbation parameter (or step length) decreases. On the other hand, the perturbation size must be as 

small as possible to minimize the error in the approximation of the derivatives. Thus, to obtain accurate derivatives, 

the perturbation parameter must be as small as possible and at the same time, big enough “to guard against” numerical 

noise (Biegler and Hughes, 1982). Moreover, the numerical noise amplitude is not necessarily the same for different 

dependent variables. For example, in the simulations in Supplementary Material the product component mole fractions 

and temperature are affected by numerical noise much less than the condenser and reboiler duties. This implies that 

different perturbation sizes can be motivated for different dependent variables. Nevertheless, the use of different 

perturbation parameters increases the number of flowsheet evaluations by a factor equal to the number of different 

perturbation parameters used to estimate the derivatives.  

Simulator convergence failures: Perhaps the most important challenge when using a derivative-based solver, is 

related with flowsheet convergence errors. Such errors are critical since it prevents us from determining the values of 

some dependent variables and/or estimate gradients. With a gradient-based algorithm such as ECP or OA, it is not 

possible to directly continue the optimization procedure under such circumstances as gradient information is needed.  

Therefore, it is necessary to implement strategies to deal with simulator convergence failures to continue the 

optimization procedure. Simulator convergence failures tend to become more frequent as the flowsheet (simulation 

model) becomes more complex. Some flowsheet components are also known to cause more numerical errors and 

convergence difficulties, e.g., recycle streams can make convergence more difficult and behave as noise amplifiers 

(Martín, 2014). 
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Despite the difficulties related to numerical errors and inaccurate gradients mention earlier, several gradient-based 

flowsheet optimization techniques have been proposed. For example, Diwekar et al. (1992) proposed a MINLP 

methodology using Aspen Plus and a variant of the OA algorithm for solving different process synthesis problems, 

including the hydrodealkylation of toluene process (HDA). Díaz and Bandoni (1996) developed a procedure using the 

OA algorithm and an existing ad-hoc simulator for the optimization of a real ethylene plant. Caballero et al.  (2005) 

proposed a methodology to optimize distillation columns using a MINLP approach and Aspen HYSYS. The 

optimization of distillation columns requires special attention since these unit operations involve integer variables to 

determine the number of trays and feed tray location and, in addition, they inherently include some numerical noise. 

Caballero et al. adapted the OA algorithm to avoid solving the relaxed NLP subproblem at the initial point and 

modified the MILP master problem to deal with the special features of distillation columns in a modular environment. 

Later, Brunet et al. (2012) addresses the  multi-objective flowsheet optimization (with cost and environmental 

objectives) of ammonia-water absorption cycles using Aspen Plus and a similar MINLP strategy as used by Caballero 

et al. Navarro et al. (2014) developed a modelling system that integrates Aspen HYSYS with the logic-based outer 

approximation algorithm (Türkay and Grossmann, 1996) for the structural flowsheet optimization, and they applied it 

to the synthesis of a methanol plant. Caballero et.al (2015) also solved problems involving sequences of complex 

distillation columns by considering that a distillation column is generated by selecting a rectifying and stripping 

section among a set of candidates that differ in the number of trays. The model is formulated as a Generalized 

Disjunctive Programming (GDP) problem (Balas, 1979; Raman and Grossmann, 1994)  and solved using the logic 

based outer approximation algorithm and Aspen HYSYS. 

Another well-established approach is to replace the critical unit operations, i.e. numerically noise and/or time-

consuming unit operations, by surrogate models. Then, the resulting hybrid model involving explicit equations and 

unit operations at the level of the process simulator is optimized using NLP or MINLP solvers. Artificial neural 

networks and kriging interpolation techniques are two of the most popular methods to build surrogate models (Henao 

and Maravelias, 2011). Examples of this approach are the works of Caballero and Grossmann (2008) and Quirante et 

al. (2018). A detailed review of surrogate-based optimization is given by (Bhosekar and Ierapetritou, 2018). 

Several approaches using derivative free optimization (DFO) algorithms coupled with sequential modular process 

simulators have also been presented. Remark that, DFO algorithms are particularly well suited for black-box 

optimization problems, given that they only require the objective function value to be evaluated and it is easy to handle 

simulation convergence failures. However, we cannot expect the same performance of the derivative-base methods 

(Biegler, 2010). General DFO algorithms can require a large number of function evaluations, exhibit poor performance 

in highly constrained systems, and typically they do not guarantee optimality in a finite number of iterations. Most of 

these algorithms handle the constraints by adding a penalty to the objective function to account for the violation of the 

constraint set (Mezura-Montes and Coello Coello, 2011). However, different DFO algorithms have been tested for 

optimization problems with process simulators. For instance, Gross and Roosen, 1998; Ibrahim et al., 2017; Leboreiro 

and Acevedo, 2004 and Vazquez–Castillo et al., 2009 have used genetic algorithms for the optimization of different 

chemical processes, including distillation columns. Dantus and High (1999) developed a methodology using a 

stochastic annealing algorithm, Javaloyes et al., (2013) used the particle swarm optimization algorithm, and Aspelund 

et al., (2010) developed a simulation-based optimization approach based on a tabu search and the Nelder-Mead 

Downhill Simplex method. Bayesian optimization is another popular approach to optimize expensive black box 

functions (Brochu et al., 2010). A black-box optimization framework that combines gradient boosted trees and 

uncertainty measures to efficiently optimize expensive black box functions was recently presented in (Thebelt et al., 
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2020). For more details on DFO optimization, we refer to the review papers by (Boukouvala et al., 2016; Rios and 

Sahinidis, 2012) 

3 Basics of the Extended Cutting Plane  

The MINLP problems we consider can all be formulated as 

,
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where lbx  and ubx  are lower and upper bounds on the variables, and I ¢  is a set containing the indices of all integer 

variables . Here, some of the constraint functions jg  and/or the objective function f  will be black box functions, 

where the functions values are obtained by running the process simulator. Note that, an equality constraint is easily 

represented by two inequality constraints. In general, MINLP problem (1) is regarded as convex if both the objective 

and all constraints are given by convex functions. The MINLP problems dealt within this paper are nonconvex, but 

we begin by presenting the basic ECP algorithm within a convex setting to better explain the difficulties of applying 

the algorithm to nonconvex problems. 

The ECP algorithm was originally intended for solving convex MINLP problems (Westerlund and Pettersson, 1995), 

and with minor modifications it has been proven that the algorithm finds the optimal solution to nonsmooth problems 

with pseudo convex functions (Eronen et al., 2015). The main idea behind the ECP method is to iteratively construct 

a linear approximation of the MINLP problem (1). At iteration k , a linear approximation of the MINLP problem is 

given by 
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where 
ix  are the trial solutions obtained in previous iterations and iA  contains the indexes of the violated constraints 

at iteration i . Problem (MILP-k) is sometimes referred to as the MILP-master problem, and we use this terminology 

throughout the paper. New trial solutions are obtained by repeatedly solving the MILP-master problem and the linear 

approximation is improved by accumulating linearizations of the nonlinear functions, or so-called cutting planes. We 

use a strategy of always adding a cutting plane for the objective function and for all violated constraints, which tends 

to reduce the number of iterations needed to solve the problem. The problem is usually considered as solved if the 

tolerance criterions 

( ) ,

( ) 1, , ,
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x K
  (2,3) 

are satisfied. The tolerance e  is chosen as a small value, which is considered as an acceptable constraint violation. In 

case the criterions are not met, the procedure continues, and the next MILP-master problem will then be more accurate 
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due to the accumulated cutting planes. For convex problems the linearizations will underestimate the nonlinear 

functions, which guarantee that no feasible solutions are excluded from the search space by the cutting planes, and 

after a finite number of iterations the procedure is guaranteed to obtain an optimal solution within the given tolerance 

(Westerlund and Pettersson, 1995). 

As previously mentioned, the problems considered here are not convex and includes further difficulties, such as noisy 

gradients and convergence issues of the simulator. Due to the nonconvexity, the linearizations in the MILP-master 

problem will not underestimate the functions and feasible solutions will be excluded from the search space. Therefore, 

the ECP algorithm will not in general converge to a local optimal solution for nonconvex problems and might even 

fail to find any feasible solutions. The same convergence issues will also appear with the OA algorithm, and the noisy 

gradients can also cause issues when solving in the NLP subproblems. For example, due to noise in the gradients the 

KKT system might not be satisfied even for the optimal set of primal and dual variables. 

In the next section, we will present some heuristic techniques to improve the practical performance of the ECP 

algorithm for non-convex MINLP problems where some functions are evaluated by running a process simulator.  

4 Using the extended cutting plane method for non-convex black box problems  

We have already mentioned several challenges in directly applying a linearization-based algorithm, such as ECP or 

OA, to nonconvex MINLP problems with black-box functions. For these problems, we will not be able to guarantee 

global optimality and our main goal is to obtain a good feasible solution with relatively few evaluations of the black-

box functions. In the next paragraphs, we will cover some of the difficulties faced when applying a linearization-based 

algorithm to these nonconvex problems and present some techniques to mitigate these issues. 

The main difficulty in applying a linearization-based method, such as ECP, to a nonconvex problem is that 

linearizations do not necessarily underestimate the real functions. A cutting plane of a nonlinear constraint can, 

therefore, exclude some, or even all, feasible solutions from the search space. In such a situation, there are might not 

be any solutions satisfying the MILP-master problem resulting in an empty search space. Noisy gradients can also 

amplify this issue, by causing linearization to have a noncorrect slopes. Ending up with an empty search space before 

finding a feasible solution is not only a theoretical possibility, but a difficulty we immediately encountered in the case 

studies. It was, therefore, a necessity to have an approach for dealing with situations when the MILP-master problem 

is infeasible. 

If the MILP-master problem becomes infeasible, it is not possible to directly continue with the ECP algorithms as the 

search space is empty. To continue the search procedure, we use the approach presented by (Javaloyes-Antón et al., 

2018) which is also used as a nonconvex heuristic in the SHOT solver (Lundell and Kronqvist, 2020). If the MILP-

master problem becomes infeasible in iteration k , we solve a feasibility problem defined as 
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where ,j ir  is a new “residual” variable allowing violations of the original cutting planes. By solving problem (MILP-F) 

we can determine the smallest relaxation of the cutting planes needed to restore feasibility of the MILP-master 
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problem. The weights iw  in the objective are intended to reduce the risk of cycling, and we use a simple strategy of 

selecting the weights as  

2,iw i=   (4) 

where i  is the iteration index. This strategy will give a larger cost of relaxing the cutting planes in the last iterations, 

and favor larger changes to the cutting planes obtained in early iterations. This strategy is intended to avoid situations 

where a cutting plane is first added in one iteration and effectively removed in the following iteration. 

By solving problem (MILP-F) we obtain the minimum residuals *
,j ir , and we modify the cutting planes in the MILP-

master problem according to 

( ) *
,( ) ( ) , 1, .i i T i

j j j i ig g f r j A i k+ Ñ - £ × " Î " =x x x x K   (5) 

The cutting planes are further relaxed by a factor of 1f ³  times the minimum residuals to further extend the search 

space. Numerical tests have shown that the feasibility restoration technique can greatly improve the ability to find 

feasible solutions to nonconvex MINLP problems (Lundell and Kronqvist, 2020). Another technique to relax equality 

constraints and avoid infeasible MILP-master problems was presented by Viswanathan and Grossmann (1990), which 

is used by the solver DICOPT. However, neither of the techniques can guarantee that a feasible solution can be found 

for nonconvex problems. 

We must also be able to handle situations where the process simulator fails to converge. Convergence failures can be 

a consequence of numerical difficulties, and in Section 5 we describe some automatic techniques to attempt achieve 

convergence. However, the process simulator can also fail due to an infeasible configuration of the variables. Tight 

upper- and lower bounds help to mitigate this issue, but there might still be infeasible variable combinations in between 

the bounds. Such infeasible variable combinations can be regarded as hidden-constraints, as they are not known by 

the end-user but hidden within the process simulator. In case the current trial solution 
kx  results in simulation failure, 

we will not be able to evaluate the constraint and objective functions and we will not be able to directly continue the 

search with the ECP algorithm. 

If we are not able to get the process simulator to converge for a trial solution 
kx , we will consider it as an infeasible 

variable assignment. We will not be able to exclude such infeasible trial solutions with a normal cutting plane, and 

instead we will exclude a small neighborhood around the infeasible solution by a so-called no-good cut (D’Ambrosio 

et al., 2010; Nannicini and Belotti, 2012)  

1
,k d- ³x x   (6) 

where d  is the radius of the excluded neighborhood. The nonconvex constraint (6) is representable in mixed-integer 

linear form by introducing auxiliary variables and the constraints 
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In the set of constraints ix  refers to the i-th component of the variable vector x  and similarly k
ix  is the i-th component 

of 
kx . A detailed derivation of the mixed-integer linear formulation of constraint (6) is given in Bernal et al. (2020). 

By adding the constraints (7a-f) to the MILP-master problem we can exclude a d  neighborhood around the infeasible 

a trial solution 
kx , which enables us to continue the search with the ECP algorithm. The technique of adding 

constraints (7a-f) enables us to handle convergence failures of the process simulator, but the extra constraints and 

variables do increase the complexity of the MILP-master problems. In practice, d  should be chosen small to avoid 

cutting of optimal solutions. The no-good cut technique can result in little progress for problems with large hidden 

infeasible regions, therefore, we also propose a second heuristic approach. 

The second technique for dealing with convergence failure of the process simulator uses feasibility backtracking. The 

last solution that was successfully evaluated by the process simulator is stored as x . If the process simulator does not 

converge in iteration k , we obtain an alternative trial solution x
$

 by backtracking according to: 

( )1 ka a= + -x x x
$

,  (8a) 

µ µ( )i i Zx round x i I= " Î ,  (8b) 

where )0,1a éÎ ë  is a backtracking parameter. If the process simulator can successfully be evaluated at x
$

, then it 

serves as the trial solution in the iteration and is used for generating linearizations to MILP-master problem. If the 

feasibility backtracking succeeds in finding a solution for which the simulator converges, then it is in general more 

efficient than the no-good cut technique as the resulting linearizations are more informative than the no-good cut. 

Due to the nonconvexity, a linearization-based algorithm, such as ECP or OA, can converge to a locally non-optimal 

solution. The termination conditions will then be satisfied, even if the current solution is not even locally optimal. To 

avoid terminating the search at such a non-optimal solution, we propose a restating technique. We could perform a 

complete restart of the search, by simply using the best-found solution as a starting point. However, since running the 

simulator is time-wise expensive, we want use as much information as possible from the simulations already 

performed. Instead of throwing away all the cutting planes to restart the search, we propose a heuristic technique of 

relaxing the cutting planes and performing a warm start. 

During the search with the ECP algorithm, we obtain a sequence of trial solutions { }
1

k
i

i =
x  at which all the constraints 

and objective are evaluated. At iteration k  the ECP algorithm generates the following cutting planes  
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i i
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i i
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f i k

g j A i k

£ " =

£ " Î " =

x x

x x

K

K
  (10a, 10b) 

which follows directly from convexity (Boyd and Vandenberghe, 2004). Since the functions are not convex, some of 

the cutting planes do not satisfy the conditions (10a) and (10b). When conditions (10a) and (10b) are violated, it 

indicates that some feasible solutions might be excluded from the search space. To expand the search space and the 

restart the search, we relax each cutting plane by reducing the left-hand side such that the conditions (10a) and (10b) 

are satisfied. This enables us to utilize some information accumulated by the cutting planes, and results in what can 

be considered a warm start. The relaxation of the cutting planes and expansion of the search space can enable the ECP 

algorithm to find better solutions, but there are no guarantees that the restarting technique will result in a better 

solution. The relaxation can also result in cycling. Therefore, we only perform the relaxation after the termination 

conditions are satisfied with the intention of restarting the search and try to find a better solution. 

In this section we have described four techniques to improve the practical performance of the ECP algorithm for 

nonconvex problems with expensive black-box functions. To better illustrate how the techniques are combined with 

the ECP algorithm, we have included a flowsheet in that shows how the techniques are integrated.  
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Figure 1. Flowsheet of the ECP algorithm with nonconvex heuristics and functionality for dealing with function evaluation 

failure. In the flowsheet ,r im m  denote the maximum restarts and maximum number of iterations. 
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5 Simulation-based optimization framework  

The following sections describe the use of a modular process simulator as a calculation engine to enable the 

implementation of the proposed simulation-based optimization tool.  

5.1 MINLP formulation and process simulator integration 

When a process simulator, or a general black-box, is used as a calculation engine in an MINLP optimization tool, the 

dimensionality of the problem for the solver is reduced since the solver only needs to consider the super-basic variables 

(degrees of freedom). Thus, to handle a process simulator embedded in a MINLP optimization tool, it is appropriate 

to partition the continuous and integer variables into dependent 
Dx , and independent 

Ix  variables, i.e., 

D In n´é ù= Îê úë û
D Ix x , x ¡ . The latter ones are the design variables, and the number of such variables is equal to the 

degrees of freedom of the problem. Here, the dependent variables 
Dx will be determined by the process simulator 

through the implicit equality constraints ( )D Implicit Ih=x x . The implicit constraints, evaluated at the level of the 

process simulator, are the equations that describe the behavior of the process (e.g., material and energy balances, 

vapor-liquid equilibrium laws). Furthermore, the MINLP problem also contains some explicit constraints of the form 

( ) 0kg £D Ix , x . The explicit constraints, implemented within the MATLAB environment, can define process 

specifications (e.g., product specifications, temperature limits or pressure limits). The MINLP problem we consider 

here can , thus, be written as 

( )

( )
( )

,

min ,

. . ,

, 0 1, , ,

, , .

I D

D I

D I

x x

D Implicit I

D I
k

n nD I I
i

f

s t h

g k q

some x

=

£ " =

Î Î Î

x x

x x

x x

x x

K

¡ ¡ ¢

  (11) 

However, the MINLP solver will only be used to determine the independent variables and all the dependent variables 

will be determined by the process simulator. The MINLP solver will, therefore, only consider a reduced search space, 

and the number of variables considered by the MINLP solver can be reduced significantly. From the MINLP solver 

perspective, the optimization problem is defined as 

( )

( )

min

. . 0 1, , ,

, ,

I

I

I

x
I

k

nI I
i

f

s t g k q

some x

£ " =

Î Î

x

x

x

%

%
K

¡ ¢

 

where ( ) ( )( ): ,I Implicit I If f h=x x x
%

 and ( ) ( )( ): ,I Implicit I I
k kg g h=x x x

%
. Remark that this formulation requires 

sequential function evaluations. First, the implicit constraints at the level of the process simulator must be solved to 

obtain values of the dependent variables. Then, the objective function and explicit constraints can be evaluated. 

5.2 MATLAB and Aspen HYSYS interface 

Aspen HYSYS can be accessed from external programs via Automation. Automation technology makes it possible 

for one application to drive objects implemented in another application, or to expose objects so they can be 
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manipulated. Hence, Aspen HYSYS behaves as an Automation server, and its functionalities are exposed through the 

binary-interface standard Component Object Model (COM) to other applications, called Automation clients. We 

utilize MATLAB as an Automation client to access the objects exposed by the developers of Aspen HYSYS. Thus, 

by writing MATLAB code, it is possible to send and receive information to and from the process simulator. The 

exposed objects make it possible to perform nearly any action that is accomplished through the Aspen HYSYS 

graphical user interface, allowing us to use the process simulator as a calculation engine.  

In this work we have used Aspen HYSYS, but any other process simulator that can act as a COM server, such as 

Aspen Plus, CHEMCAD or ProMax, could also be used as calculation engines for the proposed methodology. 

5.3 Methodology Description 

Figure 2 shows a scheme of the tool implemented in MATLAB for optimizing distillation processes using Aspen 

HYSYS and the ECP-based solver.  

First, a superstructure that includes all the alternatives of interest of the process must be implemented at the level of 

the process simulator. Then, within MATLAB environment, the bounds on the design variables, their nature 

(continuous or integer), explicit constraint, constant terms and stopping criteria are defined. The next step in the 

algorithm is to initialize the MATLAB – Aspen HYSYS interface. We create a local Automation server with Aspen 

HYSYS application through the actxserver MATLAB function. Once this server is created, we can access to the 

objects, such as the material and energy streams, and unit operations in the active Aspen HYSYS flowsheet. In turn, 

by accessing these objects, values of the material and energy stream properties, and equipment specifications can be 

directly specified or modified from MATLAB. 

Then, the Process Simulator Controller Module modifies the Aspen HYSYS superstructure by setting the new (or 

initial) values of the design variables. The design variables are related with the process topology (number of trays of 

each column section), unit operation specifications (such as reflux and boilup ratios) and/or operating conditions 

(column top pressure for instance). Once the superstructure is modified and the Aspen HYSYS flowsheet is executed, 

the simulation convergence is checked. If the flowsheet converges, the Objective Function Module is responsible for 

reading all the values of the dependent variables required to compute the objective function and constraints. If the 

stopping criteria are satisfied, then the algorithm is interrupted. If the stopping criteria are not satisfied, then the 

MINLP algorithm will determine a new trial solution. First, derivatives of the objective and constraint functions are 

estimated at the current solution using finite difference approximations. The derivatives and function values are then 

used to form new cutting planes and the master problem (MILP-k) is updated by including the new cuts. The master 

problem is then resolved, using the Gurobi solver, to obtain a new trial solution. As mentioned earlier, the master 

problem might be infeasible. In that case we apply the strategies to restore feasibility presented in Section 4, and the 

modified master problem is resolved to obtain a new trial solution. The procedure is then repeated and the Aspen 

HYSYS superstructure is modified according to the new design variables. 

One of the main issue in the algorithm, and in any derivative-based approach, is when the flowsheet fails to 

convergence. If this happens, the Convergence Block tries to converge the simulation using the current values of the 

design variables but from a different feasible initial point. In practice, this convergence recovery strategy seems to 

have a low efficiency. For the case studies presented in this work, the convergence recovery strategy only managed to 

converge the flowsheet for approximately 10% of the convergence failures. However, if convergence can be restored, 

then we obtain significantly more information, i.e., function values and derivatives. Therefore, the Convergence Block 

is a valuable component even with the relatively low success rate.  
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If the Convergence Block fails to converge the flowsheet, then the Convergence Failure Block is activated. There are 

two main procedures in Convergence Failure Block. First, we calculate a backtracked solution by eqs. (8a-8b) which 

gives a solution in between the current solution and a known feasible point. If the flowsheet converges at the 

backtracked solution, then we use it as the current trial solution to generate cutting planes and refine the master 

problem. We also exclude a small neighborhood around the point where we could not converge the flowsheet by a so-

called no-good cut, which is included in the master problem through equations (7a-7f). The no-good cut excludes the 

point where we could not converge the flowsheet from the search space and ensures that we do not try to again run 

the process simulator with these values for the independent design variables. Note that the no-good cuts only exclude 

a small neighborhood from the search space and increase the complexity of the master problem. Cuts obtained from a 

backtracked solution can, therefore, in practice be more efficient. But the no-good cuts are needed to guarantee that 

the algorithm continues, and that the same solution is not obtained in consecutive iterations by the master problem. 

By these simple techniques, the Convergence Failure Block enables us to continue the search without obtaining the 

objective/constraint function values or derivatives. More details on techniques are given in Section 4. 

The derivatives are estimated through finite difference approximations by rerunning the process simulator and 

perturbing one design variable at a time. If possible, forward difference are used with a relative perturbation parameter 

with the perturbation defined as 1% of the current variable value. The reason for this relative perturbation parameter 

is to account for the different magnitudes of the variables, e.g., a fixed perturbation of 0.1 can be suitable for the 

distillate temperature but can be an order of magnitude too large for the component mole fraction. If one of the design 

variables is at the upper bound, then the derivative is estimated by a backward difference. The integer design variables 

are perturbed by a unit step. 

For all the case studies we have used the following parameters with the ECP algorithm: maximum number of iterations 

100,im =  maximum number of restarts 10,rm =  backtracking parameter 0.05,a = constraint tolerance 

410 ,e -=  cut relaxation factor 1.1,f = and no-good cut radius 0.1.d = The parameters were chosen by trial and 

error and worked well for the test cases. Out of these parameters, the cut relaxation factor seems to have the largest 

impact. But overall, the algorithm seems robust with regards to the parameter values. All case studies were solved on 

a PC with an Intel i7-6700HQ at 2.6GHz processor and 16GB RAM. 

 

Several restarts were performed for all the case studies and resulted in better solutions for two of the four case studies.  

As mentioned earlier, the feasibility restoration of the master problem is an essential component, and without it we 

would have failed to even find a feasible solution for two of the case studies.  
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Figure 2. Algorithm flowchart of the simulation-based optimization modeling framework. 

6 Case studies 

Four examples involving different distillation-based separation processes are presented to analyze the performance 

and capabilities of the proposed approach. In all case studies, the objective is to minimize the total annual cost (TAC) 

of the distillation system. The TAC accounts for the annualized capital cost of the main equipment and the most 

relevant operating costs: 

,cap opT A C f C C= +   (12) 

where capC  is the total cost of installed equipment ($MM), opC  refers to the total operating cost ($MM/year), and f   

is the annualization factor for the capital cost, and takes into account the fixed interest rate per year i , and the years 

over which the capital is to be annualized, n (Smith, 2005): 
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For the estimation of the capital cost, only the main equipment is considered, i.e., column shells, trays, heat exchangers 

and compressors. The installed cost estimates are based on the correlations given by Douglas (1988). These costs are 

updated from the base year (1968) to 2018 using the Chemical Engineering Plant Cost Index (CEPCI_2018 = 603.1). 

For estimating the yearly operating cost, we only consider the contribution of the hot, cold and electricity utilities. 

Prices for these utilities are taken from Turton et al. (2008). Each utility cost is estimated based on 8000 operating 

hours per year. The equipment cost correlations and utility prices used in the TAC calculations are given in 

Appendix A.  

6.1 Case study 1: conventional distillation column 

The first case study aims at optimizing a single conventional distillation column. The problem can be stated as follow. 

Given a fixed feed to be separated into two products with known composition and required purity of the products 

(distillate and bottom). The optimization task is to determine the optimal column topology (number of trays and feed 

tray location), as well as the column operating conditions (reflux ratio, boilup ratio and column top pressure) that 

minimize the total annual cost.  

To this end, we consider the superstructure of the distillation column shown in Figure 3. This superstructure is inspired 

in the one proposed by Yeomans and Grossmann (2000). The basic idea behind the work of Yeomans and Grossman 

was to consider a distillation column as a set of permanent (or fixed) trays consisting of the feed, reflux and boilup 

trays, and additionally, a set of conditional trays, placed between pairs of permanent trays. The latter set of trays then 

either behave as equilibrium stages, in which mass transfer occurs according to the vapor-liquid equilibrium laws, or 

as a bypass without any exchange of mass.  

In our approach, we use a process simulator as a calculation engine that allows to modify the number of trays and feed 

tray location directly. Therefore, we do not need to model the stages as equilibrium stages or bypasses. The column 

topology can be simply determined from two integer variables, 1N  and 2N , which represent the number of trays in 

the rectifying and striping section of the column respectively, as illustrated in Figure 3. 
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Figure 3. Conventional distillation column superstructure. 

Conceptually, this MINLP optimization problem can be formulated as shown in (P1) 

( ) ( )

( )

I, , int 1 2
, ,

I, ,int

, , ,

,int ,int ,int

,

min , , , , ,

. . , ,

   ,

   ,

   ,

,

,

,

cont I D
cap COL cond reb op cond reb

cont ID sim

dist dist

dist dist
HK HK

btms btms
LK LK

I cont I cont I cont

I I I

I cont

T AC f C N N A A A C Q Q

s t h

T T

x x

x x

RR B

= +

=

³

£

£

£ £

£ £

=

x x x

x x x

x x x

x x x

x { } { }

{ }

,int3 2
1 2

6

, , , ,

, , , , , , .

I
top

D dist dist btms
HK LK reb cond COL

R P N N

T x x Q Q A

Î = Î

= Î

x

x

¡ ¢

¡

  (P1) 

The objective is to minimize the conventional distillation column TAC, which comprises the capital cost of the column 

shell, column trays, condenser and reboiler (all constructed in carbon steel), and the operating cost associated to the 

steam and cooling water required by the reboiler and condenser, respectively. The shell and tray costs are functions 

of the number of trays 1N  and 2N , and column area COLA . The costs of the condenser and reboiler depend on their 

heat transfer areas condA  and rebA  respectively. On the other hand, the operating cost is given by rebQ  and ,condQ that 

correspond to the heat duties of the reboiler and condenser. Details of how TAC is computed are given in Appendix 

A.  
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The set of constraints are divided in two groups. First, the function 
simh  refers to the set of implicit constraints which 

are evaluated by the process simulator. These equality constraints describes the behavior of the distillation column 

using rigorous tray-by-tray models. Furthermore, there are three explicit constraints implemented within MATLAB 

environment. These constraints are included in the model to: (i) set a minimum temperature for the distillate product, 

distT , to allow cooling water to be used in the condenser as cold utility, (ii) the maximum molar fraction of heavy-

key impurity in the distillate dist
HKx , and (iii) maximum molar fraction of light-key impurity in the bottoms .btms

LKx  The 

independent (or design) variables of the problem are the two integer variables aforementioned ( 1N  and 2N ), and 

the continuous variables reflux ratio ( RR ), boilup ratio ( BR ) , and column’s top operating pressure topP . We 

consider a standard  pressure drop of 0.0069 bar (0.1 psi) per tray  (Luyben, 2006).  

The model implemented for the simulation-based optimization of a single conventional distillation column is tested 

with a multicomponent mixture of hydrocarbons ranging from C4 to C6. The objective is to separate C4’s from C5’s 

with 0.5 mol% as the maximum allowed impurity of the key components in the product streams. The molar flowrate 

and composition of the feed stream, thermodynamic package and other data for the example are shown in Table 1. 

Furthermore, we have used lower bounds to the integer variables 1N  and 2N  greater than one. Specifically, we set 

the bounds on 
1N  and 

2N  to 15 and 20 respectively. In this way, a distillation column with a minimum of 36 stages 

always exist (35 stages plus the feed tray). The reason for setting a minimum number of trays is two-folded: to avoid 

column configurations that cannot achieve the desired separation task, and at the same time, reduce the search space. 

The best found values of the design variables and the total annual cost for the case study 1 are shown in Table 2 and 

Table 3 respectively. Additional information about the results can be found in the Supplementary Material.  

In total the ECP algorithm performed 100 iterations, and the best solution was found after only 49 iterations. The total 

execution time was 461.1 seconds, of which only 10 seconds was spent on solving the MILP subproblems. The 

feasibility restoration technique was an essential component, and without it we would have failed to even obtain a 

feasible solution. Furthermore, the restarting technique allowed us to find a better solution. Compared to the other 

case studies the flowsheet convergence was more robust, and we only encountered a single convergence issue that 

was successfully handled by the Convergence Block. 

Table 1. Problem data for Case Study 1 

Feed molar flow (kmol/h) 1000 

Composition (mol fraction)  

    i-butane 0.17 

    n-butane 0.12 

    Cyclobutene (LK) 0.06 

    i-pentane (HK) 0.13 

    n-pentane 0.09 

    cyclopentane 0.07 

    2-methylpentane (isohexane) 0.09 

    n-hexane 0.12 

    cyclohexane 0.15 

Thermodynamic fluid package SRK 

Pressure drop per tray (bar) 0.0069 

Explicit constraints  

    i-pentane (HK) impurity in distillate (mf) 0.005dist
HKx £  
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    Cyclobutene (LK) impurity in bottoms (mf) 0.005btms
LKx £  

    distillate temperature (°C) 70distT ³   

Bounds on independent variables  

    
1N   (number of trays in rectifying section) 115 30N£ £   

    
2N  (number of trays in stripping section) 

220 35N£ £   

    RR   (reflux ratio) 1.8 3.5RR£ £   

    BR   (boilup ratio) 1.1 2.5BR£ £   

    
topP  (column top pressure, bar) 9 13topP£ £   

 

Table 2. Best found design variables – Case study 1 

Design Variable N1 N2 RR BR P (bar) 

Best solution 25 34 2.5403 1.7097 9.2296 

 

Table 3. Objective function breakdown – Case study 1 

FIXED INVESTEMTN COST [$MM] 2.2572 

    Shell 1.3404 

    Trays 0.1071 

    Reboiler 0.5345 

    Condenser 0.2770 

  

OPERATING COST [$MM/y] 2.8340 

    Low Pressure Steam [5 barg, 160 ºC] 2.7721 

    Cooling Water [30 to 40-45 ºC] 0.0619 

  

TOTAL ANNUAL COST [$MM/y] 3.2571  

 

6.2 Case study 2: divided wall column (modify for case with explicit constraints) 

We extend the proposed methodology for the separation of a non-azeotropic three-fraction mixture using a fully 

thermally coupled distillation arrangement. This arrangement arises when the condenser and reboiler of the 

configuration for three-product separation shown in Figure 4a (prefractionator configuration) are replaced by vapor-

liquid interconnections (Figure 4b). The distillation system in Figure 4b, also known as the Petlyuk configuration 

(Petlyuk et al., 1965), is the separation arrangement of lowest energy consumption when a three-fraction mixture has 

to be split into three relative pure products (Halvorsen and Skogestad, 2003a, 2003b, 2003c). In addition, this 

distillation system only employs two heat exchangers (one condenser and one reboiler) in contrast to the four heat 

exchangers needed when the separation is carried out using conventional distillation columns. However, a price to pay 

for this configuration is that the energy must be supplied at the highest temperature in the reboiler, and removed at the 

lowest temperature in the condenser, preventing, in some cases the use of more economic hot and cold utilities. A 

thermodynamic equivalent configuration to the Petlyuk column that uses a single column shell is shown in Figure 4c. 

This arrangement is known as a divided wall column (DWC) (Caballero and Grossmann, 2003). 
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A Petlyuk arrangement can be simulated using two columns and two heat exchangers (condenser and reboiler). 

However, when we simulate a thermally coupled sequence by using a process simulator it is necessary to introduce a 

recycle structure due to the liquid and vapor streams connecting the columns. This recycle structure give rise to two 

primary drawbacks a) the computation time for a single simulation increases considerably, and the most importantly 

b) the flowsheet becomes prone to convergence errors.  

Navarro et al. (2012) show that it is possible to replace the two material streams of each thermal couple by a 

combination of a material and an energy stream, leading to accurate simulations with maximum errors in internal 

flows and energy consumption lower than 5% compared with the closed system. Specifically, in the rectifying section, 

the material stream is vapor at its dew point and the energy stream is equivalent to the energy removed if we include 

a partial condenser. And, in the stripping section, the material stream is liquid at is bubble point and the energy stream 

is equivalent to the energy added if we include a reboiler to provide vapor to the first column. In this way, the recycle 

structure is avoided resulting in a more numerically robust flowsheets (in terms of convergence). 

 

Figure 4. a) Prefractionator configuration for three product separation, b) fully thermally coupled arrangement, or Petlyuk 

configuration, and c) the thermodynamically equivalent divided wall column (DWC). Strictly, the configurations in a and b are 

thermodynamically equivalent if there is no heat transfer across the wall. 

The superstructure representation for this problem considering both, the closed system (fully thermally coupled 

arrangement with the two material streams involved in a thermal couple), and the open system (fully thermally coupled 

arrangement with a combination of a material and energy stream) are shown in Figure 5a and b respectively. To 

facilitate the convergence, the open system superstructure is use in this work. 

Given the feed with known composition, the required purity of each product and the column operating pressure, the 

objective is to determine the number of trays of each column section, as well as the column operating conditions that 

minimize the TAC. 
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Figure 5. Fully thermally coupled arrangement a) closed system (with vapor and liquid material recycle streams) b) open system 

(with one material and one energy stream). 
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The TAC consists of the capital cost of the column (shell and trays), condenser and reboiler, as well as the operating 

cost related to steam and cooling water required by the reboiler and condenser. To estimate the capital cost of the 

column shell, we consider that the fully thermally coupled arrangement is built using a single shell with a vertical 

dividing wall as is depicted in Figure 4c.  
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The tower diameter, DW CA , is estimated from the area of each of the six tray sections of the divided wall column as 

the ( )( )3 1/ 2 4/ 5 6max , ,A A A A+ , where ( )1/ 2 1 2max ,A A A=  and ( )4/ 5 4 5max ,A A A= . Now, if the areas A1 

and A2, and A4 and A5 are all different from each other, we always overestimate the central tower diameter. To 

estimate the tray costs, we consider the areas 3 1/ 2 4/ 5,  ,  A A A  and 6A , with their corresponding number of trays 

( )3 1N +  , ( )1 2 1N N+ +  , ( )4 5 1N N+ +  and ( )6 1N +  respectively (we add one stage to take into account 

the feed/product stages) . The investment cost of the condenser and reboiler are obtained from the heat transfer areas 

conA  and rebA . The operating costs, which is dominated by the steam required in the reboiler and cooling water in the 

condenser, are calculated from the heat loads rebQ  and condQ respectively.  

The set of implicit functions, 
simh , that embodies the equations that describe the behavior of the separation 

arrangement are implemented in the process simulator. Three explicit constraints are written within the MATLAB 

environment to specify the three product purities requirements. Namely, (i)  the light component mole fraction in the 

top column product stream dist
Ax , (ii) middle volatility component mole fraction in the side draw product stream sdraw

Bx

, and (iii) heavy component mole fraction in bottoms product stream btms
Cx . For the mole fractions of these streams, 

we have certain requirements on the purity. 

The design variables of the optimization problem are the six integer variables corresponding to the number of active 

trays in each section of the DWC, and the continuous variables corresponding to the degrees of freedom of the 

prefractionator and main distillation columns. Namely, the reflux ratio and distillate rate 1RR  and 1DR  of the 

prefractionator column, and the reflux ratio, boilup ratio and reboiler heat duty 2RR , 2BR  and rebQ  of the main 

tower.  

A mixture of benzene, toluene and o-xylene is used to illustrate the performance of the separation of a three-component 

mixture using the fully thermally coupled model described above. Data for this example is presented in Table 4. The 

results are summarized in Table 5 and Table 6. 

The best solution was found after only 9 iterations, but in total the ECP algorithm performed 100 iterations (due to 

multiple restarts). The total execution time was 1615.8 seconds, of which only 19.7 seconds was spent on solving the 

MILP subproblems. 

Table 4. Problem data for Case Study 2 

Feed molar flow (kmol/h) 500 

Composition (mol fraction)  

    Benzene (A) 0.17 

    Toluene (B) 0.39 

    o-Xylene (C) 0.44 

Thermodynamic fluid package SRK 

Implicit constraints (as design spec.)  

    Benzene purity in distillate (mf) 0.995Ax ³   

    Toluene purity in side draw (mf) 0.995Bx ³  

    o-Xylene purity in bottoms (mf) 0.995Cx ³  

Bounds on independent variables   

    1N  (number of trays in section I) 110 30N   
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    2N  (number of trays in section II) 210 30N   

    3N  (number of trays in section III) 33 20N   

    4N  (number of trays in section IV) 410 25N   

    5N  (number of trays in section V) 515 35N   

    6N  (number of trays in section VI) 610 30N   

    1RR  (reflux ratio column 1) 0.4 1 1.7RR   

    1DR  (distillate rate column 1, kmol/h) 170 1 220DR   

    2RR  (reflux ratio column 2) 4.5 2 5.5RR   

    2BR  (boilup ratio column 2) 2.2 2 3.2BR   

    rebQ  (reboiler heat duty in MW) 4.0 6.5rebQ   

 

Table 5.  Best found design variables – Case study 2 

Design 

Variable 
N1 N2 N3 N4 N5 N6 RR1 

DR1 

[kmol/h] 
RR2 BR2 

Qreb 

[MW] 

Best values 16 19 8 15 30 25 0.7524 189.6814 5.1506 2.8085 5.6806 

 

Table 6. Objective function breakdown – Case study 2 

FIXED INVESTEMTN COST [$MM] 1.5572 

    Shell 0.9555 

    Trays 0.1056 

    Reboiler 0.2767 

    Condenser 0.2194 

  

OPERATING COST [$MM/y] 2.4821 

    Low Pressure Steam [5 barg, 160 ºC] 2.4262 

    Cooling Water [30 to 40-45 ºC] 0.0559 

  

TOTAL ANNUAL COST [$MM/y] 2.7740 

6.3  Case study 3: extractive distillation process 

The third case study is based on the economic optimization of the extractive distillation arrangement shown in Figure 

6. This sort of enhanced distillation is widely applied to separate minimum-boiling homogeneous azeotropes and other 

mixtures that have key components with close relative volatilities (Seader and J. Henley, 2006).  

We consider the industrially relevant separation of ethanol (nbp = 78.31ºC) and water (nbp =100.02 ºC) using ethylene 

glycol (nbp = 197.08ºC) as the solvent to illustrate and test the simulation-based optimization of this two-column 

sequence distillation process. Ethanol and water form a minimum-boiling homogeneous azeotrope at 78.15ºC and 

1 atm with composition 0.895%mol ethanol. 

The MINLP optimization problem for this case study can be conceptually described by 
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Figure 6. Extractive distillation with conventional solvent superstructure. 

The goal is to find the extractive and solvent column topologies (number of trays and feed tray locations), operating 

conditions (reflux and boilup ratios), as well as the molar flowrate of solvent, that minimize total annual cost for a 
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given feed and product stream specifications. The TAC comprises the investment and operating cost of the process. 

The investment cost contains: 1) cost of the extractive column (shell and trays) given by the number of trays 1N , 

2N  and 3N , and column area 1CA , 2) cost of the solvent recovery column (shell and trays) given by the number of 

trays 4N  and 5N , and column area 2CA , 3) the cost of the condenser and reboiler of each distillation column given 

by their heat transfer areas 1condA , 1rebA  and 2condA , 2rebA . 4) the cost of the solvent (ethylene glycol) is considered 

as an investment cost. The cost of the solvent is obtained from the total molar flowrate of solvent fed to the extractive 

column solvM . The operating cost of the process is estimated from the heat duties supplied in both reboilers 1rebQ   

and 2rebQ , and heat duties removed in the condensers of each column 1condQ  and 2condQ . 

Similarly to the other examples, the behavior of the extractive distillation process is described by the equality 

constraints containing the implicit function simh . This function represents the process simulator and is evaluated 

before the other explicit constraints. The inputs required by simh  are the set of independent variables of the problem 

,intIx  and ,I contx , namely, the number of trays of each column section iN  with { }1, , 5i = K , the reflux ratio of 

both columns 1RR  and 2RR , the boilup ratios 1BR  and 2BR , and the solvent molar flowrate solvM . The explicit 

constraints define (i) a minimum mole fraction 1
1

dist
LKx , (ii) minimum recovery 1

1
dist
LKrec  for the light-key component 

at the top of the extractive column (ethanol), (iii) minimum mole purity 2
2 ,btms

HKx and (iv) minimum recovery 2
2

btms
HKrec  

for the solvent at the bottoms of the solvent recovery column. The data for this example is shown in Table 7, and the 

results in Table 8 and Table 9. 

In total the ECP algorithm performed 100 iterations (iteration limit), and the best solution was found after only 11 

iterations. The total execution time was 1628.7 second, of which only 23.5 seconds was spent on solving the MILP 

subproblems. Out of all the case studies, we encountered most flowsheet convergence failures here. The no-good cut 

alone is enough to handle convergence failures, but the backtracking technique was in practice significantly more 

efficient. The backtracked solutions allowed the algorithm to find points where the flowsheet converge, and the 

derived cuts successfully directed the search away from areas with convergence failures. 

Table 7. Problem data for Case Study 3. 

Feed molar flow (kmol/h) 300 

Columns top pressure (bar.) 1 

Composition (mol fraction)  

    Ethanol 0.855 

    Water 0.115 

Thermodynamic fluid package NRTL 

Pressure drop per tray (bar) 0.0069 

Explicit constraints  

    Ethanol mol frac. in Ext. col. ovhd. stream 
1

1 0.996distC

LKx   

    Ethanol %  recovery in Extr. col. ovhd. stream 
1

1 99.80distC

LKrec   

    EG mol % in Solv. Rec. col btms. stream 
2

2 0.998btmsC

HKx   

    EG % recovery in Solv. rec. col. btms. stream 
2

2 99.95btmsC

HKrec   

Bounds on independent variables  
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1N  (number of trays section I – Ext. co.l) 12 10N   

    
2N  (number of trays section II – Ext. col.) 210 40N   

    
3N  (number of trays section III – Ext. col ) 35 20N   

    
4N  (number of trays section IV– Solv. rec. col) 43 15N   

    
5N  (number of trays section V – Solv. rec. col ) 3 5 15N   

    1RR  (extractive column reflux ratio) 0.5 1 1.1RR   

    1BR   (extractive column boilup ratio) 1.2 1 1.9BR   

    2RR  (solvent rec. column reflux ratio) 0.3 2 1.5RR   

    2BR  (solvent rec. column boilup ratio) 0.3 2 0.9BR   

    
SOLVM  (solvent molar flowrate in kmol/h) 170 200SOLVM   

 

Table 8. Best found design variables – Case study 3. 

Design 

Variable 
N1 N2 N3 N4 N5 RR1 BR1 RR2 BR2 

SOLV 

(kmol/h) 

Best value 2 36 8 4 6 0.7164 1.6453 0.4535 0.3485 165.255 

 

Table 9. Objective function breakdown – Case study 3. 

 Extractive col. Solvent rec. col. 

FIXED INVESTEMTN COST [$MM] 1.1733 0.1845 

    Shell 0.5797 0.0734 

    Trays 0.0335 0.0017 

    Reboiler 0.3396 0.0698 

    Condenser 0.2128 0.0396 

    Solvent 0.0077 --- 

   

OPERATING COST [$MM/y] 2.0095 0.4507 

    High Pressure Stream [40 barg, 254 ºC] --- 0.4450 

    Medium Pressure Steam [10 barg, 184 ºC] 1.9587 --- 

    Cooling Water [30 to 40-45 ºC] 0.0508 0.0057 

   

TOTAL ANNUAL COST [$MM/y] 2.7147 

 

6.4 Case study 4: vapor recompression distillation process 

Our final case study deals with the economic optimization of a propylene-propane splitter using the vapor 

recompression heat pump assisted distillation superstructure shown in Figure 7. The separation of this mixture by 

distillation is energy intensive and requires large distillation columns due to their close volatilities. In fact, the 

purification of propylene-propane (and ethylene-ethane) alone accounts for 0.3% of global energy consumption (Sholl 

and Lively, 2016). Typically, these separations are carried out using vapor recompression systems as the one proposed 

in Figure 7. Based on this superstructure, the objective of this case study is to determine the distillation column 

topology (number of trays and feed location), column operating conditions (reflux and boilup ratios), column top 

pressure, and vapor recompression (VRC) operating conditions (compressor outlet pressure and VRC heat exchanger 
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outlet temperature) that minimizes the total annualized cost of equipment and utilities for a given feed and overhead 

product stream specifications (propylene purity and recovery).  

 

Figure 7. Vapor recompression (VRC) heat pump assisted distillation superstructure. 
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The objective is to minimize the TAC, which comprises the annualized investment cost of the distillation column, heat 

exchangers and compressor, as well as the operating cost due to the compressor power, and cold and hot (if required) 

utilities. Specifically, the capital cost of the distillation column depends on the number of trays COLN  

( )1 21COLN N N= + +  , and column area COLA . The cost of each heat exchanger depends on their heat transfer 

areas: condA  for the column condenser; HXA  for the column reboiler (which acts as a condenser from the point of 

view of the VRC); and Ext rebA -  for an additional reboiler that may be employed if the heat supplied by the vapor 

compression system is insufficient to provide the required column boilup at its corresponding temperature. In addition, 

the compressor investment cost depends on its brake horsepower, compW . The main operating cost is given by the 

electricity required by the compressor, compW , and to a lesser extent to the cooling utility condQ  (cooling water or 

refrigerated water, according to the column operating pressure) and extra low pressure steam, ,LPSQ  if required. 

As in previous examples, the function simh   refers to the set of implicit constraints which are evaluated firstly at the 

level of the process simulator using the values of  the independent variables Ix , which in this case are the column 

reflux and boilup ratio, RR  and BR  respectively; the column top operating pressure, topP ; compressor outlet 

pressure, comp outP - ; degree of subcooling in column reboiler HXTL ; and the number of active trays in the rectifying 

and stripping sections of the column, 1N  and 2N . Additionally, four explicit constraints are defined within 

MATLAB. These constraints are evaluated after the implicit constraints, and include the (i) top product light key mole 

fraction ,dist LKx , (ii) recovery ,dist LKrec , and (iii) top product temperature distT   requirements, as well as the (iv) 

minimum temperature difference condition between the bottoms product stream btmsT  and hot outlet stream of the 

column reboiler HX outT - . The molar flowrate and composition of the feed stream, thermodynamic package, and other 

main data for this case study are shown in Table 10. 

The best found solution is presented in Table 11, along with more details of the corresponding costs in Table 12.  Once 

more the ECP algorithm performed 100 iterations, and the best solution was found after 42 iterations. The total 

execution time was 1214.2 seconds, of which only 4.0 seconds was spent on solving the MILP subproblems. The 

feasibility restoration technique was an essential component, and without it we would have failed to even obtain a 

feasible solution. The restarting technique allowed us to find significantly better solutions, and two of the restarts 

resulted in improved solutions. 

 

Table 10. Problem data for Case Study 4 

Feed molar flow (kmol/h) 300 

Composition (mol fraction)  

    Propylene 0.52 

    Propane 0.47 

    i-Butane 0.01 

Thermodynamic fluid package Peng-Robinson 

Explicit constraints  
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    distillate temperature (°C)  22ditT ³  

    Propylene mol frac. in ovhd product stream 
3 6 0.996dist

C Hx ³  

    Propylene recovery in ovhd product stream (%) 
3 6 99.5dist

C Hrec ³  

    Column reboiler minimum temp. diff. (°C) min 10TD ³  

Bounds on independent variables   

    
1N  (number of trays in section I) 

1100 145N£ £  

    
2N  (number of trays in section II) 60 2 110N£ £  

    RR  (reflux ratio) 14 20RR£ £  

    BR  (boilup ratio) 16 24BR£ £  

    topP  (column top pressure, bar) 10.5 15.0topP£ £  

    comp outP -  (compressor outlet pressure, bar) 25 35comp outP -£ £  

    HXTL  (degree of subcooling) 10 35HXT£ L £  

 

Table 11. Best found design variables – Case study 4. 

Design 

Variable 
N1 N2 RR BR Ptop(bar) Pcomp-out (bar) LTHX (ºC) 

Best value 140 70 15.4751 18.2952 12.1381 26.2744 12.5608 

 

 

 

 

Table 12. Objective function breakdown – Case study 4. 

FIXED INVESTEMTN COST [$MM] 8.4203 

    Shell 2.1407 

    Trays 0.8824 

    Reboiler  0.5412 

    Condenser 0.2523 

    Extra reboiler 0.0227 

    Compressor 4.5810 

  

OPERATING COST [$MM/y] 1.1220 

    Electricity 0.6992 

    Refrigerated Water [5 to 15 ºC] 0.2447 

    Extra Low Pressure Steam [5 barg, 160 ºC] 0.1781 

  

TOTAL ANNUAL COST [$MM/y] 2.7004 
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7 Comparison of solutions obtained using the ECP solver and two stochastic global search 

methods. 

To evaluate the performance of the proposed simulation-based optimization approach, for the case studies, we present 

a brief comparison with two popular population-based stochastic global search algorithms. The main purpose of this 

comparison is to obtain an alternative solution with a derivative free optimization method to evaluate the quality of 

the solutions obtained by our approach.  

From the board range of derivative free optimization techniques, a proprietary global best integer version of the 

particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1997) and the genetic algorithm (GA) available 

in MATLAB R2021b (The MathWorks, Inc. A) are used in this paper. We choose the PSO algorithm because we have 

previous experience using it, and it performed well for similar problems (Javaloyes et al., 2013). We also included the 

GA because it is one of the most popular stochastic global search methods, and it has been used for simulation-based 

optimization problems in the literature, for instance in Chia et al., 2021, Ibrahim et al., 2017, Vazquez–Castillo et al., 

2009, Leboreiro and Acevedo, 2004 and Gross and Roosen, 1998. 

As mentioned in section Error! Reference source not found., DFO algorithms are particularly appropriate for 

sequential modular process simulators as the issue with obtaining accurate derivatives is avoided directly. In addition, 

if the flowsheet convergence fails for a given set of design variables during the optimization procedure, then, the 

approach to continue with the optimization it is more straightforward than in the case of derivative-based solvers.  In 

essence, we only need to restore the simulation convergence using a feasible set of design variables (for instance, the 

best feasible point found so far) and penalize the objective function. Naturally, not all are advantages and one of the 

main drawbacks is related with solving optimization problems with constrained search spaces. In this work, for the 

PSO algorithm we handle the constrains by means of one of the most popular techniques, which is based on the fitness 

penalization of a solution as follows (Mezura-Montes and Flores-Mendoza, 2009): 

( ) ( ) ( )f pf = +x x x  

where ( )f x  is the expanded objective function, ( )f x  is the original objective function, and ( )p x  a penalty 

function. A common penalty function that can be used is the following: 

( ) ( )max 0, ,j j
j J

p w g
Î

é ù= ë ûåx x  

where jw is a positive penalty factor. The constraint-handling technique implemented in the genetic algorithm coded 

in MATLAB is also based on penalty functions (The MathWorks, Inc. B). 

Table 13 compares the values of the objective function corresponding to ECP, PSO and MATLAB R2021b GA 

algorithms. As shown, the results obtained with the proposed methodology are slightly better than the ones found by 

the PSO and GA in all cases. 

Table 13. Objective function comparison between ECP, PSO and GA algorithms. 

Case Study I II III IV 

ECP 3.2571 2.7740 2.7147 2.7004 

PSO 3.3977 2.7994 2.7276 2.8240 

GA 3.2832 2.7985 2.7324 2.7857 
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It is worth mentioning that since the PSO and GA belongs to a class of stochastic global search algorithms, in some 

points of the procedure random numbers are used to update the values for the variables. Thus, convergence to the 

same solution is not guaranteed and the values reported in the above table corresponds to the best ones found after 30 

consecutive executions. Both stochastic algorithms were tested under the same conditions (same population size and 

maximum number of iterations/generations). The total execution time of the ECP solver is somewhat longer than a 

single run of the PSO or GA solver (twice as long for two of the case studies). The execution times with the ECP 

solver could have been reduced significantly by reducing the number of restarts as the best solutions were all found 

early, but we wanted to keep searching for better solutions. Also, keep in mind that we repeated the runs 30 times with 

the PSO and GA solver to obtain these results. Therefore, the total run time for each case study was significantly 

longer with the derivative free optimization algorithms. More details for the results are provided in Supplementary 

Material – section 2. 

8 Conclusions 

With the techniques presented in this paper, we were able to successfully apply a cutting plane algorithm to several 

simulation based mixed-integer nonlinear optimization problems and overcome some well know challenges in using 

a derivative-based algorithm. We presented two main approaches for dealing with simulation failures, based on no-

good cuts and backtracking. These approaches allowed us to successfully deal with simulation failures, and are not 

unique to our algorithm but applicable to other derivative-based algorithms. We also propose a restarting technique, 

and several restarts were performed for all the case studies and resulted in significantly better solutions for two of the 

four case studies. The restarting technique utilizes information accumulated from previous iterations to reduce the 

number of function evaluation while expanding the search space to continue searching for better solutions.  As 

mentioned earlier, the feasibility restoration of the master problem is an essential component, and without it we would 

have failed to find a feasible solution to two of the case studies. Infeasible master problems are, at least partially, a 

consequence of inaccurate derivatives, and this is effectively handled by the feasibility restoration. For all the case 

studies, the total time spent on solving the MILP subproblems is insignificant in comparison to the time spent on 

running the process simulator, even with the added complexity of the no-good cuts. The comparison to a PSO and GA 

algorithm shows that the proposed algorithm finds good solutions to the case studies, by finding a better solution to 

all the test problems than the two popular stochastic global search algorithms tested.  

Finally, we would like to remark that the proposed ECP can be considered as a competitive and viable method to solve 

simulation-based optimization MINLP problems with the general structure of problem given in equation (1).  
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Appendix A. Total annual cost correlations 

The equipment cost of each distillation system is estimated based on the cost correlations proposed by Guthrie (1974),  

and gather by Douglas in his book Conceptual Design of Chemical Processes (1988) . 
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The correlations given below have been adapted from the original ones for directly using the international system of 

units instead of the English ones. Besides, as carbon steel is the construction material selected for all equipment, the 

corresponding material correction factor has been applied.  

A1. Column shell  

( ) ( )1.066 0.802&
$ 937.64 3.18 ,

280
p

M S
Installed Cost D H F

æ ö÷ç= ÷ +ç ÷ç ÷è ø
  

where D is the column diameter (m), H the column height (m), and Fp the pressure factor given in Table A14. 

The distillation column diameters have been estimated with the Tray Sizing Analysis tool of Aspen HYSYS using the 

Fair’s tray flood method considering sieve trays and the default values for the tray properties. 

Table A14. Pressure factor for column shell correlation 

Pressure, bar. Up to 3.45 6.89 13.79 20.68 27.58 34.47 41.37 

Fp 1.00 1.05 1.15 1.20 1.35 1.45 1.60 

A2. Distillation column trays and tower internals 

We consider that all distillation columns are built using sieve trays. In that case, the installed cost is given by: 

( ) 1.55&
$ 59.28

280
s

M S
Installed Cost D N F

æ ö÷ç= ÷ç ÷ç ÷è ø
,  

were D is the column diameter (m), N total number of trays, and Fs the tray spacing correction factor, which is given 

in Table A15. 

Table A15. Tray spacing factor for column trays and 

tower internals correlations 

Tray spacing, in. 24 18 12 

Fs 1.0 1.4 2.2 

A3. Heat exchangers 

The installed cost for the heat exchangers is estimated as a function of the heat exchange area, which is obtained from 

A Q U T= D . Typical values for the overall heat transfer coefficient U are used (reboiler 820 W/m2 K, condenser 

800 W/m2 K) 

• Process stream heat exchangers and column condensers (fixed tube heat exchanger) 

( ) ( )0.65&
$ 474.69 3.09

280
p

M S
Installed Cost A F

æ ö÷ç= ÷ +ç ÷ç ÷è ø
 

• Column reboiler (kettle reboiler) 

( ) ( )0.65&
$ 474.69 3.64

280
p

M S
Installed Cost A F

æ ö÷ç= ÷ +ç ÷ç ÷è ø
 

where A is the heat exchanger area (m2), and Fp the pressure correction factor (Table A16). 

Table A16. Pressure factor for heat exchanger correlations 
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Pressure, bar. Up to 10.34 20.68 27.58 55.16 

Fp 1.00 1.05 1.15 1.20 

A4. Gas compressors 

A centrifugal motor compressor is used in the vapor recompression system included in case study 4. The cost of this 

piece of equipment is given by   

( ) 0.65&
$ 2047.24

280

M S
Installed Cost bhp

æ ö÷ç= ÷ç ÷ç ÷è ø
, 

where bhp is the compressor brake horsepower (kW). 

A5. Update cost factor 

The original cost correlations given by  Douglas (1988)  are updated to the current year through the following update 

cost factor 

&

280

currentM S
updateFactor

æ ö÷ç ÷= ç ÷ç ÷çè ø
. 

However, as the Marshall and Swift Equipment Cost Index is not available in the Chemical Engineering magazine 

from June 2012 (Chemical plant cost indexes), we modified the update factor as follows 

2010

2010

&

280

currentM S CPCI
updateFactor

CPCI

æ öæ ö÷ ÷ç ç÷ ÷= ç ç÷ ÷ç ç÷ ÷ç çè øè ø
, 

where M&S2010 is the last annual average value of the Marshall and Swift Equipment Cost Index published in 

Chemical Engineering magazine on April 2012 (M&S2010 = 1457.4), CPCI2010 is the annual Chemical Engineering 

Plant Cost Index corresponding to 2010, and CPCIcurrent is the annual average value of CEPCI for 2018 

(CPCIcurrent = 603.1), published in the December 2019 issue of Chemical Engineering magazine. 

A6. Utility costs 

Prices for the main utilities required by the distillation systems considered in the case studies are given in Table A17 

Table A17. Utility costs (Turton et al., 2008) 

Utilities Price ($/MW h) 

Hot Utilities   

   High pressure steam HPS (41 barg, 254ºC) 63.7 

    Medium pressure steam MPS (10 barg, 184ºC) 53.4 

    Low pressure steam LPS (5 barg, 160ºC) 50.6 

Cold Utilities  

    Cooling water CW (30 ºC to ~40 ºC) 1.3 

    Refrigerated water RW (5 ºC to 15 ºC) 15.9 

Power 60.0 
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