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Abstract  
Physical disability due to amputation can affect a person's quality of 
life due to limited movement in performing daily activities. Bionic 
hands are used to help someone with an amputation disability. This 
research developed a bionic hand control based on 
electroencephalography sensors capable of measuring the brain's 
bioelectric activity. The classified brain wave was then translated as 
activity pattern information. The alpha & beta waves were the focus 
of this work. This study demonstrated a method to extract and 
classify motor imagery of brainwave activity patterns. The Fast 
Fourier Transform (FFT) method extracts motor imagery 
characteristics. The extraction of features is then classified by the 
Multilayer Perceptron (MLP) method for five classes of bionic hand 
movement. Testing was conducted with two scenarios. The first test 
motor imagery without additional movement showed an accuracy of 
77.20 %, while the second test motor imagery combined with head 
movement showed an accuracy of 84.40% for five classes. The 
system based on motor imagery has been implemented in a bionic 
hand that shows the applicability of the proposed method. 
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INTRODUCTION  

Restrictions on movement due to physical 
disabilities can affect a person's quality of life, 
which is caused by amputation [1]. Therefore, 
special attention is required to solve this problem. 
The rehabilitation of medical devices in hand 
prostheses [2] is one solution to this problem. The 
hand prosthesis resembles the original of a 
human hand but does not have a movement 
system. Then a bionic hand was developed with 
a mechatronic system [3] equipped with an 
electromyography sensor (EMG) [4]. However, 
the weakness of the EMG sensor is that the 
sensor cannot detect information signals for hand 
movements in amputees who have lost residual 
muscles under the elbow joint [3][4]. 

The solution overcomes these weaknesses 
by utilising a mechatronics system based on 
electroencephalography (EEG) sensors. The 
EEG-based system measures the bioelectrical 
activity of the brain and converts it into information 
about hand movements. The biological activity of 

the brain to command its limb to touch or move an 
object with its limb is called motor imagery [5]. 
EEG sensors offer a high temporal resolution, 
easy to transport [6], and available for monitoring 
the bioelectrical activity of the brain. It also can be 
measured and processed in real-time [7] and are 
not influenced by the use of residual amputation 
traces muscles under the elbow like EMG.  

Researchers have developed several 
EEG-based classification and feature extraction 
methods. Hayashi et al. [8] applied Fast Fourier 
Transform (FFT) and the neural network 
classification method to recognize motor imagery 
patterns. The success rate reaches 80%, but the 
sensors require a cable to connect to a computing 
device [8] during the data extraction and 
processing process. This creates discomfort due 
to restricted mobility and lack of flexibility 
inactivity. Portable EEG was then used to 
overcome the problem. Riyadi et al. [9] conducted 
a study on five classes of movement pattern 
recognition with a portable EEG sensor using 
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beta and gamma waves. The number of 
electrodes used is four channels using a support 
vector machine (SVM). In this study, five classes 
of motor movements could be identified. Subrata 
et al. [10] used a similar method to use the 
combined beta and gamma waves to move a 
class 5 bionic arm. Another study by Hamzah et 
al. [11] used 14-channel electrodes by combining 
the techniques of PSD feature extraction and 
Multilayer Perceptron (MLP) classification. A 
motor imagery accuracy of 86% could be 
achieved with alpha and beta waves to 
differentiate between the two classes. Shedeed et 
al. [12] also carried out a study with a portable 
EEG with 4-channel electrodes. Using the FFT 
feature extraction method and the MLP 
classification method, the motor imagery 
accuracy is 86.7% to distinguish between 3 
classes. Chatterjee et al. [13] conducted a 2-
channel hand-held EEG sensor study. Using the 
multilayer perceptron (MLP) method, the 
accuracy of the results was 85.71% for two 
classes of activity patterns [13]. 

A person's daily activities require a lot of 
exercises, so many activity patterns are required 
in this case. Based on previous research, the FFT 
feature extraction method and the MLP 
classification method can well identify brain 
activity patterns. However, the previous studies 
were limited to two or three classes, insufficient to 
control bionic hands. Therefore, this study 
implemented the FFT feature and MLP for a 
larger class to classify five different hand moves 
and used four electrodes. 
 
METHOD 
Subject 

The data was collected by recording brain 
waves with a Muse headband sensor. The 
recording is done on subjects that have been 
trained in using sensors and in recessed 
conditions. Five subjects were taken EEG signal 
data for the training and testing process. Data 
recording was carried out for a total time of 125 
seconds for five classes.  

The EEG sensor has four electrodes: TP9, 
TP10, AF7, AF8, and one reference, namely 
Fpz. The sensor electrode placement system 
complies with the international 10-20 system 
[14]. The sampling rate sent to each electrode is 
256 Hz/10 bits. Figure 1 shows the location of the 
electrodes. The AF7 electrode is on the left front 
forehead, the AF8 electrode is on the right front 
forehead, the TP9 electrode is behind the left ear, 
the TP10 electrode is behind the right ear, and the 
Fpz electrode is called the reference of the use. 

 
 

Figure 1. Position of the EEG electrodes 
according to international 10-20 system [15]  

 
Electrodes AF8 and AF7 are located at the 

signal measuring point in the frontal lobe, which 
functions for movement planning [16]. The 
electrodes TP10 and TP9 are located in the frontal 
lobe, performing functions, perception, and 
detection [16]. This EEG sensor is equipped with 
Bluetooth, is easy to use and does not interfere 
with movement. 

 
EEG Signal Acquisition 

Based on the large frequency classification, 
the brain has five types of frequency waves, 
namely gamma (30-44 Hz), beta (13-30 Hz), alpha 
(8-13 Hz), theta (4-8 Hz), and Delta frequency 
waves (1-4 Hz) [14][17]. However, since each 
wave occurs under different brain activities, not all 
signals are used. Therefore, only alpha (8-13 Hz) 
and beta (13-30 Hz) signals are used in this study, 
as also suggested in [10].  

A case study from [18] shows that alpha and 
beta signals experience desynchronisation when 
executing real and motor imagery movements. For 
example, alpha and beta generate signals when 
moving left and right hands show an accuracy of 
97.77%. Similarly, alpha and beta signals were 
used in [13] to move left and right, which showed 
an accuracy rate of 85.71%. Therefore, this study 
focuses on alpha and beta signals. The stages of 
the whole system are described in the block 
diagram in Figure 2. 

 
 

 
Figure 2. Block diagram of the system 
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Brain waves from the subject recorded by 
an EEG sensor are sent to the Raspberry pi via 
Bluetooth. The raspberry pi is a mini-computer that 
can perform arithmetic and data acquisition 
processes well and is portable. First, the raw alpha 
and beta signal data are calculated to obtain the 
characteristics and performance of the bandwidth.  

The data collected by the subjects was 
carried out for 15 seconds to imagine the motion 
for each class and 10 seconds of rest breaks. 
Each recording session was carried out with a 
duration of 135 seconds. The data obtained are 
saved in CSV (*.csv) format. The movement 
pattern is determined to be considered a reference 
dataset for a particular feature. The movements 
chosen in this study are the first class of the 
"release" movement, the second class of the "key 
grip" movement, the third class of the "finger point" 
movement, the fourth class of the "precision open" 
movement., the fifth class of the "spoon hold" 
movement. 

The bandwidth calculation is then sent to 
the classification system as a control command. 
After going through the classification process, the 
final results were used to distinguish five classes 
of bionic movements. 

The bionic hand system uses the 
microcontroller as a control centre. The bionic 
hand is manufactured using a 3D printing 
technique with a drive as the main motor and an 
energy source in a battery. The communication 
system between the bionic hand and the raspberry 
pi uses Bluetooth. The Raspberry Pi acts as a 
master controller for processing and classifying 
brain wave signals. 

 
Fast Fourier Transform 

The system's success is inextricably linked 
to the feature recognition pattern, so feature 
extraction is required. Feature extraction is an 
important step in the BCI system to remove 
irrelevant signals from artefacts or noise that 
affect clustering results [19][20]. The EEG signal 
recorded by the EEG sensor contains information 
about time since patterns of brain activity are 
assigned to the time range. Since the recorded 
EEG signal is time-dependent, it must be 
converted to the frequency domain before it is 
extracted. The feature extraction process uses 
the FFT method, which has computational speed 
in changing the signal [21]. The result of feature 
extraction is used to characterise the different 
patterns of the signal [16]. 

The feature extraction process is carried 
out to obtain absolute mean power as input to the 
classification process. Absolute mean power is 

the average value of the results of the FFT 
process in each segment. There are several 
steps to get absolute mean power: frame 
blocking, windowing, FFT, and the final result is 
absolute mean power. 

The frame blocking process using (1) and 
(2). 

 
𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 x 𝑓𝑠  (1) 
 
𝑀 = 𝑁 x 𝑜𝑣𝑒𝑟𝑙𝑎𝑝   (2) 
 

where 𝑁 is the amount of data per frame, 𝑓𝑠 is the 

sampling frequency, and 𝑀 is the overlap in the 
signal. The next stage is the windowing process 
with the hamming type. Hamming windowing 
process using (3) and (4) [9]. 

 

𝑤 (𝑛) =  0.54 −  0.46 cos (
2𝜋𝑛

𝑁−1
) ,  (3) 

0 ≤ 𝑛 ≤ 𝑁 − 1 
 

𝑤 (𝑛) =  𝑦 ∗ 𝑤 (𝑛)      (4) 
 
The next stage is FFT. At this stage, the sample 
frames 𝑁 = 15.360 point in the time domain 
converted into the frequency domain with (5). 
After doing the computation with FFT, it got 𝑘 = 
9.600 feature points. 
 

𝑋(𝑘) = ∑ 𝑥(𝑛). 𝑒−𝑗2𝜋𝑘
𝑛
𝑁

𝑁−1

𝑛=0
 (5) 

 
The last stage is calculating the absolute mean 
power process using (6). 
 

𝑆𝑘 =
1

𝑥
∑ 𝑦(𝑘)

𝑥

𝑛=1

 (6) 

 
where 𝑘 is the FFT index, 𝑥 is the number of 

frames used in each segment, and 𝑦(𝑘) is the 
resulting FFT- 𝑘 to data at the time of frame - 𝑥. 
Then calculate the standard deviation to 
determine whether the sample data represents 
the total amount of data and calculate the 
standard deviation process using (7). 
 

𝛿𝑥 =
1

𝑁 − 1
∑ |𝑋(n + 1) − 𝑋(𝑛)|

𝑁−1

𝑛=1

 (7) 

 
Figure 3 illustrates the raw signal at four 

electrodes to be processed using FFT. Figure 4 
illustrates the result of FFT signal for the beta 
wave in each electrode.  
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Figure 3. The raw signal generated by the beta frequency at four electrodes (time domain) 

 

 
(a)   (b) 

 
(c)   (d) 

Figure 4. The process of calculating the signal with FFT on each channel : (a), AF7 channel, (b) AF8 
channel, (c) TP9 channel, and (d) TP10 channel 

 

 
Figure 5. Multilayer Perceptron with two hidden layers 
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Multilayer Perceptron 
The multilayer perceptron algorithm (MLP) 

is an algorithm that adopts the workings of an 
artificial neural network in the human brain. This 
algorithm is reliable because of its directed 
learning process [11][13]. The training algorithm 
used is feed-forward. MLP uses an activation 
function, where the weighted sum of the input and 
bias is entered into the activation level via the 
transfer function to produce the output, and the 
units are arranged in the feed-forward layer. 

MLP is generally composed of input, 
hidden, and output layers. Input neurons can 
consist of one neuron to several neurons 
depending on each case [12]. The input level 
receives information in the form of the value of a 
variable that affects the learning outcome. Hidden 
layers serve to connect the input layer and the 
output layer. The number of shifts in an MLP can 
be different in each case. This influences the 
probability of success.  

Figure 5 shows the MLP architecture used. 
The MLP architecture consists of 3 input layers, 
two hidden layers, and five output layers. The data 
entered consists of the result of the feature 
extraction process, namely Feature Vector, 
Standard Deviation, and Momentum Unit. Hidden 
layer one totals 50 nodes, hidden layer two totaling 
30 nodes, and output layer totals five neuron 
classifications. Later, each class will be presented 
in a bionic hand movement. Table 1 summaries 
the architecture. 
  The training process aims to find the best 
weight with the smallest error value obtained from 
the desired output target. The 'relu' activation 
function activates the neurons to get the error 
value. The learning rate uses a 'constant' and a 
maximum iteration of 200. The optimisation 
function 'adam' is used in this network to update 
the weights. 

 
Table 1. Multilayer perceptron network 

architecture 
Characteristics Specification 

Number of input layer 3 

Number of hidden layer 1 50 

Number of hidden layer 2 30 

Number of output layer 5 

Activation function Relu 

optimization function Adam 

Max Epoch 200 

Learning Rate 0,2 

 
RESULTS AND DISCUSSION 

This study uses a brainwave classification 
to control a bionic hand with five-class motor 
imagery. A previous study [10] indicates that 
additional movement increases the accuracy of 

the brainwave classification. Therefore, this study 
was conducted with two testing sessions by motor 
imagery without movement and motor imagery 
with additional head movement. 

Each session in this research was 
conducted into two stages, namely the training 
and testing process. The first session of the 
training process was conducted by recording brain 
waves from motor imagery activities. Subjects 
were initially given 10 seconds to prepare, 
followed by 1-second pause, 15 seconds to record 
the pattern, and 10 seconds to rest on each 
pattern recording. The training data was obtained 
from a streaming muse headband EEG sensor 
sent to Raspberry pi via Bluetooth.  

EEG signal extraction feature data from the 
FFT process: Feature Vector, Standard Deviation, 
and Momentum Unit. EEG signal data that has 
been processed using FFT consists of alpha and 
beta signal features. First, the dataset goes 
through the FFT process and has been reviewed 
in other forms. Then the classification process is 
carried out using the MLP method by assuming 
that each variable's attribute is independent. 
Finally, a classification model is created to trigger 
bionic hand control. 

The device is supplied with a tone that 
signals preparation, recording, rest, and end 
during the recording process. The subject is in a 
relaxed sitting position facing a screen during 
each training and test. An icon is displayed on the 
monitor screen that supports the subject during 

training to concentrate better. After completing the 

training process, the monitor shows the 
percentage of successful training units.  

The testing process re-recorded data from 
subject streams using the same headband sensor 
with the same flow of training process. The subject 
must move the bionic hand according to the motor 
imagery pattern during the initial training session. 
This process also applies to the second session, 
which differs only in the addition of head 
movement. 
 The activity patterns that have been 
trained at the beginning represent five classes of 
bionic hand movements, namely: class 1 
"release," class 2 "key grip," class 3 "finger point," 
class 4 "open precision," class 5 "spoon hold". 
Several samples of hand movement are shown in 
Figure 6. The initial movement is the "release" 
before moving to the next one in the testing 
process. This aims to determine whether the 
bionic hand can execute commands and avoid 
collisions between bionic fingers. The release 
movement also makes it easier to position the 
bionic hand with the object to be grabbed. 
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(a) (b)  

Figure 6. (a) The position of the bionic hand for 
"release" movement. (b) The position of the 

bionic hand for the "hold the spoon" movement 
 

Brain activity patterns were predicted and 
divided into five classes using a raspberry pi 
device. After the training session is completed, the 
processing results are shown on the monitor 
board. The tests were carried out by subjects in 10 
tests in each class. The final result of this test is 
determined ten times in each class by the 
command to move the bionic hand. 

Table 2 shows the training and testing 
process for moving bionic hands from five 
classifications. The test accuracy obtained when 
motor imagery without movement is 77.2%, while 
motor imagery with movement is 84.4%. These 

test results are similar to the research conducted 
by [10], which experienced an accuracy 
improvement of up to 20% when the imagery 
motor was combined with movement. From this, it 
can be concluded that imagery alone is not 
enough to get maximum results. However, with the 
addition of movement, the results obtained 
increased, so the imagery motor combined with 
movement is very important and affects the 
success rate of accuracy. 

Research to move the bionic hand of motor 
imagery, five classes, without movement and with 
movement in each class performed by the subject, 
is shown in Figure 7.  

The highest classification test results for 
motor imagery without movement and with 
movement showed that class 1 was highest. In this 
study, grade 1 was implemented with a release 
movement. Because class 1 has a characteristic 
that is much different from other class imagery 
motors, the classification patterns can be 
recognised well. Characteristics of classes with 
similarities make the classification system detect 
many of the same. As class 5 has some 
similarities with class 2, the test results also show 
a similar lower level of accuracy. The feature's 
success influences testing accuracy in 
recognising patterns during the motor imagery 
training process. 

 
 

Table 2. Comparison of accuracy with and without additional head movement 
Subject Accuracy without head movement Accuracy with head movement 

No Gender Age Training Testing Training Testing 

1 male 30 71% 76% 83% 86% 

2 male 27 76% 78% 79% 84% 

3 female 29 72% 76% 78% 80% 

4 male 28 82% 80% 87% 86% 

5 female 21 79% 76% 81% 86% 

average 76.0% 77.2% 81.6% 84.4% 

 

 
Figure 7. Test results of the average accuracy of without movement and with movement in each class 
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The overall system shows good results. A 
similar study using muse headband sensor with 
FFT feature extraction method proved good 
results for five classes [9]. Compared to the study 
[12], which used the same extraction and 
classification methods, they provided an accuracy 
success rate of 86.7% motor imagery of only three 
classes. At the same time, this study for five motor 
imagery classes gave a success rate of accuracy 
of 84.40%. Due to the higher complexity of more 
class classifications in our research, the results of 
the developed system are considered acceptable. 

The results of this study suggest a higher 
presentation than one obtained by P. Yang et al. 
[22]. What distinguishes the two methods used is 
the choice of the activation function and the 
number of recognitions of classification patterns. 
The more pattern recognition is classified, the 
more difficult and complex it is for the system to 
classify them. The studies carried out in [22] in 
which the EEG signal was classified for four motor 
imagery patterns with the activation function' 
softmax' showed an accuracy of 76%. According to 
[23, 24, 25], a hidden layer consisting of 2 or more 
can improve the accuracy of the classification 
system but slow down the training system.  
 
CONCLUSION 

The experimental data shows that the 
brainwave classification system of 5-class motor 
imagery using FFT and MLP methods has run well 
compared to similar studies. The accuracy 
obtained in the testing stage achieved 77.20% 
without additional movement and 84.40% with 
head movement based on alpha and beta waves. 
In this study, it has been found that motor imagery 
with additional head movement as a support of the 
classification system can increase the yield by + 
7%. Overall, the developed system has been 
successfully implemented in bionic hands, which 
is proof of the applicability of the proposed 
method. 
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