
Introducing
Object-Based
Concepts in a
COBOL Course

Gerald P. Marquis

ABSTRACT: while making decisions on curricu­
lum content, many colleges have to resolve the
conflict between teaching the traditional skills
required by future employers of their students,
and teaching new technology. These decisions
are further constrained by the limited number
of courses available for the major. One such
conflict is between teaching COBOL and
teaching Object-Oriented (0-0) techniques.
A reihew of the current literature, both practi­
tioner and academic, clearly indicates that the
teaching of the 0-0 paradigm needs to be in­
cluded within MIS curricula. Two approaches
can be taken: to integrate the teaching of 0-0
concepts into several courses spread across the
curriculum; or to teach a single course covering
the entire 0-0 model. It is suggested that the
more practical approach is to distribute the
teaching of 0-0 concepts across several cours­
es. In particular, the elements of encapsulation
and modularity can be addressed in a begin­
ning course covering the COBOL language.
The paper begins with a literature review and
an explanation of the major elements of the O-
O model. The paper then describes a student
project that was developed to introduce two of
these concepts in a course in COBOL.

KEYWORDS: Object-Based Model, Encapsula­
tion, Modularity, COBOL, IS Curriculum

INTRODUCTION

There is a conflict that many Information
Systems educators face regularly when
contemplating curriculum design and course

content. This clash arises when curriculum de­
signers have to balance the needs of their stu-
dents’ future employers with the IS
department’s desire to include the latest tech­
nology trends in our IS curriculum. In particu­
lar, how do we balance the need to introduce
the concepts of the object-oriented (0-0)
paradigm and the need to teach COBOL as an
entry level skill for future employment? This
paper addresses this issue and relates how the
author has, in part, combined these two de­
sired outcomes into one course.

The next section presents some back­
ground comments and objectives to be con­
sidered in the design of a curriculum for the IS
major. Section three presents a summary of
some of the major concepts found in the 0-0
paradigm. The fourth section is a discussion of
what 0-0 concepts can be taught in a
COBOL course and a general approach on
how to teach these concepts. Section five is a
description of a student project that has been
used to introduce the ideas of encapsulation
and modularity within a COBOL course.

BACKGROUND
As of 1991 there were an estimated seven­

ty billion lines of COBOL code in production
throughout the United States in various firms.
[1] This is a clear indication that a working
knowledge of the COBOL language is a skill
that many potential employers are seeking
when interviewing students for entry level po­
sitions. This is particularly true in major met­
ropolitan areas that have a large installed base
of systems running on mainframe computers.
Thus, for many schools and colleges it is im­
perative to include a course in the COBOL
language in their curriculum.

At the same time, it is known that object-
oriented (0-0) technology is one of the “hot”
current trends. Many firms are also looking for
graduates that have an understanding of this
methodology. Students that also have a firm
foundation in 0-0 concepts will be in a bet­
ter position for securing their first positions
after graduation.

A further indication of the need to include
0-0 topics in the IS curriculum is document­
ed by looking at the current CIS model curric-
ula as presented by the DPMA and the
ACM/IEEE-CS. As pointed out by Gotwals
and Smith, both of these “curriculum develop­
ment groups expect up-to-date CIS curricula
to begin to include coverage of object-orient­
ed aspects of programming, analysis, and de­
sign." [2]

It follows that the 0-0 paradigm should
be included within our curricula. The ques­
tion is how to best accomplish this within the
limited number of courses available in the
typical IS major, while trying to address as
many topics as possible in our exploding disci­
pline. The two approaches that can be taken
are, either to integrate the teaching of 0-0
concepts into several courses spread across the
curriculum, or to teach it all in a single course.
Cain argues that 0-0 terminology “cannot be
neatly packaged into one CIS course.” [3] He
supports the distributed approach over cours­
es like systems analysis, systems design,
COBOL programming, and database. In con­
trast, Rajkumar states that “a possibly better
approach is to teach object-orientation con­
cepts in a separate course.” [4] To this end, he
has described this single course's content to
include basic concepts, programming in C-t-t,
object-oriented analysis (OOA), object-ori­
ented design (OOD), and issues in managing
0-0 technology.

To compound the problem, there is evi­
dence that object-oriented technology is hard­
er to learn than the process-oriented
technology currently, i.e., structured analysis,
structured design, functional decomposition,

148 JOURNAL OF INFORMATION SYSTEMS EOUCATION Winter 1995/96

being taught in most schools. As Fichman and
Kemerer point out, "To be successful with O-
O.. .an adopter must absorb a new lexicon,
new development methods, and new develop­
ment tools.” [5] The 0-0 approach will take
more time to teach to students who are more
familiar with the process-oriented world of
registering for classes or arranging for an inter-
library loan of reference materials. This longer
learning curve is supported by a DATAPRO
examination of 0-0 use in industry that "indi­
cates that OOD [object-oriented develop­
ment] analysis and design is more costly than
Conventional analysis and design.” [6] The ar­
ticle goes on to explain that this additional
Cost is in time and effort during analysis and
design. This suggests that, as Cain presented,
0-0 concepts might best be taught in small
doses across several courses rather than trying
to cover the whole topic in a single course.

Against the background of many years of
teaching, the author advocates the distributed
approach. Experience has shown that it is only
by repetition over a period of time, and across
several courses, that the typical student will
internalize and understand the more complex
topics of our discipline. Each of these repeated
exposures should be in greater depth and de­
tail.

SOME BASICS OF THE 0-0 PARADIGM
To understand the 0-0 paradigm one

niust start with the concept of an object.
Embley et al. describe an object as “a person,
place, or thing... [that] may be physical or

conceptual... an object is a single entity or no­
tion.” [7] An object can be an employee, a
part, a department, a screen, or a window. An
object class "describes a group of objects with
similar properties (attributes], common be­
havior (operations], common relationships to
other objects, and common semantics”. [8]
Thus, an object class is a set of common ob­
jects and an object is an instance of an object
class.

Attributes are data values held by objects
in an object class. The generic name of an at­
tribute is generally included in an object class
representation. For example, the object class
STUDENT may have an attribute AGE, but
the object Jane will have an attribute 21.

Operations and methods both refer to ac­
tions that can be applied to object instances
within a class. "An operation is a function or
transformation that may be applied to or by
objects in a class.” and "A method is the imple­
mentation of an operation for a class.” [9] The
terms method and operation are often used
interchangeably in the literature.

An object class is modeled as a rectangle
divided into three horizontal sections. The top
section contains the name of the object class.
The middle section contains the names of the
attributes of the objects represented by the
class. The bottom section contains the names
of the operations that can be performed on
the objects of the class. Examples of object
class diagrams can be found in
Figure 1.

To operationalize these concepts, a frame­

work is needed to organize the relationships
between object classes. Grady Booch provides
such a conceptual framework by identifying
four major elements of the object model:
Abstraction, Encapsulation, Modularity, and
Hierarchy. [10] To review, “An abstraction de­
notes the essential characteristics of an object
that distinguish it from all other kinds of ob­
jects” [11] and encapsulation is the “packaging
of related data and procedures into objects”
that uses a “technique...called information
hiding.” [12] Modularity refers to "the proper­
ty of a system that has been decomposed into
a set of cohesive and loosely coupled mod­
ules.” [13] And finally, the element of hierar­
chy is defined as "a ranking or ordering of
abstractions.” [14]

The question is, what concepts can be in­
troduced in which courses to lay a foundation
for the understanding of the object model for
the student? In particular, which 0-0 ele­
ments can be introduced in a first course in
COBOL so that professors can begin the task
of guiding the student in the understanding of
the 0-0 model?

WHAT CAN BE TAUGHT IN A COBOL COURSE
Clearly, COBOL is not an object-oriented

language since it does not possess all of the
last four elements enumerated above, and no
attempt is being made here to represent
COBOL as an 0-0 language. In particular,
COBOL does not provide the inheritance,
generalization, or specialization relationships
intrinsic in the hierarchical structure between
abstractions. However, Booch s elements of
encapsulation and modularity can be ad­
dressed in the COBOL language.

Teaching the Encapsulation Concept
The concept of encapsulation can be

demonstrated in COBOL by creating subpro­
grams for each object class; for example, by
developing one subprogram for each file. Each
subprogram contains the file description for
an object class and code for all of the methods
(operations] that will affect the contents of
that file. Or, there could be a subprogram for
each individual screen object and its related
methods. Each subprogram contains separate
routines to accomplish each operation re­
quired on the object class. The details of this
code are contained wholly within each sub­
program and thus each subprogram operates
as a “black box” within the system.

The subprograms are executed with a
CALL statement, which, when appropriate,
passes a field designating the method to be ex­
ecuted in the subprogram; or passes data to be
used by the subprogram; or passes both. This
is the COBOL implementation of message

JOURNAL OF INFORMATION SYSTEMS EDUCATION Winter 1995/96 149

passing from a client object to another object
to cause a method to be executed. This tech­
nique implements the information hiding fea­
ture embodied in encapsulation. The calling
program does not have a copy of the file de­
scription or the screen format; therefore, it has
no knowledge of the structure of the object
class. And, the calling program does not have
knowledge of the algorithms used to imple­
ment the various methods included in the
subprogram.

Teaching the Modularity Concept
The concept of highly cohesive and loosely

coupled modules is not new to programming
and should be a part of every language course.
Modularity can be initially taught in the
COBOL language using small, single func­
tioned paragraphs in the PROCEDURE DIVI­
SION. Most students do not have difficulty
understanding cohesion and coupling after
completion of several projects, and they will
understand the value of reusable paragraphs
within a program. The 0-0 view of a module
as a collection of functions is just an adjust­
ment of size.

In the object model, the module can be
represented as a subprogram that contains the
code to execute each method. An easy way to
isolate the various functions within the mod­
ule (subprogram] is to place the code required
for each method (function] into separate
SECTIONS within the PROCEDURE DIVI­
SION. For example, in the subprogram
PRPC200, all code pertaining to the mainte­
nance of the part-price file is contained in the
MIOOO-MAINTENANCE SECTION of the
subprogram. The subprogram contains one
data structure for the object class that this
module manipulates in the DATA DIVISION,
and that data structure is available to all of the
SECTIONS in the module. By structuring the
subprogram in this manner we have created a
single module encompassing both data and
functions (methods] pertaining to a single ob­
ject class. It is functionally cohesive, contain­
ing all the operations that act upon the object,
and it is loosely coupled since the client object
needs only to CALL the subprogram with the
requested operation (method].

DESCRIPTION OF THE COBOL PROJECT
To introduce these two concepts, a student

project was developed for a course in
COBOL. Since this is generally the student’s
first programming course, the project is kept
quite elementary. The project is centered
around a single class, an indexed part-price
file. This object class is named PART-PRICE in
Figure 1. Objects (instances] of this class can
be thought of as part-price records.

Figure 2; Structure diagram for the PART-PRICE system

MAIN

PROGRAM

PRPCIOO

ADD CHANGE DELETE
ROUTINE ROUTINE ROUTINE

The PART-PRICE module (object class]
has two methods: (1] display of the fields of
an object (an instance] given the part number;
and (2] maintenance of objects in the price
class. Maintenance includes the creation of
new objects (adds], the modification of the
non-key fields of an object (changes], and re­
moval of objects from the part-price class
(deletes].

Three other object classes are introduced
to handle the screen input and output. These
include screens to process the main menu
(PRPCl 10], to display a part-price object
(PRPC210], and to accept a maintenance
transaction (PRPC220]. Each of these are im­
plemented as separate subprograms. The ob­
ject model in Figure 1 shows the relationships
between the four object classes. Each object
class in the diagram includes the class name,
the attributes it uses, and the methods it em­
ploys.

To operationalize this object model one ad­
ditional module is needed, a main program
(PRPCIOO], that controls the top level pro­
cessing of the system and provides the entry
point to begin execution. The system struc­
ture diagram is illustrated in Figure 2. The
modules that operate on object classes are
shown as subprograms (double side bars]. The
two methods in the part-price subprogram
(PRPR200] are shown as separate SECTIONS
of this subprogram selected by the decision in­
dicated in the diamond. The add, change and
delete routines within the maintain method
are again invoked as a result of a decision de­

pending upon the transaction type.
In total, the student project entails one

main program and four subprograms. Each of
these are written and compiled separately and
dynamically linked at run time. The link to ex­
ecute a subprogram is achieved with a CALL
statement in the form: CALL “subprogram­
name” USING data-field(s].

This is the COBOL equivalent to a client
object operating on another object via a mes­
sage with either a method request, or passing
data to the object, or both. A copy of an in­
dexed part-price master file is provided to the
students so they do not have to deal with the
intricacies of the original creation of an in­
dexed file. A copy of the source code for all
programs is in the appendix to this paper.

The Main Program (PRPCIOO)
The Main program for this project provides

the entry point and controls the iteration until
the user terminates the program. This pro­
gram calls the Display Main Menu subpro­
gram to receive the user’s choice of operations
to be performed. This is followed by a call to
the Part-Price subprogram with the method
received from the Display Main Menu sub­
program.

The Display Main Menu Subprogram (PRPCl 10)
The Display Main Menu subprogram dis­

plays a menu and accepts the user’s choice of
operations to be performed. The choices are
to display a price record on the screen, to per­
form price file maintenance, and to quit. The
user request (1, 2, or 3] is translated into a

150
JOURNAL OF INFORMATION SYSTEMS EDUCATION Winter 1995/96

method code (“DISP", “MAINT", or “QUIT “)
Using an EVALUATE statement. This code is
then passed back to the main program.
Clearly, the client program (main program]
has no knowledge of the internal logic of the
Server object (display menu subprogram]
from which it is using resources.

The Part-Price Subprogram (PRPC200)
The Part-Price subprogram is organized

around the indexed part-price file object class.
The DATA DIVISION contains the data
structure for each instance (record] in the
class. The PROCEDURE DIVISION is struc­
tured in three SECTIONS, a control section
and one section each for the display method
and the maintain method.

The first SECTION is a case structure im­
plemented with an EVALUATE statement.
This routine tests the value of the operation
request passed to the subprogram through the
USING clause of the CALL statement.
Depending on the value passed (“DISP “ or
“MAINT”], this segment determines which
other SECTION of the subprogram will be
executed for the requested operation, the
DISPLAY SECTION or the MAINTAIN
SECTION.

The DISPLAY SECTION contains the
code to first display a screen requesting a part
number. Next it reads the part-price file for
the requested part. Third, this routine moves
the file data to data fields to be passed to the
next subprogram. Forth, it calls the subpro­
gram Display Part-Price Screen to display the
information for the requested part passed to it
through the USING clause of the Call state­
ment. Finally, at the end of each iteration,
there is a prompt message asking whether the
user wants to display another part from the
part-price class. The answer to this prompt
then either repeats the actions or terminates
the method and returns control to the client
object (the Main program].

The MAINTAIN SECTION first calls the
Get Part-Price Transaction subprogram to ob­
tain a transaction through the USING clause.
Once the transaction has been returned from
the called subprogram, the method executes
the appropriate code depending upon the
transaction type (method request], add,
change, or delete. After completing this
process, this method allows the user to contin­
ue the maintenance function or terminate, re­
turning control to the client object (the Main
program].

The Display Part-Price Screen Subprogram (PRPC210)
The Display Part-Price Screen subprogram

contains all the code required to display a sin­
gle instance of the Part-Price class. The Part-
Price data is passed to this routine through the

USING clause of the CALL statement. This
code segment simply displays the data for the
requested part number.

The Get Part-Price Transaction Subprogram (PRPC2201
The Get Part-Price Transaction subprogram

first displays a data entry screen for all fields
and accepts the data entered by the user. After
the data are accepted, a prompt for the type
of transaction is displayed; add, change, or
delete. Finally, there is a prompt to allow the
user to correct the data before they are passed
back to the calling subprogram.

CONCLUSION
By including the project described in this

paper in a course in the COBOL language,
students are introduced to two object-based
concepts early in their academic career. The
object model elements developed in this pro­
ject are encapsulation and modularity.
Although COBOL is not now an 0-0 lan­
guage, the ideas of information hiding and
modularity can be demonstrated through the
use of called subprograms. With early intro­
duction to some of the concepts embodied in
the object model, the student will have a firm
foundation to build upon in future courses
that use the 0-0 paradigm. ^4

ACKNOWLEDGEMENTS
The author would like to thank the anony­

mous reviewers for their helpful comments
for improving the manuscript.

REFERENCES
[1J Appleby, Doris, “Classic Languages, Part 2: COBOL,”

BYTE, October 1991, pp. 129-132.

[2] Gotwals, John K., and Mark W. Smith, “Bringing Object-

Oriented Programming into the Undergraduate Computer

Information Systems Curriculum,” Journal of Information

Systems Education, Vol. 5, No. 3, Fall 1993, pp. 2-8.

[3] Cain, William P, Object-Oriented Programming and the

CIS Curriculum,” Journal of Information Systems Education,

Vol. 3, No. 1, Spring 1991, pp. 2-7.

[4] Rajkumar, T. M,, “An Object-Oriented Information

Systems Course,” Journal of Information Systems Education,

Vol. 5, No. 3, Fall 1993, pp. 9-16.

[5] Fichman, Robert G., and Chris F. Kemerer, “Adoption of

Software Engineering Process Innovations: The Case of

Object Orientation,” Sloan Management Revieio, Vol. 34, No.

2, Winter 1993, pp. 7-22.

[6] Teti, Frank, “Object-Oriented Development: A Managerial

Emphasis,” Datapro: Managing Information Technology,

McGraw-Hill, Datapro Information Services Group, Delran,

NJ, 1993.

[7] Embley, David W., Barry D. Kurtz, and Scott N.

Woodfield, Object-Oriented Systems Analysis: A Model-Driven

Approach, Yourdon Press, Englewood Cliffs, NJ, 1992, p. 18.

[8] Rumbaugh, James, et al., Object-Oriented Modeling and

Design, Prentice Hall, Englewood Chfis, NJ, 1991, p. 22.

[9] Ibid., p. 25.

[10] Booch, Grady C., Object Oriented Design with

Application, Benjamin/Cummings, Redwood City, CA, 1991,

p.38.

[11] Ibid., p. 39.

[12] Harmon, Paul and David A. Taylor, Objects in Action:

Commercial Application of Object-Oriented Technologies,

Addison-Wesley, Reading, MA, 1993, p. 3.

[13] Booch, op. cit., p. 52.

]14] Booch, op. cit., p. 54.

APPENDIX
IDENTIFICATION DIVISION
PROGRAM-ID. PRPCIOO.
AUTHOR.

* MAIN PROGRAM FOR THE PART-PRICE SYSTEM

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 OPERATION-REQUEST PIC X(05).

PROCEDURE DIVISION.

1000-MAIN.
PERFORM 2000-PROCESS-ITERATION

UNTIL OPERATION-REQUEST = "QUIT ".
STOP RUN.

2000-PROCESS-ITERATION.
CALL "PRPCllO" USING OPERATION-REQUEST.
IF OPERATION-REQUEST = "QUIT "

NEXT SENTENCE
ELSE

CALL "PRPC200" USING OPERATION-REQUEST.

IDENTIFICATION DIVISION.

PROGRAM-ID. PRPCllO.
AUTHOR.

* THIS SUBPROGRAM CONTROLS THE MAIN MENU OBJECT

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 CONTROL-FIELDS.
05 COMMAND PIC X VALUE SPACE.

88 DISPLAY-P-FILE VALUE "1" .
88 MAINT-P-FILE VALUE -2" .
88 QUIT VALUE "9".
88 VALID-CHOICE VALUE «1« -2" "9

01 SCREEN-DATE.
05 SD-MO
05 SD-SLASH-1
05 SD-DA
05 SD-SLASH-2
05 SD-YR

PIC X(02).
PIC X(01) VALUE "
PIC X(02).
PIC X(01) VALUE
PIC X(02).

01 WORK-DATE.
05 WD-YR PICX(02).
05 WD-MO PICX(02).
05WD-DA PIC X{02) .

LINKAGE SECTION.

01 PASS-DATA.
05 PD-MENU-CHOICE PIC X(05).

PROCEDURE DIVISION USING PASS-DATA.

JOURNAL OF INFORMATION SYSTEMS EDUCATION Winter 1995/96 151

1000-MAIN.
accept work-date FROM DATE.
move WD-MO to SD-MO.
move wd-da to SD-DA.
MOVE WD-YR TO SD-YR.
MOVE SPACE TO COMMAND.
PERFORM 2000-PROCESS-USER-COMMANDS

UNTIL VALID-CHOICE.
EVALUATE TRUE

WHEN COMMAND = " 1'
MOVE "DISP " TO PD-MENU-CHOICE

WHEN COMMAND = "2"
MOVE "MAINT" TO PD-MENU-CHOICE

WHEN COMMAND = "9"
MOVE "QUIT " TO PD-MENU-CHOICE

end-evaluate.

1001-EXIT-PROGRAM.
exit program.

01 WORK-DATE.
05 WD-YR PIC X(02).
05 WD-MO PIC X(02).
05 WD-DA PIC X(02).

01 SCREEN-DATE.
05 SD-MO PIC X(02).
05 SD-SLASH-1 PIC X(01) VALUE "/'
05 SD-DA PIC X{02).
05 SD-SLASH-2 PIC x(0i) VALUE "/'
05 SD-YR PIC X(02).

* DATA FIELDS FOR THE DISPLAY ROUTINE

01 DISPLAY-FIELDS.
05 DF-WHOLESALE-PRICE PICZ,ZZ9.99.
05 DF-RETAIL-PRICE PICZ,ZZ9.99.

2000-PROCESS-USER-COMMANDS.
PERFORM 3000-DISPLAY-MENU.
PERFORM 3100-GET-COMMAND.

3000-DISPLAY-MENU.
DISPLAY SPACES LINE 1 COL 1.
DISPLAY SCREEN-DATE LINE 1 COL 1.
DISPLAY "WALCABA CORPORATION"LINE 1 COL 31.
DISPLAY "PF 1.0" LINE 1 COL 73.
DISPLAY "PRICE FILE MENU" LINE 3 COL 33.
DISPLAY "1 DISPLAY PRICE RECORD ON SCREEN"

LINE 5 COL 25.
DISPLAY "2 PRICE FILE MAINTENANCE"

LINE 7 COL 25
DISPLAY "9 EXIT TO SYSTEM" LINE 9 COL 25

3100-GET-COMMAND.

DISPLAY "ENTER COMMAND CODE" LINE 13 COL 30.
ACCEPT COMMAND LINE 13 COL 55.

IDENTIFICATION DIVISION.

PROGRAM-ID. PRPC200.
AUTHOR.

‘SUBPROGRAM TO PROCESS THE PART-PRICE FILE OBJECT

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PRICE-FILE
ASSIGN TO 'CzXPRICE.LET-

ORGANIZATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY IS PR-PART-NBR.

DATA DIVISION.

FILE SECTION.

FD PRICE-FILE
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRICE-RECORD.

01 PRICE-RECORD.
05 PR-PART-NBR
05 PR-PROD-LINE
05 PR-PART-DESC
05 PR-WHOLESALE-PRICE
05 PR-RETAIL-PRICE

WORKING-STORAGE SECTION.

PIC X(05) .
PIC X(02) .
PIC X(30) .
PIC 9(04)V99.
PIC 9(04)V99.

01 DUMMY

01 CONTROL-FIELDS.
05 ANSWER

88 QUIT
88 DATA-OK

05 MAINT-ANSWER
88 MORE-UPDATES
88 STOP-UPDATES
88 VALID-ANSWER

05 ERROR-FLAG

PIC X(01).

PIC X(01).

VALUE "N" 'n'.
VALUE -Y' -y .

PIC X(01).
VALUE 'Y' 'y',
VALUE 'N* -n'.
VALUE 'Y'' -y 'N' 'n'

PIC X(01).

* DATE CONVERSION FIELDS

* DATA FIELD FOR THE RECORD DISPLAY ROUTINE

01 REQ-PART-NBR PICX(05).

* DATA FIELDS FOR THE PART DISPLAY ROUTINE

01 PART-DATA.
05 PD-PART-NBR
05 PD-PROD-LINE
05 PD-PART-DESC
05 PD-WHOLESALE-PRICE
05 PD-RETAIL-PRICE

PIC X(05).
PIC X(02),
PIC X(30) .
PIC 9(04)V99.
PIC 9(04)V99.

* DATA FIELDS FOR THE FILE MAINTENANCE ROUTINE

01 TRANS-DATA.
05 TD-TRANS-TYPE PIC X(01).

88 NEW-RECORD VALUE "A" "a".
88 CHANGE-RECORD VALUE "C" "c".
88 DELETE-RECORD VALUE "D" "d".
88 VALID-TRAN VALUE "A" "a" "C" "c" "D" "d".

05 TD-PART-NBR PIC X(05).
05 TD-PROD-LINE PIC X(02).
05 TD-PART-DESC PICX{30).
05 TD-WHOLESALE-PRICE PIC9(04)V99.
05 TD-RETAIL-PRICE PIC9(04)V99.

LINKAGE SECTION.

01 METHOD-REQUEST PIC X(05).

PROCEDURE DIVISION USING METHOD-REQUEST.

1000- MAIN.
EVALUATE TRUE

WHEN METHOD-REQUEST = "DISP "
PERFORM DIOOO-DISPLAY

WHEN METHOD-REQUEST = "MAINT"
PERFORM MIOOO-MAINTENANCE

END-EVALUATE.

1001- EXIT-PROGRAM.
EXIT PROGRAM.

DIOOO-DISPLAY SECTION.

DIOOO-DISPLAY-MAIN-CONTROL.
PERFORM D2000-INITIALIZATION.
PERFORM D3000-PROCESS-USER-REQUEST

UNTIL QUIT.
PERFORM D6000-TERMINATION.
GO TO D9000-EXIT.

D2 000-INITIALIZATION.

OPEN I-O PRICE-FILE.
MOVE *Y’ TO ANSWER.
ACCEPT WORK-DATE FROM DATE.
MOVE WD-MO TO SD-MO.
MOVE WD-DA TO SD-DA.
MOVE WD-YR TO SD-YR.

D3 0 0 0-PROCESS-USER-REQUEST.
PERFORM D4000-DISPLAY-REQUEST-SCREEN.
PERFORM D8000-READ-PRICE-FILE.
IF PRICE-RECORD NOT EQUAL TO SPACES

PERFORM D5000-DISPLAY-PRICE-RECORD.

D4000-DISPLAY-REQUEST-SCREEN.
DISPLAY SPACES LINE 1 COL 1.
DISPLAY SCREEN-DATE LINE 1 COL 1.

display "WALCABA CORPORATION'line 1 COL 31.
display "PF 1.2' LINE 1 COL 73.
display "PRICE FILE SYSTEM, DISPLAY A PRICE

RECORD' line 3 COL 20.
display "ENTER PART NUMBER: “LINE 5 COL 05.
accept PR-PART-NBR LINE 5 COL 25.

D5000-DISPLAY-PRICE-RECORD.
MOVE PRICE-RECORD TO PART-DATA.
CALL "PRPC210' USING PART-DATA.
DISPLAY "DISPLAY ANOTHER PART? (Y/N): "

LINE 11 COL 5.
accept answer line 11 COL 40.

D6000-TERMINATION.
CLOSE PRICE-FILE.

D8000-READ-PRICE-FILE.
READ PRICE-FILE

INVALID KEY
MOVE SPACES TO PRICE-RECORD
display "RECORD NOT FOUND * LINE 13 COL 5
display "HIT ENTER TO CONTINUE' LINE 14 COL 5
ACCEPT DUMMY.

D9000-EXIT.
EXIT.

MIOOO-MAINTENANCE SECTION.

MIOOO-MAINTAIN-MAIN-CONTROL.
perform M2000-INITIALIZATION.
PERFORM M3000-PROCESS-MAINT-REQUEST

until STOP-UPDATES.
PERFORM M6000-TERMINATION.
GO TO M9000-EXIT.

M2000-INITIALIZATION.

OPEN I-O PRICE-FILE.
MOVE "N’ TO ERROR-FLAG.
MOVE SPACE TO MAINT-ANSWER.

ACCEPT WORK-DATE FROM DATE.
MOVE WD-MO TO SD-MO.
MOVE WD-DA TO SD-DA.
MOVE WD-YR TO SD-YR.

M3000-PROCESS-MAINT-REQUEST.
CALL ’PRPC220' USING TRANS-DATA.
PERFORM M4000-PROCESS-TRANSACTION.
MOVE SPACE TO MAINT-ANSWER.
PERFORM M5000-GET-CONTINUE-RESPONSE

UNTIL VALID-ANSWER.

M4000-PROCESS-TRANSACTION.
EVALUATE TRUE

WHEN NEW-RECORD
PERFORM M4100-WRITE-NEW-RECORD

WHEN CHANGE-RECORD
PERFORM M4200-CHANGE-RECORD

WHEN DELETE-RECORD
PERFORM M4300-DELETE-RECORD

WHEN OTHER
DISPLAY "INVALID UPDATE CODE’

LINE 12 COL 5
DISPLAY "HIT ENTER TO CONTINUE'"

LINE 13 COL 5
ACCEPT DUMMY

END-EVALUATE.

M4100-WRITE-NEW-RECORD.
MOVE TD-PART-NBR TO PR-PART-NBR.
MOVE TD-PROD-LINETO PR-PROD-LINE.
MOVE TD-PART-DESCTO PR-PART-DESC.
MOVE TD-WHOLESALE-PRICE TO PR-WHOLESALE-
PRICE.
MOVE TD-RETAIL-PRICE TO PR-RETAIL-PRICE
WRITE PRICE-RECORD

INVALID KEY
DISPLAY SPACES LINE 15 COL 5
DISPLAY "RECORD ALREADY EXISTS'
DISPLAY "NEW DATA NOT ENTERED INTO
FILE"
DISPLAY "HIT ENTER TO CONTINUE'"
ACCEPT DUMMY.

M4 2 0 0-CHANGE-RECORD.
MOVE TD-PART-NBR TO PR-PART-NBR.
MOVE "N' TO ERROR-FLAG.
READ PRICE-FILE

152 JOURNAL OF INFORMATION SYSTEMS EOUCATION iVinter 1995/96

INVALID KEY MOVE 'Y* TO ERROR-FLAG.
IF error-flag = "Y"

PROCEDURE DIVISION USING PART-DATA.
1000-MAIN.

05 TD-RETAIL-PRICE PIC 9(04}V99.

DISPLAY "RECORD DOES NOT EXIST IN FILE' PERFORM 2000-INITIALIZATION. PROCEDURE DIVISION USING TRANS-DATA
DISPLAY "HIT ENTER TO CONTINUE ’ PERFORM 3000-DISPLAY-PRICE-RECORD.
ACCEPT DUMMY 1000-MAIN.

ELSE lOOl-EXIT-PROGRAM. PERFORM 2000-INITIALIZATION.
PERFORM M4210-APPLY-CHANGES EXIT PROGRAM. PERFORM lOOO-GET-MAINT-REQUEST.
REWRITE PRICE-RECORD

INVALID KEY DISPLAY "INTERNAL LOGIC ERROR' 2000-INITIALIZATION. lOOl-EXIT-PROGRAM.
DISPLAY "HIT ENTER TO CONTINUE " ACCEPT WORK-DATE FROM DATE. EXIT PROGRAM.
ACCEPT DUMMY. MOVE WD-MO TO SD-MO.

MOVE WD-DA TO SD-DA. 2000-INITIALIZATION.
M4210 - APPLY-CHANGES. MOVE WD-YR TO SD-YR. ACCEPT WORK-DATE FROM DATE

IF TD-PROD-LINE NOT EQUAL SPACES MOVE WD-MO TO SD-MO.
MOVE TD-PROD-LINETO PR-PROD-LINE. 3000-DISPLAY-PRICE-RECORD. MOVE WD-DA TO SD-DA.

W60O0-TERMINATION. * THIS SUBPROGRAM CONTROLS THE TRANSACTION MOVE DF-WHOLESALE-PRICE TO TD-WHOLESALE-PRICE.
CLOSE PRICE-FILE. SCREEN OBJECT MOVE DF-RETAIL-PRICE TO TD-RETAIL-PRICE.

* DISPLAY "ENTER TRANSACTION TYPE (A/C/D): "
M9000-EXIT. ENVIRONMENT DIVISION. LINE 11 COL 5.

EXIT. ACCEPT TD-TRANS-TYPE LINE 11 COL 40.

IF TD-PART-DESC NOT EQUAL SPACES DISPLAY SPACES LINE 1 COL 1. MOVE WD-YR TO SD-YR.
MOVE TD-PART-DESCTO PR-PART-DESC.

IF TD-WHOLESALE-PRICE NOT EQUAL ZERO
MOVE TD-WHOLESALE-PRICE TO PR-WHOLESALE-PRICE.

IF TD-RETAIL-PRICE NOT EQUAL ZERO
MOVE TD-RETAIL-PRICE TO PR-RETAIL-PRICE.

M43 OO-DELETE-RECORD.
MOVE TD-PART-NBR TO PR-PART-NBR.
delete PRICE-FILE RECORD

DISPLAY SCREEN-DATE LINE 1 COL 1.
DISPLAY "WALCABA CORPORATION' LINE 1 COL 31.
DISPLAY "PF 1.2' LINE 1 COL 73.
DISPLAY "PRICE FILE SYSTEM, DISPLAY A PRICE
RECORD' LINE 3 COL 20.
DISPLAY "PART NUMBER: " LINE 5 COL 5.
DISPLAY "PRODUCT LINE CODE: "LINE 5 COL 35.
DISPLAY "PART DESCRIPTION: " LINE 7 COL 5.
DISPLAY "WHOLESALE PRICE: " LINE 9 COL 5.

3000-GET-MAINT-REQUEST.
MOVE "N' TO ANSWER.
MOVE SPACES TO TRANS-DATA.
PERFORM 3100-GET-TRANS

UNTIL DATA-OK.

3100-GET-TRANS.
DISPLAY SPACES LINE 1 COL 1.

INVALID KEY DISPLAY "RECORD NOT PRESENT IN FILE" DISPLAY "RETAIL PRICE:' LINE 9 COL 45. DISPLAY SCREEN-DATE LINE 1 COL 1,
DISPLAY "HIT ENTER TO CONTINUE ' MOVE PR-WHOLESALE-PRICE TO DF-WHOLESALE-PRICE. DISPLAY "WALCABA CORPORATION' LINE 1 COL 31.
ACCEPT DUMMY. MOVE PR-RETAIL-PRICE TO DF-RETAIL-PRICE. DISPLAY "PF 1.1' LINE 1 COL 73

1450 0 0 - GET - CONT INUE - RES PONSE.
DISPLAY PR-PART-NBR LINE 5 COL 27.
DISPLAY PR-PROD-LINE LINE 5 COL 57.

DISPLAY "PRICE FILE TRANSACTION INPUT'
LINE 3 COL 27

display SPACES LINE 1 COL 1. DISPLAY PR-PART-DESC LINE 7 COL 27. DISPLAY "PART NUMBER: " LINE 5 COL 5.
display SCREEN-DATE LINE 1 COL 1. DISPLAY DF-WHOLESALE-PRICE LINE 9 COL 27. DISPLAY "PRODUCT LINE CODE: " LINE 5 COL 35
display "WALCABA CORPORATION' LINE 1 COL 31. DISPLAY DF-RETAIL-PRICE LINE 9 COL 60. DISPLAY "PART DESCRIPTION: " LINE 7 COL 5
display -PF 1.1- LINE 1 COL 73. DISPLAY "WHOLESALE PRICE: " LINE 9 COL 5
display "PRICE FILE TRANSACTION INPUT' -- ----------------.....---------------------------- DISPLAY "RETAIL PRICE:' LINE 9 COL 45

LINE 3 COL 27. IDENTIFICATION DIVISION. ACCEPT TD-PART-NBR LINE 5 COL 27
DISPLAY "MAINTAIN ANOTHER PRICE RECORD? (Y/N)' ACCEPT TD-PROD-LINE LINE 5 COL 57

LINE 5 COL 5. PROGRAM-ID. PRPC220. ACCEPT TD-PART-DESC LINE 7 COL 27
accept MAINT-ANSWER. AUTHOR. ACCEPT DF-WHOLESALE-PRICE LINE 9 COL 27

* ACCEPT DF-RETAIL-PRICE LINE 9 COL 60

DATA DIVISION.

WORKING-STORAGE SECTION.IDENTIFICATION DIVISION.

PROGRAM-ID. PRPC210.
author.
«

* subprogram to CONTROL THE PART DISPLAY
SCREEN OBJECT

HJVIRONMENT DIVISION.

01 CONTROL-FIELDS.
05 ANSWER

88 QUIT
88 DATA-OK

05 DUMMY PIC X.

DATE WORK FIELD'

PIC X(01)
VALUE "N'
VALUE "Y'

"n'.
"y'.

DRTA DIVISION. 01 SCREEN-DATE.
05 SD-MO PIC X(02)

WORKING-STORAGE SECTION. 05 SD-SLASH-1 PIC X(01) VALUE '/'.
* 05 SD-DA PIC X(02)
• DATE CONVERSION FIELDS 05 SD-SLASH-2 PIC X(01) VALUE "/'.
* 05 SD-YR PIC X(02)
0l WORK-DATE.

05 WD-YR PIC X(02) . 01 WORK-DATE.
05 WD-MO PICK(02). 05 WD-YR PIC X(02)
05 WD-DA PICK(02). 05 WD-MO PIC X(02)

05 WD-DA PIC X<02)
01 SCREEN-DATE. *

05 SD-MO PICK(02). * DATA FIELDS FOR THE DISPLAY ROUTINE
05 SD-SLASH-1 PIC X(01) VALUE "/'. •

05 SD-DA PICK(02). 01 DISPLAY-FIELDS.
05 SD-SLASH-2 PIC X(01) VALUE'/'. 05 DF-WHOLESALE- PRICE PIC Z,2Z9.99
05 SD-YR PICK(02). 05 DF-RETAIL-PRICE PIC Z,ZZ9.99

DISPLAY "IS THIS DATA CORRECT? <Y/N> ? "
LINE 13 COL 5.

ACCEPT ANSWER LINE 13 COL 35.

IF NOT VALID-TRAN
DISPLAY "INVALID ACTION CODE, RE-ENTER'

LINE 15 COL 10
DISPLAY "HIT ENTER TO CONTINUE “

LINE 16 COL 10
ACCEPT DUMMY
MOVE "N' TO ANSWER.

Gerald R Marquis
Area of Information Systems and Quantitative Sciences

College of Business Administration

Texas Tech University

Lubbock, TX 79404-2101

(806) 797-0540
e-mail: odmrq@coba2.ttu.edu

Gerald P. Marquis has over 15 years of industrial

experience and over 15 years of teaching experience at the

undergraduate and graduate levels. He is a Ph.D.

candidate at Texas Tech University.

* DATA FIELDS FOR THE DISPLAY ROUTINE

01 DISPLAY-FIELDS.

05 DF-WHOLESALE-PRICE PIC Z,ZZ9.99
05 DF-RETAIL-PRICE PIC Z,ZZ9.99

Linkage section.

01 PART-DATA.

05 PR-PART-NBR PIC X(05) .
05 PR-PROD-LINE PIC X(02) .
05 PR-PART-DESC PIC X(30) .
05 PR-WHOLESALE-PRICE PIC 9(04)V99
05 PR-RETAIL-PRICE PIC 9(04)V99

LINKAGE SECTION.

* DATA FIELDS FOR THE FILE MAINTENANCE ROUTINE

01 TRANS-DATA.
05 TD-TRANS-TYPE

88 NEW-RECORD
88 CHANGE-RECORD
88 DELETE-RECORD
88 VALID-TRAN

"d'.
05 TD-PART-NBR
05 TD-PROD-LINE
05 TD-PART-DESC
05 TD-WHOLESALE-PRICE

PIC X(01).
VALUE "A' "a'.
VALUE "C' 'C'.
VALUE "D' "d'.

VALUE "A' "a' ’C' "c' "D'

PIC X(05).
PIC X{02).
PIC X(30).
PIC 9{04)V99.

JOURNAL OF INFORMATION SYSTEMS EDUCATION Winter 1995/96 153

mailto:odmrq@coba2.ttu.edu

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1995 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

