
68

Heaps Don’t Lie: Countering Unsoundness with Heap
Snapshots

NEVILLE GRECH, University of Athens, Greece and University of Malta, Malta

GEORGE FOURTOUNIS, University of Athens, Greece

ADRIAN FRANCALANZA, University of Malta, Malta

YANNIS SMARAGDAKIS, University of Athens, Greece

Static analyses aspire to explore all possible executions in order to achieve soundness. Yet, in practice, they

fail to capture common dynamic behavior. Enhancing static analyses with dynamic information is a common

pattern, with tools such as Tamiflex. Past approaches, however, miss significant portions of dynamic behavior,

due to native code, unsupported features (e.g., invokedynamic or lambdas in Java), and more. We present

techniques that substantially counteract the unsoundness of a static analysis, with virtually no intrusion

to the analysis logic. Our approach is reified in the HeapDL toolchain and consists in taking whole-heap

snapshots during program execution, that are further enriched to capture significant aspects of dynamic

behavior, regardless of the causes of such behavior. The snapshots are then used as extra inputs to the static

analysis. The approach exhibits both portability and significantly increased coverage. Heap information

under one set of dynamic inputs allows a static analysis to cover many more behaviors under other inputs.

A HeapDL-enhanced static analysis of the DaCapo benchmarks computes 99.5% (median) of the call-graph

edges of unseen dynamic executions (vs. 76.9% for the Tamiflex tool).

CCS Concepts: • Software and its engineering→ General programming languages;

Additional Key Words and Phrases: Program Analysis, Heap Profiling, Soundness, Instrumentation

ACM Reference Format:
Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. 2017. Heaps Don’t Lie:

Countering Unsoundness withHeap Snapshots. Proc. ACMProgram. Lang. 1, OOPSLA, Article 68 (October 2017),
27 pages. https://doi.org/10.1145/3133892

1 INTRODUCTION
Static analysis approaches typically attempt to be over-approximate and cover all possible program

behavior: when there are two possible paths of execution, a static analysis explores both; when

there are many possible values for a variable, a static analysis examines all of them, usually by

employing an abstraction that groups together a large number of concrete values.

Still, practical static analyses routinely suffer from unsoundness [Livshits et al. 2015], by failing

to account for standard dynamic behavior. The causes of this unsoundness are features such as

Authors’ email: me@nevillegrech.com, gfour@di.uoa.gr, adrian.francalanza@um.edu.mt and yannis@smaragd.org.
Authors’ addresses: Neville Grech, Dept. of Informatics, University of Athens, Ilisia, Athens, 15784, Greece , University

of Malta, Malta, me@nevillegrech.com; George Fourtounis, Dept. of Informatics, University of Athens, Ilisia, Athens,

15784, Greece, gfour@di.uoa.gr; Adrian Francalanza, Dept. of Computer Science, University of Malta, Msida, Malta, adrian.

francalanza@um.edu.mt; Yannis Smaragdakis, Dept. of Informatics, University of Athens, Ilisia, Athens, 15784, Greece,

yannis@smaragd.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART68

https://doi.org/10.1145/3133892

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

ar
X

iv
:1

90
5.

02
08

8v
1 

 [
cs

.P
L

] 
 6

 M
ay

 2
01

9

https://doi.org/10.1145/3133892
https://doi.org/10.1145/3133892


68:2 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

reflection, native code, dynamic loading, but also cross-language development (e.g., hybrid Java-

Javascript apps or languages running on top of the JVM and integrating with the Java libraries) and

the engineering complexity of supporting a growing number or more-and-more complex language

features, such as Java’s invokedynamic instruction. The typical modern Java application uses complex

frameworks that integrate external resources (e.g., XML files) with inversion-of-control patterns

that present static analysis frameworks fail to account for.

An approach for coping with the ever-increasing dynamism of realistic programs is to capture

dynamic behavior and encode it as an input for subsequent static analysis. For instance, Hirzel et al.

[2007, 2004] attempt to counter dynamic loading by observing its effects, recording the results, and

re-running the static analysis. The Tamiflex tool [Bodden et al. 2011] records the result of reflective

operations and dynamic loading actions, produces a log as an input to the static analysis, or even

rewrites the program with these sources of dynamic behavior replaced by the exact behavior

observed during the dynamic run.

Although these efforts have pushed the state of the art, they still fall short of capturing many

sources of unsoundness, such as program semantics expressed in different languages (be it Javascript

code for UI elements, or C/C++ code in native libraries) or the lack of support for cutting-edge

language features (e.g., invokedynamic and lambdas). Unsound handling of such features translates

into reduced analysis coverage: the static analysis misses many valid program behaviors.

Our work proposes an approach that compensates for the coverage shortcomings of static

analysis by integrating dynamic information produced from heap dumps: snapshots of dynamic

behavior that record the shape of the heap, the stack shape (i.e., full stack traces) when every object

was created, and more. Heap dumps reflect a substantial portion of the complex dynamic behavior

of a program, regardless of the cause of such behavior: instead of watching what happens at

specific actions (e.g., reflection or dynamic loading operations), a heap dump records the cumulative

semantic effects of program execution in its native setting and complex environment. At the same

time, heap dumps do not miss the ability to capture dynamic actions (e.g., a dynamic call-graph)

since each object (either natively or through heap enricher functionality that we introduce) records

information describing the dynamic context at the time of its allocation.

We implemented our approach in the HeapDL tool for Java programs, on both the JVM and

Android. HeapDL leverages different APIs to produce standard HPROF heap dumps, and processes

them to produce representations of the heap and call graph that static analysis can use. (HeapDL

also produces a packaged version of both the statically available and the dynamically loaded classes

of the program.) We show the benefits of HeapDL by importing its output in standard static analyses

(points-to and call-graph analysis). The result demonstrates the benefits of our approach:

● Heap dumps produce significant increases in analysis coverage, compared to past techniques

that enhance a static analysis with knowledge about dynamic actions (e.g., reflection and

dynamic loading). A static analysis enriched by our HeapDL tool discovers 24% more call-

graph edges and 86% more references between heap objects, compared to the same analysis

enriched by the Tamiflex tool. The benefit is clear in direct comparisons of the predictive

power of each analysis: given the same dynamic input, the HeapDL-enhanced analysis

statically computes 99.5% (median) call-graph edges of dynamic executions under different
inputs, vs. 76.9% for Tamiflex.

● HeapDL heap dumps are better suited for precise integration with static analysis. Our heap

enricher allows the recording of context that is otherwise not readily available. Notably, we

generate context-sensitive information for object-sensitive analyses, of any context depth.

This information can be directly integrated in a static analysis that uses the same context

abstraction.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:3

● Heap dump technology is by nature more portable than dynamic agents that watch specific

program actions. HeapDL supports both JVM and Android dynamic analysis, unlike past tools

(e.g., Tamiflex) that are JVM-only. We argue that this is an inherent difference, rather than an

outcome of current technology trends: it is more likely for a runtime environment to support

snapshots of state rather than arbitrary recording of program actions during execution.

More generally, our approach follows a theme well-established in the literature: the combination

of static and dynamic analysis, so that concrete information can take the place of static abstractions

that are hard or impossible to compute. In this general theme, there are specific elements of our

techniques that are unique, and are largely responsible for the benefits we obtain. These elements

include: (a) the use of heap snapshots with state-of-the-art technology; (b) the enhancing of such

snapshots with extra context information and with objects that would normally not be available; (c)
the packaging of dynamic information for reuse by common whole-program static analyses (such

as points-to analyses or call-graph construction). We next describe our approach with an emphasis

on these unique elements.

2 OVERVIEW OF THE APPROACH
We begin with an overview of the main elements of the HeapDL approach: the overall workflow,

current heap dump technology, and output for integration with static analyses. The discussion in

this section is purposely simplified. In Section 3 we discuss how we enhance the basic scheme.

2.1 Motivation and Main Idea
The HeapDL approach consists of taking snapshots of a running program’s heap and using them to

provide further input for a static analysis. The intent is to uniformly capture the state-changing

effects of hard-to-analyze features. These features include native and other heterogeneous code,

cutting-edge language features, dynamic loading, and more. A modern application crucially depends

on such features, yet static analysis frameworks (such as the Soot infrastructure [Vallée-Rai et al.

1999] or the Doop pointer analysis framework [Bravenboer and Smaragdakis 2009]) have incomplete

support for them. Examples in the Java world include:

● Virtually all modern Java programs have semantics that depend on native code. For in-

stance, atomic operations are essential for high-performance shared-memory parallelism.

Atomic reads and writes on the heap (e.g., to object fields or array entries) are imple-

mented as native Java methods. If the static analysis does not model all of them, it will

miss significant state updates. It is as essential for an analysis to model, e.g., native method

sun.misc.Unsafe.compareAndSwapObject as it is to support plain heap load and store instruc-

tions. Yet doing so is hard. Extra native operations get added in every release of the JDK and

analysis authors typically do not keep up with them. These operations can be much more

numerous than JVM instructions. On a quick count, there are over 6,000 native methods in

OpenJDK 8u60 (vs. under 200 instruction opcodes in the JVM instruction set).

● Most enterprise or mobile Java programs heavily leverage complex frameworks, effectively

becoming heterogeneous applications. For example, an Android app is a complex composition

of UI elements, whose specification is in XML, and Java code. Upon loading, the XML

specification is used to instantiate many graphical components, which can also be referred to

from plain Java code via dynamic lookups (using integer keys). Similar examples of framework

usage abound—in Servlet coding, J2EE applications and more. Java Enterprise frameworks

heavily employ XML specifications, with inversion-of-control patterns used to determine

how plain Java code is invoked. Static analyses attempt to capture the semantics of such

frameworks to the extent possible. E.g., the FlowDroid [Arzt et al. 2014] add-on to the Soot

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:4 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

Context, etc.
(Optional)

Standard
JVM/Android

HeapDL 
heap enricher 

(optional, 
JVM only)

Heap objects 
& references Heap values,

Call graphs
+context, etc.

Application
(apk/jar)

HeapDL analyzer

Whole program
static analyzer

Run              Load

Analyze

dynamic                    
 code                             

Dump

Fig. 1. Design of HeapDL

framework implements basic processing of Android XML layout files. Yet such support is

always vastly incomplete (as will also be apparent in our experimental evaluation) due to the

complexity and ever-changing nature of modern frameworks.

● Even with the limited size of the JVM instruction set, static analyses do not fully support it.

Java 7 introduced a new bytecode opcode, invokedynamic [Rose 2009], together with an API

(for “method handles”) around it, that can offer the programmer the capability to completely

customize dynamic program behavior. The invokedynamic functionality is used to implement

dynamic languages on the JVM and also a growing number of dynamic features of Java (e.g.,

lambdas [Oracle 2014b], string concatenation [Oracle 2017], or generics specialization[Goetz

2016]). To this date, support for invokedynamic in static analysis frameworks has been, at

best, incomplete.

All the above instances result in unsoundness; the static analysis fails to capture actual dynamic

behavior. This unsoundness is quantified as reduced coverage of program behavior. HeapDL com-

pensates by adding dynamic information to static analysis. Semantic effects, captured by the heap

state and dynamic call-graph of the application, are extracted from a heap dump and used to

supplement a static analysis. Figure 1 shows the main components, schematically. HeapDL relies

on profiling capabilities of the target runtime. Both major Java-based platforms, Android and the

JVM, provide multiple memory profiling and heap dumping solutions. With an enriching agent
(Section 3) we can make a heap dump encode even more information that is of direct value to static

analysis.

The dynamic information is output in a form suitable to import in a static analysis. HeapDL

explicitly targets whole-program analyses, rather than local static analyses. It is, for instance,

much better suited for points-to analysis, heap shape analysis, or call-graph construction, rather

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:5

than for symbolic execution or model checking. This is reflected both in the choice of technology

for capturing dynamic information (Section 2.2) and in the packaging of information for reuse

(Section 2.3).

To see how a heap snapshot can counter the effects of unsoundness in static analysis, we can

consider some concrete examples.

Example: external code effects. Consider an Android application, with several Java components

linked together by means of an XML specification. By taking a snapshot of the running application,

HeapDL can capture behaviors that are very hard to follow via static analysis alone. For instance, the

instantiation of UI components and their inter-linking (e.g., a window object contains a reference

to three panels and a slider) will be hard to detect statically, since it is implemented deep in the

Android runtime, in large part in native code. A heap snapshot can inform the static analysis about

the instances of these UI components and their inter-connectivity. In this way, the analysis starts

from a valid initial setup and can cover substantially more code (e.g., by statically analyzing possible

called methods on these components).

Example: better reflection analysis. Even if we focus only on reflection analysis, heap snapshots

can offer advantages compared to merely recording dynamic reflective actions. Consider a program

that holds a large array of k ≈ 1000 class names, initialized so that no static analysis can know

its values (e.g., read from an XML file). These class names can represent different to-be-loaded

components (e.g., plug-ins of a large application). The class names can be used to call methods

via reflection. In a single execution, a small number, e.g., 3, distinct class names are used. Current

state-of-the-art tools for handling reflection, such as Tamiflex, watch dynamic reflective actions and

hence record the calls to the 3 classes’ methods. Therefore, a static analysis enhanced with Tamiflex

output can also analyze the 3 reflective calls. HeapDL takes a heap snapshot, so it can capture all k
members of the array. A static analysis enhanced with HeapDL output and with minimal reflection

logic will analyze all possible calls to all k classes’ methods.

Example: handling extra language features. Consider a static analysis that does not handle the
invokedynamic instruction or its associated method-handles API. Heap snapshots can alleviate the

effects of such unsoundness in two ways. First, a heap snapshot also includes snapshots of dynamic

call graphs, and can, therefore, capture the target of an invokedynamic call. Second, the heap effects

of the method called via invokedynamic are captured in the snapshot. In this way, a static analysis

enhanced with HeapDL input can attain significantly higher coverage of program behaviors that

employ invokedynamic calls.

Generally, heap snapshots can capture complex dynamic behavior that is otherwise invisible to a

static analysis and augment the static analysis with such information.

2.2 Background: Heap Dumps, Allocation Tracking
HeapDL implements a heap dump analyzer that accepts standard HPROF [Oracle 2016a] heap

dumps. Java or Android applications are dynamically executed by running on the unmodified,

standard Java Virtual Machine or Android runtime.

A heap dump is primarily a complete encoding of a program’s heap as a graph, i.e., a snapshot

of all interconnections between heap objects. Heap dumps can contain anything that is loaded

or computed by the application or VM, i.e., not just any normal heap objects constructed by the

application but also primitives, class objects, and strings. This view, however, is too poor to capture

the wealth of information available through heap-dump APIs. In our setting, when we refer to a

heap dump, we mean a heap dump with allocation tracking: each heap object records a full stack

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:6 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

trace of the run-time context at the exact allocation instruction. Allocation tracking has a run-

time cost but is a portable facility, uniformly available in modern heap dump APIs. By leveraging

allocation tracking, a typical heap snapshot also integrates many thousands of stack snapshots, at
earlier points of the execution (i.e., whenever a heap object was allocated). These stack snapshots are

significantly condensed, containing merely call-graph edges (i.e., which instruction called which

method) rather than full stack contents. (In Section 3 we see how we force the collection of even

more stack information, via our enriching agent.) This is, however, highly valuable information

for enhancing the coverage of a static analysis. Compensating for the unsoundness of reflection,

dynamic loading, invokedynamic, inversion-of-control patterns, etc. is majorly facilitated by these

dynamic call-graph snapshots.

2.3 Output Schema
HeapDL accepts as input both the program code and a heap dump. It then distills the heap dump

into input tables for a static analysis, by mapping objects and call-graph elements to abstractions.

These abstractions are derived by consulting the program code. HeapDL then outputs the tables in

standard text form, as comma-separated value files, with appropriately externalized identifiers.

In Figure 2, we present a schema of the domain of tables created by HeapDL for consumption

by a context-insensitive static analyzer. The heap relations generated by HeapDL bridge the gap

between the domain of an application’s state and the domain of static analysis. The relation Ob-

jectFieldValue captures what values an object’s fields can point to, and similar information is

kept for static fields of a class (StaticFieldValue) and arrays (ArrayContentsValue). Call-

GraphEdge captures the dynamic call-graph: every pair of successive stack trace elements forms

an edge. That is, the call-graph is the union of all call-graph edges taken from the (large number

of) stack snapshots collected due to allocation tracking. Notably, we have found that call graphs

constructed in this way are comparable in size and information content with ones created using

explicit instrumentation of calls. (This is perhaps not too surprising: object allocation is frequent

and virtually all meaningful call chains will reach code that causes at least one allocation, possibly

of a temporary object, resulting in the call chain’s capture.) Instrumentation, through Java or native

agents, is a less portable technique than heap snapshots, however—e.g., there is no Android API for

user-defined agents; bytecode rewriting can be used but fails for native code or system classes.

All of the above mappings employ different kinds of abstraction: objects are mapped to abstract

objects, array contents are merged, the union of field-points-to sets (per abstract object) or call-

graph-edge sets (per invocation site) is taken. Our heap object abstractions,O , match those typically

used by whole-program static analysis frameworks, i.e., usually represent allocations sites:

1 ..
2 String [] a = new String [4]; // allocation site
3 Object o = new Object (); // allocation site
4 ..

On the other hand, when statically modeling string constants and class objects, the identity of

these is used as the object abstraction, instead of their allocation site. For instance, the identity

of classes is the fully qualified name (and the classloader if the static analyzer can distincguish

classes with the same name loaded by different classloaders). The identity of strings can also be

their content if the static analyzer is tracking strings for the purpose of static reflection analysis.

To generate dynamically inferred heap relations, HeapDL must first find the right object abstrac-

tions from the heap dump. This is often a best-effort match. HeapDL walks the allocation traces

and uses heuristics to find the most probable frame where the real allocation site is found as a first

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:7

O is a set of object abstractions (e.g., allocation sites) F is a set of fields

T is a set of class types I is a set of instructions

M is a set of methods

ObjectFieldValue(obj : O, field : F, value : O)
StaticFieldValue(class : T, field : F, value : O)
ArrayContentsValue(obj : O, value : O)
CallGraphEdge(invocation: I, method : M)

Reachable(method : M)

Fig. 2. Our domain, for context-insensitive heap relations extracted by HeapDL

approximation. Given this approximation, it tries to then match by type, line number, and other

information. Some of this information is only present in debug information of the bytecode. Since

the line number is not always guaranteed to be present in the application under analysis, matching

is sometimes done just by method descriptor and type. In cases were the actual code is not statically

available, a dummy abstract object allocation site containing the right type information is generated.

This typically happens due to either native code, foreign code, or cutting-edge language features

such as lambda meta-factories that generate transient classes and are incompletely modeled.

With the above schema, the information that HeapDL provides to static analysis is compact and

in line with current static (whole-program) points-to analyses or call-graph construction. A static

analysis typically only needs to import the HeapDL information and consider it as ground facts,

before it starts its own further propagation of values. In general, the integration of HeapDL into

an analysis toolchain is similar to that of past tools, such as Tamiflex: dynamic execution yields

call-graph edges and object references, in an externalized format (comma-separated value files).

An analysis-specific import method subsequently performs a straightforward mapping from the

externalized information to the structures that the analysis uses to represent its own inferences.

Since static analysis is fundamentally over-approximate, small amounts of provided information

(e.g., a few hundred extra call-graph edges or values in object fields that were previously undetected)

are often responsible for making the static analysis compute a much larger number of inferences.

3 ENRICHING HEAPS AND CONTEXT SENSITIVITY
Enriching heaps is a process of strategically making small additions to the state of the application

so that a heap dump maintains more information that we would like to produce as input to a static

analysis. This technique leverages the state-preserving abilities of the profiling toolchain. It also

preserves the actual linking between objects and references of the original state of the application

with that of the additional information.

There are three main ways that the HeapDL context enricher injects additional information into

the state of the application:

● Adding new references within agent code, e.g., during class loading.

● Injecting code into the application to add new references within the application.

● Injecting code into the application to create new objects at strategic program points.

These additions are typically made using instrumentation agents, in Java or in native code, through
standard APIs of the JVM. HeapDL currently only supports heap enriching on the JVM platform,

since Android does not have a standard API for agents.

HeapDL performs heap enrichment for several different purposes, detailed next.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:8 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

1 class ClassData {
2 String name;
3 ClassLoader loader;
4 byte[] bytecode;
5 ...
6 }
7

8 static List <ClassData > classes = new ArrayList <>();
9

10 public byte[] transform(ClassLoader loader , String name ,
11 Class <?> clazz , .., byte[] bytecode) {
12 ...
13 classes.add(new ClassData(loader , name , bytecode));
14 ...
15 }

Fig. 3. Heap enricher example: Enriching heap with bytecode of loaded classes (code).

3.1 Capturing Dynamically Loaded Code
HeapDL captures all dynamically-loaded bytecode and packages it for use by a static analysis. This is

beneficial, since dynamically-loaded classes (including temporary dynamically-generated code—e.g.,

for invokedynamic and other method-handle API support) would not otherwise be available for static

analysis. This general pattern has also been present in past work. For instance, Tamiflex [Bodden

et al. 2011] creates an archive file with loaded classes by instrumenting class-load events via an

agent.

The complication, however, is that a loaded class is not uniquely identified by its name (or

its bytecode, as provided to the loader). In a running JVM, a class’s identity is represented by a

combination of its static identity (i.e., its name, which is an artificial id for internally-generated,

anonymous classes) and its class loader object (an instance of type ClassLoader) [Lindholm et al.

2014, §5.3]. The class loader can arbitrarily transform the loaded bytecode. Therefore, an approach

that records bytecode by capturing the inputs of class-load events (before actual loading has taken

place) is incomplete: the uniquely-identifying version of a class is only available after loading is

complete.

Enriched heap dumps can solve this problem and capture loaded classes together with their

instances on the heap. In a plain, un-enriched, heap dump, objects do not refer to their classes’

bytecode, as this is compiled away by the VM. Instead, we can instrument the code (at the point of

loading classes) to perform a simple addition to the state so that dynamically loaded bytecode is cap-

tured. Figure 3 shows the skeleton—we omit features such as error handling, logging, performance

optimizations, etc. for clarity.

We can see in Figure 3 that capturing the loaded bytecode can be achieved by storing, on line

13, a reference to the ClassLoader, the fully qualified name of the class, and the bytecode used to

create it. With this technique there is no need for extra logic to package the classes. We use this

combination of objects as keys and the structure of the heap dump contains links from class object

references to their bytecode via this key. Additionally, the heap dump contains links from each

instance object to its class object, and with the unique name-loader combination we have the set of

associations shown in Figure 4: from every object, we can get its (dynamic) class and bytecode.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:9

Class clazz
...

ClassLoader

Object Instance
Class clazz

...

Class
String name

ClassLoader loader

...

ClassData
String name

ClassLoader loader

byte[] bytecode

Fig. 4. Heap enricher example: Enriching heap with bytecode of loaded classes.

3.2 Context Sensitivity
Whole-program static analyses often employ context sensitivity to increase precision. Context

sensitivity consists of qualifying all analysis inferences with special “context” entities, so that

different dynamic executions are distinguished. The two main kinds of context sensitivity are

call-site sensitivity [Sharir and Pnueli 1981] and object sensitivity [Milanova et al. 2005], with

several alternatives and mixes proposed (e.g., type sensitivity [Smaragdakis et al. 2011] and hybrid
object-call-site sensitivity [Kastrinis and Smaragdakis 2013]).

It is, therefore, desirable to provide context-sensitivity as an option for HeapDL heap snapshots.

Since HeapDL has full access to dynamic information, it makes sense to preserve at least as much

precision as the static analysis seeks to achieve. This requires a) creating a general infrastructure

to instantiate and manipulate arbitrary context; b) capturing context not usually present in heap

dumps.

Heap dumps with allocation tracking require no extra effort to support call-site sensitive contexts.

In call-site sensitivity, context consists of a tuple of call sites (i.e., invocation instructions) that

identify “callers”. For a call-graph edge, the context of the called method is its caller, the caller’s

caller, and so on, up to a maximum context depth. Similarly, an allocated object’s context is the

caller of the method that allocated it, the caller’s caller, etc. This information is naturally present in

dynamic stack traces, which yield information for relation CallGraphEdge and for every allocated

object on the dynamic heap (via allocation tracking).

In contrast, object sensitivity is not possible to implement from stack traces alone—our enriching

agent has to maintain extra information. Object-sensitive context is a tuple of abstract objects,
representing the receiver object of different calls. For a call-graph edge, the context of the called

method is its receiver (abstract) object, rec; the receiver, rec2, of the method call that allocated rec;
the receiver of the method call that allocated rec2; and so on. Similarly, an allocated object’s context

is the receiver of the method call that allocated it, the receiver of the call that allocated the former

receiver, etc.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:10 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

1  class ObjAndCtx { Object o, ctx; ..}
2
3  class A {
4    void foo() {
5     Node n = new Node();
6     new ObjAndCtx(n, this);
7    }
8  }
9  
10 class B {
11   void bar() {
12     A a = new A();
13     new ObjAndCtx(a, this);
14     a.foo();
15   }
16 }
17 
18 class C {
19   void baz() {
20     B b = new B();
21     b.bar();
22   }
23 }

obj

ObjAndCtx

ctx

Application code + instrumentation

obj

ObjAndCtx

ctx

Fig. 5. Enriching the state with object sensitive heap contexts

Object sensitivity is both valuable in practical analyses and an excellent example of our heap

enriching mechanisms for context sensitivity. We describe its support next, on the two key parts of

heap dump information: context for heap objects and context for methods in a dynamic call-graph.

3.2.1 Storing Heap Contexts on Object Creation. In order to support object sensitivity, HeapDL

maintains extra context information per allocated object. This is done via a class ObjAndCtx that

associates each dynamic object with its allocation context. HeapDL instruments the application

code to allocate instances of ObjAndCtx every time a regular object would be allocated. The HeapDL

heap enricher is implemented as a Java agent that performs load-time structured bytecode trans-

formations. This is by no means the only way to implement such a strategy. Other ways include

native agents, aspect oriented programming with bytecode weaving, and more.

Figure 5 shows a target program with additional instrumentation for object sensitivity. The tuple

structure that represents the heap context of an object appears at Line 1. This is injected into the

classpath of the application and instances of this structure are created on lines 6 and 13. At any

interesting program points where an object is constructed, the instrumentation keeps track of the

receiver of the current method.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:11

1 class EdgeCtx {
2 Object callerCtx , calleeCtx;
3

4 void EdgeCtx(Object calleeCtx) {
5 this.callerCtx = getCallerCtx ();
6 this.calleeCtx = calleeCtx;
7 }
8

9 static void storeCallerCtx(Object o) { ... }
10 static Object getCallerCtx () { ... }
11 }

Fig. 6. Edge Context

Note that, even though one receiver object is kept, object-sensitive context of any depth can

be computed: the receiver object contains a reference to the receiver object of its own allocation

method, etc.

The example shows objects constructed within instance methods. Objects created inside static

methods are handled differently, since these have no receiver object, so the receiver of the caller is

used for the purposes of heap contexts. Every currently active stack frame also keeps track of its

receiver object, not shown in the figure.

HeapDL keeps track of context information only inside application code, to focus on the cases

that require maximum precision, and to avoid errors with the instrumentation of libraries. It also

economizes by not tracking the context of commonplace objects (which is typically not statically

modeled), such as primitive arrays, strings and string buffers.

3.2.2 Storing Calling Contexts for Context-Sensitive Call Graphs. The second piece of information

output by HeapDL that needs to be context-qualified is call-graph edges. Figure 6, shows an

additional simple data structure, EdgeCtx, inserted into the application’s class path and storing the

calling context of a call-graph edge. We can see that each EdgeCtx object contains a reference to the

caller context and the callee context. The storeCallerCtx method is used by the instrumentation

to keep track of the receiver of the caller, which is then used during the creation of the object by

getCallerCtx.

The enriching agent adds code to allocate a new EdgeCtx at every method call. When a new

EdgeCtx object is instantiated, a stack trace is created, as illustrated in Figure 7. In the stack trace,

HeapDL can extract the call-graph edge’s source and target from the 2nd and 3rd elements. In the

case of object sensitivity, as in our earlier discussion, the explicit context pointer is to a single

object, however one can extract context of any depth by following the pointers to the (context)

objects and retrieving their own allocation context.

An interesting observation is that EdgeCtx objects are by themselves a representation of dynamic

call-graph edges, and, indeed, the most precise one. Without EdgeCtx objects, a heap dump has no

representation of a specific dynamic call-graph edge, only of its mapping to source and target pairs,

as found in a stack trace (kept via allocation tracking). Unlike the earlier ObjAndCtx structures,

which give context to dynamic objects (which exist in the heap dump), EdgeCtx instances cannot

be uniquely mapped to other heap dump entities.

3.2.3 Producing Context Sensitive Information for Consumption by Static Analyzers. Figure 8
contains a refined version of the domain and output relations extracted by HeapDL in Figure 2. In

order to show how our output relations are built we need to further distinguish between abstract

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:12 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

0  class A {
1    void foo() {
2     new EdgeCtx(this); // (a)
3     Node n = new Node(); 
4    }
5  }
6  
7  class B {
8   void bar() {
9      A a = new A();
10     new ObjAndCtx(a, this); // (b)
11     EdgeCtx.storeCallerCtx(this);
12     a.foo();
13   }
14 }
15 
16 class C {
17   void baz() {
18     B b = new B();
19     new ObjAndCtx(b, this); // (c)
20     b.bar();
21   }
22 }
23
24 C c = new C();
25 c.baz();

calleeCtx

EdgeCtx (a)

callerCtx

obj

ObjAndCtx (c)

ctx

at EdgeCtx.<init>
at A.foo:2
at B.bar:12
at C.baz:20  

Allocation
Trace

Application code + instrumentation Allocation
Trace (a)

obj

ObjAndCtx (b)

ctx

Fig. 7. Original application code, instrumentation by context heap enricher (underlined), and the depiction of
the interaction between instrumentation heap objects (gray), allocation traces, and original heap objects.

objects, O , i.e., the objects used in the domain of static program analyzers, and concrete objects, L.
These concrete objects are ones that are found inside the heap dump, including allocation-trace

objects. Context-sensitive static analyses have parametric order in their contexts, and the calling

and heap context orders can be different. (An example of this is a 2-object sensitive analysis with

a 1-object sensitive heap context.) In our domain, n andm are the orders of the calling and heap

context respectively.

In heap dumps analyzed by HeapDL, concrete contexts LC are a subset of concrete objects L. Note
how, in earlier examples (Figures 3 and 6), all kinds of dynamic context shown were of type Object.

This is done on purpose: dynamic information maintains full detail until the moment it is packaged

into output relations. Concrete contexts are then abstracted to abstract context components, C .
The process differs, depending on the kind of context sensitivity that is employed. This process is

defined using an abstraction function α . For example, in the case of object sensitivity, the abstraction

function used is the same as the abstraction function used to map any concrete object in L to an

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:13

L Concrete objects

LC ∶ L Concrete context components

C Abstract context components

n ∶ Z+ order of calling context sensitivity

m ∶ Z+ order of heap context sensitivity

CC ∶ ⨉
n C static calling contexts

CO ∶ ⨉
m C static heap contexts

α ∶ LC → C context abstraction function

β ∶ L → LC concrete context component of concrete object

ObjectFieldValue(ctx : Cc , obj : O, field : F, hctx : CO , value : O)
StaticFieldValue(class : T, field : F, hctx : CO , value : O)
ArrayContentsValue(hctxob j : CO , obj : O, hctxval : CO , value : O)
CallGraphEdge(callerCtx: CC , invocation: I, calleeCtx : Cc , method : M)

Reachable(ctx : Cc , method : M)

Fig. 8. Our domain, for context-sensitive heap relations extracted by HeapDL

abstract object in O . In a type-sensitive analysis, the abstraction function would yield the class in

whose code the concrete object got allocated.

Finally, in order to construct higher-order contexts, a function that maps concrete objects to their

contexts β is applied recursively n orm times to get the required number of concrete components

for a calling or heap context respectively. In HeapDL, for an object- or type-sensitive analysis this

mapping is built from the information references found inside ObjAndCtx and EdgeCtx objects.

3.3 Liveness
The instrumentations and additional references, particularly those that capture context information,

tend to force many more objects to remain live (i.e., reachable from GC roots). Although this

negatively affects the performance of the application, it helps to increase the amount of information

that can be extracted for the heap. Therefore, even though the context-sensitive heap enricher is not

suitable to be used on live mission critical systems, it can be used during pre-deployment analysis

of an application with great benefits, even for a context-insensitive analysis. Although during our

experimental evaluation we have not run into memory issues directly due to the heap-context

agent, to minimize the memory impact one can use the number of allocations referenced per

instrumentation point and randomly discard forced-live objects based on a probability computed

by a logarithmic function on the number of allocations.

4 DISCUSSION
Before we evaluate experimentally the impact of the HeapDL approach, it is useful to consider

conceptually its properties, as contrastedwith Tamiflex—a state-of-the-art tool for handling dynamic

language features.

The Tamiflex tool [Bodden et al. 2011] observes different run-time events that pertain to dynamic

language features, notably reflection and dynamic loading. The outcome of such events is recorded,

so that static analysis can take it into account. For instance, a reflective call can be treated as a

regular call with a known target, corresponding to the method observed in the instrumented run.

HeapDL uses heap snapshots that serve a dual purpose: they record both dynamic events as
in the Tamiflex approach (through stack traces kept via allocation tracking), and dynamic state.
When this state is used as input to an over-approximating static analysis, the results can model a

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:14 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

lot more dynamic behaviors than those actually observed during the profiled program run. This

is a fundamental feature of the approach: it captures not-seen behaviors and, as expected in an

over-approximating static analysis, some of them may be spurious.

For a toy example, consider a method that performs a virtual call over a value read from the

heap:

1 void m(X x) {
2 C c = x.f;
3 c.foo();
4 }

An actual program run may observe a call to method m while x.f holds an object of type C1 (a

subtype of C). An approach, such as that of Tamiflex, that watches dynamic events will record the

call-graph edge from m to C1.foo(). However, the field x.f may hold several different values during

the program’s execution. Furthermore, the over-approximating nature of static analysis may infer

that x.f points to several different values during program execution—e.g., even if each concrete

object only holds a unique value in its f field, grouping concrete objects into abstract ones can

yield multiple values for x.f.

Consider a case where, later in the program’s execution, x.f acquires a second value: an instance

of a class C2, also a subtype of C. If a HeapDL snapshot captures that value, the static analysis will

consider it and will yield a call-graph edge from m to C2.foo(). This does not correspond to any

observed program execution and may even be spurious: there is no guarantee that method foo is

ever invoked on that value of x.f.

Therefore, HeapDL can increase the analysis reach: it models more program behaviors than

approaches that only observe dynamic events. At the same time, it is interesting to evaluate whether

the increase in reach is reasonable (and not the result of vast imprecision) as well as whether it

corresponds to an increase in coverage of actual program behaviors.

5 EXPERIMENTAL EVALUATION
In this section we present the results of an experimental evaluation of HeapDL. This evaluation

intends to answer the following research questions:

RQ.A Is HeapDL effective? (1) Does it expose new information that is not currently picked

up through static analysis? (2) What impact does this have on the results of the analysis?

(3) Does this gain also occur when explicit support for reflection is switched on in pointer

analysis? (4) Furthermore, does HeapDL find additional information that a state-of-the-art

runtime analysis system like Tamiflex does not?

RQ.B Is HeapDL efficient? (1) What is the additional dynamic analysis burden (i.e., at program

run time)? (2) How much does the additional information add to the static analysis time?

RQ.C Does HeapDL increase coverage of the analysis, compared to a state-of-the-art runtime

analysis tool?

The size of the call graph, measured by the number of call graph edges, is used as metric in RQ.A
and RQ.B. In addition, we use the heap size as a metric in RQ.A. The heap size is the cumulative size

of relations, ArrayValue, InstanceFieldValue, and StaticFieldValue, as described in Figure 8.

The HeapDL analyzer is implemented
1
as a plain Java application that produces tables in comma-

separated-values format. We used the Doop framework [Bravenboer and Smaragdakis 2009] as

a static analysis that accepts HeapDL input. HeapDL has integrations with two different imple-

mentations of Doop, that use the Soufflé [Jordan et al. 2016] and LogicBlox [Aref et al. 2015]

1
Available online at https://github.com/plast-lab/HeapDL and http://heapdl.nevillegrech.com

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

https://github.com/plast-lab/HeapDL
http://heapdl.nevillegrech.com


Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:15

Datalog dialects, respectively. The integration with Doop so it can import HeapDL information

is minor, consisting of merely importing data and considering them analysis facts. Doop has full

support for complex Java language features, such as class initialization, exceptions, reflection, etc.

In addition, Doop has recently acquired state-of-the-art support for Android applications [Grech

and Smaragdakis 2017]. It specifically models the Android lifecycle, callbacks, GUI components,

etc. Hence, enhancing Doop’s coverage is not trivial. To parse heap snapshots, HeapDL uses a

modified version of JHat [Oracle 2016b], the reference Java heap analysis tool supplied as part of

OpenJDK. The modifications consist of error recovery and the addition of class pool information.

For bytecode engineering, HeapDL’s context heap enricher uses the ASM framework [Bruneton

et al. 2002]—popular for tools that manipulate or analyze Java bytecode.

Our runtimes are established on an idle machine with an Intel Xeon E5-2687W v4 3.00GHz with

up to 512 GB of RAM. For static analysis with Doop, we used the PA-datalog engine, a publicly

available, stripped-down version of the commercial LogicBlox Datalog engine. We proceed in the

next sections with the experiments using popular Android applications, and JVM experiments on

the DaCapo 9.12-Bach benchmark suite [Blackburn et al. 2006].

5.1 Android
The first experiment compares the results of static analysis enhanced with HeapDL output vs.

plain, unenhanced context-insensitive static analysis. We test a diverse set of Android benchmarks,

chosen to be realistic applications: Chrome, Instagram, S Photo Editor, Pinterest, Google Translate,

and Android Terminal Emulator.

We use Android 7.1, since it has support for heap profiling using the same HPROF format as

OpenJDK. We recompiled Android from sources and produced two artifacts: (a) a JAR containing all

bytecode corresponding to the Android Java API and (b) an accompanying Android virtual device

image that can be loaded to the Android emulator. The reason that we generated a custom JAR

for the Android API is that the JAR files that come with the Android SDK are stubs, i.e. they only

contain entry points to the API methods, plus some minimal bytecode. This “full” JAR was given to

the Doop static analysis as the platform JAR and permits the analysis of the app on top of Android.

To dynamically exercise the applications, we ran our benchmarks in the Android emulator with

the UI/Application Exerciser Monkey tool,
2
which generates random input events, to simulate

actual use of each app. We performed at least 1024 random events. For some applications, we

conducted two runs: one to supply log-in credentials manually, and another (after application

shutdown and restart) to run with Monkey. The heap dump was taken at the exact point Monkey

sent the last event. The statistical variability in Android is very low and is eclipsed by other factors

such as the number of random events and user input.

Compared to later experiments, there are a few features of the Android experiment to remember:

(1) the baseline is a static analysis with static support for Android features but with no dynamic

information—later experiments will compare with the Tamiflex tool, which currently is JVM-only;

(2) there is no heap enrichment on the Android platform.

The impact of HeapDL on the static analysis results (call-graph edges and heap size) is shown in

Figures 9 and 10. Every benchmark is run in four configurations: no heap information or reflection

support (base), HeapDL information (+heap), static reflection support (refl), and both reflection

support and HeapDL information (refl+heap). Reflection support is the “classic-reflection” mode of

Doop, which analyzes reflective features and reasons about strings used for reflection purposes.

As can be seen, the increase in all metrics due to the use of heap snapshots is drastic. Many tens

of percent of extra call-graph edges and an equal or larger increase in static heap size occur. The

2
https://developer.android.com/studio/test/monkey.html

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

https://developer.android.com/studio/test/monkey.html


68:16 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

androidterm

chrome

gtranslate

instagram

pinterest

sphotoedit

refl+heap

refl

+heap

base

Call Graph Edges (Android)

85,722

142,266 (+65.96%)

99,506

151,162 (+51.91%)

177,754

260,376 (+46.48%)

213,229

291,296 (+36.61%)

230,636

319,626 (+38.58%)

284,819

368,365 (+29.33%)

253,700

407,742 (+60.72%)

320,435

448,001 (+39.81%)

293,701

475,309 (+61.83%)

481,291

576,462 (+19.77%)

277,043

415,196 (+49.87%)

350,225

480,992 (+37.34%)

0 600,000

Fig. 9. Android benchmarks: number of call-graph edges reported by the static analysis, with and without
HeapDL assistance, with and without static reflection analysis.

androidterm

chrome

gtranslate

instagram

pinterest

sphotoedit

refl+heap

refl

+heap

base

Heapsize (Android)

3,521,937

10,334,595 (+193.43%)

7,539,254

20,638,657 (+173.75%)

35,097,645

54,798,068 (+56.13%)

63,873,198

109,808,628 (+71.92%)

24,481,064

38,083,198 (+55.56%)

58,088,095

80,243,398 (+38.14%)

69,796,619

117,588,227 (+68.47%)

117,365,778

199,347,639 (+69.85%)

80,034,974

127,880,868 (+59.78%)

208,436,340

334,460,340 (+60.46%)

15,572,341

34,922,977 (+124.26%)

55,361,213

101,037,455 (+82.51%)

0 340,000,000

Fig. 10. Android benchmarks: heap size reported by the static analysis, with and without HeapDL assistance,
with and without static reflection analysis.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:17

androidterm

chrome

gtranslate

instagram

pinterest

sphotoedit

refl+heap

refl

+heap

base

Analysis Running Times (Android)

273

475 (+73.99%)

719

1,061 (+47.57%)

686

1,155 (+68.37%)

1,745

3,090 (+77.08%)

802

1,294 (+61.35%)

2,660

4,271 (+60.56%)

1,113

2,372 (+113.12%)

3,227

6,135 (+90.11%)

1,296

2,686 (+107.25%)

6,873

9,711 (+41.29%)

952

1,707 (+79.31%)

2,838

4,946 (+74.28%)

0 10,000

Fig. 11. Analysis times for Android benchmarks.

static analysis reach expands significantly—the static analysis on its own is not enough to discover

this extra information, strongly suggesting unsoundness. Even with static reflection analysis, the

increase with HeapDL input is large. All metrics support the position that HeapDL is effective

(RQ.A1-3). (The Android platform does not easily permit dynamic instrumentation to see if the

extra static analysis results really capture valid dynamic behaviors—our later experiments will

address this.)

Figure 11 shows the running time of the static analysis when enhanced with HeapDL input. The

running time increase (typically in the 60-80% range) is commensurate with the increase in overall

analysis reach. Running times remain realistic, considering how much more code is analyzed (as

evident by the extra call-graph edges) and the overall size of the programs involved—some of the

largest Android apps are included in our benchmark set. This suggests that HeapDL is efficient and

does not burden the static analysis disproportionately (RQ.B2).
Regarding the cost of the dynamic analysis (RQ.B1), interestingly, we did not find a significant

overhead when allocation tracking is turned on in Android. Measuring application start-up, runtime,

shutdown times, and their sum, with and without allocation tracking, we observed a significant

variance (up to % 10) between runs of the same benchmark, but without any strong correlation

with allocation tracking being enabled. This could be due to the interactive nature of most of

the tested applications,
3
or to other overheads of the system. We investigated this topic further

by hand-crafting an Android application that performs no I/O. Under this synthetic scenario we

observed a worst-case 48% overhead of heap snapshots with allocation tracking. It is telling that

we had to resort to a synthetic benchmark to obtain a measurable overhead.

3
We had to set a delay of 2ms in the Monkey tool to avoid losing events. If a mere 2ms interaction time is sufficient to hide

profiling slowdown, it can be well argued that there is no perceptible slowdown in the first place.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:18 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

5.2 JVM Benchmarks: DaCapo
Our second experiment examines the standard DaCapo 2009 Java benchmark suite on the JVM.

4

We omitted a priori the Tomcat and Tradesoap benchmarks, to ease the engineering requirements

on our experimental setup. These benchmarks perform various kinds of I/O, spawn webservers or

other processes and are generally less ameanable to profiling
5
.

This experiment uses as baseline not a plain static analysis (as in the previous section) but an

analysis enhanced with dynamic reflection information, produced by the state-of-the-art Tamiflex

tool. This is a key comparison for HeapDL. Our claim has been that heap snapshots are an excellent

way to compensate for the unsoundness of static analysis, in a more complete way than merely

recording specific program actions (such as reflection calls).

The experiment is conducted with the heap enricher enabled, so that the full dynamic call graph

is registered (using the EdgeCtx objects), however the context information is ignored since the static

analysis is carried out context-insensitively. Also, the enricher for capturing all dynamically loaded

classes (Section 3.1) is not enabled, to avoid clouding the results: that enricher does not affect the

HeapDL performance much on the DaCapo benchmarks and we want all analyses (static+Tamiflex

vs. +HeapDL) to run on the exact same bytecode.

The heap dump is taken on JVM exit. The application is instrumented by the heap-enhancing

agent to persist all relevant objects allocated by the same application. There is negligible statistical

variability in the Dacapo benchmarks, since the harness is deterministic in the way it exercises the

application.

Figures 12 and 13 show the number of call-graph edges and heap size for the benchmarks. The

two bars are for the baseline static analysis (Doop with Tamiflex input) with and without the

HeapDL input. We used the “default” input size of the DaCapo benchmarks for dynamic analysis.

As can be seen, the increase in analysis metrics is substantial, typically at over-20% more call-

graph edges (median: 24%), and even higher for the size of the static heap (median increase: 86%).

The call-graph edge increase is smaller than on the Android setting, exactly as would be expected,

since the Tamiflex input addresses some of the unsoundness of the static analysis. Tamiflex is still

missing many call-graph edges, however. (We note that the increase for the batik benchmark is

an outlier because Tamiflex misses a key call-graph edge with the default input. Surprisingly, it

observes it with the “small” input of the benchmarks. Thus, one should not consider batik to be

representative in terms of soundness, although it is still informative in terms of other metrics.)

Therefore, on RQ.A, the experiment appears to strongly confirm that HeapDL is effective and

improves on the state of the art.

Figure 14 shows that the increase in analysis reach comes with modest increases in static analysis

cost (RQ.B2). (We even see a surprising reduction, for tradebeans. We have not yet managed to

explain this, but it is a repeatable effect. We speculate that it is merely due to the analysis reaching

fixpoint a lot earlier due to the many initial dynamic call-graph edges.)

The extra time taken by static analysis when enhanced with HeapDL inputs is a direct effect of

enhancing the coverage of the analysis. The information exposed by HeapDL makes the analysis

infer more reachable code, which in turn makes the analysis run longer. Indeed, the information

(e.g., all call-graph edges, not just new ones) that the static analysis receives from HeapDL is a

small proportion of the extra information that the static analysis ends up inferring. This can be

seen in Figure 15, which plots the dynamic call-graph edges produced by HeapDL against the

(earlier-reported) call-graph edges inferred by the static analysis with and without HeapDL. As can

4
We used version 1.8u131 of the Oracle JDK.

5
http://sourceforge.net/p/dacapobench/bugs/70/

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

http://sourceforge.net/p/dacapobench/bugs/70/


Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:19

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

+heap

base

Call Graph Edges (DaCapo)

59,713

71,711 (+20.09%)

44,503

157,107 (+253.03%)

251,126

269,976 (+7.51%)

47,165

121,384 (+157.36%)

5,294,937

5,360,521 (+1.24%)

51,180

63,352 (+23.78%)

50,046

61,913 (+23.71%)

60,103

75,573 (+25.74%)

76,924

92,322 (+20.02%)

50,582

79,428 (+57.03%)

65,454

91,435 (+39.69%)

0 300,000

Fig. 12. Call-graph size for DaCapo benchmarks. The figure is truncated for readability.

be seen, the increase in static call-graph edges is typically 3-5x of the dynamic call-graph edges

that HeapDL provides.

On the other hand, the run-time cost (RQ.B1) is much higher than on the Android platform. We

have found that JVM-profiling with allocation tracking on the DaCapo benchmarks incurs a 20-50x

slowdown (median: 39x). This slowdown is incurred for a standard configuration of a reference

profiler tool, so it is in line with overheads that programmers observe during realistic profiling

tasks. Our optional heap enriching agent compounds this cost with a further 1.1-10x slowdown

(median: 1.8x), for a total slowdown that can approach two-to-three orders of magnitude!

Thus, currently HeapDL pays a performance penalty on the dynamic execution in order to yield

inputs for enhanced static analysis. We expect that this cost is acceptable in the majority of cases.

Dynamic instrumentation often incurs high costs on high-performance platforms and the overhead

does not prohibit the actual execution of realistic programs, when the stakes are as high as static

(i.e., all-input) analysis coverage.

We investigated tuning options in order to minimize the profiling overhead. With a bounded

depth of 6 for captured stack traces, the analysis results are nearly identical to those reported

in our full experiments, yet the overhead of HPROF profiling drops to a median of 21x (instead

of 39x). For future development, there are several alternative profiler implementations that can

potentially yield lower overheads. These include the HPROF agent of the IBM JDK [IBM 2017], the

YourKit profiler [YourKit 2017], the Java Flight Recorder [Oracle 2014a], and the Java VisualVM

profiler [Oracle 2016c]. It is a strength of the approach that profiling is done externally, by third-party

tools.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:20 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

+heap

base

Heapsize (DaCapo)

251,146

410,288 (+63.37%)

115,719

2,172,170 (+1777.11%)

6,179,818

7,944,698 (+28.56%)

126,024

555,824 (+341.05%)

9,924,568

20,506,123 (+106.62%)

135,694

252,939 (+86.40%)

139,045

248,916 (+79.02%)

199,082

452,510 (+127.30%)

273,604

506,375 (+85.08%)

154,818

952,352 (+515.14%)

278,000

599,105 (+115.51%)

0 2,200,000

Fig. 13. Heap size for DaCapo benchmarks. The figure is truncated for readability.

5.3 Quantifying Coverage Increase
A highly meaningful test for mechanisms that enhance the coverage of an analysis is to measure

their ability to anticipate unseen behaviors. We saw in Figure 12 that HeapDL enhances a static

analysis to explore a lot more call-graph edges. But does this translate into improved coverage of

behaviors that truly arise?

In order to measure the coverage increase (RQ.C) that HeapDL enables, we compare the recall

of the dynamic call-graph edges for DaCapo executions under the “default” input size, when the
static analysis has only seen the dynamic behavior of the “small” input size. That is, we first run the

benchmarks with the “small” workload (for both the Tamiflex tool and HeapDL). This run serves

to produce inputs for the static analysis, which analyzes the program and produces a static call

graph. We then examine the recall of this static call graph, against the dynamic call graph arising

for an execution with the “default” benchmark input.
6
The setup of the experiment is otherwise

identical as in the earlier DaCapo benchmark experiment, i.e., we do not enable the enricher for

dynamically-loaded code, so that both Tamiflex and HeapDL operate on the same bytecode.

Figure 16 shows the results of the recall comparison. As can be seen, HeapDL results in a

significant increase in call-graph edge recall: the static analysis successfully infers almost all of

the dynamic call-graph edges in the “default” execution, which it has never seen. In contrast,

the Tamiflex techniques alone are not enough to achieve similar coverage: more than 20% of the

dynamic call-graph edges from differnt runs are missed. The median recall for the baseline (static

6
We sought to perform the same experiment with the “default” vs. “large” DaCapo inputs, but this is not available for the

full set of benchmarks, and others fail for the supplied “large” input, without any instrumentation.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:21

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

+heap

base

Analysis Running Times (DaCapo)

136

160 (+17.65%)

155

347 (+123.87%)

579

730 (+26.08%)

120

176 (+46.67%)

6,346

7,365 (+16.06%)

75

95 (+26.67%)

72

93 (+29.17%)

130

165 (+26.92%)

142

165 (+16.20%)

168

128 (−23.81%)

191

215 (+12.57%)

0 800

Fig. 14. Analysis times for DaCapo benchmarks. The figure is truncated for readability.

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

Dynamic Call Graph (default)

Call Graph w/ heap snapshot (default)

Call Graph (default)

Static + Dynamic Call Graph Sizes

59,713
71,711

4,142

44,503
157,107

11,585

251,126
269,976

12,151

47,165
121,384

4,790

5,294,937
5,360,521

6,792

51,180
63,352

3,452

50,046
61,913

2,242

60,103
75,573

5,453

76,924
92,322

4,047

50,582
79,428

6,465

65,454
91,435

4,160

0 300,000

Fig. 15. Dynamic call-graph edges vs. increase in static call-graph edges. The figure is truncated for readability.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:22 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

avrora

batik

eclipse

h2

jython

luindex

lusearch

pmd

sunflow

tradebeans

xalan

Recall w/ heap snapshot (small)

Recall (small)

Recall

0.8373

0.9973

0.5906

0.9897

0.8525

0.9625

0.4969

0.9962

0.8323

0.9452

0.7419

0.9589

0.7186

0.9955

0.8115

0.9949

0.7952

0.9960

0.5203

0.9886

0.7329

0.9976

0 1

Fig. 16. Coverage/Recall for DaCapo benchmarks.

analysis + Tamiflex input) is 76.9%, while it rises to 99.5% when HeapDL input is added. Thus, the

experiment suggests that the answer to RQ.C is affirmative: HeapDL increases coverage of actual

program behavior, compared to a state-of-the-art tool.

5.4 Discussion
Although we have not quantitatively classified the sources of unsoundness in our experiments, we

can share qualitative insights from a manual inspection effort. Furthermore, we also show that the

additional coverage gained by using HeapDL directly translates to benefits in client analyses.

5.4.1 Unsoundness in Static Analysis. Many of the dynamic edges missed by the static analysis

relate to low-level code. This code, however, often translates into unsoundness when analyzing the

application itself. Our earlier figures 12, 13, and 16 have 4 outliers among the DaCapo benchmarks:

batik, h2, tradebeans, and xalan. All four show significant increase in the amount of application code

found to be reachable by the analysis. Without HeapDL input, the static analysis often discovered

less than 10% of the code of these benchmarks to be reachable. On the tradebeans benchmark, a

substantial part of the edges that are missed involve typical web server functionality, e.g., encryption,

security, command-line parsing, etc.

An interesting observation is that the DaCapo benchmarks are older, so they do not use the

invokedynamic instruction (used, e.g., in the translation of lambda expressions). However, when

analyzed in conjunction with a Java 8 library, such instructions arise: the benchmarks generate

anonymous classes to be called via invokedynamic due to the automatic “SAM conversion”. In

new JDKs, all single-abstract-method (SAM) types see invocations of their methods transformed

into invokedynamic calls [Goetz 2010; Oracle 2014b]. We have observed this arise in at least three

DaCapo benchmarks. Heap snapshots successfully compensate for this semantic omission.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:23

In the Android setting, an example of what we gain from heap data is the discovery of many call

graph edges to the graphical subsystem. Apps in Android set up their user interface using a “layout

inflater”, which uses reflection via external XML files to set up the GUI elements of the app. We

found that such code is hostile to classic static analysis (even with reflection analysis or Tamiflex

information).

5.4.2 Benefits for Client Analyses. HeapDL’s effect of enhancing the call graph and reachable

method coverage of static analyzers directly translates to benefits for most conceivable client

analyses. For instance, for the Instagram application on Android, a static taint analyzer [Grech

and Smaragdakis 2017] flags 2.6x more suspicious information flows when enhanced with HeapDL

input. This is a higher-than-proportional increase in possible vulnerabilities flagged, relative to the

metrics of Figures 9 and 10 on Instagram (1.6x call-graph edges, 1.7x heap size increase).

This effect is hardly surprising. At a high level, a larger coverage of reachable methods by a static

analysis can easily translate into a larger number of vulnerabilities detected, e.g., vulnerabilities

may lurk in the code that is not covered by the client analysis. At a more detailed level, a larger

coverage of call-graph edges yields substantial increase in the behaviors covered by considering

more combinations of events. For instance, in a taint analyzer, a taint source, sink, or taint transfer

method is often represented as a method invocation. If the underlying analysis builds a larger,

more representative call graph, the numbers of all three elements (sources, sinks, and taint transfer

methods) will increase. Since an information flow consists of combinations of such events, the

increase will be magnified.

6 RELATEDWORK
The general pattern of adding dynamic analysis information to address cases that are hard for static

analysis has a time-honored past, with approaches such as dynamic symbolic execution [Godefroid

et al. 2005; Sen et al. 2005] and environment models in model checking. For example Mercer

and Jones [2005] present a model checking approach that uses the GNU debugger to establish

cycle-accurate effects of the compiled program elements under different backends and processors.

What distinguishes our approach is the use of heap snapshots with allocation tracking, as well as

the emphasis on the information (e.g., dynamically-loaded code, object-sensitive contexts) that is

particularly valuable for a whole-program static analysis.

Li et al. [2017] show how to combine dynamic symbolic execution with subtype polymorphism

in Java to resolve the targets of method invocations. Their approach improves soundness relative

to plain dynamic symbolic execution but does not address the soundness issues relative to native

code, heterogeneous applications, or invokedynamic.

Hirzel et al. [2004] show one of the first works that consider runtime monitoring so as to

obtain information for state-of-the-art Java program analysis techniques. Concretely, they extend

Andersen’s pointer analysis algorithm to an online setting, which enables it to handle dynamic class

loading, reflection and native code (through the disciplined JNI interface). The system observes

such events and re-runs the analysis with these observations taken into account. The approach is

conceptually closely related to ours, since it targets the same kinds of analyses (whole-program

points-to and call-graph). However, the Hirzel et al. approach is quite different in its characteristics:

it requires full control of the runtime environment; it applies only to analyses that are inexpensive

enough to re-run regularly; it does not separate the dynamic information from the static analysis; it

relies on capturing events and not effects (e.g., it will not intercept low-level heap updates through

unsafe APIs).

Dynamic class loading with reflection is a hard problem for static analysis: Landman et al. [2017]

note that there are still soundness problems in the handling of dynamic proxies or reflection,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



68:24 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

even with state-of-the-art techniques. Our approach partly addresses the shortcomings of these

past techniques by using run-time heap information to detect behaviors that would otherwise be

missed. There are also techniques that attempt to statically analyze either dynamic class loading or

reflection. For example, Yoshiura and Wei [2014] do static data race detection in the presence of

dynamic class loading (an analysis that is not fully automatic as it requires manual handling of

loops) and Li et al. [2015] improve the static handling of reflection, but do not fully handle native

methods, invokedynamic, or heterogeneous code.

Inspecting a program’s state prior to static analysis is a strategy sometimes employed by hybrid

static analysers for dynamically typed languages. For instance, RPython [Ancona et al. 2007] lazily

inspects most of the global state, and combines dynamic and static type information to perform a

flow-sensitive type inference, before generating optimized code. A similar implementation strategy

is used in preemptive type checking [Grech et al. 2013]. On the other hand, the use of profiling on

hard to analyse features is used in PRuby [Furr et al. 2009], particularly on Ruby’s eval and other

unsafe functions to infer possible side effects of these.

The Tamiflex tool [Bodden et al. 2011] (extensively discussed earlier) employs a ‘Play-out’ agent to
log runtime reflective calls and classes loaded via custom class loaders or on-the-fly code generation.

A secondary tool component called the ’Booster’ then enriches the respective classes, at the point

where the reflective calls are made, by inserting regular method calls that materialize the reflective

calls, thus making them detectable by standard static analyzers. The Booster component also

instruments runtime checks that warn the user when the analyzed program executes reflective

calls that were not executed in the previous runs (and may, thus, be a source of unsoundness). The

Tamiflex toolchain also provides support for inserting offline-transformed classes into a running

program via a ‘Play-in’ agent. All such functionality would be interesting to incorporate in the

HeapDL tool in the future.

Our approach is certainly not the first to recognize the high value of heap snapshots. Specifically

in Java, there have been several research uses of HPROF data—e.g., most directly for different kinds

of heap visualization [Aftandilian et al. 2010; Reiss 2009]. Other dynamic analyses use heap profiling

data to check aliasing properties [Potanin et al. 2004], analyze synchronization performance [Hofer

et al. 2015], generate software birthmarks [Chan et al. 2011], or diagnose memory leaks [Maxwell

et al. 2010].

The problem of static analysis unsoundness is particularly acute for Android frameworks, since

they make heavy use of reflection. Droidel [Blackshear et al. 2015] simulates some uses of reflection

in Android and replaces reflective behavior with static calls to generated code (stubs); these can

then be processed using off-the-shelf analysis tools for Android apps (e.g., Soot and WALA [Fink

2015]) that would otherwise miss these call-graph edges. Their approach is however not fully
automated and requires manual code instrumentation for explicating reflection. In HybriDroid [Lee

et al. 2016], dynamic analysis is not employed to model the effects of foreign code. Instead, the

interaction between Android and JavaScript code is handled explicitly. This means that standard

WebView browser component events are explicitly modeled and JavaScript code running in this is

analyzed together with the application.

Zhauniarovich et al. [2015] observe that an “extensive amount of Android apps relies on dynamic
code update features” and offer a combination of static and dynamic approaches for security analyses

on Android. In particular, the dynamic part of their approach is using a modified Android operating

system that runs the application to be analyzed. In comparison, our work differs in that it is non-

intrusive. We do not need a modified version of Android to take heap snapshots (although we built

a platform image from scratch to have a tightly controlled environment for benchmarks in this

paper).

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.



Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:25

7 CONCLUSIONS
We presented an approach to enhancing the coverage of a static analysis by employing dynamic

information. Although the general pattern for such an enhancement is well-established, our tech-

niques are interesting in their specifics. We use modern heap-snapshot and allocation-tracking

technology provided by profiling APIs in mainstream platforms; we export dynamic information

in a format suitable for whole-program static analysis, such as call-graph analysis and pointer

analysis of a global heap; we enrich the heap for various purposes, including maintaining context

information that the static analysis expects. Our approach is embodied in the HeapDL tool, which

we show can achieve significant increases in analysis coverage, compared to the closest baselines.

We believe that heap snapshots are the right tool for addressing unsoundness shortcomings of

static analyses. Heap snapshots offer the enormous advantage of being non-intrusive: there is no

need to instrument code (except for purposes of getting optional extra information, as in heap

enrichment) or, generally, to watch for specific program actions. Instead, a wealth of information on

a program’s behavior is readily available by observing the effects of the program on the heap and

snapshot call-graphs. Such program effects can capture semantic elements of even the hardest-to-

analyze code: native actions, dynamically generated code, and all sorts of unsupported functionality.

ACKNOWLEDGMENTS
We gratefully acknowledge funding by the European Research Council, grant 307334 (SPADE). In

addition, the research work disclosed is partially funded by the REACH HIGH Scholars Program –

Post-Doctoral Grants. The grant is part-financed by the European Union, Operational Program II,

Cohesion Policy 2014-2020 (Investing in human capital to create more opportunities and promote

the wellbeing of society - European Social Fund).

REFERENCES
Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Heapviz:

Interactive Heap Visualization for Program Understanding and Debugging. In Proceedings of the 5th International
Symposium on Software Visualization (SOFTVIS ’10). ACM, New York, NY, USA, 53–62. DOI:http://dx.doi.org/10.1145/
1879211.1879222

Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. 2007. RPython: A Step Towards Reconciling

Dynamically and Statically Typed OO Languages. In Proceedings of the 2007 Symposium on Dynamic Languages (DLS ’07).
ACM, New York, NY, USA, 53–64. DOI:http://dx.doi.org/10.1145/1297081.1297091

Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and

Geoffrey Washburn. 2015. Design and Implementation of the LogicBlox System. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1371–1382. DOI:
http://dx.doi.org/10.1145/2723372.2742796

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 259–269. DOI:http://dx.doi.org/10.1145/2594291.2594299

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.

2006. The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA ’06). ACM, New

York, NY, USA, 169–190. DOI:http://dx.doi.org/10.1145/1167473.1167488
Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. 2015. Droidel: A General Approach to Android Framework

Modeling. In Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis (SOAP
2015). ACM, New York, NY, USA, 19–25. DOI:http://dx.doi.org/10.1145/2771284.2771288

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis

in the presence of reflection and custom class loaders. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). ACM, New York, NY, USA, 241–250. DOI:http://dx.doi.org/10.1145/1985793.1985827

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

http://dx.doi.org/10.1145/1879211.1879222
http://dx.doi.org/10.1145/1879211.1879222
http://dx.doi.org/10.1145/1297081.1297091
http://dx.doi.org/10.1145/2723372.2742796
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/2771284.2771288
http://dx.doi.org/10.1145/1985793.1985827


68:26 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’09). ACM, New York, NY, USA, 243–261. DOI:http://dx.doi.org/10.1145/1640089.1640108

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manipulation tool to implement adaptable systems.

Adaptable and extensible component systems 30, 19 (2002).
Patrick P. F. Chan, Lucas C. K. Hui, and S. M. Yiu. 2011. Dynamic Software Birthmark for Java Based on Heap Memory

Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 94–107. DOI:http://dx.doi.org/10.1007/978-3-642-24712-5_8
Stephen J. Fink. 2015. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net. (2015).

Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. 2009. Profile-guided Static Typing for Dynamic Scripting

Languages. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). ACM, New York, NY, USA, 283–300. DOI:http://dx.doi.org/10.1145/1640089.1640110

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’05). ACM, New York, NY,

USA, 213–223. DOI:http://dx.doi.org/10.1145/1065010.1065036
Brian Goetz. 2010. One VM, Many Languages. https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_

OneVMManyLanguages.pdf. (2010).

Brian Goetz. 2016. Project Valhalla Update. http://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf. (August

2016). JVM Language Summit.

Neville Grech, Julian Rathke, and Bernd Fischer. 2013. Preemptive Type Checking in Dynamically Typed Languages. In

Proceedings of the 10th International Colloquium on Theoretical Aspects of Computing (Lecture Notes in Computer Science),
Vol. 8049. Springer, 195–212. DOI:http://dx.doi.org/10.1007/978-3-642-39718-9_12

Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint Analysis. Proceedings of the ACM on
Programming Languages 1, OOPSLA (October 2017). DOI:http://dx.doi.org/10.1145/3133926

Martin Hirzel, Daniel Von Dincklage, Amer Diwan, and Michael Hind. 2007. Fast Online Pointer Analysis. ACM Transactions
on Programming Languages and Systems 29, 2, Article 11 (April 2007), 55 pages. DOI:http://dx.doi.org/10.1145/1216374.
1216379

Martin Hirzel, Amer Diwan, and Michael Hind. 2004. Pointer Analysis in the Presence of Dynamic Class Loading. In

Proceedings of the 18th European Conference on Object-Oriented Programming (ECOOP ’04). Springer Berlin Heidelberg,

Berlin, Heidelberg, 96–122. DOI:http://dx.doi.org/10.1007/978-3-540-24851-4_5
Peter Hofer, David Gnedt, and Hanspeter Mössenböck. 2015. Efficient Dynamic Analysis of the Synchronization Performance

of Java Applications. In Proceedings of the 13th International Workshop on Dynamic Analysis (WODA 2015). ACM, New

York, NY, USA, 14–18. DOI:http://dx.doi.org/10.1145/2823363.2823367
IBM. 2017. Using the HPROF Profiler. https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.

80.doc/diag/tools/hprof.html. (2017).

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis of Program Analyzers. Springer International
Publishing, Cham, 422–430. DOI:http://dx.doi.org/10.1007/978-3-319-41540-6_23

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity for Points-To Analysis. In Proceedings of the
2013 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY,

USA, 423–434. DOI:http://dx.doi.org/10.1145/2491956.2462191
Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for Static Analysis of Java Reflection – Literature

Review and Empirical Study. In Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017.

Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: Static Analysis Framework for Android Hybrid Applications.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016). ACM, New

York, NY, USA, 250–261. DOI:http://dx.doi.org/10.1145/2970276.2970368
Lian Li, Yi Lu, and Jingling Xue. 2017. Dynamic Symbolic Execution for Polymorphism. In Proceedings of the 26th International

Conference on Compiler Construction (CC 2017). ACM, New York, NY, USA, 120–130. DOI:http://dx.doi.org/10.1145/
3033019.3033029

Yue Li, Tian Tan, and Jingling Xue. 2015. Effective Soundness-Guided Reflection Analysis. Springer Berlin Heidelberg, Berlin,

Heidelberg, 162–180. DOI:http://dx.doi.org/10.1007/978-3-662-48288-9_10
Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java Virtual Machine Specification, Java SE 8 Edition.

(2014).

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z.

Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto.

Commun. ACM 58, 2 (Jan. 2015), 44–46. DOI:http://dx.doi.org/10.1145/2644805
Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing Memory Leaks Using Graph Mining on Heap

Dumps. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/10.1007/978-3-642-24712-5_8
http://wala.sourceforge.net
http://dx.doi.org/10.1145/1640089.1640110
http://dx.doi.org/10.1145/1065010.1065036
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
http://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf
http://dx.doi.org/10.1007/978-3-642-39718-9_12
http://dx.doi.org/10.1145/3133926
http://dx.doi.org/10.1145/1216374.1216379
http://dx.doi.org/10.1145/1216374.1216379
http://dx.doi.org/10.1007/978-3-540-24851-4_5
http://dx.doi.org/10.1145/2823363.2823367
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/hprof.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/tools/hprof.html
http://dx.doi.org/10.1007/978-3-319-41540-6_23
http://dx.doi.org/10.1145/2491956.2462191
http://dx.doi.org/10.1145/2970276.2970368
http://dx.doi.org/10.1145/3033019.3033029
http://dx.doi.org/10.1145/3033019.3033029
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1145/2644805


Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots 68:27

’10). ACM, New York, NY, USA, 115–124. DOI:http://dx.doi.org/10.1145/1835804.1835822
Eric Mercer and Michael Jones. 2005. Model Checking Machine Code with the GNU Debugger. In Proceedings of the

12th International Conference on Model Checking Software (SPIN’05). Springer-Verlag, Berlin, Heidelberg, 251–265. DOI:
http://dx.doi.org/10.1007/11537328_20

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.

ACM Transactions on Software Engineering and Methodology 14, 1 (2005), 1–41. DOI:http://dx.doi.org/10.1145/1044834.
1044835

Oracle. 2014a. Java Platform, Standard Edition Java Flight Recorder Runtime Guide. https://docs.oracle.com/javacomponents/

jmc-5-4/jfr-runtime-guide/about.htm. (2014).

Oracle. 2014b. JSR 335: Lambda Expressions for the Java™ Programming Language. (2014). https://jcp.org/en/jsr/detail?id=335

Oracle. 2016a. HPROF: A Heap/CPU Profiling Tool. http://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html.

(2016).

Oracle. 2016b. jhat. (2016). https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html

Oracle. 2016c. VisualVM: Home. https://visualvm.github.io/. (2016).

Oracle. 2017. JEP 280: Indify String Concatenation. (2017). http://openjdk.java.net/jeps/280

Alex Potanin, James Noble, and Robert Biddle. 2004. Checking Ownership and Confinement: Research Articles. Concurrency
and Computation: Practice & Experience - Formal Techniques for Java-like Programs 16, 7 (June 2004), 671–687. DOI:
http://dx.doi.org/10.1002/cpe.v16:7

S. P. Reiss. 2009. Visualizing the Java heap to detect memory problems. In 2009 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis. 73–80. DOI:http://dx.doi.org/10.1109/VISSOF.2009.5336418

John R. Rose. 2009. Bytecodes Meet Combinators: Invokedynamic on the JVM. In Proceedings of the Third Workshop
on Virtual Machines and Intermediate Languages (VMIL ’09). ACM, New York, NY, USA, Article 2, 11 pages. DOI:
http://dx.doi.org/10.1145/1711506.1711508

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 263–272. DOI:http://dx.doi.org/10.1145/1081706.1081750

Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. In Program flow analysis:
theory and applications, Steven S. Muchnick and Neil D. Jones (Eds.). Prentice-Hall, Inc., Englewood Cliffs, NJ, Chapter 7,

189–233.

Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-Sensitivity.

In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM,

New York, NY, USA, 17–30. DOI:http://dx.doi.org/10.1145/1926385.1926390
Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java

bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
research (CASCON ’99). IBM Press, 125–135.

Noriaki Yoshiura and Wei Wei. 2014. Static Data Race Detection for Java Programs with Dynamic Class Loading. Springer
International Publishing, Cham, 161–173. DOI:http://dx.doi.org/10.1007/978-3-319-11692-1_14

YourKit. 2017. https://www.yourkit.com/. (2017).

Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and Fabio Massacci. 2015. StaDynA: Addressing

the Problem of Dynamic Code Updates in the Security Analysis of Android Applications. In Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy (CODASPY ’15). ACM, New York, NY, USA, 37–48. DOI:
http://dx.doi.org/10.1145/2699026.2699105

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 68. Publication date: October 2017.

http://dx.doi.org/10.1145/1835804.1835822
http://dx.doi.org/10.1007/11537328_20
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1044834.1044835
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm
https://jcp.org/en/jsr/detail?id=335
http://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
https://visualvm.github.io/
http://openjdk.java.net/jeps/280
http://dx.doi.org/10.1002/cpe.v16:7
http://dx.doi.org/10.1109/VISSOF.2009.5336418
http://dx.doi.org/10.1145/1711506.1711508
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/1926385.1926390
http://dx.doi.org/10.1007/978-3-319-11692-1_14
https://www.yourkit.com/
http://dx.doi.org/10.1145/2699026.2699105

	Abstract
	1 Introduction
	2 Overview of the Approach
	2.1 Motivation and Main Idea
	2.2 Background: Heap Dumps, Allocation Tracking
	2.3 Output Schema

	3 Enriching Heaps and Context Sensitivity
	3.1 Capturing Dynamically Loaded Code
	3.2 Context Sensitivity
	3.3 Liveness

	4 Discussion
	5 Experimental Evaluation
	5.1 Android
	5.2 JVM Benchmarks: DaCapo
	5.3 Quantifying Coverage Increase
	5.4 Discussion

	6 Related work
	7 Conclusions
	Acknowledgments
	References

