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Abstract

The brain is a structure of mass and protein being composed up of two overarching

types of cells, called glial and neurons, and it contains many billions of each. Neurons

are known for gathering and transmitting electrochemical signals and the glial cells,

on the other hand, provide physical protection to neurons and help keep them, and

the brain, healthy. Whilst simple in its base components, this complex network of

cells gives rise our thoughts, actions and emotions. Unfortunately, like every other

organ in the human body, it is prone to damage, degeneration and disease.

Recent advances of artificial neural networks and deep learning model have pro-

duced significant results in problems related to neuroscience. For example, deep

learning models have demonstrated superior performance in non-linear, multivari-

ate pattern classification problems such as Alzheimer’s disease classification, brain

lesion segmentation, skull stripping and brain age prediction [1–5]. Deep learning

provides unique advantages for high-dimensional data such as MRI data, since it

does not require extensive feature engineering. The thesis investigates three prob-

lems related to neuroscience and discuss solutions to those scenarios.

Magnetic Resonance Imaging (MRI) has been used to analyse the structure of the

brain and its pathology. However due to the heterogeneity of these scanners, MRI

protocol, variation in site thermal and power stability, as well as site differences

in gradient linearity, centring and eddy currents can introduce scanning differences

and artefacts for the same individual undergoing different scans. Therefore com-

bining images from different sites or even different days can introduce biases that
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obscure the signal of interest or can produce results that could be driven by these

differences. An algorithm, the CycleGAN, is presented and analysed which uses

generative adversarial networks to transform a set of images from a given MRI site

into images with characteristics of a different MRI site. Its purpose is to correct for

differences in site artefacts without the need for a priori calibration using phantoms

or significant coordination of acquisition parameters.

Secondly, the MRI scans of the brain can come in the form of different modalities

such as T1-weighted and Fluid Attenuated Inversion Recovery (FLAIR) which have

been used to investigate a wide range of neurological disorders. Current state-

of-the-art models for brain tissue segmentation and disease classification require

multiple modalities for training and inference. However, the acquisition of all of these

modalities are expensive, time-consuming, inconvenient and the required modalities

are often not available. As a result, these datasets contain large amounts of unpaired

data, where examples in the dataset do not contain all modalities. On the other

hand, there is a smaller fraction of examples that contain all modalities (paired data)

and furthermore, each modality is high dimensional when compared to the number

of data points.

This thesis presents a method to address the issue of translating between two

neuroimaging modalities with a dataset of unpaired and paired, in semi-supervised

learning framework. The proposed model, Semi-Supervised Adversarial CycleGAN

(SSA-CGAN), uses an adversarial loss to learn from unpaired data points, cycle loss

to enforce consistent reconstructions of the mappings and another adversarial loss

to take advantage of paired data points. The experiments demonstrate that the

proposed framework produces an improvement in reconstruction error and reduced

variance for the pairwise translation of multiple modalities and is more robust to

thermal noise when compared to existing methods.

Lastly, behavioural modelling will be considered, where it is associated with an im-

pressive range of decision-making tasks that are designed to index sub-components
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of psychological and neural computations that are distinct across groups of peo-

ple, including people with an underlying disease. However, although the choices

that various groups of patients may differ in apparently systematic ways, using this

discrepancy to cleave to the original indexation has proved to be challenging. Cur-

rent approaches either adopt complex discriminative models, essentially sacrificing

interpretability, or use traditional computational models and/or manually chosen

summary statistics at the expense of accuracy and scalability. The thesis proposes a

method that learns prototypical behaviours of each population in the form of readily

interpretable, subsequences of choices, and classifies subjects by finding signatures

of these prototypes in their behaviour. The method extends recent suggestions for

how the flexibility of recurrent neural networks can be combined with the inter-

pretability of prototypes. The power of the method is illustrated on synthetic and

real-world datasets, showing directly that we do not need to sacrifice accuracy for

interpretability.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Brain

The brain is considered the most complex part of the human body. Whilst being

1.3kg in weight, or about 2% of the average human’s body weight, it is the centre

of the nervous system which interprets our external senses, the initiator of body

movement and most importantly, the creator of our thoughts and intellect. With

1011 cells called neurons, several hundred trillion synaptic connections, the brain has

massive parallel processing capacity allowing us to comprehend images in 100ms [6].

When completing a maths problem, for example, it is subconsciously processing

data from millions of nerve cells that handle the visual input of the paper, the

sensory input from the tactical and aural senses, and combines this data to keep

track of the position of the paper and pen. Whilst at the same time, the brain

retrieves from memory past experiences related to the problem at hand, regulates

our heartbeat, controls our hormones, manages our hunger and thirst. Due to the

complex responsibilities of this organ and the heavy metabolic demands of brain

cells, 20% of the blood pumped is received by the brain [7]. Unfortunately, like

every other organ in the human body, it is prone to damage, degeneration and

1
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Figure 1.1: Incidence of brain cancer in Australia from 1982-2019, by sex [8].

disease.

For instance, benign tumours can form in the brain which are slow growing and

unlikely to spread to other parts of the body. On the other hand, malignant brain

tumours are incredibly cancerous and able to spread into other parts of the brain

or spinal cord, impacting brain functions such as memory areas, speech and lan-

guage, perceptual and reasoning function. In Australia, brain cancer incidence has

increased by 130% from 1982 until 2019 (in comparison the Australian population

has increased by 64.6% over that period of time) and was the 10th most common

cause of cancer death in 2018 with the age-standardised incidence rate of 6.7 cases

per 100,000 persons in 2016.

However the prognosis for those with primary brain cancer is not promising. For

those diagnosed with other cancers, individuals had a 70% chance of surviving five

years compared to their counterparts in the general population. On the other hand,

for those diagnosed with primary brain cancer, between 1987-1991, the relative five

year survival rate was 20.6% and despite all the significant progress in science and

technology, this had improved to 22.2% between 2012-2016; a 7.8% improvement

almost 30 years later [8].
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Figure 1.2: 5-year relative survival rate of brain cancer in Australia 1987–1991
to 2012–2016, by sex [9].

1.1.2 The Mind

While the brain’s cells and circuitry can be seen as the equivalent to the hardware of

the computer, we also have the human equivalent of software: the mind which pro-

cesses mental representations, meaning, emotions, and judgement.1 However, much

like how a software contains bugs, mental illness is prevalent in the population. In

Australia, mental illness affects one in five people in the age of 16-85, of which,

depression and anxiety and substance-use disorder is the most common [10]. Fur-

thermore, these illness tend to occur together, increasing the chance of detrimental

outcomes.

Prevalence rates vary across the lifespan but are highest in the early adult years-

the period during which people are usually establishing families and independent

working lives (Figure 1.3). Typically the experience of mental illness during this

period has its onset in childhood or adolescence and can have long term implica-

1Some researchers studying mental illnesses believe that abnormalities in the brain circuits’
function, through chemical neurotransmitters, contribute to the development of many mental ill-
nesses. These connections between the nerve cells can lead to problems with how the brain processes
information and may result in abnormal mood, thinking perception or behaviour. The relationship
between the mind and to the physical brain and nervous system is still an open problem.
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Figure 1.3: Prevalence of mental illness by age group. Affective disorders are
mood disorders e.g. depression. A person may have had more than one mental
disorder [15].

tions. Its impact on people’s well-being is so significant that it is the largest single

cause of disability in Australia, accounting for 24% of the burden of non-fatal dis-

ease and is associated with the lowest likelihood of being in the labour force with

all of its impacts costing $60 billion to the Australian economy [11, 12]. Further-

more, the percentage of men and women being diagnosed and treated with these

disorders has increased (Figure 1.5,1.3). This poses a conundrum, however, where

although there is greater public visibility of the importance of mental health and

more people seeking treatment, there has not been a decrease in the prevalence of

these illnesses but rather, has remained remained steady between 2001-2018 [13, 14]

(Figure Figure 1.4).

The physiological mechanics and causes for mental illnesses is still debated in the

literature but its understanding can be divided into two approaches: the biological

understanding of psychiatric problems and the psychological framework. The bio-

logically driven framework understands the nature of mental illness through the lens

of biochemical imbalances, genetic factors and pathophysiolgy of the brain. In con-

trast, the psychological perspective focuses on information processing and the mind
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Figure 1.4: The percentage of the population reporting very high Kessler Psy-
chological Distress Scale (K10) score, where a score between 30 and 50 is consid-
ered very high, over the previous month, from 2001-02 to 2017-18. This is used as
a proxy of the levels of depression and anxiety symptoms in the population [15].

Figure 1.5: Percentage of men and women respectively, diagnosed with depres-
sion or anxiety, by age group; 2009, 2013 and 2017 [16].
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and events such as psychological reactions to stressors, negative beliefs, meaning

and feedback loops [17].

1.1.3 Understanding the Brain and Mind

With recent advances in technology, the medical and neuroscience community has an

expanding set of tools to diagnose, investigate and understand the causes for brain

diseases and mental illnesses. For example, neurocognitive assessments provides a

detailed assessment of all major functions of the brain, such as storage and retrieval

of memory, expressive and receptive language abilities, calculation, dexterity, and

the overall well-being of the patient. Neuropsychological computational tasks such

as the bandit task or the two-stage task is able to identify behavioural differences

between patients with bipolar disorder and healthy patients [18].

MRI and Computerised Tomography (CT) scans are used to measure the size

of brain tumours and determine their severity. Functional Magnetic Resonance

Imaging (f-MRI) is able to describe the pattern of brain connectivity among differ-

ent regions by looking at changes in the neuronal blood flow known as the Blood

Oxygen Level Dependent (BOLD) signal. Applications of the f-MRI showed that

when asked to identify the emotions displayed on a series of facial images presented

supraliminally or subliminally, patients with schizophrenia showed reduced activity

in the right amygdala and medial prefrontal cortex during conscious perception of

fear when compared to healthy controls [19]. Resting state f-MRI, which measures

spontaneous low-frequency fluctuations in the BOLD signal, is a relatively new path-

way for evaluating regional interactions in the absence of tasks where the persistent

level of background activity of the brain during rest, called the default mode net-

work, has been applied to the study of many brain diseases and mental illnesses

such as Alzheimer’s disease, schizophrenia and bipolar disorder [20]. The richness

of data of the brain is epitomised by large projects and datasets such as ADNI [21],

BraTS [22], ISLES [23], OpenfMRI [24] which attempt to collate and share data.
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These expanding datasets create a primate environment for data driven methods

to solve various problems in this domain and broaden the scope of neuroscientific

research and insight.

In particular, due to their ability to learn complex feature representations from raw

data, deep learning models have had success in many domains in neuroscience such

as tumour segmentation [22], Alzheimer’s disease classification [25, 26], analysing

neural connectivity [27, 28] and risk prognostication [29]. This thesis will extend

the applications of deep learning models in various potential problems in the neu-

roscience domain which are described in Section 1.2.1.

1.2 Deep Learning Applications in Neuroscience

1.2.1 Challenges

The success of deep learning methods has stemmed partially from the large volumes

of data available. However in the neuroscience domain, datasets that are composed

of Magnetic Resonance (MR) images are relatively limited in the number of samples

and the dimensionality of the data is much larger than the number of examples i.e.

D >> N .

Furthermore, due the heterogeneity of MR scanners, MRI protocol, variation in

site thermal and power stability, as well as site differences in gradient linearity,

centring and eddy currents can introduce scanning differences and artefacts for the

same individual undergoing different scans. Combining images from different sites

or even different days can introduce biases that obscure the signal of interest or

can produce results that could be driven by these differences. This can make the

interpretation, reliability and reproducibility of findings difficult. Thus, methods

need to be developed that can correct these multi-site differences in order to pool

data which provides the opportunity to address a major source of concern regarding

the low statistical power of published studies, especially when larger studies are not
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feasible due to financial constraints or recruitment is difficult [30].

Many state-of-the-art machine learning models in brain tissue segmentation and

disease classification require multiple modalities during training and inference. How-

ever, examples where all modalities are available is limited and therefore the ability

to incorporate examples that do not use all but some modalities could be important

for the adoption of these methods in clinical settings or to improve existing models.

In other words, scenario being presented is a case when the dataset has paired ex-

amples (examples with all modalities available) and unpaired examples (examples

with only one available modality).

Although deep learning models perform well in metrics such as classification accu-

racy, it is an incomplete description of most real-world tasks. In certain tasks such

as movie recommendations where the result may not have significant consequences

or when the problem is sufficiently well-studied, the former may be reasonable.

However, when there is an incompleteness in the problem formalisation, it is not

sufficient to predict the outcome of an event but the model should explain how the

prediction was determined [31]. For example, testing the scenarios in which a system

may fail for complex tasks may be computationally or logistically impossible but by

being able to explain the behaviours of the system, provides insight to possible edge

cases or inputs that cause the system to fail. Especially in clinical settings, where

diagnosis of a disease can have serious consequences, deep learning models need to

be designed to be interpretable in order to properly evaluate the model outside of

metrics such as accuracy before deployment and to increase the trust between the

system and users [32].
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1.3 Contributions

1.3.1 Unsupervised Correction of MRI Multi-site Differ-

ences

An algorithm will be presented and analysed that uses Generative Adversarial Net-

work (GAN) [33] to transform a set of images from a given MRI site into images

with characteristics of a different MRI site. Its purpose is to correct for differences

in site artefacts without the need for a priori calibration using phantoms or signif-

icant coordination of acquisition parameters. This algorithm can be treated as a

’black box’ without knowledge of the artefacts present in the dataset and can be

applied post hoc after acquisition to two unpaired sets of imaging data. Importantly,

as demonstrated by the results, the correction occurs without any apparent loss of

information related to gender or clinical diagnosis.

1.3.2 Semi-supervised Imputation of Missing MR Modali-

ties

The thesis investigates particular context where there are two sets of MR volumes in

the dataset: 1) a set where each example contains all available modalities, 2) a set

where has at least one missing modality of which forms the majority of the dataset.

In this work, a method is developed to address these issues with semi-supervised

learning in translating between two neuroimaging modalities. The proposed model,

Semi-Supervised Adversarial CycleGAN (SSA-CGAN), uses an adversarial loss to

learn from the former examples, cycle loss to enforce consistent reconstructions of

the mappings and another adversarial loss to take advantage of latter examples. This

method can be used to input missing modalities in the dataset as well as translate

unseen MR volumes between modalities. The method is evaluated on two datasets,

BraTS [34] and ISLES [23] which have been used to evaluate state-of-the-art meth-
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ods for segmentation of brain tumours and lesions. The experiments demonstrate

that the proposed framework produces an improvement in reconstruction error and

reduced variance for the pairwise translation of multiple modalities and is more

robust to thermal noise when compared to existing methods.

1.3.3 Interpretable modelling for Neuropsychological Tasks

This thesis describes a novel framework which learns a prototype subsequence for

each group of subject to characterise their overall behaviour, and also learns to ex-

tract a (smaller) subsequence from the behavioural data of each individual which

can be assessed against group prototypes. The model takes the behavioural data of

a set of individuals as input and learns to classify them by comparing the similarity

of the individual subsequences with group prototypes which are learned simultane-

ously. The framework, therefore, can be used to classify subjects into groups in an

interpretable way by finding ‘witness’ subsequences in the behaviour of each indi-

vidual. Furthermore, is also able to extract subsequences from each group which

exemplifies the whole group’s behaviour. Through a set of experiments, we show

that in terms of classification performance the proposed method is similar to current

methods while offering interpretability. The framework is validated using synthetic

data and also shows that when applied to the behaviour recorded from healthy and

patients with bipolar disorders, the model is able to extract the signature behaviours

of each group. The framework therefore, offers a novel method for behavioural

data analysis and may find applications in different areas of behavioural analytic,

decision-neuroscience and computational psychiatry.

1.4 Outline

The main material of the thesis begins with Chapter 2 which describes the relevant

background material for the work. Section 2.1 explains neural networks such as
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feed-forward neural networks, convolutional neural networks, recurrent neural net-

works and then deep neural networks. Section 2.2 describes unsupervised learning

techniques and in particular generative adversarial networks. Section 2.3 delves into

another framework in machine learning, reinforcement learning and describe two

techniques to solve the problem. Section 2.4 provides an overview of illnesses of

the mind and brain and the tools used to study them, such as Magnetic Resonance

Imaging (MRI) and psychological computational tasks.

Chapter 3 discusses the application of deep learning using a particular deep learn-

ing model, the CycleGAN [35], to correct for multi-site differences in MR scans and

demonstrates how the algorithm improves upon existing methods with respect to

predictive capabilities. Section 3.2 describes previous methods that were used to

create predictive models in the presence of confounders such as scanner differences.

Section 3.3 describes the method used and the deep learning architecture used for

this problem. Section 3.4 describes five experiments that demonstrate that this

method improves upon existing methods in terms of classification and reconstruc-

tion performance.

Chapter 4 investigates a novel algorithm for semi-supervised domain translation

of MR images where instead of using only unpaired examples of imaging sets as

in Chapter 3, the framework leverages paired examples to improve reconstruction

error. The problem is introduced in Section 4.1 and related work is discussed in Sec-

tion 4.2. Section 4.3 revisits the CycleGAN but also describes a further modification

of the CycleGAN to create a novel framework that leverages existing paired data by

including an additional adversarial loss. Section 4.4 demonstrates the performance

of this method on multiple datasets, ISLES [23] and BraTS [34] and its improvement

in terms of reconstruction error and robustness in the presence of noise.

Chapter 5 presents a novel framework for an interpretable deep learning model

used in understanding neuropsychological tasks. The context of the problem is

presented in Section 5.1 and discusses the importance of including interpretability
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in designing models for high stakes decision making such as diagnosis of disease.

Section 5.3 presents the architecture of the proposed model and the algorithm used

to train the model. Section 5.4 compares the performance of the method against

other models and analyses the performance of the model under different conditions

such as the length of the sequence used for interpretation and ablation studies.

Section 5.5 discuses the results of the experiments, limitations of the method and

potential future work.

Chapter 6 concludes the thesis by providing a summary of the work discussed in

the thesis in Section 6.1 and provides some ideas for future work in Section 6.2 .



Chapter 2

Background

In this chapter, the background of the ideas presented in this thesis is introduced.

First, neural networks and their variations are described in Section 2.1. Section 2.1.4

discusses deep learning architectures and how they are used to model different phe-

nomena. Then Sections 2.2 and 2.3 give an overview of some of other classes of

machine learning problems; unsupervised and reinforcement learning respectively.

Finally, the background will conclude with Section 2.4 by describing some of the

potential diseases of the mind and some of the tools used to understand them.

2.1 Neural networks

Suppose we have a dataset given by N input-output pairs,

{(x1, y1), ..., (xi, yi), ..., (xn, yn)},

where xi ∈ RD and yi is a scalar, for simplicity. If we assume that there exists a

linear mapping between each xi and yi (with potentially, yi being augmented with

noise), our model in this case, is a linear transformation of the inputs f(x) = xW+b

with W is some D×1 matrix over the reals and b a scalar. Different parameters, W

and b, define different linear transformations and the aim is to find the parameters

13
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that minimise an objective function, which for example, could be minimising the

average squared error over the observed data, 1
N

∑
i(yi − xW − b)2.

While some observations can be defined by a linear function, e.g. the conversion

between Celsius and Fahrenheit, or can be approximated by one, e.g. the relationship

between voltage and current, however, in general, the relationship between xi and

yi does not need to be linear and we may wish instead define a non-linear function

mapping, f(x), between inputs and outputs.

We can model these relationships using parameterised basis functions, Φ(x) =

[φw1,b1
1 , ..., φwK ,bK

k ], where φwk,bk
k is a scalar valued function of the inner product

〈wk,x〉+ bk [36]. In other words, we transform input x using K fixed, scalar valued

nonlinear functions to produce a feature vector, Φ(x). For example, φk(·) = tanh(·)

giving φwk,b
k = tanh(〈wk,xk〉+bk). Typically, each φk is the same basis function. The

feature vector produced by the output of the basis functions can be fed as an input

to another linear transformation. Written more compactly, f(x) = Φ(x)W2 + b2

where W2 is a matrix of dimension K×1, b2 a scalar, Φ(x) = φ(xW1 +b) with W1

a D×K matrix and b1 is a vector of K elements. Again, we minimise an objective

function, 1
N

∑
i(yi − f(xi))

2, to find these parameters W1, W2, b1 and b2.

Hierarchies of these parameterised basis functions can be formed, Φ(x), through

their composition, e.g. f(x) = Φ2(Φ1(x))W3 + b3, creating what is known as a

neural network. Each composition is known as a layer of the neural network and

forms the building block of deep learning models, where many layers are composed

to form a model that can capture more complex functions.

The following sections will delve into particular deep learning models, beginning

with feed-forward neural networks, through to ones that can process image and

sequence data.
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Input Layer Hidden Layer Output Layer

Figure 2.1: The architecture of a 1 hidden layer feed forward neural network.

2.1.1 Feed-forward Neural Networks

We begin by reviewing the feed-forward neural network using a single hidden layer

for simplicity and ease of notation. We denote the model input, x ∈ RD, as the

input layer. The input undergoes a linear transformation, xW1 + b1, where W1 is

known as the weight matrix of size D × K, and b1, the bias being a vector of K

elements. An element-wise non-linearity is applied to the linear transformation to

produce the hidden layer,

h1 = σ(xW1 + b1), (2.1)

where σ(·) is known as the activation function. Examples of activation functions are

the sigmoid function σ(x) = 1
1+exp−x or the ReLU, σ(x) = max(0, x).

The hidden layer undergoes another transformation to be mapped to the output

of the model or the output layer,

ŷ = h1W2 + b2, (2.2)
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where W2 is a weight matrix of K × 1 and b2 a scalar.

Putting these equation together, we get

ŷ = σ(xW1 + b1)W2 + b2. (2.3)

The parameters of the network, W1, W2, b2 and b1 is estimated from training

data by minimising the parameters w.r.t a loss function. In regression problems, an

example could be the Mean Squared Error (MSE),

Lθ(X,y) =
1

2N

N∑
i=1

(yi − ŷi)2, (2.4)

where θ are the parameters of the model, y are the N observed outputs.

In classification problems, where we instead predict the probability of x being

classified with a label of the set {0, 1} (binary classification), the model output ŷ,

is passed through sigmoid (logistic) function, p̂i = 1
1+exp−ŷi

. The loss of the network

can be calculated as

Lθ(X,y) = − 1

N

N∑
i=1

(yi log(p̂i) + (1− yi) log(1− p̂1)). (2.5)

The parameters of the model is estimated using gradient descent which calculates

the gradient of the loss function, Lθ(X,y) with respect to the parameters, θ. Then

according to a specified learning rate, α, each iteration of the gradient descent

updates the weights and biases according to

θt+1 = θt − αδLθ
t(X,y)

δθ
, (2.6)

where θt denotes the parameters of the neural network at iteration t of the gradient

descent algorithm.

We can extend the ideas of the above single hidden layer neural network with



CHAPTER 2. BACKGROUND 17

Figure 2.2: A convolutional neural network with two sets of convolution opera-
tions, along with max pool operations and two fully connected (dense) layers to
predict a label with 64 classes.

multiple hidden layers (called deep learning) to create a more expressive model

that can capture more complex relationships between inputs and outputs. Certain

structures can also be designed such that they aimed at using particular inputs such

as images and sequence. The following sections will review these models.

2.1.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is a popular deep learning tool for im-

age processing. The hidden layers of the model typically consists of a series of

convolutional layers that perform a sliding dot product (despite being known as

convolutions) that preserves spatial information of the image input.

The input of a convolutional layer is a tensor that has a given height, width and

depth (e.g. RGB channels). After being passed through a convolutional layer, the

image is transformed to a feature map with shape, (feature map height) x (feature

map width) x (feature map channels) which are determined by the convolutional

kernel (See Figure 2.3). The width and height of the convolutional kernel dictates

the receptive field in which the layer processes the input and the number of filters

(feature map channels) in the kernel has been thought of being feature identifiers e.g.

the filters on the first layer are used to detect edges, simple colours and curves [37].

To perform the operation, the kernel, k, of size m ×m is placed over a selected
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Figure 2.3: An example of a convolution operation showing the receptive field
of a kernel.

pixel. Each of the values from the kernel is multiplied with the corresponding values

from the image that are under the receptive field of the kernel. This result is summed

to produce an element in the feature map. This process is repeated, by shifting the

kernel by a specified amount, known as the stride, (e.g. 1 pixel) to complete the

feature map.

More mathematically, given some 2D input with height and width but no depth

(for simplicity), x ∈ RH×W , and a convolutional layer with a kernel, k, of size

m×m and thus has m2 parameters, the output of the the layer, h, will be the size,

(H −m+ 1)× (W −m+ 1). The value given for the row and column of the output

with index i and j is given by:

h[i, j] = (x ∗ k)[i, j] =
∑
s

∑
t

k[s, t]x[i− s, j − t]. (2.7)

Typically, convolutional layers are interspersed with pooling layers such as max

pooling or average pooling that calculates the maximum or average value respectively,

for each patch on the feature map. The result of using a pooling layer and creating

down sampled or pooled feature maps is to form a summarised version of the features

detected in the input. This allows the network to be invariant to local translation

or, in other words, when the input is translated by a small amount, the values of

most of the pooled outputs do not change.

While a fully connected feed-forward network can be used to learn features for
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Figure 2.4: Diagram and operations of LSTM (left) and GRU (right) cells.

image data, a large number of parameters would be necessary for shallow (one hidden

layer) architectures, due to the very large input sizes associated with images, where

each pixel is a relevant variable. The advantage of using convolutional layers is

that it reduces the number of free parameters allowing for deeper neural network

architectures and thus more expressive models.

2.1.3 Recurrent Neural Networks

While CNNs are used for processing image inputs, Recurrent Neural Network (RNN)

are sequence-based models used in tasks such as machine translation [38], speech

recognition [39] and generating image descriptions [40]. Given input sequence x =

[x1, ...,xT ] of length T , a function fh is applied to each time step, xt, to produce

a hidden state, ht. This newly generated, ht, is rolled forward along with xt+1 to

create a new hidden state, ht+1.

ht+1 = fh(xt+1,ht) = σ(xt+1Wh + htUh + bh), for t = 0, 1, ..., T − 1, (2.8)

where h0 = 0, σ(·) is the activation function and Wh,Uh,bh are parameters to be

learned.

The output of the model uses the last hidden state, hT , and a linear transformation

ŷ = hTWy + by. (2.9)
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The intuition behind RNNs is that the information from earlier time steps is encoded

in the hidden state, ht and is passed forward and combined with future timesteps.

However, due to the difficulties of learning the parameters of a RNN especially as the

length of the input increases, more complex RNNs structures have been developed

such as the Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU).

Gated Recurrent Units

The GRU controls the flow of information being passed to future timesteps through

two gating units called the reset, r and update, z. Each gate depends on the previous

hidden state, ht−1 and the current input, xt. A cell of a GRU can be described by

the following equations:

zt = σg(Wzxt + ht−1Uz + bz), (2.10)

rt = σg(Wrxt + +ht−1Ur + br), (2.11)

ĥt = φh(Whxt + Uh(ht−1 � rt) + bh), (2.12)

ht = (1− zt)� ht−1 + zt � ĥt, (2.13)

where � is the Hadamard product, σg is the sigmoid function and φh is the hyberolic

tangent function. Due to the sigmoid function, zt and rt are in the range [0, 1] and

thus act as gating functions. The update gate, zt, determines what information to

remove from ht−1 and what new information to add from ĥt. When the reset gate

rt is close to 0, the current hidden state is forced to ignore the previous hidden state

and reset with the current input. Uz, Ur, Uh, Wz, Wr, Wh are matrices to be

learned. This allows the GRU to forget any past information that is not relevant to

the future [41].
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Long Short Term Memory

LSTM is an alternative RNN architecture. While the GRU has two gating units, the

reset and update gates, the LSTM has three gating units, the input gate, i, output

gate, o, and a forget gate, f and its operations can be described by the following

operations:

ft = σg(Wfxt + ht−1Uf + bf ), (2.14)

it = σg(Wixt + ht−1Ui + bi), (2.15)

ot = σg(Woxt + +ht−1Uo + bo), (2.16)

c̃t = φh(Wcxt + +ht−1Uc + bc), (2.17)

ct = ft � ct−1 + it � c̃t, (2.18)

ht = ot � φh(ct). (2.19)

While the update gate in the GRU determines which information is removed and

which information is added to the hidden state vector, this operation is separated in

the LSTM using the forget gate, f , and input gate, i, respectively. In the GRU, the

internal memory of the unit and the output vector of the unit is represented by the

same vector, ht. However in the LSTM, this has been separated into two vectors, ct

and ht. The cell state, ct acts as the internal ”memory unit” of the LSTM, which

is either added with new information from the input gate or is previous information

forgotten through the forget gate. The output vector of the LSTM unit is the

hidden state vector, ht, where the output gate o, determines how much information

is revealed from the cell state, ct. Again, Uf , Ui, Uo, Uc, Wf , Wi, Wo, Wc are

matrices to be learned.
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2.1.4 Deep Learning

While the previous sections discussed a single layer of a neural network, a deep net-

works can be formed through the composition of many hidden layers. For example,

a deep learning network can be created by stacking multiple fully connected layers

or multiple LSTM cells.

The parameters of a neural networks is trained, using a method called backpropa-

gation (short for backward propagation of errors), where the gradients of the lower

layers is calculated through a chained computation of the weight values of the lay-

ers above it. At first, the gradient of the final layer of weights is calculated and

this calculation proceeds backwards through to the first layer of weights. Partial

computations of the gradient from one layer are reused in the computation of the

gradient for the previous layer. This backwards flow of the error information allows

for efficient computation of the gradient at each layer [42].

Initially, the difficulty of extending a shallow network to one with more layers

was due to the problem of vanishing gradients or exploding gradients [43]. For

instance, in the vanishing gradient problem, the weight values of the layer above are

very small, the gradients of the lowest layer will be exponentially smaller, reaching

towards 0 and thus the weights of the lowest layer could stop changing its value and

perhaps cause the whole network to stop learning.

This issue was alleviated through empirical experiments, using various techniques

such as Xavier initialisation of the weight parameters [44], alternative optimisation

methods such as Root Mean Square Propagation (RMSProp) [45] and Adaptive Mo-

ment Estimation (Adam) [46], alternative activation functions such as the Rectified

Linear Unit (ReLU) [47] and in the case of RNNs, the use of LSTMs [48] instead.

The advantage of these architectures is that they are able to learn more complex

functions, where layers further from the input layer are able to learn more complex

features by incrementally building upon the features from previous layers. This

allows deep networks to solve complex tasks without the need to manually engineer
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features (feature engineering) but instead learns task-specific features from raw data.

While deep networks are able to learn complex features, these models contain

hundreds of thousands to millions of parameters that need to be estimated which

makes them susceptible to overfitting where the model does not generalise well from

the training data, which is used to estimate the parameters, to unseen data. To

overcome this issue of overfitting, one method is that these models are often trained

using large datasets. Some standard datasets, particularly for image-related prob-

lems include, ImageNet [49], CIFAR-10 [50] of which are often used to evaluate the

performance of various deep learning architectures. The standardisation of datasets

has also been filtered to neuroscience domain problems particularly for tasks such

as tumour segmentation [34] and, Alzheimer’s Disease classification [51].

However, the use of large datasets may still not alleviate the problem of poor

generalisation to unseen data. Another technique that can be considered is the use

of regularisation, where the size of the weights of the neural network is constrained.

This is performed by including an extra term to the loss function during optimisation

where it penalises the training of the model based on the magnitude of the weights.

This encourages the model to learn to map the input to output whilst at the same

time balancing to keep the network weights small [52].

Other techniques to reduce overfitting of neural networks which can be used in

combination include:

1) activity regularisation- the magnitude of the activation of neurons is penalised [47],

2) weight constraint- the weights of the network are constrained to be below a

specified magnitude [53],

3) dropout- neurons or weights are zeroed probabilitistically during training [54],

4) noise- the inputs of layers are corrupted with statistical noise during train-

ing [55],
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5) early stopping- the performance of the model is monitored on a validation set

and training is stopped when the performance degrades [56],

6) data augmentation- training data is for example flipped, rotated, enlarged to

increase the number of examples the network is trained [57].

So far we have discussed deep learning models to be used in supervised learning

problems where a function is learned that maps an input to an output based on

example input-output pairs, i.e. learn f : X→ Y. A training example is a pair that

consists of an input and a desired output value. A supervised learning algorithm

uses the training data to update the parameters of the model to infer the function,

f , which can be used to map new examples. The next section introduces other

form of machine learning problems, namely unsupervised learning and reinforcement

learning and certain methods that can be used to solve these problems.

2.2 Unsupervised Learning

In unsupervised learning, the training data consists of a set of input vectors x with-

out any corresponding target values. The goal is to learn patterns in the data

without any preexisting labels. There are several different goals in unsupervised

learning such as clustering where the aim is to discover groups of similar examples

within the data, or to project data from a high-dimensional space to two or three

dimensions for the purpose of visualisation or to determine the distribution of data

within input space, known as density estimation. In the latter case of density esti-

mation, a model is trained to infer a priori distribution, p(X), where X is the data

matrix of size N × K, where N is the number of observations and K is the num-

ber of features. In contrast to supervised learning, the algorithm intends to infer

the conditional probability distribution p(Y|X), where each row in Y is the target

vector for each row in X.

The goal in such unsupervised learning problems may be to discover groups of



CHAPTER 2. BACKGROUND 25

similar examples within the data, where it is called clustering or to project the data

from a high-dimensional space down to two or three dimensions for the purpose of

visualization, or to determine the distribution of data within the input space, (i.e.

learn pdata(X)), known as density estimation.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) is an example technique for dimensionality

reduction that focused on linear manifolds which is either a line, a plane or a hy-

perplane depending upon the number of dimensions involved [58]. These lower

dimensions provide a succinct summary of the relationships between observed vari-

ables which are constructed by a number of linear transformations of those variables

with certain optimality properties. PCA is defined as an orthogonal linear transfor-

mation that constructs the data to a new coordinate system such that some scalar

projection of the data that lies on the first coordinate produces the greatest vari-

ance (called the principal component), the second coordinates produces the second

greatest variance and so on.

More concisely, given a data matrix X of size N ×K, with column-wise empirical

mean, where N is the number of observations and K is the number of features, we

seek to find a transformation of weight coefficients, wl = (w1, w2, ..., wK)l that maps

each row vector xi to a new vector ui = (u1, u2, ..., uL)i given by

ui = xi ·wl, (2.20)

where l = 1, 2, ..., L, L is the number of new vector transformations and i = 1, 2, .., N .

Furthermore, wl is constrained be unit length and each new variable as result of the

transformation inherits the maximum possible variance from X.



CHAPTER 2. BACKGROUND 26

For example to find the first weight vector w1, we solve the following problem,

w1 = arg max
||w=1||

1

N

N∑
i=1

(xi ·w1)
2

= arg max
||w=1||

1

N

N∑
i=1

wTxix
T
i w

= arg max
||w=1||

wT (
1

N

N∑
i=1

xix
T
i )w.

Solving this gives the first principal eigenvector of the covariance matrix of the data

Σ = wT ( 1
N

∑N
i=1 xix

T
i ). More generally, if we wish to project the data to a lower

L-dimensional subspace, we choose w1, ...,wL to be the top L eigenvectors of Σ.

The full principal components decomposition of X can therefore be given as

U = XW (2.21)

where W is a K×K matrix of weights whose columns are the eigenvectors of XTX.

2.2.2 t-SNE

T-distributed Stochastic Neighbour Embedding (t-SNE) is another dimensionality

reduction method and unlike PCA, is a nonlinear technique for embedding high-

dimensional data for visualisation in a lower dimensional space [59].

t-SNE starts by converting the high-dimensional Euclidean distances between

datapoints into conditional probabilities that represent similarities where similar

objected are assigned a high probability while dissimilar points are assigned a lower

probability. More precisely, the similarity of datapoint xj to xi, is the conditional

probability, pj|i, that xi would pick xj as its neighbour if neighbours were picked

in proportion to a probability density centred as xi. This conditional probability is

given as

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2/2σ2

i )
. (2.22)
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Furthermore, pj|i is defined as

pj|i =
pj|i + pi|j

2N
. (2.23)

The bandwidth of the Gaussian kernels, σi, is adapted to the density of the data

where smaller values of σi are used in denser parts of the data space.

Next, t-SNE defines a similar probability distributions over the points in the

low-dimensional map, however instead of using a Gaussian distribution, it uses a

distribution that has much heavier tails, which in this case is chosen to be a Stu-

dent t-distribution with one degree of freedom. Using this distribution, the joint

probabilities of the low dimensional map qij is given as

qij =
(1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

, (2.24)

where yi is xi in the low dimensional map.

The location of the points yi in the map is determined by minimising, using

gradient descent, the Kullback-Leibler (KL) divergence of the distribution P from

the distribution Q,

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
. (2.25)

2.2.3 Generative Adversarial Networks

Another task related in unsupervised learning is generative modelling which learns

the patterns in input that in such a way that the model can be used to generate

new examples that could have been drawn from the original dataset.

One advantage of studying these generative models is that they can be trained

with missing data and can impute inputs that are missing. One particular case

of missing data is semi-supervised learning where the most labels (but not all) of

the training examples is missing. Particularly in cases where labelled examples

are difficult to obtain, semi-supervised learning can be used to reduce the number
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of labels and instead learn to improve generalisation by using the more numerous

unlabelled examples.

The Generative Adversarial Network (GAN) [33] is an example of a generative

model that is capable of generating data from a given distribution, pdata(X), as well

able as to perform semi-supervised learning. The following section will describe the

mechanics of GANs in the former scenario.

Before delving into the GAN framework, we first discuss the idea of maximum

likelihood.

Maximum likelihood Estimation (MLE) [36] defines a model that providea an esti-

mation of a probability distribution, parameterised by parameters θ. The likelihood

function, measures the goodness-of-fit of the probability distribution to the training

data for given values of the unknown parameters. It is defined as,

N∏
n=1

pmodel(xi; θ), (2.26)

where xi is an example of the training set of size N . In MLE, the aim is to choose

parameters of the model, θ, such that the likelihood is maximised,

θ∗ = arg max
N∏
n=1

pmodel(xi; θ). (2.27)

Typically, the log-likelihood is maximised as it is less prone to numerical prob-

lems and since the logarithm is a strictly increasing function, maximising the log-

likelihood is equivalent to maximising the likelihood,

θ∗ = arg max
N∑
n=1

log pmodel(xi; θ). (2.28)

The taxonomy of generative models that uses the principle of maximum likelihood

can be divided into two main branches, explicit density models and implicit density

models (of which GANs are a member).
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In explicit density models, a density function is chosen, pmodel(x; θ), and then

the parameters of the model are estimated using MLE. Whilst the optimisation

process is straightforward, the difficulty lies in designing a tractable model that can

capture all of the complexity of the data generating process. As such, there are

several strategies that can be used that either involve the construction of models

that ensures tractability such as in fully visible belief networks [60] or models that

make tractable approximations to likelihood as in the variational autoencoder [61].

Implicit density models, on the other hand, can be trained without explicitly

defining a density function but instead train the model through sampling pmodel.

Examples include of implicit density model include the generative stochastic network

which uses Markov chains but fails to scale to high dimensional spaces [62] and the

Generative Adversarial Network (GAN) [33].

The GAN framework

While traditional machine learning models learn by minimising an objective func-

tions, GANs succeed through the idea of adversarial training, where the model’s

training process can be described as a game between two players. One player is

called the generator where it attempts to create samples from the same distribution

as the observed data. The other player is the discriminator where its function is to

examine the fake samples from the generator and real samples from the observed

data and to classify the generated and observed samples as either real or fake [63].

Over time, the discriminator is trained with supervision to better distinguish real

and fake samples. However at the same time, the generator will improve its synthesis

of fake samples in order to fool the discriminator, which in turn will make the job

of the discriminator more difficult. Eventually the solution of this game is a Nash

equilibrium, where the generator is unable to improve its generation of fake samples

and the discriminator is unable to better classify real and fake samples [63].

More formally, the generator is any differential function, G, (e.g.. a convolutional
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network) that takes as input z sampled from a prior distribution pprior(z) (e.g.

a Gaussian distribution with diagonal covariance matrix) and transforms z into

G(z) = x̂ which is a sample from pmodel.

The discriminator is similarly any differential function, D. It takes two mini-

batches of data, the real samples from pdata, which are labelled as 1 and the fakes

samples generated from pmodel, labelled as 0. The parameters of D, θD, are updated

through gradient based optimisation algorithms by minimising

LD = −1

2
Ex∼pdata

[
logD(x)

]
− 1

2
Ez∼pprior

[
log(1−D(G(z)))

]
. (2.29)

LD is the standard cross-entropy loss for binary classification models with a sigmoid

output. In the original formulation of the GAN, the loss of the generator is tied

directly to the discriminator loss whereby creating a zero-sum game,

LG = −LD. (2.30)

From this point of view, the discriminator is more like a teacher instructing the

generator in how to improve than an adversary. Alternative loss functions have

been proposed for both the discriminator and generator, such as the LSGAN [64]

which have improved training stability of GANs or improved the generated samples.

Image to Image Translation with GANs

There has been numerous applications of GANs in areas such as generating images

from text [65], photographs of human faces [66], anime characters [67] or to increase

the resolution of images [68]. These models have been used particularly in the

problem of Image to image translation where the aim is to learn a mapping between

images from a source domain to a target and even vice versa. For example, the

model aims to learn to transfer the style from the source image to the target image,

for example transforming a photograph into a artwork by Claude Monet. e Isola
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et al. [69] proposed the pix2pix model which used image pairs {A,B}, where A

and B are two different depictions of the same underlying scene, and used a cGAN

to learn the mapping between these paired images. To improve the resolution of

the generated image, the generator used an encoder-decoder architecture with skip

connections, much like the ”U-net” [70] and had the discriminator to restrict its

attention to the structure in local image patches. This was done by only penalising

the discriminator at the scale of patches. Thus, instead of classifying an entire

image as either real or fake, the discriminator would try to classify if each patch in

an image as either real of fake.

Wang et al. [71] further improved the resolution of generated images to 2048×1024

by using a generator network that can be decomposed into two parts, the global

generator network G1 and the local enhance network G2. G1 was trained to generate

images at a resolution of 1024× 512 to create the global features of the image and

G2 focused on learning to improve the resolution of the image to 2048 × 1024.

Conversely, three discriminators with similar architectures were used, D1, D2, D3,

but each operated on different image scales, where D1 was trained on images at the

original resolution, D2 was trained on images that were downscaled by a factor of 2

and D3 was trained on images that had a resolution 4 times smaller than the original

resolution.

Both of these aforementioned models were studied with only considering trans-

lating between two image domains. The StarGAN [72] on the other hand, was

proposed for multi-domain image-to-image translation using only a single genera-

tor and a discriminator. The generator was trained to translate an input image to

an output image, conditioned on domain label information. To learn this condi-

tional image mapping, an auxiliary classifier was added to the discriminator where

the classification of the image domain of real images was used as loss to train the

discriminator. On the other hand, the generator was trained by the domain classi-

fication of its generated images. Furthermore, in order to learn the mapping among
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many domains using only a single generator and discriminator, a mask vector was

used to control the domain labels and to ignore unspecified labels.

So far these models assumed that there was a one-to-one mapping between the

image domains. However what is more appropriate is that these image-to-image

problems could be modelled as a single input image being able to correspond to

multiple possible outputs. The BicycleGAN [73] attempted to capture the multi-

modality of the output by using a low-dimensional latent vector. At inference time,

the deterministic generator used the input image, along with stochastically sampled

latent codes, to produce randomly sampled outputs. A typical problem in previous

methods is the issue of mode collapse where only a small number of real samples get

represented in the output. This was overcome in the BicycleGAN, by combining the

ideas of the Conditional Variational Autoencoder GAN [74] and Conditional Latent

Regressor GAN [75, 76] into a hybrid model. In cVAE-GAN the latent encoding was

learned from real data, but at test time, the randomly sampled latent code may not

have yielded realistic images as the discriminator did not have opportunity to learn

(and thus critique the generator) from the results sampled from the prior during

training. In cLR-GAN, the latent space was easily sampled from a simple distri-

bution, but the generator was trained without the benefit of seeing ground truth

input-output pairs. Hence the BicycleGAN was trained to enforce the connection

between latent encoding and output in both directions jointly.

2.3 Reinforcement learning

While supervised learning can be used to address problems such as classifying images

or translating texts however may be unsuitable in scenarios such as learning to play

the game Go. If supervised learning was to be used, one could gather a dataset where

the inputs of the model are all the possible game states and the output labels being

the optimal move for that particular state. However, creating this dataset would be
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expensive and unfeasible as the number of possible states is large (2.082 × 10170).

Furthermore, such an approach relies on imitating a human expert which may not

provide the optimal strategy.

The Reinforcement Learning (RL) framework attempts to find the best action for

a given state through trial and error. The RL agent learns the optimal strategy by

sampling actions and then observing which one leads to the desired outcome. When

compared to supervised learning, the agent learns this optimal action not from a

label but from a time-delayed label called a reward. The reward is a scalar value

describing whether, after performing a sequence of actions, the agent had reached

its goal (with varying degrees) or not. In other words, the agent is told what the

best outcome should be through the reward. It is not given instructions as to how to

achieve this reward but instead must discover the strategy through trial and error.

More formally, the RL problem is formulated as a Markov Decision Process (MDP)

with an agent that makes decisions in a stochastic environment, in order to achieve

a goal. The decision process is formulated under the Markov property which states

that in a stochastic environment, the conditional probability distribution of future

states of the agent (conditional on both past and present states) depends only upon

the present state and not on the sequence of events that preceded it [77].

The MDP in this context, is defined as a tuple that contains:

1) a state space (S)- a set of states the agents can be at a given time, t. st denotes

the state of the agent at t-th time step,

2) an action space (A)- the set of actions the agent can perform at a given time,

where at is the action of the agent at time step t,

3) a reward function (R(st, at))- the reward given to the agent by the environment

by performing action at at state st,

4) a transition model (T (st, at, st+1))- this specifies the dynamics of the environ-

ment which could be given to the agent or learned. It denotes the probability
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of going to state st+1 by performing action at in state st.

Before delving into different algorithms for reinforcement learning, the following

definitions will be used:

• policy, π - which defines the learning agent’s way of behaving in a certain state,

st. It is a mapping from the perceived states of the environment to the actions

being taken when in those states,

• value function, Vπ(s)- the expected reward when starting in the state s and

following π thereafter,

• Q-value, Qπ(s, a)- the expected reward when starting from s and taking action

a, and then thereafter following policy π.

2.3.1 Temporal difference learning

Temporal Difference (TD) learning [78] is a class of reinforcement learning methods

that can be used to estimate the aforementioned value functions. These algorithms

do not require the transition dynamics of the environment and hence is used in

model-free reinforcement learning. These methods sample from the environment

the resultant states and rewards for chosen actions and performs updates on the

current values of states based on their current estimates. In particular, it estimates

the current estimate of the value function by bootstrapping samples.

If the value functions were to be calculated without estimation, the agent would

need to wait until the final reward was received before any state-action pair values

can be updated. Once the final reward was received, the path taken to reach the final

state would need to be traced back and each value updated accordingly, according

to the equation

V (st)←− V (st) + α(Rt − V (st)), (2.31)
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where st is the state visited at time t, Rt is the reward at time t and α is a constant

parameter known as the learning rate which determines how much V (st) is updated.

On the other hand, with TD methods, an estimate of the final reward is calculated

at each state and the state-action value updated for every step of the way instead

of waiting until the end of the episode.

The algorithm starts by initializing a table V (s) arbitrarily, a value for each state

in the MDP. Then, the policy π is evaluated, obtain a reward rt for each timestep

and the value function is updated according to

V(st)←− V (st) + α
[
Rt+1 + γV (st+1)− V (st)

]
. (2.32)

The value functions are updated using the rewards gained from executing actions

determined by some policy. The strategies that are used for selecting an action

which aim to balance the trade-off between exploitation, where the agent uses the

current estimates of the action-value function to maximise its expected reward, and

exploration, where agent chooses less explored actions to obtain a better estimate of

the value function. There are three common strategies:

• greedy- the action with the highest estimated expected reward, called the

greediest action, is chosen. This strategy maximises exploitation but has little

exploration and therefore may not discover the optimal policy.

• ε-greedy- the greediest action most of the time with some probability ε (say

0.9) and for some probability 1− ε, another action that is not the greediest, is

selected uniformly at random independent of the action-value estimates. This

method ensures that with enough trials, each actions will be tried infinite

number of times, thus ensuring optimal actions are discovered.

• softmax - the probability of a chosen action is weighted according to their

action-value function. In the case of ε-greedy where non-greediest actions are

chosen uniformly at random, this means that the worst possible action is just
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as likely to be chosen as the second best. The softmax strategy ensures the

worse actions are less likely to be chosen and could be a strong approach when

the worst actions are unfavourable.

TD methods can be learned in two different manners, on-policy and off-policy

learning. On-Policy TD methods learn the value of the policy that is used to make

decisions. The value functions are updated using results from executing actions

determined by some policy such as ε-greedy or softmax. It attempts to evaluate or

improve the policy that is used to make decisions. Conversely, off-policy methods

learn different policies for behaviour and estimation. It updates the estimated value

functions using actions which have not actually been tried. This is in contrast to

on-policy methods which update value functions based strictly on experience. This

means that during execution, the agent can learn behaviours that it did not exhibit

during the learning phase.

2.3.2 Q-learning

Q-learning [79] is an off-policy model-free approach to finding the optimal policy,

π∗, which outputs the best action at for a given state, st. The Q-learning algorithm

goes as follows. First the Q-values (Q(s, a)), is initialised for each state-action

combination. Then for each episode, for every step in the episode, the current state,

st is observed, and an action is chosen, at based on a random action selection policy

(e.g. ε-greedy). The resulting reward, rt and state, st+1 is observed and then the

Q-value for the state-action pair is updated using,

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]
. (2.33)

The reason that Q-learning is off-policy is that it updates its Q-values using

the Q-value of the next state st+1 and the greedy action a′. In other words, it

estimates the return (total discounted future reward) for state-action pairs assuming
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a greedy policy was followed despite the fact that it is not originally following a

greedy policy [77].

Algorithm 1: Q-learning algroithm

Input: Number of episodes, N

Output: Q-values Q(s, a)

Initialise Q(s, a) = 0,∀s ∈ S, a ∈ A

for i=1,2,...,N do

repeat

Choose at using policy derived from Q(st, at) (e.g. ε-greedy)

Execute at and observe rt, st+1

Q(st, at)← Q(st, at) + α
[
rt + γmaxa′ Q(st+1, a

′)−Q(st, at)
]

t= t+1

until st is terminal ;

end

return Q(s,a)

2.4 The Brain and Mind

2.4.1 Mental Illness

Mental illness are disorders that affect a person’s mood, thinking and behaviour. It

covers a spectrum of disorders that vary in how severe they are and how long they

last. In some cases, symptoms can be managed with a combination of medications

and psychotherapy. While their causes are still an open research question, they are

thought to be caused by a variety of genetic and environmental factors such as [80]

1) inherited genes that can increase the risk of developing mental illness,

2) environmental exposure to toxins or alcohol before birth have been linked to

mental disorders,
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3) the impairment of neurotransmitters which can change the nerve receptors and

nerve systems.

. Examples of mental illness include depression, bipolar disorder and schizophrenia.

The diagnosis for these disorders is largely based on the Diagnostic and Statistical

Manual of Mental Disorders [81] where it is a handbook for the, descriptions, symp-

toms and classification of mental disorders using a common language and standard

criteria.

Depression

Depression has been recognised as a clinical syndrome for over 2000 years, where a

number of ancient writers described the disease under the classification of melan-

cholia. Hippocrates, in 4th century B.C.E, referred to the diseases swings similar to

mania and depression, Aretaeus, a physician in the second century C.E described pa-

tients with depression as ”sad, dismayed, sleepless” and eventually who complained

of the futility of life and contemplated suicide. In modern textbooks, depression is

defined in terms of the following attributes:

1) A specific alteration in mood or changes in the person’s feelings such as a

dejected mood.

2) Negative feelings towards self, and a negative outlook towards life.

3) Motivational manifestations such as the loss of positive motivation, or wanting

to avoid or escape their usual routines or having suicidal wishes.

4) Vegetative and physical manifestations such as the loss of apetite, sleep dis-

turbance and loss of libido,

5) Delusions such as the sense of worthlessness [82].
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Bipolar Disorder

Bipolar disorder is a chronic disorder that is attributed with fluctuations in mood

state and energy which affects more than 1% of the world’s population. It is char-

acterised by bouts of mania which in many ways is opposite of depression. During

a manic episode, individual’s experience elevated mood, over-activity with a lack of

sleep and an increased optimism that impairs the individual’s judgement. However,

a depression may alternate with manic episode. These large changes in mood is one

of the major causes of disability among young people. Furthermore patients are at

very high risk of death by suicide, up to 20 times higher than the general popula-

tion [83, 84]. Unlike unipolar depression, bipolar disorder usually has an earlier age

of onset, more frequent episodes of short duration, has an abrupt onset and offset

and is triggered by stressors at early stages [81].

The discovery that lithium had a considerable affect in mood stabilisation, which

suggested that the classification and mechanistic causes of bipolar disorder could be

explained by a biologic pathophysiological framework. In particular, these mood dis-

orders were though to result from an imbalance of monoaminergic neurotransmitter

systems such as the dopamingeric neurotransmitter systems. However, no singular

dysfunctions of these neurotransmitter systems has been identified. That being said,

bipolar disorder is one of the most inheritable psychiatric disorders where about 50

percent of patients with bipolar illness have a family history of the disorder [83].

Schizophrenia

Schizophrenia is a syndrome that is predominately defined by observed signs of psy-

chosis. It is presented with paranoid delusions and auditory hallucinations late in

adolescence or in early adulthood between the ages 18-25. These are sometimes

accompanied with social withdrawal, decreased emotional expression, and apathy.

Furthermore, those with schizophrenia experience social problems such as long-term

unemployment, poverty, homelessness, a higher suicide rate and a lower life ex-
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Figure 2.5: Examples of the different modalities of MRI scans of a coronal slice
of a low grade glioma (brain tumour) in the BraTS dataset brain using different
MRI sequences. From left to right: T2, FLAIR, T1 and T1c.

pectancy of 20 years [85].

The understanding of schizophrenia has changed over the last two centuries. In

the early twentieth century emphasised the mind, where schizophrenia was charac-

terised by the fundamental disorder of thought and feeling being disturbances of

associations, affect, ambivalence and autistic isolation. It was seen as a psychotic

reaction which resulted in a fragmented ego caused by environmental experiences

and trauma. Later in the second half of the twentieth century, schizophrenia was

seen as a ”dopamine disorder” which resulted in the development of neuroleptic

medications. Whilst they reliably reduced delusions and hallucinations, they did

not improve the functional well-being of patients, as many are still considered dis-

abled. Another framework for understanding the causes for schizophrenia is genetics

as the illness is highly inheritable [86].

2.4.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a noninvasive imaging technique that uses

strong magnets and low-energy radio-frequency signals to record the response from

certain atomic nuclei within the body. In particular, when analysing tissue, the

hydrogen nuclei is mostly used [87].

Without the presence of a magnetic field, the magnetic moments of nuclei are

distributed at random and thus the net magnetisation factor is zero. However, under
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a strong external magnetic field, the spin of nuclei is aligned parallel or antiparallel

to the external field with a net magnetisation vector parallel to the external magnetic

field. Furthermore, the individual nuclei do not directly line up with the magnetic

field but precess around the direction of the external field. The frequency of this

precession is given by Larmor equation:

F =
γB0

2π
, (2.34)

where F is the precessional frequency or the Larmor frequency, B0 is the strength

of the magnetic field and γ is the gyro magnetic ratio or the ratio of the magnetic

moment to the angular momentum of the hydrogen nucleus.

When the nuclei is under the presence of the external magnetic field, a measurable

signal is created by applying a radio frequency (RF) pulse at the Larmor frequency

(resonant frequency), which flips the net magnetisation of the nuclei spines to 90◦.

This rotating net magnetisation vector induces an AC in a receiver coil which is

placed around the patient [87].

When the RF frequency is stopped, the magnetisation vector returns to its previ-

ous equilibrium state under the external magnetic field. The time required to return

to equilibrium is known as the relaxation time. The process of realignment to the

external magnetic field is called the longitudinal relaxation process. This process

is characterised by the T1-relaxation time which is defined as the time required for

the system to recover to 63% of its equilibrium value after being exposed to the RF

pulse. Different human tissue have different T1 values.

There is also another relaxation process, now in the traverse direction which is

independent to the longitudinal direction. This second process of relaxation is due

to the spins precessing around the magnetisation vector and the small differences

cause by local magnetic inhomgeneities. This relaxation time is described by the T2

relaxation time and is different to the T1 values for various tissue [87].
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The MRI also has the potential to visualize the difference in T1 and T2 of different

tissue to produce different contrasts between soft tissue. By manipulating scanning

variables such as the time of repetition (TR), which is the time for the next repetition

of RF pulses, and the time of echo (TE), which is the interval between a second RF

pulse and an echo signal, the MRI is able to produce contrasts dependent on T2

differences or T1 differences or neither (meaning it will only depend on the proton

density of the tissue) [88].

A conventional MRI sequence is the spin-echo pulse sequence where it is com-

prised of a repeated sequence of two RF pulses, one called the 90◦ pulse and the

other 180◦ pulse. Initially, the magnetic moment of a group of spins, such as pro-

tons is in its equilibrium position. Then a RF pulse is released which causes the

atoms’ magnetisation to undergo a 90◦ displacement to the transverse plane. The

tissues show a distribution of frequency of precession due to local magnetic field

inhomogeneities. As the net moment precesses, some spins slow down due to lower

local field strength (and so begin to progressively trail behind) while some speed

up due to higher field strength and start getting ahead of the others. This loss can

be reversed by applying a 180◦ pulse, whereby the fast moments catch up with the

main moment and the slow moments drift back toward the main moment. Once the

moments have rephased, the echo can be sampled [89].1

For the spin-echo pulse sequence, the TR is defined by the time between the

repetition of 90◦ pulses and the TE is the duration between the middle of a 90◦

pulse and the middle of an echo. By adjusting these parameters and others like

the gradients, MRI machines are able to create sets of images with a particular

appearance, called MRI modalities. These modalities include T1-weighted (T1),

T2-weighted (T2), T1 with gadolinium enhancing contrast (T1c), Fluid Attenuated

Inversion Recovery (FLAIR) and Diffusion Weighted Imaging (DWI).

1See https://en.wikipedia.org/wiki/Spin_echo for an animation of a spin echo sequence.

https://en.wikipedia.org/wiki/Spin_echo
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T1-weighted

T1-weighted images are produced by using short TE and TR times. The contrast

and brightness of the image are predominately determined by longitudinal relaxation

time (T1) properties of tissue.

For instance, fat tissue quickly realigns its longitudinal magnetisation with the

main magnetic field and therefore appears bright on a T1-weighted image. Con-

versely, water has much slower longitudinal magnetisation realignment after an RF

pulse and therefore has low signal. This causes fluid such as urine or CSF to appear

dark on the image.

If sufficiently short TR times were not used during the MRI sequence, then the

protons would recover their alignment with the main magnetic field and hence the

image would be uniformly intense. By having TR times that are shorter than the

different tissues’ recovering time allows for the different contrast of the tissue [90].

Some brain tissue can also be distinguished using this particular MRI sequence,

such as white matter and grey matter where this contrast is driven by the differences

in their fat content. White matter is primarily comprised of axons that carry nerve

impulses between neurons. Axons are insulated by myelin which is a substance that

is fat (lipid) rich. Due to this fat content, it appears white on a T1 image. On the

other hand, grey matter is mostly composed of neuron cell bodies and non-neuron

brain cells called glial cells. As these cells are not surrounded by myelin, have an

intermediate signal intensity and thus appears grey on T1 image [91].

T1 with gadolinium enhancing contrast

T1-weighted imaging can also be performed while infusing gadolinium creating a T1

with gadolinium enhancing contrast image. Gadolinium is a non-toxic paramagnetic

contrast enhancement agent. When injected during the scan, Gadolinium shortens

the T1 time thus appears very bright on T1-weighted images. T1c images are

especially useful in looking at vascular structures and breakdown in the blood-brain
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barrier like tumours, and diseases that cause an inflammatory response like multiple

sclerosis [92].

T2-weighted

T2-weighted imaging relies upon the transverse relaxation time of protons and tends

to use long TE and long TR MRI sequences. Each tissue has an inherent T2 value,

but external factors (such as magnetic field inhomogeneity) can decrease the T2

relaxation time. A refocusing pulse is used on spin-echo sequences helps to mitigate

these extraneous influences on the T2 relaxation time [91].

T2 imaging creates large signal for fluid in the image (as opposed to dark in T1

images) and fat tissue tends to appear an intermediate-bright on the image. When

imaging the brain, white matter generally appears darker than grey matter using a

T2 image.

Fluid Attenuated Inversion Recovery

Fluid Attenuated Inversion Recovery is a particular MRI sequence that uses a par-

ticular pulse sequence called inversion recovery (IR) to remove the signal of CSF in

the resulting image. The IR pulse sequence is a spin echo pulse sequence that is also

preceded by a 180◦ RF pulse.

The purpose of inverting pulse is to flip the initial longitudinal magnetisation

to the direction opposite of the main magnetic field. These tissues with inverted

magnetisation moments undergo T1 relaxation as they variably seek to re-establish

magnetisation along the longitudinal direction. When spin echo signal generation

begins (at the 90◦-pulse), the initial longitudinal magnetisations of different tissues

are now separated based on their different intrinsic T1 relaxation times. More specif-

ically, the spin echo 90◦ readout pulse is applied at the exact time when longitudinal

magnetisation reaches the null point for CSF and hence ideally removes the signal

generated by CSF. The time between the inverting pulse and the spin-echo pulse is
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called the time to inversion (TI) [89].

2.4.3 Computational Decision Making

A computational model of decision-making uses past experiences such as chosen

actions and value of rewards and outputs predictions about future actions. These

models are learned using the empirical data gathered from the behaviour of hu-

man participants and if these models are fitted different groups of participants (e.g.

healthy vs bipolar), the differences in the learned parameters can get insight about

the behavioural differences of these groups.

Several computational learning tasks, such as the bandit task and the two-stage

task, have been used to analyse the behaviour of different groups of participants.

Bandit Task

The bandit task [77] comes from imagining a gambler (agent) at a row of slot ma-

chines (sometimes known as ”one-armed bandits”), who has to decide which ma-

chines to play, how many times to play each machine and in which order to play

them, and whether to continue with the current machine or try a different machine.

The rewards from each machine is probabilistic, each with its own probability distri-

bution. The objective of the agent is to maximise the sum of rewards earned through

pulling a sequence of levers. Most importantly, the gambler faces a trade-off between

exploitation, where the agent leverages their current information to maximise their

reward by choosing the level with the highest expected pay out, and exploration to

get more information about the expected payoffs of the other machines.

More formally, the multi-armed bandit is a set of real distributions, B = {R1, .., RK},

with each distribution being associated with the rewards delivered by one of the K

levers. Each distribution is associated with a mean value of reward however which

may not necessarily remain static over iterative plays. The agent iteratively plays

one lever per round and observed an associated reward. Their task is to maximise
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Figure 2.6: a) Diagram of the two-stage task showing the states, actions and
the transition probabilities of each state. For example, at stage 1 (green state)
if “L”” was chosen, 70% of the time, the stage 2 state will be gold state (the
common transition). However choosing “L“ at stage 1 could transition to the
blue state (rare transition) 30% of the time. b) The probability of the RL agent
(left: model-based, right: model-free) staying on the same action at stage 1 and
stage 2 (e.g. choosing “L”” in both stages) depending whether a rare or common
transition was observed in the current episode and if a reward was received in the
previous episode.

the sum of collected reward over H number of rounds.

This bandit task has been used for example, to study the effects of age and

dopamine availability on striatal and prefrontal mechanisms [93] as well as differences

between patients with unipolar or bipolar depression and healthy participants [18].

Two-stage Task

The two-stage task has been used to demonstrate the distinct systems for decision

making, namely the habitual and goal-directed actions systems. The habitual de-

cision making system has a principle that an action followed by reinforcement is

more likely to be repeated in the future. This mechanism is akin to TD learning

where the learning is ”model-free” which ignores the structure of the task but in-

stead learns directly by the reinforcement of successful actions. On the other hand,

the goal-directed learn is similar to a ”model-based” RL agent which uses the given

model of the task to evaluate candidate actions [94].

The two-stage task is described as follows. On each trial of the task the agent

made two binary decisions at stage 1 and stage 2. The initial choice at stage 1

led probabilistically to either of two, stage 2 “states”. In turn, these stage 2 states



CHAPTER 2. BACKGROUND 47

both demanded another choice of two options, each of which was associated with

a different chance of delivering a binary reward (1 or 0). The choice of a stage 1

action led predominantly (70% of the time) to an associated one of the two stage

2 states, which are referred to as “common” transitions, and this relationship was

fixed throughout the experiment. Conversely, 30% of the time, the stage 1 action

led to the alternate stage 2 states, labeled as the “rare” transition.

The task consists of three states (first stage: sA; second stage: sB and sC), each

with two actions (aA and aB). The goal of the model-based and model-free agents

is to learn a state-action value function Q(s, a). On trial t, we donate the first-stage

state by s1,t, the second-stage state by s2,t, the actions in each stage as a1,t and

a2,t respectively and the rewards for the first-stage as r1,t (which is always 0) and

second-stage, r2,t.

The model-free algorithm was SARSA(λ) TD learning [95]. At each stage i of

each trial t, the value of the visited state-action pair was updated according to

QTD(si,t, ai,t) = QTD(si,t, ai,t) + α(ri,t +QTD(si+1,t, ai+1,t)−QTD(si,t, ai,t)), (2.35)

where α is the learning rate. We set α to be the same for the first- and second-stage

in simulations. We define QTD(s3,t, a3,t) = 0 since there is no further value in the

trial apart from the immediate reward r2,t.

Model-based reinforcement learning refers to learning optimal behavior indirectly

by learning a model of the environment by taking actions and observing the outcomes

that include the next state and the immediate reward. The agent attempts to learn

optimal policies by predicting the outcomes of actions when interacting with the

environment. In accordance to the structure of the two-stage task, this amounts to

agents deciding which first-stage actions maps to which second-stage and second,

learning immediate reward values for each of the second-stage options.

Daw et al. [94] characterized transition learning by assuming subjects simply chose
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between the two possibilities P (sB|sA, aA) = 0.7, P (sC |sA, aB) = 0.7, P (sC |sA, aA) =

1− P (sB|sA, aA) = 0.3 and P (sA|sA, aB) = 1− P (sC |sA, aB) = 0.3.

At the second-stage (the only one where immediate rewards were offered), the

problem of learning immediate rewards is equivalent to that for TD above, since

QTD(st,2, a2,t) is just an estimate of the immediate reward, r2,t. With no further

stages to anticipate, the model-free and model-based approaches coincide at the

second-stage, and we define QMB = QTD for states sB and sC .

Next, using Bellman’s equation, the model-based values of the first-stage actions

is defined as

QMB(sA, aj) = P (sB|sA, aj) max
a∈{aA,aB}

QTD(sB, a) +P (sC |sA, aj) max
a∈{aA,aB}

QTD(sC , a),

which are recomputed at the end of each trial using the current transition probabil-

ities and rewards.

The state-action values are connected to choices by using a softmax choice rule,

which assigns a probability to each action according to

P (ai,t|si,t) =
exp(βQ(si,t, a))∑
a′ exp(βQ(si,t, a′))

, (2.36)

where β is the inverse temperature parameter which determines the propensity to

explore, equivalently controlling the impact of receiving a reward from an action on

repeating that action in future trials.

By applying these two learning algorithms, model-free and model based, to the

two-stage task, different behaviours are observed as shown in Figure 2.6. The model-

free algorithm predicts that a stage 1 choice resulting in a reward is more likely to

be repeated on the subsequent trial (P (stay)), regardless of whether that reward

occurred after a common or rare transition. On the other hand, a model-based

learning algorithm predicts that a rare transition should affect the value of the other

stage 1 option, leading to an interaction between whether a reward was received and
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the type of transition observed [94].

The two-stage task has been used to demonstrate the deficits in goal-directed

control were more strongly associated with symptoms of compulsive behaviour and

intrusive thought [96] and has been used to analyse the process of habit formation

in healthy individuals [97].

2.5 Summary

So far, an overview of deep learning methods, which are typically used in supervised

learning problems, ranging from feed-forward neural networks through to recurrent

neural networks were discussed and the methods for training these models. Further-

more, we discussed other types of machine learning problems, unsupervised learning

where the goal is to learn patterns in the data without any preexisting labels, and

reinforcement learning that attempts to find the best action for a given situation

through the process of exploration and exploitation. We completed the background

with descriptions of mental illness and various tools, MRI and computational deci-

sion tasks, that are used to analyse the brain and mind.

The next sections will introduce machine learning methods to several tasks to

improve current tools in neuroscience. We propose the use of the CycleGAN for

unsupervised normalisation of two distinct MR images from different sites in order

to improve existing methods that pool data in order to increase sensitivity and sta-

tistical power. The thesis further extends the model to be used in semi-supervised

learning to translate different modalities of MR images of patients with brain tu-

mours and lesions. Lastly, a deep learning architecture is presented that models

human behaviour on sequential tasks whilst also explaining the characteristics that

defines the differences between different groups of participants.



Chapter 3

Correction of MRI Multisite

Differences

3.1 Introduction

One of the biggest challenges in the translation of neuroimaging findings into clinical

practice is the need to validate models across large independent samples and across

data obtained from different MRI scanners and sites. Combining multiple samples

increases the overall sample size, overcoming a limitation common to many neu-

roimaging studies. However it also introduces heterogeneity into the sample from

differences in scanner manufacturer, MRI protocol, variation in site thermal and

power stability, as well as site differences in gradient linearity, centring and eddy

currents. Therefore, images from different sites have the potential to introduce bias

that can either mimic or obscure true changes or even worse, produce results that

could be driven by the artifactual site differences. This can make the interpretation,

reliability and reproducibility of findings difficult. Despite these issues, pooling data

provides the opportunity to address a major source of concern regarding the low sta-

tistical power of published studies, especially when larger studies are not feasible

due to financial constraints or recruitment is difficult because a particular disorder

50
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is rare at a specific geographical location [30].

Given the considerable incentives to pool data, there is a relative paucity of meth-

ods available to correct for site-specific differences in MR images. The majority of

approaches are usually applied during data acquisition, for instance, using a com-

mon phantom across sites to calibrate and reduce differences in field homogeneities.

However, these a priori methods require careful planning and are not applicable to

data sets that have already been collected or other post hoc forms of data pooling.

Site differences can also be addressed in a post hoc fashion by treating the site as a

covariate in the analysis for evaluation of confounding effects. However, the inter-

action between the usually unknown site-specific effects and the true brain effects

on the MRI signal seem to be highly complex and nonlinear such that the inclusion

of the covariate can also introduce bias [98].

3.2 Related Work

In the context of predictive modelling in neuroimaging, previous works have focused

on including variables such as age, gender in predictive modelling [99, 100]. Such

variables are highly correlated with imaging data but are not relevant for clinical

analysis and are known as confounds. The standard approach is to remove the

contributions of these variables through regression based methods [100]. As such,

image data is adjusted such that the adjusted data can be considered as being

produced by subjects that have identical confounders and then this adjusted data

is then used to estimate the predictive model. These methods typically fit a linear

model between each image feature in turn and the confounders as features [98].

A second approach is to explicitly include the confounder as predictors in the pre-

dictive model and are treated similarly to the image features [101]. The advantage of

this approach is that it allows the model training procedure to produce a model that

predicts well, whether or not there is bias in the training sample. However the may
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fail due to problems of covariate shift where the distribution of the predictor features

in the training sample does not match the distribution in the population of inter-

est [98, 102]. Particularly when confounders are present, the relationship between

the confounders and the image data will cause the training data be unrepresentative

of the population of interest [98].

Recent advances in computer vision due to the application of artificial neural net-

works suggests there may be a novel post hoc solution to remove non-linear bias

in MR images. For example, superior performance in non-linear, multivariate pat-

tern classification problems such as Alzheimer’s disease classification, brain lesion

segmentation, skull stripping and brain age prediction have been achieved using

deep learning networks [1–5]. Deep learning provides some unique advantages for

high-dimensional data such as MRI data, since it does not require extensive fea-

ture engineering. Furthermore, deep learning has produced important advances in

generative modelling. Generative modelling involves learning to estimate a given

distribution in order to produce examples from that distribution. For example, af-

ter being trained on a set of images, the model is able to generate a new, ‘unseen’

sample from the training set. Generative modelling is considered a much more dif-

ficult task than pattern classification, as the output of these models are typically

high dimensional and a single input may correspond to many correct answers (e.g.

there are many ways of producing an image of a cat).

One class of generative models, known as generative adversarial networks succeed

through the idea of adversarial training, where the model’s training process can be

described as a game between two players. One player is called the generator where

it attempts to create samples from the same distribution as the observed data. The

other player is the discriminator where its function is to examine the fake samples

from the generator and real samples from the observed data and to classify the

generated and observed samples as either real or fake (see Section 2.2.3 for more

details.
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Here, we propose an algorithm that uses GANs to transform a set of images from

a given MRI site into images with characteristics of a different MRI site. Its purpose

is to correct for differences in site artefacts without the need for a priori calibration

using phantoms or significant coordination of acquisition parameters. This algorithm

can be treated as a ’black box’ without knowledge of the artefacts present in the

dataset and can be applied post hoc after acquisition to two or more unpaired sets

of imaging data. Importantly, as we demonstrate, the correction occurs without any

apparent loss of information related to gender or clinical diagnosis.

3.3 Unsupervised Domain Adaptation for Neu-

roimaging

3.3.1 Participants

Structural (T1-weighted) MR brain images were obtained (N = 313) from preexist-

ing MRI studies conducted at two different sites (site A and site B). The cohort from

each site contained two diagnostic groups (schizophrenia and healthy adults), how-

ever these groups were not evenly distributed over sites (see Table 3.1). All clinical

cases met DSM-IV criteria for their disorder with no other Axis I disorders, on the

basis of either the Mini-International Neuropsychiatric Interview [103] or the Struc-

tured Clinical Interview for DSM-IV Axis I and II Disorders [104]. Participants were

aged 18-65 years and spoke fluent English. Exclusion criteria included the presence

of an organic brain disorder, brain injury with post-traumatic amnesia, mental re-

tardation (WAIS-III IQ score less than 80), movement disorders and recent (within

6 months) substance dependence or electroconvulsive therapy. Healthy adults were

also screened for the absence of personal or family history of any DSM-IV Axis I

disorder.1

1This research was conducted under approval from the University of Sydney Human Research
Ethics Committee, HREC 2014/557.
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Table 3.1: Subject and gender distribution across sites (m:male, f:female)

Site A Site B Total

Control
n 41 101 142
age ± SD 29.7±13.1 31.2±8.7 31.2±10.1
m/f 23/18 52/49 75/67

Schizophrenia
n 17 154 171
age ± SD 44.8±11.1 38.0±9.5 38.7±9.8
m/f 7/10 57/97 64/107

Total
n 58 255 313
age ± SD 34.1±14.1 35.3±9.7 35.1±10.7
m/f 30/28 109/158 139/174

3.3.2 MR Scanner, image data and preprocessing

Data were collected from two different MRI sites: Site A hosted a Phillips Achieva

3T with a 8-channel head coil and receiver (NeuRA, Randwick NSW, Australia);

and Site B hosted a GE Discovery MR750 3T with a 8-channel head coil and re-

ceiver (Brain and Mind Centre, Camperdown NSW, Australia). T1-weighted image

volumes were acquired using a standard but scanner-specific MPRAGE acquisition

sequence. T1 images from Site A were acquired with a 3D Fast Spoiled Gradient

Recall Echo (FSPGR) sequence with SENSE acceleration; 8.3-ms TR, 3.2-ms TE;

and 11 degree flip angle, and comprised of 180 sagittal 1-mm slices in a 256 x 256

matrix (1 mm isotropic voxel dimensions). Images from Site B were acquired with

a 3D Turbo Field Echo sequence (TFE) with ASSET acceleration; 7.192-ms TR,

2.732-ms TE; and 12 degree flip angle, and comprised of 176 sagittal 1-mm slices in

a 256 x 256 matrix (1 mm isotropic voxel dimensions).

Image preprocessing was designed to remove as much of the site differences as

possible given standard tools available, before applying the novel GAN method de-

scribed in the next section. All preprocessing occurred in SPM12, running under

Matlab 8.4 (Math Works, Natick, MA, USA). After checking for scanner artefacts

and gross anatomical abnormalities for each image, we reoriented the original im-

http://www.fil.ion.ucl.ac.uk/spm
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ages along the Anterior-posterior commissure (AC-PC) line and set the AC as the

origin of the spatial coordinates to assist the normalisation algorithm. The unified

segmentation procedure in SPM12 was used to segment all the images into mean

corrected grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) space,

i.e. maps of probability values representing the probability of a voxel containing a

specific tissue type. Mean correction was applied to remove site differences in the

bias field. A fast diffomorphic image registration algorithm [105] was used to warp

the GM partitions into a new study-specific reference space representing an average

of all 313 subjects included in the analysis. As an initial step, a set of study-specific

templates and the corresponding deformation fields, required to warp the data from

each subject to the new reference space, were created using the GM partitions [106].

Each subject-specific deformation field was used to warp the corresponding GM

partition into the new reference space with the aim of maximising accuracy and

sensitivity [107]; the warped GM partitions were affine transformed into the MNI

space and an additional ‘modulation’ step was used to scale the GM probability

values by the Jacobian determinants of the deformations in order to ensure that the

total amount of GM in each voxel was conserved after the registration [108–110].

After this preprocessing, we obtained bias-field corrected, modulated, normalised

GM density maps from which we divided each brain volume into 2D sagittal slices

to be used to train the GAN model described below.

3.3.3 Generative Adversarial Networks

Rather than removing any remaining scanner artefacts and biases from the images,

we seek to transform one set of images from a site to images that come from the dis-

tribution of images from the other site, while still preserving the important features

of the original images.

Notation: In the following, we have defined capital bold font, X, as a matrix or a

set of images and lower case bold font, x, as a vector or one example image. Gθ, Dφ
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Figure 3.1: Architecture of the CycleGAN.

denotes a mapping function parameterised by θ and φ, respectively. P (X) indicates

the probability distribution for the imaging set X, and P̂ (X) is an estimate of that

probability distribution.

The problem at hand can be described as image-to-image translation in the com-

puter vision literature where the goal is to learn a mapping function between a set

of MRI images from domain X and another set of images from domain Y; learn

G : X → Y such that G(x) for each x ∈ X is indistinguishable from the set of

images from domain Y.

The CycleGAN [35] and DiscoGAN [111] have been developed to learn cross do-

main relationships between sets of natural objects such as from horses to zebras,

edges to photos and Monet artworks to realistic photos. The advantage of these

models is that they do not require paired sets of training samples, {xi,yi}Ni=1, which

is often difficult to obtain for neuroimaging data, and instead only require unpaired

imaging data consisting of a source set {xi}Ni=1 ∈ X and target set {yj}Mj=1 ∈ Y,

without any xi’s necessarily corresponding to any yj’s. These models attempt

to transform the underlying distribution of P (X) to an estimate of P (Y), P̂ (Y),
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through G while still preserving the important features of the original sample, xi,

but also merging these with the particular characteristics of P (Y).

To learn this mapping function, an adversarial training regime was utilised using

the GAN formulation. The generator, Gθ, represented as a convolutional neural

network defined by parameters θ, takes as input, images from X and transforms

these images, Gθ(x), as if they were sampled from P (Y). The discriminator, Dφ

on the other hand, is a supervised classifier represented as a convolutional neural

network. The discriminator observes two inputs, the observed images from Y and

generated samples Gθ(x). The goal of the discriminator is to output a probability

that its inputs are either real or fake, with the true labels being observed samples

as real and generated samples as fake. The discriminator attempts to learn that its

output from samples of Y, Dφ(y), are given to be given values near 1 and inputs

from the generator, Dφ(Gθ(x)), to be values close to 0. However, at the same time,

the generator will attempt to make the quantity, Dφ(Gθ(x)) to approach 1. At

equilibrium, Dφ(y) = 1
2

for all y and Gθ(x) which means that the discriminator is

unable to distinguish between real and generated samples [63].

More specifically, the Least Squares GAN (LSGAN) [112] is used to train the

discriminator and generator, where the discriminator’s objective function is

min
φ

1

2
Ey∼p(Y)[(Dφ(y)− 1)2] +

1

2
Ex∼p(X)[(Dφ(Gθ(x)))2], (3.1)

and the generator competes against the discriminator by having the objective func-

tion

min
θ

1

2
Ex∼p(X)[(Dφ(Gθ(x))− 1)2]. (3.2)

The discriminator learns a decision boundary between real and fake samples and

although some fake samples might be correctly classified, Equation 3.1 penalises

samples further away from the decision boundary. Since φ is fixed when updat-

ing the generator, the the decision boundary learned by the discriminator is also
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kept fixed. The dependence between the generator on the discriminator for learning

(Equation 3.2) encourages the generator to produce samples closer to the decision

boundary. On the next iteration, this causes the discriminator to update its decision

boundary closer to the real data’s manifold. The process repeats, making the de-

cision boundary to pass through the real data manifold and the generated samples

closer to the manifold of real data.

Equation 3.2, in contrast to the learning objective of the discriminator, shows the

generator does not have the same level of supervision as the discriminator. While

although they have competing objectives, the generator improves its generation of

samples, not because of the directive by a supervisor but rather, by the information

provided by the discriminator. It is through the cooperation between the generator

and discriminator that the generator learns the mapping function in an unsupervised

manner. This enables the ability to learn the transformation that is data driven and

without any a-priori knowledge of the processes that generated the two image sets.

The GAN objectives is not limited to Equations 3.1 and 3.2. Other adversar-

ial formulations have been developed in order to minimise other divergence mea-

sures between the observed distribution and generated distribution such as the

f -divergence [113], Jensen-Shannon divergence [63] or other distance metrics to

have different geometric interpretations such as, and not limited to, Earth Mover

distance [114] and Integral Probability Metrics [115]. Results based on the f -

divergence, Jensen-Shannon divergence and Earth Mover distance were also included

in experiments but produced similar results to the LSGAN.

Cycle loss

However, the transformation G : X → Y is ill-posed as there are infinitely many

mappings, G(x), that could induce the estimated distribution P̂ (X). This means

that each x and output G(x) do not necessarily have to have any meaningful rela-

tionship. For example, a possible outcome is that Gθ learns to transform all x ∈ X,
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to only one particular example of Y. This outcome is known as mode collapse

where the generator learns to map several different input values to the same output

point that fools the discriminator and the model is unable to make any progress in

training.

Zhu et al. [35] introduced an additional loss,cycle loss, that constrains the map-

ping to be constrained to a one-to-one correspondence (bijective mapping). If we

have a mapping G : X→ Y and another mapping F : Y → X then G and F should

be inverses of each other. To ensure this, the generators G and F are both trained

simultaneously with their own adversarial loss and own parameters, θ1 and θ2 respec-

tively but also adding a loss that encourages Fθ2(Gθ1(x)) ≈ x and Gθ1(Fθ2(y)) ≈ y.

The generators Gθ1 and Fθ2 are able to reconstruct the original set of images. The

distance metric used to measure the reconstruction was the L2 norm,

Lcycle(G,F ) = Ex∼p(X)[‖Fθ2(Gθ1(x))− x‖2]+

Ey∼p(Y)[‖Gθ1(Fθ2(y))− y‖2].
(3.3)

Figure 3.2: (a) Image A is mapped into the manifold of scanner set B through a
a convolutional neural network (generator). (b) This image is then transformed
back to the original manifold to reconstruct the original image using a different
CNN. (c) The original and reconstructed image is compared using some distance
metric (e.g. L1 or L2-norm).

Full objective

The model contains two pairs of GANs, with each generator learning the respective

mapping functions G : X → Y and F : Y → X. Each generator will have their
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respective discriminators, Dφ1 and Dφ2 , where Dφ1 will discriminate between x ∈ X

and samples from Fθ2 and conversely, Dφ2 will distinguish between y ∈ Y and the

output of Gθ1 . The objective function of Gθ1 and Dφ2 is given respectively as

min
θ1

Ex∼p(X)[(Dφ2(Gθ1(x))− 1)2] + λLcycle(Gθ1 , Fθ2), (3.4)

min
φ2

Ey∼p(Y)[(Dφ2(y)− 1)2] + Ex∼p(X)[(Dφ2(Gθ1(x)))2], (3.5)

where λ is a constant that controls the relative importance between the adversarial

loss and reconstruction loss. The objective function for Fθ2 and Dφ1 are similarly

defined.

3.3.4 Implementation

The generators and discriminators are fully convolutional neural networks. The

discriminators are composed of three convolutional layers to create a receptive field

of overlapping patch that aims to classify whether these image patches are either

real of fake. The transformations of the input consists of a succession of spatial 2D

convolutions, a leaky ReLU activation function and an instance normalisation.

During training, the input distribution of each hidden layer may change after

several iterations, known as internal covariate shift, due to the complicated non-

linearities of the incoming neurons. The current hidden layers will have to con-

tinually adapt to these changes in the input distribution hence could slow down

convergence. Instance normalisation attempts to rectify this by normalising the in-

puts to each hidden layer so that their distribution during training remains fairly

constant [116] which improves convergence of training. In regards to the choice of

activation function, the leaky ReLU activation function was used as it was found to

have the best qualitative performance except in the last layer of the discriminators

where no activation function was used.
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The generators follow a U-NET architecture that has been widely popular in

other biomedical applications [70]. The proposed U-NET contains three convolu-

tional down sampling layers, reducing the dimensionality of the image by a factor

of eight. The downsampling layers are composed of one 3 × 3 convolution with

stride of 2, followed by a leaky ReLU activation, instance normalisation, doubling

the number of feature channels at each downsample. These layers are followed by an

upsampling of the feature map followed by a 3 × 3 convolution (“up-convolution”)

that halves the number of feature channels, followed by a leaky ReLU activation

and a concatenation with the correspondingly cropped feature map from the down-

sampling path. However, the last layer of the generator uses a 1× 1 convolution is

used to map each feature channel and a tanh function that scales the output from

-1 to 1, producing a new grey matter voxel map. More specific details about the

architecture used is found in Table 3.2.

(a) Architecture of Generator

Layer Layer Type No. of Filters Stride Instance Norm Activation

1 Conv 32 2 No LeakyReLU
2 Conv 64 2 Yes LeakyReLU
3 Conv 128 2 Yes LeakyReLU
4 ConvT 64 2 Yes LeakyReLU
5 ConvT 32 2 Yes LeakyReLU
6 Conv 1 1 No Tanh

(b) Architecture of Discriminator

Layer Layer Type No. of Filters Stride Instance Norm Activation

1 Conv 64 2 No LeakyReLU
2 Conv 128 2 Yes LeakyReLU
3 Conv 256 2 Yes LeakyReLU
4 Conv 1 1 No None

Table 3.2: Architecture of GAN. Conv: Convolution. ConvT: Convolution
Transpose

During training, a batch size of one sagittal slice was constructed from each scan-

ner set. The filters of the CNN were initialised as described by Glorot and Ben-

gio [44]. The network was trained using Adam optimisation [46] with a starting
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learning rate of 2× 10−4 for the generators and discriminators. The generators and

discriminators were trained concurrently; every one gradient step of the generator

was taken with the discriminator parameters fixed followed by a gradient step of the

discriminator, keeping the generator parameters fixed. Training was stopped when

the cycle loss (Equation 3.3) failed to stop decreasing. It was found empirically that

the hyperparameter, λ, in Equation 3.4 was set to λ = 0.2.

3.3.5 Regression based correction methods

The performance of the GAN correction was compared against two other popu-

lar post hoc correction methods: linear regression and Gaussian Process (GP) re-

gression, which have previously been used to compensate for non-disease specific

effects [98, 100, 101].

A regression model was learned to estimate the GM density for every voxel based

on examples of subject-specific covariate and their corresponding GM density maps.

The general linear model for the voxels is given as

y = β0 + Xβ + ε, ε ∼ N (0, σ2), (3.6)

where y is a N × v matrix, where the columns represent the observed GM concen-

trations of each voxels and the rows are the observations of each of the N control

subjects. X ∈ RN×2 is the design matrix representing the subjects’ scanner char-

acteristic, coded as {0, 1} and the intercept term. β ∈ R2×v represents the effect

strengths associated to the scanner for each voxel and the coefficient of the inter-

cept. The regression parameters, β, were estimated for each voxel independently

with only the control subjects to avoid the confounding of disease. The model was

applied to new data, x(∗), to obtain a subject specific template, and was subtracted
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from the observed GM map to get a corrected image.

ŷ
(∗)
OLS = y(∗) − x(∗)β̂. (3.7)

where ŷ
(∗)
OLS is the corrected GM map of the original, y(∗) of the test example.

The GP regression correction method is analogous to Equation 3.7.

ŷ
(∗)
GPR = y(∗) − (k

(∗)
θ )TK−1θ y. (3.8)

ŷ
(∗)
GPR and y(∗) are the corrected and original images respectively. Kθ is the covari-

ance kernel matrix of the training examples with the elements corresponding to the

output of the kernel function kθ(xi,xj), for i, j ∈ {1, ..., N}. The coefficients of the

regression, k
(∗)
θ , are the kernel function values of the test example with all the train-

ing examples. The kernel used was similar to [101] where the covariance between

the input images xi and xj was

kθ,σ(xi,xj) = θ21 exp(−θ22(xi − xj)
2) + θ23 + θ24(xi)

Txj + σ2δij, (3.9)

where θk, k = {1, ..., 4} and σ are scalar model hyperparameters, and δij is the

delta function; one if i = j and zero, otherwise. The optimal hyperparameters were

determined by maximising the marginal likelihood function.

3.3.6 Support vector machine classification

Each correction method in this report (GAN, GP regression, linear regression) was

evaluated by the improvement of a learned supervised classifier in a range of prob-

lems such as scanner, gender and disease classification. This evaluation method was

used because of the lack of ground truth; there were a limited number of subjects who

were scanned across the two centers in similar conditions (n = 11, see Experiment

4: Reconstruction), which was insufficient to fully appraise our correction methods.
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A popular technique for the classification of high dimensional neuroimaging data is

the Support Vector Machine (SVM). It has been used for classification of many neu-

rological diseases such as Alzheimer’s Disease [117, 118], Huntington’s Disease [101]

and schizophrenia [119–123]. SVMs learn a decision boundary based on labeled ex-

amples by maximising the margin between training examples and minimising the

norm of the solution vector ŵ,

min
w

1

n

n∑
i=1

max(0, 1− yi(w · xi − b)) + λ||w||2, (3.10)

where the parameter λ > 0 determines the tradeoff between increasing the margin-

size and ensuring that xi lies of the correct side of the margin. Optimising Equa-

tion 3.10 can be rewritten as a constraint optimisation problem with a differentiable

objective function in the following way, called the primal problem,

min
1

n

n∑
i=1

ζi + λ||w||2

subject to yi(w · xi − b) ≥ 1− ζi and ζi ≥ 0, for all i. (3.11)

The GM concentrations of each voxel was used as input for the classification. The

primal solution, ŵ, when using a linear SVM, is a linear combination of the input

voxels and hence the spatial patterns of voxels that were relevant for the classification

process can be visualised.

3.3.7 Postprocessing

PCA was used to transform the middle five sagittal slices of the normalised images

into orthogonal eigenvector components, ordered according to their contribution of

variation in explaining the set of slices. The first 50 components was used as features

to train the supervised learning models as outlined in Section 3.3.8.
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3.3.8 Evaluation methods

The effectiveness of each correction technique was assessed by the classification

performance of a Gaussian kernel SVM. Accuracy, precision and recall of the learned

SVM was evaluated using 10-fold cross validation after each correction method was

applied to the dataset, as well as a baseline of no correction. For robust evaluation,

the results reported were obtained in the following manner: for a test fold, the

performance measure (accuracy, precision, recall and specificity) was computed for

each of the correction methods and baseline. The difference of each measure was

taken between baseline and the correction method. This was repeated for every test

fold, collecting 10 sample sets for each method in each experiment. The average and

standard deviation over the 10 sample sets was calculated for each method, and are

the values reported. Significant differences in performance between each correction

method and baseline were then compared by t-test with Dunnett’s correction to

control the type-I error rate at α = 0.05.

3.4 Experiments

3.4.1 Supervised classification test of scanner

After preprocessing, the images were converted to bias-field corrected, normalised,

grey matter density maps, however site-related differences still existed in this dataset.

To illustrate the confounding influence that site-related differences can have on

the ability to classify images, we initially performed a disease classification on our

preprocessed (but untransformed) full dataset. Our full dataset contained images

from two different groups and two different scanners. A polynomial SVM indicated

the diagnostic groups were only weakly separable, and the decision boundary tended

to separate scanners rather than clinical groups. Figure 3.3 shows a representation of

the decision-boundary. The figure shows the decision-boundary (background colour)
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Figure 3.3: The decision boundary, plotted in 2D, learned by a polynomial
SVM when classifying diagnostic groups. The background colour represents the
decision boundary. The colour of points represents the true diagnostic group
membership, and the shape of points represents the scanners.

tends to separate shapes representing scanner differences (crosses and circles) rather

than colours representing diagnostic differences (blue vs red). In particular, the

crosses and circles are well-separated to the top right and bottom left of the figure,

while the blue and red circles in the bottom left are intermingled. This impairs the

accuracy of the model when using to predict unseen cases and favours the prediction

of the sites rather than the clinical diagnosis.

We evaluated the ability of our generative adversarial network to remove the

site-related differences in our dataset. We used the mid-sagittal slice from the T1-

weighted MRI of healthy subjects from site A and site B, and we merged the distri-

bution of each image set by transforming the images from site A into images that

have similar morphological characteristics as site B. Figure 3.4 shows a number of ex-

amples from the different sets and their resulting transformations. The transformed

images (second row) demonstrate more consistency compared to the corresponding

original images (top row). The differences between the original and transformed

images, highlighted in the bottom row show significant changes in regions such as

the thalamus and the brain stem.

Figure 3.5 demonstrates the changes in the mean image before and after the

transformation using the GAN. The top rightmost image in Figure 3.5 shows that
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Figure 3.4: Top row: Samples of images from site A. Second row: The result
of the transformation of images from the top row using GAN. Bottom row: The
absolute difference between the images of first and second row.

the differences in the mean of Site A and B are particularly localized to the tha-

lamus and the frontal lobe, however after the transformation, the differences are

not concentrated to a particular area of the brain. Similarly, the GAN brings the

distribution of pixel intensities between Site A and B closer to each other as shown

in Figure 3.5a.

We next conducted a supervised classification test of the dataset to determine how

well the images from each site were distinguishable. A Gaussian SVM model was

trained using the images from healthy controls. Table 3.3 shows the performance

of the classifier after different correctional techniques were applied to the healthy

dataset, including linear regression, Gaussian regression, and our GAN transforma-

tion. The SVM was able to achieve close to 100 percent accuracy when discriminat-

ing between the two sites without any correction (99.3% accuracy, 99.4% precision,

99.3% recall and 100% specificity). The linear correction method produced the worst

outcome as the SVM was able to distinguish between the two site images with 100%
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(a)

(b)

.

Figure 3.5: Change in the mean image distributions of Site A and B, before
(top rows) and after (bottom rows) transformation to a common distribution. (a)
Distribution of pixel intensity before and after transformation. (b) Mean image
from Site A (left) and Site B (middle) and the mean difference (right), before and
after transformation.
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Figure 3.6: Left column: Images before transformation. Right column:
Images after GAN transformation. Top: PCA visualisation of the two scanner
sets. Bottom: a t-SNE visualisation

accuracy after application of this method. By contrast, the non-linear correction

methods such as the GAN and GP regression reduced but did not eliminate, the

model’s ability to distinguish between the sites. This suggests that the non-linear

correction methods remove or minimise the site artefacts present in our dataset,

with the gan transformation producing the largest correction.

Table 3.3: Classification of scanners, using different correctional methods. Av-
erage difference in performance from baseline (no correction) across 10-fold cross-
validation. Bold indicates the best performing in the category. Standard deviation
in square brackets.

Correction method Accuracy Precision Recall Specificity

Linear regression 0.007 [0.0004] 0.006 [0.0003] 0.007 [0.0004] 0.000 [0.0000]
GP regression -0.309 [0.0243] -0.476 [0.0353] -0.309 [0.0243] -0.049 [0.0036]
GAN -0.386 [0.0091] -0.389 [0.0306] -0.386 [0.0091] -0.255[0.0151]

3.4.2 Unsupervised classification test of scanner

We performed unsupervised learning to determine whether any unstructured infor-

mation related to site differences remained in the dataset. Figure 3.6 shows a 2D
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visualisation of the differences between data sets before and after the transformation

by the GAN, using two dimensionality reduction techniques: PCA and t-SNE [59].

t-SNE, unlike PCA, is a non-linear method that is useful for exploring local neigh-

bourhoods and finding clusters in data (See Section 2.2.2). If data is naively pooled

(left column), there is clear separation between the datasets from each site, suggest-

ing that these site artefacts are a possible confound and will make any interpretation

of results using pooled data difficult. However, after the GAN transformation (right

column), such separation has vanished and the data is akin to that generated from

the same distribution.

3.4.3 Classification of disease

The previous experiment demonstrated the GAN transformation method removed

site-related information from our dataset on the basis of supervised and unsupervised

classification methods. An important concern is whether the information loss is

selective to site differences or whether other information such as that related to

clinical diagnosis, is also lost. To test that, we determined whether classification

of clinical diagnosis was adversely affected by any of our correction methods. A

Gaussian SVM was used to classify the diagnosis of the subjects as either healthy

or schizophrenia. The SVM was able to achieve over 85 percent accuracy when

discriminating between clinical diagnosis without any correction (87.1% accuracy,

89.1% precision, 87.1% recall and 95.7% specificity). Table 3.4 shows comparisons

compared to baseline using each correction method (Linear and GP regression, and

GAN transformation).

Linear regression was the only method to produce negative changes in accuracy,

implying it non-selectively removed information from our dataset. On the other

hand, GP regression and GAN transformation produced significant improvements

in accuracy, with GAN producing the largest improvement in accuracy (3.7%) when

compared to base and 1.2% compared to GP regression. The negative changes in
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Table 3.4: Classification of disease, using different correctional methods. Aver-
age difference in performance from baseline (no correction) over each cross valida-
tion fold is reported. Bold indicates the best performing in the category. Negative
values indicate a worse result compared to baseline. Standard deviation in square
brackets.

Correction method Accuracy Precision Recall Specificity

Linear regression -0.003 [0.0007] 0.000 [0.0005] -0.003 [0.0007] 0.000 [0.0010]
GP regression 0.025 [0.0010] 0.021 [0.0010] 0.026 [0.0010] -0.042 [0.0063]
GAN 0.037 [0.0011] 0.028 [0.0008] 0.038 [0.0011] -0.043 [0.0032]

specificity after GP and GAN correction indicate there is some improvement of

classification accuracy of the schizophrenia brain images at the expense of healthy

brain images.

3.4.4 Classification of gender

The GAN correction appears to selectively remove information related to site dif-

ferences in our dataset, without adversely affecting information related to subtle

clinical differences. However anatomical differences between psychiatric groups are

likely to be small, obscure and perhaps not generally representative of the morpho-

logical changes produced by our correction methods here. Furthermore, the contri-

bution of diagnostic groups from each site in our dataset is unbalanced (e.g., see

Table 3.1), and there are reasonable concerns that unbalanced sampling from con-

founded groups may artificially inflate classification accuracy, even after weighting

for unbalanced groups [98]. To help determine the general impact of our correction

methods on anatomically distinct groups, and to eliminate concerns of inflated clas-

sification accuracy due to unbalanced groups, we tested the effect of GAN correction

on balanced groups. We created a dataset which balanced the group contribution

from each site by randomly selecting a set of 37 male images and 37 female images

from each site. Thus, we balanced both gender and site in this dataset. Male and fe-

male images from each site were then pooled together, and correction methods were

applied to each dataset. We then tested whether a Gaussian SVM could classify
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Figure 3.7: Percentage decrease in reconstruction (MSE) error against baseline
for the different correction methods.

brain images by gender. On a balanced dataset, the baseline classification accuracy

of the SVM (i.e., uncorrected images) was less than 70 percent (65.2% accuracy,

65.6% precision, 64.5% recall and 65.9% specificity). The results of our correction

methods are shown in Table 3.5. The GAN corrected images improved accuracy by

15.8% compared to baseline whereas linear regression and GP regression produced

no significant difference in the classification of gender from baseline (and on average

they even reduced classification performance).

Table 3.5: Classification of gender, using different correctional methods. Re-
ported values correspond to the average of the differences of each cross validation
fold test between baseline (no correction) and the correction method. Bold indi-
cates the best performing in the category. Negative values indicate a worse result
compared to baseline. Standard deviation in square brackets.

Correction method Accuracy Precision Recall Specificity

Linear regression -0.015 [0.0027] -0.018 [0.0032] -0.016 [0.0053] -0.014 [0.0018]
GP regression -0.033 [0.0026] -0.036 [0.0022] -0.025 [0.0056] -0.041 [0.0071]
GAN 0.158 [0.0332] 0.130 [0.0362] 0.211 [0.0310] 0.105[0.0576]

3.4.5 Reconstruction

11 subjects (5 male) had undergone MRI scans at site A and site B. This allowed us

to determine how similar the reconstructed images from the different methods were

to images of the same brain collected at the actual site. Images from site B were
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corrected to site A and were compared to the actual images collected at site A for

the selected subjects. The Mean Squared Error (MSE) between the corrected and

actual image for each subject was calculated and was compared to baseline. Linear

regression and GP regression performed similar to each other with a 6.35% decrease

in error. The GAN correction had significant improvement over the other regression

methods with a 27.02% decrease in error.

3.5 Discussion

Although combining structural MRI scans from different centres provides an oppor-

tunity to increase the statistical power of brain morphometric analyses in neuro-

logical and neuropsychiatric disorders, one important confound is the potential for

site differences (scanner and MRI protocol effects) to introduce systematic errors.

Thus, pooling data from different sites, scanners or acquisition protocols could make

the interpretation of results difficult or even decrease predictive accuracy [119, 124].

These site specific differences are even more important with the growing popularity

of open source data and automatic diagnostic systems using machine learning tech-

niques. Although naively pooling data from multiple centers may increase sample

size and intuitively, increase predictive accuracy, we found that the decision bound-

ary learned by the classifier is heavily biased towards the separating hyperplane of

the scanner differences rather than the true diagnostic label (See Figure 3.3).

We proposed a novel method using deep learning to correct (unknown) site dif-

ferences and experimented with data from subjects differing in clinical diagnosis or

gender. The dataset was collected at two different MRI sites with different hard-

ware and protocols. As such, our dataset probably represents larger site-related

differences than previous studies which used images acquired with similar MRI pro-

tocols [101]. Even with these large differences, we were able to remove the majority

of site effects without any apparent loss in classification accuracy. These results sug-
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gest that GAN models may be a powerful method to selectively remove unwanted

information from image data, without affecting the information content related to

features of interest (e.g., clinical diagnosis).

The GAN transformation left intact differences related to clinical diagnosis as well

as gender. Such differences are likely to vary in magnitude relative to the site-related

differences the GAN removed. For instance, Voxel-Based Morphometry (VBM) and

Multi-Voxel Pattern Analysis (MVPA) indicates grey matter volume differences re-

lated to schizophrenia are small, heterogenous and widely-distributed [125, 126]. By

comparison, gender differences are likely larger, with fewer major points of focus,

but still widely-distributed [127]. Demonstrating the selectivity of the GAN trans-

formation against differences of varying magnitude is an important validation of the

generalizability and utility of this method.

Perhaps not surprisingly, the GAN transformation produced the largest changes in

the thalamus and brain stem. These regions may be more susceptible to distortions

in magnetic fields and are notoriously difficult to achieve accurate image segmen-

tation and registration during preprocessing [109]. This is partly because it has a

mix of gray and white matter which cannot be easily delineated by standard prepro-

cessing steps. An implication of the regional variations in transformation we found

is that one cannot assume that preprocessing removes all site-related differences in

multi-site studies, even if bias-field correction is included. However at present it is

hard to do more than speculate as to why the GAN transformation produced the

changes where it did.

In comparison to other learning-based approaches, one advantage of neural net-

works is that no features have to be hand-crafted but instead, the model learns

suitable features for the transformation during training automatically [128]. In con-

trast to methods such as linear regression that treat voxels independently of each

other, convolutional neural networks take local information into account as they are

based on image patches. The fully convolutional architecture allows for a variable
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number of input sizes however the quality of the generation of images may change

due to the fixed receptive field of the networks.

The experiments suggest that using methods such as linear regression, and in

some cases GP regression (see Table 3.3-3.5) are not suitable to correct for site

differences. The linear regression included an intercept term to account for mean

differences between sites, yet it decreased classification accuracy when discriminating

diagnostic groups and still allowed for differentiation between scanners. On the

other hand, the GAN method here was able to capture the differences between

scanners, making the transformations indistinguishable between the scanner sets and

improve classification accuracy compared to baseline. This suggests that site-related

differences are highly nonlinear that cannot be estimated using linear methods.

The small difference in performance between the GAN and GP regression when

classifying diagnostic groups could be explained by the fact we only used a single

sagittal slice from each brain in our dataset. A single slice would likely contain a

relatively restricted amount of variance and hence represent a limit to the amount

of information that can be learned from the data. The GAN correction, however, in-

creased classification of gender significantly compared to GP regression. Figure 3.4

shows that most of the changes between original and transformed images occur

around the thalamus and brain stem. Since the structural differences between gen-

der occur in these regions [127] and the result of the transformation has improved

the consistency of the GM maps in those regions across scanners, this allowed the

classifier to learn a decision boundary that reflected gender differences rather than

variation caused by scanner differences.

Future work is to further validate the GAN on neurological diseases such as

Alzheimer’s diseases that have more prominent features in MRI images as opposed

to psychiatric disorders like uni-polar depression. Particular regions of the brain can

be of particular interest such as the cerebral cortex and certain subcortical regions.

This loss results in gross atrophy of the affected regions, including degeneration in



CHAPTER 3. CORRECTION OF MRI MULTISITE DIFFERENCES 76

the temporal lobe and parietal lobe, and parts of the frontal cortex and cingulate

gyrus [129].

3.6 Summary

In many neuroimaging datasets contain large amounts of unpaired data, where exam-

ples in the dataset do not contain all modalities (i.e. they do not contain images from

both scanners but rather from one). On the other hand, there is a smaller fraction of

examples that contain all modalities (paired data) and furthermore each modality is

high dimensional when compared to number of datapoints. In the next chapter, we

will extend this model, which focused on using a dataset with two distinct unpaired

sets of examples and learning a translation in an unsupervised manner, to a model

that is able to learn in a semi-supervised fashion. This model, presented in the next

section, is able to leverage a dataset contains unpaired examples but also includes

paired examples to improve the stability of training and the transformation between

the sets of images.



Chapter 4

Semi-supvervised Imputation of

Missing MR Modalities

4.1 Introduction

Magnetic Resonance Imaging (MRI) of the brain has been used to investigate a wide

range of neurological disorders and depending on the imaging sequence used, can

produce different modalities such as T1-weighted images, T2-weighted images, Fluid

Attenuated Inversion Recovery (FLAIR), and Diffusion Weighted Imaging (DWI).

Each of these modalities produce different contrast and brightness of brain tissue

that could reveal pathological abnormalities. Many of the advances in the use of

data-driven models in Alzheimer’s disease classification [130], brain tumour segmen-

tation [131] and skull stripping methods [132], rely on Deep Convolutional Neural

Network (DCNN)). In particular, datasets such as BraTS [34] and ISLES [23] have

been focusing on the evaluation of state-of-the-art methods for the segmentation of

brain tumours and stroke lesions respectively. These methods do not require the use

of hand designed features and instead are able to learn a hierarchy of increasingly

complex features. However, they require multiple neuroimaging modalities for high

performance and improved sensitivity [133] (See Figure 4.1). Collecting multiple

77
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Figure 4.1: Top: A coronal slice of a low grade glioma (brain tumour) in the
BraTS dataset in different modalities. From left to right: T2, FLAIR, T1 and
T1c. Bottom: Axial slices of modalities of a CT perfusion scan of an ischaemic
stroke lesion patient in the ISLES dataset. From left to right: mean transit time
(MTT), cerebral blood flow (CBF), time-to-peak (TTP) of the residue function,
CBV, ADC.

modalities for each patient can be difficult, expensive and not all of these modalities

are available in clinical settings. In particular, paired data, where an example has

all modalities present, is difficult to access, making these data dependent models

more difficult to train or reduce their applicability during inference.

To ensure each modality is present, the missing modality could be imputed through

a domain adaptation model where characteristics of one image set is transferred into

another image set (e.g. T1-weighted to T2-weighted) that has been learned from ex-

isting paired examples. However, since this paired data is limited in the neuroimag-

ing context, learning from examples that do not have all modalities (unpaired data)

is valuable as this form of data is more readily available.

There has been significant interest in unsupervised image-to-image translation

where paired training data is not available but two distinct image sets. Methods

proposed by Zhu et al. [35] and Hoffman et al. [134] assume the two image collec-

tions are representations of some shared, underlying state. They use adversarial

training which discriminates at the image level to guide the transformation between

the domains. Furthermore, the translations between these two sets should have ap-

proximately invertible solutions and should be cycle consistent- where the mapping
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of a particular source domain to the target domain and back should yield the origi-

nal source at the pixel level. Alternative methods extract domain invariant features

with DCNNs and discriminate the feature distributions of source/target domains

[135].

One work in recent literature that exploits the two distinct image sets of unpaired

data, in order to improve the performance on tasks with a scarcity of paired data

is the Cycle Wasserstein Regression GAN (CWRG) [136]. The CWRG uses the

l2-norm as a penalty term for the reconstruction of paired data along with the ad-

versarial signal and cycle-loss of the CycleGAN. However, the CWRG demonstrated

its performance on ICU timeseries data and transcriptomics data and not on image

data.

The proposed method, the Semi-Supervised Adversarial CycleGAN (SSA-CGAN)

further extends the application of leveraging unpaired data and paired data to Mag-

netic Resonance Imaging (MRI) image translation, where the dimensionality of the

examples is orders of magnitude larger. The method uses multiple adversarial sig-

nals for semi-supervised bi-directional image translation. Our experimental results

have demonstrated that our proposed approach has superior performance compared

to the CycleGAN and CWRG in terms of average reconstruction error and vari-

ance and as well as robustness to noise when evaluated using the BraTS and ISLES

dataset.

4.2 Related Work

Generative Adversarial Network (GAN) have received significant attention since

the work by [33] and various GAN-based models have achieved impressive results

in image generation [137] and representation learning [138]. These models learn a

generator to capture the distribution of real data by introducing a competing model,

the discriminator, that evolves to distinguish between the real data and the fake data
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produced by the generator. This forces the generated image to be in distinguishable

from real images.

Various conditional GAN (cGAN) have been adapted to condition the image gen-

erator on images instead of a noise vector to be used in applications such as style

transfer from normal maps to images [139]. Isola et al.’s [69] work in particular, uses

labelled image pairs to train a cGAN to learn a mapping between the two image

domains. On the other hand, there have been significant works that have tackled

image-to-image translation in the unpaired setting. The CycleGAN [35] uses a cy-

cle consistency loss to ensure the forward mapping and back results in the original

image. It has demonstrated success in tasks where paired training data is limited

e.g. in painting style and season transfer. The Dual GAN, being inspired by dual

learning in machine translation used a similar loss objective, where the reconstruc-

tion error is used to measure the disparity between the reconstructed object and the

original image [140]. Unlike the previous two frameworks, the CoGAN [141] and

cross-modal scene networks [142] does not use a cycle consistency loss but instead,

uses weight sharing between the two GANs, corresponding to high level semantics

to learn a common representation across domains.

GANs have been used in the semi-supervised learning (SSL) context as the visu-

ally realistic images generated can be used as additional training data. Salimans et

al. [143] proposed techniques to improve training GANs which included learning a

discriminator on additional class labels which can be used for SSL. Mayato et al. [144]

modified the adversarial objective to a regularisation method based on virtual ad-

versarial loss. The method probabilistically produces labels that are unknown to

the user and computes the adversarial direction based on the virtual labels. Park et

al. [145] improves upon the performance of virtual adversarial training by using ad-

versarial dropout which maximises the divergence between the training supervision

and the outputs from the network with the dropout.

GANs have been used in a range of applications in biomedical imaging such as
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the generation of multi modal MRI images and retinal fundus images [146], to de-

tect anomalies in retinal OCT images [147] and image synthesis of MR and CT

images [148]. Adversarial methods have also been extended to domain adaptation

for medical imaging. Chen et al. [149] recently developed the Synergistic Image and

Feature Adaptation framework that enhances domain-invariance through feature en-

coder layers that are shared by the target and source domain and uses additional

discriminator to differentiate the feature distributions. Perone et al. forgoes the use

of adversarial training and instead demonstrates application of self ensembling and

mean teacher framework [150].

The CycleGAN has been recently applied to the biomedical field for translating

between sets of data. Welander et al. [151] investigated the difference between the

CycleGAN and UNIT [152] for the translation between T1- and T2-MRI modalities

and found the CycleGAN was the better alternative if the aim was to generate

visually realistic images as possible. McDermott et al. [136] on the other hand,

tackled domain adaptation in the semi-supervised setting by proposing Wasserstein

CycleGANs coupled with a l2 regression loss function on paired data. The semi-

supervised setting for this paper is similar to McDermott et al., however we propose

an adversarial training signal for paired data instead of the l2 loss. We demonstrate

our method produces better reconstructions with lower variance and is more robust

to noise in the context of translating between neuroimaging modalities compared to

existing methods.
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Figure 4.2: The model is composed of the CycleGAN architecture and an aux-
iliary discriminator which takes as input concatenated paired examples and the
concatenation of generators’ various transformations.

4.3 Semi-supervised Domain Adaptation with Ad-

versarial Training

4.3.1 CycleGAN

The CycleGAN [35] learns to translate points between two domains X and Y . Given

two sets of unlabeled and unpaired images, {xi}Ni=1 where xi ∈ X and {yj}Mj=1,

yj ∈ Y , two generators, F and G, are trained to learn mapping functions G : X → Y

and F : Y → X, where F and G are usually represented by DCNNs. Furthermore,

two discriminators DX and DY are trained where DX learns to distinguish between

images {x} and {F (y)} and DY discriminates between {y} and {G(x)}. Instead of

the original GAN loss, the CycleGAN trains discriminators using the least squares

loss function proposed by Mao et al. [64]. For example, DX minimises the following

objective function:

LDX
= Ex∼P (x)

[
(DX(x)− 1)2

]
+ Ey∼P (y)

[
(DX(F (y)))2

]
. (4.1)
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Conversely the generator, F , for example is trained according to the following ad-

versarial loss,

LFadv
= Ey∼P (y)

[
(DX(F (y))− 1)2

]
, (4.2)

as well as a cycle-consistency loss where reconstruction error between the inverse

mapping and the original point is minimised [35],

Lcyc = Ex∼P (x)

[
||F (G(x))− x||1] + Ey∼P (y)

[
||G(F (y))− y||1]. (4.3)

The overall loss function for the generator is therefore given as

LF = LFadv
+ λLcyc, (4.4)

where λ controls the relative strength between the adversarial signal and the cycle-

consistency loss.

4.3.2 Semi-Supervised Adversarial CycleGAN

We extend the CycleGAN through the SSA-CGAN to take advantage of paired

training data. In our scenario we have additional information in the form of T

paired examples {xp,yp}Tp=1, a subset P ⊆ X×Y . We seek to take advantage of this

paired information through an auxiliary adversarial network, Dpair (See Figure 4.2).

Dpair takes as input, only the paired examples from P and the concatenations of

the following transformations: 1) xp and yp, 2) xp and G(xp), 3) F (yp) and yp,

4) F (yp) and G(xp). Dpair attempts to discriminate between the ground-truth pairs,

{xp,yp} ∈ P , as real and the transformation of the image and its respective real
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image as fake. Therefore, the paired discriminator minimises

LDpair
= Ex,y∼Ppair(x,y)

[
(Dpair(x,y)− 1)2

]
+ γ1Ex,y∼Ppair

[
DP (x, G(x))2

]
+

γ2Ex,y∼Ppair

[
Dpair(F (y),y)2

]
+ γ3Ex,y∼Ppair

[
Dpair(F (y), G(x))2

]
,

(4.5)

and F ’s loss is

LFSemi
= LFadv

+ λLcyc + αLpair, (4.6)

where Lpair is given as

Lpair = Ex,y∼Ppair

[
(Dpair(x, G(x))− 1)2

]
+ Ex,y∼Ppair

[
(Dpair(F (y),y)− 1)2

]
+ Ex,y∼Ppair

[
(Dpair(F (y), G(x))− 1)2

]
,

(4.7)

and α, λ, γ1,γ2 and γ3 control the relative weight of the losses. The third loss

term can be seen as further regularisation of the generators where its forward and

backward transformations are pushed towards the joint distribution of X and Y .

4.4 Experiments

4.4.1 Dataset

We evaluate our method using BraTS and ISLES datasets which have been used to

evaluate state-of-the-art methods for the segmentation of brain tumours and lesions

respectively. BraTS utilises multi-institutional preoperative MRI scans and focuses

on the segmentation of intrinsically heterogeneous (in appearance, shape, and histol-

ogy) brain tumours, namely gliomas. This proposed method is trained and tested on

the BraTS 2018 dataset. The training dataset contains 285 examples including 210

High Grade Glioma (HGG) cases and 75 cases with Low Grade Glioma (LGG). For

each case, there are four MRI sequences, including the T1-weighted (T1), T1 with

gadolinium enhancing contrast (T1c), T2-weighted (T2) and Fluid Attenuated Inver-

sion Recovery (FLAIR). The dataset includes pre-processing methods such as skull
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strip, co-register to a common space and resample to isotropic 1mm× 1mm× 1mm

resolution. Bias field correction is done on the MR data to correct the intensity

in-homogeneity in each channel using N4ITK tool [153].

The dataset was divided as the following: 30% of examples was designated as

unpaired examples of domain X (e.g. T2 volumes) and 30% as unpaired examples

of domain Y (e.g. T1), 10% was designated as paired training examples where each

example, had both T2 and T1 modalities. 10% was reserved as a held-out valida-

tion set for hyperparameter tuning and 20% was reserved to be a test set used for

evaluation.

ISLES contains patients who have received the diagnosis of ischaemic stroke by

MRI. Ischaemic stroke is the most common cerebrovascular disease and one of the

most common causes of death and disability worldwide [154]. The stroke MRI was

performed on either a 1.5T (Siemens Magnetom Avanto) or 3T MRI system (Siemens

Magnetom Trio). Sequences and derived maps were cerebral blood flow (CBF),

cerebral blood volume (CBV), time-to-peak (TTP), time-to-max (Tmax) and mean

transit time (MTT). The dataset included images that were rigidly registered to

the T1c with constant resolution of 2mm × 2mm × 2mm and automatically skull

stripped [23]. The dataset includes 38 patients in total and was divided in similar

proportions as the BraTS experiment regime.

Further pre-processing for each dataset included each image modality was nor-

malised by subtracting the mean and dividing by the standard deviation of the

intensities within the volume and rescaled to values between 1 and −1. The vol-

umes were reshaped to 240 × 240 coronal and 128 × 128 axial slices for the BraTS

and ISLES dataset respectively. This resulted in an average of 170 slices per patient

for the BraTS dataset and 18 slices per patient in ISLES.
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4.4.2 Implementation

Network Architecture: The generator network was adapted from Johnson et

al. [155] and Zhu et al. [35]. The network contains two stride-2 convolutions, 6

residual blocks [156] and two fractionally strided convolutions with stride 1
2
. The

single input discriminator networks is a PatchGAN. The paired input discriminator

was a two stride-2 convolution layers. It used the concatenation of feature maps

from the second last layer of DX and DY as inputs as a form of weight sharing with

the single image discriminators.

Training details: For all the experiments, we set λ = 10, α = 2, γ1 = γ2 =

γ3 = 1
3

in Equation 4.6 chosen by the performance on the held out validation set

averaged across the pairs of MR modalities mentioned in Section 4.4.3. All networks

were trained from scratch simultaneously using NVIDIA V100 GPU with an initial

learning rate of 2 × 10−4, weights were initialised using Glorot initialisation [44]

and optimised using Adam [46] with a batch size of 1. The learning rate was kept

constant for the first 100 epochs and was linearly decreased thereafter to a learning

rate of 2 × 10−7. Training was finished after 200 epochs. While standard data

augmentation procedures randomly shift, rotate and scale images, the images were

only augmented by random shifting during training as the volumes were normalised

to the same orientation and shape due to co-registration.

4.4.3 Evaluation metrics

We evaluated the SSA-CGAN by learning a separate model for the following pairs

of MR modalities: T2→T1, T2→T1c, T2→FLAIR, CBF→MTT, CBF→CBV,

CBF→TTP, CBF→Tmax. For example, T2→T1 indicates the models were evalu-

ated on the reconstruction of a T1 volume when transformed from a T2 volume. This

was evaluated against the CycleGAN and the Cycle Wasserstein Regression GAN

(CWRG) [136] which is currently the only other method in recent literature that

combines unpaired and paired training data for translation between different modal-
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Method T1 T1c FLAIR
M

S
E

Cycle 0.0314 ±0.0006 0.5301± 0.4880 0.7072± 0.3956
CWRG 0.7503 ±0.1687 0.4607± 0.3602 0.6145± 0.4279

SSA-CGAN-p 0.0234 ±0.0032 0.0160 ±0.0100 0.0147± 0.0018
SSA-CGAN 0.0169± 0.0011 0.0102± 0.0024 0.0177± 0.0071

M
A

E

Cycle 0.0608 ± 0.0041 0.4924± 0.4146 0.6231± 0.3264
CWRG 0.6963± 0.3738 0.4564± 0.3868 0.5603 ±0.5564

SSA-CGAN-p 0.0508±0.0037 0.0411±0.0118 0.0390±0.0028
SSA-CGAN 0.0436± 0.0011 0.0338± 0.0046 0.0426± 0.0089

Table 4.1: MSE and MAE for various paired transformations averaged across
five runs with one standard deviation for the BraTs dataset.

Method MTT rCBV TTP Tmax

M
S
E

Cycle 0.1280± 0.1603 0.2437± 0.3111 0.0616± 0.0017 0.1887± 0.1565
CWRG 0.5803± 0.2688 0.6826± 0.2604 0.5785± 0.2945 0.4825± 0.1722

SSA-CGAN-p 0.0503± 0.0051 0.0262± 0.0017 0.0443 ±0.0085 0.0348± 0.0021
SSA-CGAN 0.0271± 0.0007 0.0202± 0.0014 0.0210± 0.0011 0.0235± 0.0041

M
A

E

Cycle 0.2162± 0.1610 0.4236 ± 0.2957 0.1409± 0.0022 0.3048± 0.1939
CWRG 0.6819±0.1240 0.7008 ±0.1478 0.5258±0.2860 0.5189±0.2800

SSA-CGAN-p 0.1322±0.0059 0.0834±0.0029 0.1155±0.0118 0.0837±0.0048
SSA-CGAN 0.0947± 0.0018 0.0720 ±0.0043 0.0754 ± 0.0026 0.0613 ±0.0069

Table 4.2: MSE and MAE for various paired transformations averaged across
five runs with one standard deviation for the ISLES dataset.

ities. We also included in our experiments using the SSA-CGAN framework using

only paired data, labelled SSA-CGAN-p. On the other hand, our proposed method,

SSA-CGAN uses paired data and leverages unpaired data to improve learning. The

hyperparameter settings for each method is similar to the training details mentioned

in Section 4.4.2. For each transformation (e.g. T2→T1c) and for each method, five

networks were learned, each with different initialisation of weights. These models

were compared based on two quantitative metrics, the MSE and MAE averaged

across the five runs and its standard deviation.
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Figure 4.3: A comparison of the transformation from T2 to FLAIR.

4.4.4 Results

Results for the performance of SSA-CGAN are shown in Table 4.2. We observe that

the SSA-CGAN yields from a 8.32% reduction from the CycleGAN (T2 to T1) up

to a 89.6% decrease in MSE in the case of CBF to CBV with an average reduction

of 33.8% and 46.0% in MAE and MSE respectively across all transformations. The

consistent out-performance of our method over the CycleGAN demonstrate there is

potential gains when the information from paired data points can be leveraged. This

is further emphasised by the improvement over SSA-CGAN-p which has been trained

using only paired data. By leveraging unpaired data during training, the SSA-CGAN

produces a reduction of 18.02% and 28.16% in MAE and MSE on average when

compared to SSA-CGAN-p. SSA-CGAN produces a lower MSE in most cases despite

CWRG includes a loss component that minimises the l2 norm. Furthermore, SSA-

CGAN produces lower variance compared to other methods demonstrating that our

method is less sensitive to different weight initialisations and improves the stability

of training and convergence.

Figure 4.3 and 4.4 shows a comparison of the transformation from T2 to FLAIR

and MTT to CBF respectively, of a particular chosen MR scan produced by the var-
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Figure 4.4: A comparison of the transformation from MTT to CBF.

ious models. The CycleGAN produces no noticeable change from the input image

and the CWRG creates a smoothed version of the ground truth. This can be at-

tributed to the MSE component of the objective function where the MSE pushes the

generator to produce blurry images [157]. The additional adversarial component of

our method forces the generator to synthesise a more visually realistic image. How-

ever, in Figure 4.3 the image produced does not match the pixel intensity of the

ground truth and in Figure 4.4, fails to capture the high detail and edges of the

CBF modality and fails to distinguish between background and low intensity areas.

4.4.5 Robustness to noise

The methods were assessed by injecting random Gaussian noise into the test data to

simulate thermal noise conditions to evaluate the robustness of the models, despite

not being trained on noisy examples. Various levels of noise was injected to the

data, ranging from a standard deviation of 0.025 to 0.4. The predictions of the

models was evaluated against the ground truth. Figure 4.6 shows the comparison

between the models, with the MAE as the evaluation metric. At all noise levels, the

SSA-CGAN outperforms other methods with lower variance further demonstrating

the robustness of our method.
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Figure 4.5: A T2 image was corrupted with Gaussian noise and was transformed
to a T1c image by the various models.

Figure 4.6: Quantitative comparison of the reconstruction error by varying the
amount of random noise injected to test data.



CHAPTER 4. SS IMPUTATION OF MISSING MR MODALITIES 91

The methods were also visually evaluated under extreme simulated thermal noise

conditions by adding Gaussian noise with mean 0 standard deviation of 0.2 to the

input. Figure 4.5 shows the transformation produced by a noisy input volume

to the networks. The CWRG produces noise filtered version of the T2 scan and

fails to perform the transformation to T1c. Our method and the CycleGAN shows

robustness under the extreme scenario and fabricates successful slices. However, it

fails to hide the tumour in the T2 scan (the bright spot in bottom right) in the T1c

reconstruction and instead substitutes background for that tumour.

4.4.6 Limitations and Future work

This approach has several limitations. Due to the additional discriminator that dis-

tinguishes paired examples, additional computational time is required for training.

Second, adversarial networks remain a very active area of research, and are known to

be difficult to train and suffer issues such as mode collapse [63]. Further work would

be to investigate the effect on performance when the fraction of paired examples

changes and the point where the paired-input discriminator fails to be effective.

There are potential improvements to the training regime such that the networks

used for the paired data can be trained initially, using the paired data which may

potentially provide starting values of the parameters that can stabilise and/or im-

prove training for the CycleGAN, i.e. the generators and discriminators trained on

unpaired data.

4.5 Summary

Many state-of-the-art models in brain tissue segmentation and disease classification

require multiple modalities during training and inference. However, examples where

all modalities are available is limited and therefore the ability to incorporate un-

paired data could be important for the adoption of these methods in clinical settings
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or improve existing models. Furthermore, the overall data available in limited and

MRI volumes are high dimensional. The Semi-Supervised Adversarial CycleGAN

(SSA-CGAN) learns translations between neuroimaging modalities using unpaired

data and paired examples through a cycle-consistency loss, an adversarial signal for

the discrimination between generated and real images of each domain and an addi-

tional adversarial signal that discriminates between the pairs of real data and pairs

of generated images. The experimental results have demonstrated that SSA-CGAN

has superior results in achieving lower reconstruction error and is more robust com-

pared to all of current state-of-the-art approaches across a wide range of modality

translations.

The next chapter will investigate the application of machine learning and deep

learning models to another field of neuroscience: computational psychiatry. It is

associated with designing decision-making tasks that discovers psychological and

neural computations across groups of people, including those with underlying dis-

ease. Developing machine learning model to classify groups from these behavioural

tasks can have particularly high-stakes, and thus there is an inherent need for the

decision-making processes associated with machine learning algorithms to be ac-

countable to ensure trust and transparency.



Chapter 5

Interpretable Modelling for

Neuropsychological Tasks

5.1 Introduction

One main facet of computational psychiatry is the invention and administration

of cognitive tasks that elicit systematically different behaviour from members of

relevant populations of healthy volunteers or patient groups. For instance, bandit

tasks [18], two- [96] or multi-step [158] decision-making tasks, and integrative in-

ference tasks [159] that deliver rewards or punishments, also in the face of stress

or threat, have all been employed to this effect, with relevance to bipolar disorder,

OCD, depression and paranoia respectively.

An issue that arises with this approach is how to find the systematic differences

between populations; a more subtle issue is whether these differences have any obvi-

ous interpretation. A sadly common dilemma in modern machine learning is that the

better one can do at the former, for instance using powerful deep and/or recurrent

neural networks, the harder is the latter. In some cases simple discrimination may

suffice – for instance if one could generate a reliable prognosis or choose between

differentially effective treatments. Particularly when these machine learning systems

93



CHAPTER 5. INTERPRETABLE MODELLING NEUROPSYCHO- TASKS 94

are integrated into society, rights and laws, such as the right of explanation in the

General Data Protection Rights act introduced by the European union which gives

individuals the power to demand explanations for decisions that are made by an

algorithm [160] - provides a need to develops models, architectures and algorithms

that incorporate a notion of interpretability.

There are currently two main approaches to interpretability in the literature.

One involves the construction of process models [often drawn from reinforcement

learning; 161] whose parameters, such as reward sensitivities, learning rates, prior

expectations about stimuli or outcomes or the degree of reliance of choices on dif-

ferent decision-making systems are independently meaningful. The trouble with

these models is that they can be incomplete or inaccurate. For instance, a recent

study of bipolar patients playing a bandit task found that they exhibited forms of

anti-reinforcement learning (switching following receiving reward) and perseveration

which would not normally have been afforded appropriate parametrisations [18].

Alternatively, powerful RNNs have been used to capture behaviour more com-

pletely [18], and even, in an auto-encoder structure, to reduce the behaviour of

individuals to coordinates in a self-supervised, low-dimensional, implicit parameter

space [162]. However, one of the horns of the competence/interpretation dilemma

above remains.

The second, more data-driven, approach to interpretability is to define transparent

summary statistics. For instance, in the bandit and two-step tasks, this might

be the probability of repeating an action after receiving a reward [e.g., 94, 163].

These statistics can offer very useful characterisations of tasks, but they are typically

defined manually, and offer only very partial views over complex datasets.

Here, we propose a third approach that exploits and extends recent advances in

interpretable forms of general machine learning by combining RNNs and prototype

learning methods. This method learns for itself a prototype subsequence of be-

haviour for each group of subjects which characterises their overall decision-making,
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and simultaneously learns to classify subjects according to the similarities between

these group prototypes and subsequences of the subject’s own choices. The way that

the comparator subsequence is chosen is also learned. These forms of learning take

place concurrently. By this means, we (1) classify subjects into groups in an inter-

pretable way by finding ‘witness’ subsequences in the behaviour of each, (2) extract

short subsequences from each group which exemplify the whole group behaviour.

The use of deep-learning for determining the choice of subsequence, is novel; as is

the application to sequential behavioural data.

Through a set of experiments, we show that it is possible to gain more inter-

pretability whilst not giving up on classification performance. We validate the

framework using synthetic data and also show that when applied to the behaviour

recorded from healthy subjects and patient with bipolar disorders, the model is able

to extract signature behaviours of each group. The framework, therefore, offers a

novel method for behavioural data analysis and may find applications in different

areas of behavioural analytic, decision-neuroscience and computational psychiatry.

5.2 Related Work

Deep learning has been proven to be an effective way of modelling human choices

in decision-making tasks and its relationship to psychiatric disords. For example,

Dezfouli et al. [18] used RNNs to predict the next action that a subject will take in a

decision-making task and thus learned to imitate the processes underlying subjects’

(that were characterised as either uni-polar or bipolar depression or healthy con-

trols) choices and their learning abilities in a two armed bandit task. These models

improved upon baseline models that relied on reinforcement learning. In [164],

RNNs jointly fitted to the behavioural and f-MRI data so that the model’s inter-

nal state was related to neural activity and at the same time, the model’s output

predicted the next action of the patient. Lastly, in order to interpret differences in
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behaviour between groups, Dezfouli et al. [162] trained a encoder-decoder model to

map the behaviour of subjects into a low-dimensional latent space. This model was

trained using a loss function that included the maximum mean discrepancy and the

KL divergence to ensure that the latent dimensions were informative and disentan-

gled. As such, through their experiments found that one of the latent dimensions

which represented oscillatory behaviour (subject’s switched between two actions)

was lower in the bipolar group than healthy controls.

Two major approaches dominate the large and growing body of work on inter-

pretable neural networks: (1) post hoc methods, which derive explanations from

already trained models, (2) models with inherent interpretability, in the sense that

the information used by the model to make its decisions is made transparent during

the process of decision-making so that it can be directly understood.

Approaches in the former category include visualising hidden states of the net-

works, [165, 166], extracting the importance of the features they create [167–169],

and learning surrogate models that are inherently interpretable, but approximate

the predictions of the target networks [32, 170]. However, post hoc explanations

rarely capture the nuances of a model’s decisions, and so can be hard to employ in

critical settings, such as clinical applications [171].

To achieve inherent interpretability, one suggestion is to employ an attentional

mechanism. This produces importance weights which show how strongly different

parts of an input or input sequence are exploited when making a prediction. Atten-

tional mechanisms have generally been used in tasks involving natural language [172–

175]; in RETAIN [176], attention is used to highlight features of the input that are

important for clinical predictions. However, just knowing the parts of the input that

a classifier incorporated in its decision does not fully illuminate the reason behind

the decision, and so the extent of interpretability is inherently limited.

A different form of inherent interpretability is offered by prototype learning, in

which predictions are formed by comparing new inputs with few exemplar cases. Li
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et al. [177] proposed a network architecture that includes a prototype layer, where

each unit of the layer resembles an encoded training input which is then used for

case-based reasoning for classification. In order to visualize these encoded prototypes

in the original input space, they train the network with a decoder. By contrast,

ProtoPNet [178] does not require a decoder, but rather is able to dissect a given

input image into its prototypical parts and combine this evidence for classification.

Ming et al. [179] extended these ideas to apply them to modelling sequential

data using RNNs. In order to summarise the prototype sequences so that they

could be comprehended by users, Ming et al. used beam search (a greedy breadth-

first search algorithm) after learning the prototypes to find the set of subsequences

that is closest to the prototypes. However, the classification of new sequences did

not depend on these subsequences and these discovered subsequences may not be

relevant to classification. Thus, this method is more akin to a post-hoc method of

interpretability with respect to the subsequences.

Our method extends these prototype learning ideas but summarises an entire

sequence by extracting a subsequence that is important to its classification, whilst

at the same time producing representative subsequences for each of the populations

that are being discriminated.

5.3 Interpreting Neuropsychological Tasks with

Prototypical Networks

The proposed model can be decomposed into three main components: an encoding

and attentional mechanism that, given the input sequence for each subject, outputs

a relevant subsequence of that input; an encoder neural network that maps the

extracted subsequence to a lower-dimensional space; and a classification mechanism

that takes the encoded subsequence and classifies it based on its similarity to a set

of learned prototypes in the embedding space. Figure 5.1 shows an overview of
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<latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="7U5vx5VS0nnOH3hgai+L4uuLk2g=">AAAB6HicbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gO6S8mm2TY0m12Sl0JZ+je8eFDEX+TNf2O27UFbBwLDzHu8ycS5FAZ9/9ur7Ozu7R9UD2tH9eOT08ZZvWsyqxnvsExmuh9Tw6VQvIMCJe/nmtM0lrwXTx9Kvzfj2ohMPeM851FKx0okglF0UhimFCdxUtjFUAwbTb/lL0G2SbAmTVijPWx8haOM2ZQrZJIaMwj8HKOCahRM8kUttIbnlE3pmA8cVTTlJiqWmRfkyikjkmTaPYVkqf7eKGhqzDyN3WSZ0Wx6pfifN7CY3EWFULlFrtjqUGIlwYyUBZCR0JyhnDtCmRYuK2ETqilDV1PNlRBsfnmbdG9agd8KnnyowgVcwjUEcAv38Aht6ACDHF7gDd496716H6u6Kt66t3P4A+/zBzFMkJc=</latexit><latexit sha1_base64="7U5vx5VS0nnOH3hgai+L4uuLk2g=">AAAB6HicbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gO6S8mm2TY0m12Sl0JZ+je8eFDEX+TNf2O27UFbBwLDzHu8ycS5FAZ9/9ur7Ozu7R9UD2tH9eOT08ZZvWsyqxnvsExmuh9Tw6VQvIMCJe/nmtM0lrwXTx9Kvzfj2ohMPeM851FKx0okglF0UhimFCdxUtjFUAwbTb/lL0G2SbAmTVijPWx8haOM2ZQrZJIaMwj8HKOCahRM8kUttIbnlE3pmA8cVTTlJiqWmRfkyikjkmTaPYVkqf7eKGhqzDyN3WSZ0Wx6pfifN7CY3EWFULlFrtjqUGIlwYyUBZCR0JyhnDtCmRYuK2ETqilDV1PNlRBsfnmbdG9agd8KnnyowgVcwjUEcAv38Aht6ACDHF7gDd496716H6u6Kt66t3P4A+/zBzFMkJc=</latexit><latexit sha1_base64="TIeFe5FRtli4bUFjawCbcenbndg=">AAAB83icbVC7SgNBFL0bXzG+opY2Q4JgFWZttAzYWEYwD8guYXYymwyZnV3mIYQlv2FjoYitP2Pn3zibbKGJBwYO59zLPXOiTHBtMP72KlvbO7t71f3aweHR8Un99KynU6so69JUpGoQEc0El6xruBFskClGkkiwfjS7K/z+E1Oap/LRzDMWJmQiecwpMU4KgoSYaRTndjHio3oTt/ASaJP4JWlCic6o/hWMU2oTJg0VROuhjzMT5kQZTgVb1AKrWUbojEzY0FFJEqbDfJl5gS6dMkZxqtyTBi3V3xs5SbSeJ5GbLDLqda8Q//OG1sS3Yc5lZg2TdHUotgKZFBUFoDFXjBoxd4RQxV1WRKdEEWpcTTVXgr/+5U3Su275uOU/4Ga7UdZRhQtowBX4cANtuIcOdIFCBs/wCm+e9V68d+9jNVrxyp1z+APv8wdvy5HR</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit><latexit sha1_base64="MPqxxQvKo8eS2cw2G47MmjHWdvg=">AAAB83icbVDLSgMxFL3js9ZX1aWb0CK4KjMi6LLgxmUF+4DOUDJppg1NMkMeQhn6G25cKOLWn3Hn35hpZ6GtBwKHc+7lnpw440wb3//2Nja3tnd2K3vV/YPDo+PayWlXp1YR2iEpT1U/xppyJmnHMMNpP1MUi5jTXjy9K/zeE1WapfLRzDIaCTyWLGEEGyeFocBmEie5nQ/ZsNbwm/4CaJ0EJWlAifaw9hWOUmIFlYZwrPUg8DMT5VgZRjidV0OraYbJFI/pwFGJBdVRvsg8RxdOGaEkVe5Jgxbq740cC61nInaTRUa96hXif97AmuQ2ypnMrKGSLA8lliOToqIANGKKEsNnjmCimMuKyAQrTIyrqepKCFa/vE66V83AbwYP141WvayjAudQh0sI4AZacA9t6ACBDJ7hFd486714797HcnTDK3fO4A+8zx9xC5HV</latexit>

u1
i<latexit sha1_base64="2SEtVVJpaV3aKqd0BVKCBrowVrc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDLxhuerW3AXIOvFyUoUcjWH5qzeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyblVRiSItH0KyUL9vZHS0JhZ6NvJLKVZ9TLxP6+bYHDTT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUvr5PWZc1za979VbVeyesowhlU4AI8uIY63EEDmsBAwzO8wpvz5Lw4787HcrTg5Dun8AfO5w+eMJJ4</latexit><latexit sha1_base64="2SEtVVJpaV3aKqd0BVKCBrowVrc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDLxhuerW3AXIOvFyUoUcjWH5qzeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyblVRiSItH0KyUL9vZHS0JhZ6NvJLKVZ9TLxP6+bYHDTT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUvr5PWZc1za979VbVeyesowhlU4AI8uIY63EEDmsBAwzO8wpvz5Lw4787HcrTg5Dun8AfO5w+eMJJ4</latexit><latexit sha1_base64="2SEtVVJpaV3aKqd0BVKCBrowVrc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDLxhuerW3AXIOvFyUoUcjWH5qzeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyblVRiSItH0KyUL9vZHS0JhZ6NvJLKVZ9TLxP6+bYHDTT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUvr5PWZc1za979VbVeyesowhlU4AI8uIY63EEDmsBAwzO8wpvz5Lw4787HcrTg5Dun8AfO5w+eMJJ4</latexit><latexit sha1_base64="2SEtVVJpaV3aKqd0BVKCBrowVrc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDLxhuerW3AXIOvFyUoUcjWH5qzeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyblVRiSItH0KyUL9vZHS0JhZ6NvJLKVZ9TLxP6+bYHDTT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUvr5PWZc1za979VbVeyesowhlU4AI8uIY63EEDmsBAwzO8wpvz5Lw4787HcrTg5Dun8AfO5w+eMJJ4</latexit>

uTi
i

<latexit sha1_base64="617lKmOlfb+7JxIFN8Lr/sAIkt8=">AAAB+3icbVDLSsNAFL3xWesr1qWboUVwVRIRdFlw47JCX9DGMJlO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBwYO59zLPXOChDOlHefb2tjc2t7ZrexV9w8Oj47tk1pPxakktEtiHstBgBXlTNCuZprTQSIpjgJO+8HstvD7j1QqFouOnifUi/BEsJARrI3k27VRhPU0CLM099lD1vFZ7tsNp+ksgNaJW5IGlGj79tdoHJM0okITjpUauk6ivQxLzQineXWUKppgMsMTOjRU4IgqL1tkz9G5UcYojKV5QqOF+nsjw5FS8ygwk0VSteoV4n/eMNXhjZcxkaSaCrI8FKYc6RgVRaAxk5RoPjcEE8lMVkSmWGKiTV1VU4K7+uV10rtsuk7Tvb9qtOplHRU4gzpcgAvX0II7aEMXCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB6AhlLQ=</latexit><latexit sha1_base64="617lKmOlfb+7JxIFN8Lr/sAIkt8=">AAAB+3icbVDLSsNAFL3xWesr1qWboUVwVRIRdFlw47JCX9DGMJlO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBwYO59zLPXOChDOlHefb2tjc2t7ZrexV9w8Oj47tk1pPxakktEtiHstBgBXlTNCuZprTQSIpjgJO+8HstvD7j1QqFouOnifUi/BEsJARrI3k27VRhPU0CLM099lD1vFZ7tsNp+ksgNaJW5IGlGj79tdoHJM0okITjpUauk6ivQxLzQineXWUKppgMsMTOjRU4IgqL1tkz9G5UcYojKV5QqOF+nsjw5FS8ygwk0VSteoV4n/eMNXhjZcxkaSaCrI8FKYc6RgVRaAxk5RoPjcEE8lMVkSmWGKiTV1VU4K7+uV10rtsuk7Tvb9qtOplHRU4gzpcgAvX0II7aEMXCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB6AhlLQ=</latexit><latexit sha1_base64="617lKmOlfb+7JxIFN8Lr/sAIkt8=">AAAB+3icbVDLSsNAFL3xWesr1qWboUVwVRIRdFlw47JCX9DGMJlO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBwYO59zLPXOChDOlHefb2tjc2t7ZrexV9w8Oj47tk1pPxakktEtiHstBgBXlTNCuZprTQSIpjgJO+8HstvD7j1QqFouOnifUi/BEsJARrI3k27VRhPU0CLM099lD1vFZ7tsNp+ksgNaJW5IGlGj79tdoHJM0okITjpUauk6ivQxLzQineXWUKppgMsMTOjRU4IgqL1tkz9G5UcYojKV5QqOF+nsjw5FS8ygwk0VSteoV4n/eMNXhjZcxkaSaCrI8FKYc6RgVRaAxk5RoPjcEE8lMVkSmWGKiTV1VU4K7+uV10rtsuk7Tvb9qtOplHRU4gzpcgAvX0II7aEMXCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB6AhlLQ=</latexit><latexit sha1_base64="617lKmOlfb+7JxIFN8Lr/sAIkt8=">AAAB+3icbVDLSsNAFL3xWesr1qWboUVwVRIRdFlw47JCX9DGMJlO2qGTSZiZiCXkV9y4UMStP+LOv3HSZqGtBwYO59zLPXOChDOlHefb2tjc2t7ZrexV9w8Oj47tk1pPxakktEtiHstBgBXlTNCuZprTQSIpjgJO+8HstvD7j1QqFouOnifUi/BEsJARrI3k27VRhPU0CLM099lD1vFZ7tsNp+ksgNaJW5IGlGj79tdoHJM0okITjpUauk6ivQxLzQineXWUKppgMsMTOjRU4IgqL1tkz9G5UcYojKV5QqOF+nsjw5FS8ygwk0VSteoV4n/eMNXhjZcxkaSaCrI8FKYc6RgVRaAxk5RoPjcEE8lMVkSmWGKiTV1VU4K7+uV10rtsuk7Tvb9qtOplHRU4gzpcgAvX0II7aEMXCDzBM7zCm5VbL9a79bEc3bDKnVP4A+vzB6AhlLQ=</latexit>

zi
<latexit sha1_base64="9PlL3nxr4E0xvIBVB6iBgm+wEm8=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GG/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0Nve7j6g0j+WDmSU4iOhY8pAzaqzk+xE1kyDMnuZDPqzW3Ya7AFknXkHqUKA1rH75o5ilEUrDBNW677mJGWRUGc4Ezit+qjGhbErH2LdU0gj1IFtknpNzq4xIGCv7pCEL9fdGRiOtZ1FgJ/OMetXLxf+8fmrCm0HGZZIalGx5KEwFMTHJCyAjrpAZMbOEMsVtVsImVFFmbE0VW4K3+uV10rlseG7Du7+qN2tFHWU4gxpcgAfX0IQ7aEEbGCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AHiukdo=</latexit><latexit sha1_base64="9PlL3nxr4E0xvIBVB6iBgm+wEm8=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GG/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0Nve7j6g0j+WDmSU4iOhY8pAzaqzk+xE1kyDMnuZDPqzW3Ya7AFknXkHqUKA1rH75o5ilEUrDBNW677mJGWRUGc4Ezit+qjGhbErH2LdU0gj1IFtknpNzq4xIGCv7pCEL9fdGRiOtZ1FgJ/OMetXLxf+8fmrCm0HGZZIalGx5KEwFMTHJCyAjrpAZMbOEMsVtVsImVFFmbE0VW4K3+uV10rlseG7Du7+qN2tFHWU4gxpcgAfX0IQ7aEEbGCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AHiukdo=</latexit><latexit sha1_base64="9PlL3nxr4E0xvIBVB6iBgm+wEm8=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GG/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0Nve7j6g0j+WDmSU4iOhY8pAzaqzk+xE1kyDMnuZDPqzW3Ya7AFknXkHqUKA1rH75o5ilEUrDBNW677mJGWRUGc4Ezit+qjGhbErH2LdU0gj1IFtknpNzq4xIGCv7pCEL9fdGRiOtZ1FgJ/OMetXLxf+8fmrCm0HGZZIalGx5KEwFMTHJCyAjrpAZMbOEMsVtVsImVFFmbE0VW4K3+uV10rlseG7Du7+qN2tFHWU4gxpcgAfX0IQ7aEEbGCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AHiukdo=</latexit><latexit sha1_base64="9PlL3nxr4E0xvIBVB6iBgm+wEm8=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GG/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0Nve7j6g0j+WDmSU4iOhY8pAzaqzk+xE1kyDMnuZDPqzW3Ya7AFknXkHqUKA1rH75o5ilEUrDBNW677mJGWRUGc4Ezit+qjGhbErH2LdU0gj1IFtknpNzq4xIGCv7pCEL9fdGRiOtZ1FgJ/OMetXLxf+8fmrCm0HGZZIalGx5KEwFMTHJCyAjrpAZMbOEMsVtVsImVFFmbE0VW4K3+uV10rlseG7Du7+qN2tFHWU4gxpcgAfX0IQ7aEEbGCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AHiukdo=</latexit>

z1i<latexit sha1_base64="bQEUV7gIgIl/uq2I7163+FRpBCQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIe29QrbsNdwHyl3gFqUOB1qD62R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmqVIYkSbUshWag/J3IaGzONQ9sZUxybVW8u/uf1MoyuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15b+kfd7w3IZ3e1Fv1oo4ynACNTgDDy6hCTfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99/e45d</latexit><latexit sha1_base64="bQEUV7gIgIl/uq2I7163+FRpBCQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIe29QrbsNdwHyl3gFqUOB1qD62R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmqVIYkSbUshWag/J3IaGzONQ9sZUxybVW8u/uf1MoyuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15b+kfd7w3IZ3e1Fv1oo4ynACNTgDDy6hCTfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99/e45d</latexit><latexit sha1_base64="bQEUV7gIgIl/uq2I7163+FRpBCQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIe29QrbsNdwHyl3gFqUOB1qD62R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmqVIYkSbUshWag/J3IaGzONQ9sZUxybVW8u/uf1MoyuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15b+kfd7w3IZ3e1Fv1oo4ynACNTgDDy6hCTfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99/e45d</latexit><latexit sha1_base64="bQEUV7gIgIl/uq2I7163+FRpBCQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIe29QrbsNdwHyl3gFqUOB1qD62R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmqVIYkSbUshWag/J3IaGzONQ9sZUxybVW8u/uf1MoyuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15b+kfd7w3IZ3e1Fv1oo4ynACNTgDDy6hCTfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99/e45d</latexit>

zTi
i

<latexit sha1_base64="nPUIpnDpH9reEqPXfIAY37W+GZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CS2Cp7IrQj0WvHis0C9p1yWbZtvQJLskWaEu/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3Mz97iNVmsWyZaYJ9QUeSRYxgo2V7p8C9pC1AjYLylW35i6A1omXkyrkaAblr8EwJqmg0hCOte57bmL8DCvDCKez0iDVNMFkgke0b6nEgmo/Wxw8Q+dWGaIoVrakQQv190SGhdZTEdpOgc1Yr3pz8T+vn5ro2s+YTFJDJVkuilKOTIzm36MhU5QYPrUEE8XsrYiMscLE2IxKNgRv9eV10rmseW7Nu7uqNip5HEU4gwpcgAd1aMAtNKENBAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8f+f+QaA==</latexit><latexit sha1_base64="nPUIpnDpH9reEqPXfIAY37W+GZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CS2Cp7IrQj0WvHis0C9p1yWbZtvQJLskWaEu/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3Mz97iNVmsWyZaYJ9QUeSRYxgo2V7p8C9pC1AjYLylW35i6A1omXkyrkaAblr8EwJqmg0hCOte57bmL8DCvDCKez0iDVNMFkgke0b6nEgmo/Wxw8Q+dWGaIoVrakQQv190SGhdZTEdpOgc1Yr3pz8T+vn5ro2s+YTFJDJVkuilKOTIzm36MhU5QYPrUEE8XsrYiMscLE2IxKNgRv9eV10rmseW7Nu7uqNip5HEU4gwpcgAd1aMAtNKENBAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8f+f+QaA==</latexit><latexit sha1_base64="nPUIpnDpH9reEqPXfIAY37W+GZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CS2Cp7IrQj0WvHis0C9p1yWbZtvQJLskWaEu/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3Mz97iNVmsWyZaYJ9QUeSRYxgo2V7p8C9pC1AjYLylW35i6A1omXkyrkaAblr8EwJqmg0hCOte57bmL8DCvDCKez0iDVNMFkgke0b6nEgmo/Wxw8Q+dWGaIoVrakQQv190SGhdZTEdpOgc1Yr3pz8T+vn5ro2s+YTFJDJVkuilKOTIzm36MhU5QYPrUEE8XsrYiMscLE2IxKNgRv9eV10rmseW7Nu7uqNip5HEU4gwpcgAd1aMAtNKENBAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8f+f+QaA==</latexit><latexit sha1_base64="nPUIpnDpH9reEqPXfIAY37W+GZE=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CS2Cp7IrQj0WvHis0C9p1yWbZtvQJLskWaEu/RVePCji1Z/jzX9j2u5BWx8MPN6bYWZemHCmjet+O4WNza3tneJuaW//4PCofHzS0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3Mz97iNVmsWyZaYJ9QUeSRYxgo2V7p8C9pC1AjYLylW35i6A1omXkyrkaAblr8EwJqmg0hCOte57bmL8DCvDCKez0iDVNMFkgke0b6nEgmo/Wxw8Q+dWGaIoVrakQQv190SGhdZTEdpOgc1Yr3pz8T+vn5ro2s+YTFJDJVkuilKOTIzm36MhU5QYPrUEE8XsrYiMscLE2IxKNgRv9eV10rmseW7Nu7uqNip5HEU4gwpcgAd1aMAtNKENBAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8f+f+QaA==</latexit>

x̃1
i<latexit sha1_base64="yAgpZjyu4jpCIuBndOnGInhYIPc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7hzfbNhNewZrmTglaaASbd/8cocxSSMqgHCs1MCxE/AyLIERTvOamyqaYDLBIzrQVOCIKi+b5c+tE60MrTCW+gmwZurvjQxHSk2jQE8WMdWiV4j/eYMUwksvYyJJgQoyPxSm3ILYKsqwhkxSAnyqCSaS6awWGWOJCejKaroEZ/HLy6R71nTspnNz3mjVyzqq6BjV0Sly0AVqoWvURh1E0CN6Rq/ozXgyXox342M+WjHKnUP0B8bnD6TclmI=</latexit><latexit sha1_base64="yAgpZjyu4jpCIuBndOnGInhYIPc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7hzfbNhNewZrmTglaaASbd/8cocxSSMqgHCs1MCxE/AyLIERTvOamyqaYDLBIzrQVOCIKi+b5c+tE60MrTCW+gmwZurvjQxHSk2jQE8WMdWiV4j/eYMUwksvYyJJgQoyPxSm3ILYKsqwhkxSAnyqCSaS6awWGWOJCejKaroEZ/HLy6R71nTspnNz3mjVyzqq6BjV0Sly0AVqoWvURh1E0CN6Rq/ozXgyXox342M+WjHKnUP0B8bnD6TclmI=</latexit><latexit sha1_base64="yAgpZjyu4jpCIuBndOnGInhYIPc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7hzfbNhNewZrmTglaaASbd/8cocxSSMqgHCs1MCxE/AyLIERTvOamyqaYDLBIzrQVOCIKi+b5c+tE60MrTCW+gmwZurvjQxHSk2jQE8WMdWiV4j/eYMUwksvYyJJgQoyPxSm3ILYKsqwhkxSAnyqCSaS6awWGWOJCejKaroEZ/HLy6R71nTspnNz3mjVyzqq6BjV0Sly0AVqoWvURh1E0CN6Rq/ozXgyXox342M+WjHKnUP0B8bnD6TclmI=</latexit><latexit sha1_base64="yAgpZjyu4jpCIuBndOnGInhYIPc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7hzfbNhNewZrmTglaaASbd/8cocxSSMqgHCs1MCxE/AyLIERTvOamyqaYDLBIzrQVOCIKi+b5c+tE60MrTCW+gmwZurvjQxHSk2jQE8WMdWiV4j/eYMUwksvYyJJgQoyPxSm3ILYKsqwhkxSAnyqCSaS6awWGWOJCejKaroEZ/HLy6R71nTspnNz3mjVyzqq6BjV0Sly0AVqoWvURh1E0CN6Rq/ozXgyXox342M+WjHKnUP0B8bnD6TclmI=</latexit>

x̃i
<latexit sha1_base64="UTPA8sFIE2bhCB45LJKzVAXuJ34=">AAAB/XicbVDLSsNAFL3xWesrPnZuhhbBVUlE0GXBjcsK9gFNCJPJpB06eTAzEWsI/oobF4q49T/c+TdO2iy09cDA4Zx7uWeOn3ImlWV9Gyura+sbm7Wt+vbO7t6+eXDYk0kmCO2ShCdi4GNJOYtpVzHF6SAVFEc+p31/cl36/XsqJEviOzVNqRvhUcxCRrDSkmceO4rxgOZOhNXYD/OHovCYZzatljUDWiZ2RZpQoeOZX06QkCyisSIcSzm0rVS5ORaKEU6LupNJmmIywSM61DTGEZVuPktfoFOtBChMhH6xQjP190aOIymnka8ny5By0SvF/7xhpsIrN2dxmikak/mhMONIJaisAgVMUKL4VBNMBNNZERljgYnShdV1Cfbil5dJ77xlWy379qLZblR11OAEGnAGNlxCG26gA10g8AjP8ApvxpPxYrwbH/PRFaPaOYI/MD5/AHCHlb8=</latexit><latexit sha1_base64="UTPA8sFIE2bhCB45LJKzVAXuJ34=">AAAB/XicbVDLSsNAFL3xWesrPnZuhhbBVUlE0GXBjcsK9gFNCJPJpB06eTAzEWsI/oobF4q49T/c+TdO2iy09cDA4Zx7uWeOn3ImlWV9Gyura+sbm7Wt+vbO7t6+eXDYk0kmCO2ShCdi4GNJOYtpVzHF6SAVFEc+p31/cl36/XsqJEviOzVNqRvhUcxCRrDSkmceO4rxgOZOhNXYD/OHovCYZzatljUDWiZ2RZpQoeOZX06QkCyisSIcSzm0rVS5ORaKEU6LupNJmmIywSM61DTGEZVuPktfoFOtBChMhH6xQjP190aOIymnka8ny5By0SvF/7xhpsIrN2dxmikak/mhMONIJaisAgVMUKL4VBNMBNNZERljgYnShdV1Cfbil5dJ77xlWy379qLZblR11OAEGnAGNlxCG26gA10g8AjP8ApvxpPxYrwbH/PRFaPaOYI/MD5/AHCHlb8=</latexit><latexit sha1_base64="UTPA8sFIE2bhCB45LJKzVAXuJ34=">AAAB/XicbVDLSsNAFL3xWesrPnZuhhbBVUlE0GXBjcsK9gFNCJPJpB06eTAzEWsI/oobF4q49T/c+TdO2iy09cDA4Zx7uWeOn3ImlWV9Gyura+sbm7Wt+vbO7t6+eXDYk0kmCO2ShCdi4GNJOYtpVzHF6SAVFEc+p31/cl36/XsqJEviOzVNqRvhUcxCRrDSkmceO4rxgOZOhNXYD/OHovCYZzatljUDWiZ2RZpQoeOZX06QkCyisSIcSzm0rVS5ORaKEU6LupNJmmIywSM61DTGEZVuPktfoFOtBChMhH6xQjP190aOIymnka8ny5By0SvF/7xhpsIrN2dxmikak/mhMONIJaisAgVMUKL4VBNMBNNZERljgYnShdV1Cfbil5dJ77xlWy379qLZblR11OAEGnAGNlxCG26gA10g8AjP8ApvxpPxYrwbH/PRFaPaOYI/MD5/AHCHlb8=</latexit><latexit sha1_base64="UTPA8sFIE2bhCB45LJKzVAXuJ34=">AAAB/XicbVDLSsNAFL3xWesrPnZuhhbBVUlE0GXBjcsK9gFNCJPJpB06eTAzEWsI/oobF4q49T/c+TdO2iy09cDA4Zx7uWeOn3ImlWV9Gyura+sbm7Wt+vbO7t6+eXDYk0kmCO2ShCdi4GNJOYtpVzHF6SAVFEc+p31/cl36/XsqJEviOzVNqRvhUcxCRrDSkmceO4rxgOZOhNXYD/OHovCYZzatljUDWiZ2RZpQoeOZX06QkCyisSIcSzm0rVS5ORaKEU6LupNJmmIywSM61DTGEZVuPktfoFOtBChMhH6xQjP190aOIymnka8ny5By0SvF/7xhpsIrN2dxmikak/mhMONIJaisAgVMUKL4VBNMBNNZERljgYnShdV1Cfbil5dJ77xlWy379qLZblR11OAEGnAGNlxCG26gA10g8AjP8ApvxpPxYrwbH/PRFaPaOYI/MD5/AHCHlb8=</latexit>

kvi �µµµ1k22
<latexit sha1_base64="Fd3xHeOaTgjKPIELad3QrPlAPm4=">AAACH3icbVDLSgMxFM34tr6qLt0Ei+DGMlNEXQpuXFawVWjqkEnvtMFkZkjuFMrQP3Hjr7hxoYi469+YqV34OhA4nHMuN/dEmZIWfX/izc0vLC4tr6xW1tY3Nreq2zttm+ZGQEukKjW3EbegZAItlKjgNjPAdaTgJrq/KP2bIRgr0+QaRxl0Ne8nMpaCo5PC6glTECNTbTBImeY4iOJiOA4lPaIs01HBdD4OA2Zkf4DMlLGwcdcIqzW/7k9B/5JgRmpkhmZY/WC9VOQaEhSKW9sJ/Ay7BTcohYJxheUWMi7ueR86jiZcg+0W0/vG9MApPRqnxr0E6VT9PlFwbe1IRy5ZXmB/e6X4n9fJMT7rFjLJcoREfC2Kc0UxpWVZtCcNCFQjR7gw0v2VigE3XKCrtOJKCH6f/Je0G/XArwdXx7Xz/VkdK2SP7JNDEpBTck4uSZO0iCAP5Im8kFfv0Xv23rz3r+icN5vZJT/gTT4Ba3ijEw==</latexit><latexit sha1_base64="Fd3xHeOaTgjKPIELad3QrPlAPm4=">AAACH3icbVDLSgMxFM34tr6qLt0Ei+DGMlNEXQpuXFawVWjqkEnvtMFkZkjuFMrQP3Hjr7hxoYi469+YqV34OhA4nHMuN/dEmZIWfX/izc0vLC4tr6xW1tY3Nreq2zttm+ZGQEukKjW3EbegZAItlKjgNjPAdaTgJrq/KP2bIRgr0+QaRxl0Ne8nMpaCo5PC6glTECNTbTBImeY4iOJiOA4lPaIs01HBdD4OA2Zkf4DMlLGwcdcIqzW/7k9B/5JgRmpkhmZY/WC9VOQaEhSKW9sJ/Ay7BTcohYJxheUWMi7ueR86jiZcg+0W0/vG9MApPRqnxr0E6VT9PlFwbe1IRy5ZXmB/e6X4n9fJMT7rFjLJcoREfC2Kc0UxpWVZtCcNCFQjR7gw0v2VigE3XKCrtOJKCH6f/Je0G/XArwdXx7Xz/VkdK2SP7JNDEpBTck4uSZO0iCAP5Im8kFfv0Xv23rz3r+icN5vZJT/gTT4Ba3ijEw==</latexit><latexit sha1_base64="Fd3xHeOaTgjKPIELad3QrPlAPm4=">AAACH3icbVDLSgMxFM34tr6qLt0Ei+DGMlNEXQpuXFawVWjqkEnvtMFkZkjuFMrQP3Hjr7hxoYi469+YqV34OhA4nHMuN/dEmZIWfX/izc0vLC4tr6xW1tY3Nreq2zttm+ZGQEukKjW3EbegZAItlKjgNjPAdaTgJrq/KP2bIRgr0+QaRxl0Ne8nMpaCo5PC6glTECNTbTBImeY4iOJiOA4lPaIs01HBdD4OA2Zkf4DMlLGwcdcIqzW/7k9B/5JgRmpkhmZY/WC9VOQaEhSKW9sJ/Ay7BTcohYJxheUWMi7ueR86jiZcg+0W0/vG9MApPRqnxr0E6VT9PlFwbe1IRy5ZXmB/e6X4n9fJMT7rFjLJcoREfC2Kc0UxpWVZtCcNCFQjR7gw0v2VigE3XKCrtOJKCH6f/Je0G/XArwdXx7Xz/VkdK2SP7JNDEpBTck4uSZO0iCAP5Im8kFfv0Xv23rz3r+icN5vZJT/gTT4Ba3ijEw==</latexit><latexit sha1_base64="Fd3xHeOaTgjKPIELad3QrPlAPm4=">AAACH3icbVDLSgMxFM34tr6qLt0Ei+DGMlNEXQpuXFawVWjqkEnvtMFkZkjuFMrQP3Hjr7hxoYi469+YqV34OhA4nHMuN/dEmZIWfX/izc0vLC4tr6xW1tY3Nreq2zttm+ZGQEukKjW3EbegZAItlKjgNjPAdaTgJrq/KP2bIRgr0+QaRxl0Ne8nMpaCo5PC6glTECNTbTBImeY4iOJiOA4lPaIs01HBdD4OA2Zkf4DMlLGwcdcIqzW/7k9B/5JgRmpkhmZY/WC9VOQaEhSKW9sJ/Ay7BTcohYJxheUWMi7ueR86jiZcg+0W0/vG9MApPRqnxr0E6VT9PlFwbe1IRy5ZXmB/e6X4n9fJMT7rFjLJcoREfC2Kc0UxpWVZtCcNCFQjR7gw0v2VigE3XKCrtOJKCH6f/Je0G/XArwdXx7Xz/VkdK2SP7JNDEpBTck4uSZO0iCAP5Im8kFfv0Xv23rz3r+icN5vZJT/gTT4Ba3ijEw==</latexit>

kvi �µµµCk22
<latexit sha1_base64="bkgN+5G46zYAbVLx/5+BdMXtVOg=">AAACH3icbVDLSgMxFM34rPVVdekmWAQ3lpki6lJw47KCrUJTh0x6pw0mM0Nyp1CG/okbf8WNC0XEnX9jpnbh60DgcM653NwTZUpa9P0Pb25+YXFpubJSXV1b39isbW13bJobAW2RqtTcRNyCkgm0UaKCm8wA15GC6+juvPSvR2CsTJMrHGfQ03yQyFgKjk4Ka8dMQYxMdcAgZZrjMIqL0SSU9JCyTEcF0/kkPGdGDobITBkLm7fNsFb3G/4U9C8JZqROZmiFtXfWT0WuIUGhuLXdwM+wV3CDUiiYVFluIePijg+g62jCNdheMb1vQved0qdxatxLkE7V7xMF19aOdeSS5QX2t1eK/3ndHOPTXiGTLEdIxNeiOFcUU1qWRfvSgEA1doQLI91fqRhywwW6SquuhOD3yX9Jp9kI/EZweVQ/25vVUSG7ZI8ckICckDNyQVqkTQS5J4/kmbx4D96T9+q9fUXnvNnMDvkB7+MTh+CjJQ==</latexit><latexit sha1_base64="bkgN+5G46zYAbVLx/5+BdMXtVOg=">AAACH3icbVDLSgMxFM34rPVVdekmWAQ3lpki6lJw47KCrUJTh0x6pw0mM0Nyp1CG/okbf8WNC0XEnX9jpnbh60DgcM653NwTZUpa9P0Pb25+YXFpubJSXV1b39isbW13bJobAW2RqtTcRNyCkgm0UaKCm8wA15GC6+juvPSvR2CsTJMrHGfQ03yQyFgKjk4Ka8dMQYxMdcAgZZrjMIqL0SSU9JCyTEcF0/kkPGdGDobITBkLm7fNsFb3G/4U9C8JZqROZmiFtXfWT0WuIUGhuLXdwM+wV3CDUiiYVFluIePijg+g62jCNdheMb1vQved0qdxatxLkE7V7xMF19aOdeSS5QX2t1eK/3ndHOPTXiGTLEdIxNeiOFcUU1qWRfvSgEA1doQLI91fqRhywwW6SquuhOD3yX9Jp9kI/EZweVQ/25vVUSG7ZI8ckICckDNyQVqkTQS5J4/kmbx4D96T9+q9fUXnvNnMDvkB7+MTh+CjJQ==</latexit><latexit sha1_base64="bkgN+5G46zYAbVLx/5+BdMXtVOg=">AAACH3icbVDLSgMxFM34rPVVdekmWAQ3lpki6lJw47KCrUJTh0x6pw0mM0Nyp1CG/okbf8WNC0XEnX9jpnbh60DgcM653NwTZUpa9P0Pb25+YXFpubJSXV1b39isbW13bJobAW2RqtTcRNyCkgm0UaKCm8wA15GC6+juvPSvR2CsTJMrHGfQ03yQyFgKjk4Ka8dMQYxMdcAgZZrjMIqL0SSU9JCyTEcF0/kkPGdGDobITBkLm7fNsFb3G/4U9C8JZqROZmiFtXfWT0WuIUGhuLXdwM+wV3CDUiiYVFluIePijg+g62jCNdheMb1vQved0qdxatxLkE7V7xMF19aOdeSS5QX2t1eK/3ndHOPTXiGTLEdIxNeiOFcUU1qWRfvSgEA1doQLI91fqRhywwW6SquuhOD3yX9Jp9kI/EZweVQ/25vVUSG7ZI8ckICckDNyQVqkTQS5J4/kmbx4D96T9+q9fUXnvNnMDvkB7+MTh+CjJQ==</latexit><latexit sha1_base64="bkgN+5G46zYAbVLx/5+BdMXtVOg=">AAACH3icbVDLSgMxFM34rPVVdekmWAQ3lpki6lJw47KCrUJTh0x6pw0mM0Nyp1CG/okbf8WNC0XEnX9jpnbh60DgcM653NwTZUpa9P0Pb25+YXFpubJSXV1b39isbW13bJobAW2RqtTcRNyCkgm0UaKCm8wA15GC6+juvPSvR2CsTJMrHGfQ03yQyFgKjk4Ka8dMQYxMdcAgZZrjMIqL0SSU9JCyTEcF0/kkPGdGDobITBkLm7fNsFb3G/4U9C8JZqROZmiFtXfWT0WuIUGhuLXdwM+wV3CDUiiYVFluIePijg+g62jCNdheMb1vQved0qdxatxLkE7V7xMF19aOdeSS5QX2t1eK/3ndHOPTXiGTLEdIxNeiOFcUU1qWRfvSgEA1doQLI91fqRhywwW6SquuhOD3yX9Jp9kI/EZweVQ/25vVUSG7ZI8ckICckDNyQVqkTQS5J4/kmbx4D96T9+q9fUXnvNnMDvkB7+MTh+CjJQ==</latexit>
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<latexit sha1_base64="P8b3SR7U7ksrPvmxSro7CXRwSSY=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GE/oYbF4q49Wfc+TdOYhbaemDgcM69zLknSATXxnW/nMrG5tb2TnW3trd/cHhUPz7p6ThVDLssFrEaBFSj4BK7hhuBg0QhjQKB/WB+m/v9R1Sax/LBLBIcRXQqecgZNVby/YiaWRBmKNlyXG+6LbcAWSdeSZpQojOuf/qTmKURSsME1XrouYkZZVQZzgQua36qMaFsTqc4tFTSCPUoKzIvyblVJiSMlX3SkEL9vZHRSOtFFNjJPKNe9XLxP2+YmvBmlHGZpCa/qvgoTAUxMckLIBOukBmxsIQyxW1WwmZUUWZsTTVbgrd68jrpXbY8t+XdXzXbjbKOKpxBAy7Ag2towx10oAsMEniCF3h1UufZeXPef0YrTrlzCn/gfHwDZiWRzg==</latexit><latexit sha1_base64="P8b3SR7U7ksrPvmxSro7CXRwSSY=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GE/oYbF4q49Wfc+TdOYhbaemDgcM69zLknSATXxnW/nMrG5tb2TnW3trd/cHhUPz7p6ThVDLssFrEaBFSj4BK7hhuBg0QhjQKB/WB+m/v9R1Sax/LBLBIcRXQqecgZNVby/YiaWRBmKNlyXG+6LbcAWSdeSZpQojOuf/qTmKURSsME1XrouYkZZVQZzgQua36qMaFsTqc4tFTSCPUoKzIvyblVJiSMlX3SkEL9vZHRSOtFFNjJPKNe9XLxP2+YmvBmlHGZpCa/qvgoTAUxMckLIBOukBmxsIQyxW1WwmZUUWZsTTVbgrd68jrpXbY8t+XdXzXbjbKOKpxBAy7Ag2towx10oAsMEniCF3h1UufZeXPef0YrTrlzCn/gfHwDZiWRzg==</latexit><latexit sha1_base64="P8b3SR7U7ksrPvmxSro7CXRwSSY=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GE/oYbF4q49Wfc+TdOYhbaemDgcM69zLknSATXxnW/nMrG5tb2TnW3trd/cHhUPz7p6ThVDLssFrEaBFSj4BK7hhuBg0QhjQKB/WB+m/v9R1Sax/LBLBIcRXQqecgZNVby/YiaWRBmKNlyXG+6LbcAWSdeSZpQojOuf/qTmKURSsME1XrouYkZZVQZzgQua36qMaFsTqc4tFTSCPUoKzIvyblVJiSMlX3SkEL9vZHRSOtFFNjJPKNe9XLxP2+YmvBmlHGZpCa/qvgoTAUxMckLIBOukBmxsIQyxW1WwmZUUWZsTTVbgrd68jrpXbY8t+XdXzXbjbKOKpxBAy7Ag2towx10oAsMEniCF3h1UufZeXPef0YrTrlzCn/gfHwDZiWRzg==</latexit><latexit sha1_base64="P8b3SR7U7ksrPvmxSro7CXRwSSY=">AAAB83icbVDLSsNAFL2pr1pfVZduhhbBVUlE0GXBjcsK9gFNKZPpTTt0MgkzE6GE/oYbF4q49Wfc+TdOYhbaemDgcM69zLknSATXxnW/nMrG5tb2TnW3trd/cHhUPz7p6ThVDLssFrEaBFSj4BK7hhuBg0QhjQKB/WB+m/v9R1Sax/LBLBIcRXQqecgZNVby/YiaWRBmKNlyXG+6LbcAWSdeSZpQojOuf/qTmKURSsME1XrouYkZZVQZzgQua36qMaFsTqc4tFTSCPUoKzIvyblVJiSMlX3SkEL9vZHRSOtFFNjJPKNe9XLxP2+YmvBmlHGZpCa/qvgoTAUxMckLIBOukBmxsIQyxW1WwmZUUWZsTTVbgrd68jrpXbY8t+XdXzXbjbKOKpxBAy7Ag2towx10oAsMEniCF3h1UufZeXPef0YrTrlzCn/gfHwDZiWRzg==</latexit> subenc

<latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="tGaQUaWr8+OrFptSu1+HJ/7xPU0=">AAAB7XicbVDLSsNAFL2pr1qrjW7dDBbBVUnc6FJw47KCfUBbymR60w6dTMI8hBr6JW5cKOLvuPNvnMQutPXAwOGce5lzT5QJrk0QfHmVre2d3b3qfu2gfnjU8I/rXZ1axbDDUpGqfkQ1Ci6xY7gR2M8U0iQS2Ivmt4Xfe0SleSofzCLDUUKnksecUeOksd8YJtTMojjXNkLJlmO/GbSCEmSThCvShBXaY/9zOEmZTVAaJqjWgzDIzCinynAmcFkbWo0ZZXM6xYGjkiaoR3kZfEnOnTIhcarck4aU6u+NnCZaL5LITRYx9bpXiP95A2vi61HOZWZNcVX5UWwFMSkpWiATrpAZsXCEMsVdVsJmVFFmXFc1V0K4fvIm6V62wqAV3gdQhVM4gwsI4Qpu4A7a0AEGFp7hFd68J+/Fe/+pq+KtejuBP/A+vgEBYpIk</latexit><latexit sha1_base64="tGaQUaWr8+OrFptSu1+HJ/7xPU0=">AAAB7XicbVDLSsNAFL2pr1qrjW7dDBbBVUnc6FJw47KCfUBbymR60w6dTMI8hBr6JW5cKOLvuPNvnMQutPXAwOGce5lzT5QJrk0QfHmVre2d3b3qfu2gfnjU8I/rXZ1axbDDUpGqfkQ1Ci6xY7gR2M8U0iQS2Ivmt4Xfe0SleSofzCLDUUKnksecUeOksd8YJtTMojjXNkLJlmO/GbSCEmSThCvShBXaY/9zOEmZTVAaJqjWgzDIzCinynAmcFkbWo0ZZXM6xYGjkiaoR3kZfEnOnTIhcarck4aU6u+NnCZaL5LITRYx9bpXiP95A2vi61HOZWZNcVX5UWwFMSkpWiATrpAZsXCEMsVdVsJmVFFmXFc1V0K4fvIm6V62wqAV3gdQhVM4gwsI4Qpu4A7a0AEGFp7hFd68J+/Fe/+pq+KtejuBP/A+vgEBYpIk</latexit><latexit sha1_base64="yEA+cGrJL+TAy8+qVqmOIGhrXjk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkrixi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7K1vbO7V92vHRweHdfdk9O+SowktEcSnshhiBXlTNCeZprTYSopjkNOB+HiJvcHD1Qqloh7vUxpEOOZYBEjWFtp4tbHMdbzMMqUCakgq4nb9FpeAbRJ/JI0oUR34n6OpwkxMRWacKzUyPdSHWRYakY4XdXGRtEUkwWe0ZGlAsdUBVkRfIUurDJFUSLtExoV6u+NDMdKLePQTuYx1bqXi/95I6OjdpAxkRqdX1V8FBmOdILyFtCUSUo0X1qCiWQ2KyJzLDHRtquaLcFfP3mT9K9avtfy77xmp1HWUYVzaMAl+HANHbiFLvSAgIEneIFX59F5dt6c95/RilPunMEfOB/fUEGTYw==</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit><latexit sha1_base64="aD0wFg4Iia4nt3TZsxQV7+pYcJM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M7QIrkoigi4LblxWsA9oQ5lMJ+3QySTMQ6ihX+LGhSJu/RR3/o2TmIW2Hhg4nHMvc+4JU86U9rwvp7KxubW9U92t7e0fHNbdo+OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++H8Jvf7D1Qqloh7vUhpEOOpYBEjWFtp7NZHMdazMMqUCakgy7Hb9FpeAbRO/JI0oURn7H6OJgkxMRWacKzU0PdSHWRYakY4XdZGRtEUkzme0qGlAsdUBVkRfInOrDJBUSLtExoV6u+NDMdKLeLQTuYx1aqXi/95Q6Oj6yBjIjU6v6r4KDIc6QTlLaAJk5RovrAEE8lsVkRmWGKibVc1W4K/evI66V20fK/l3102242yjiqcQgPOwYcraMMtdKALBAw8wQu8Oo/Os/PmvP+MVpxy5wT+wPn4BlGBk2c=</latexit>

attn
<latexit sha1_base64="gWemvQvYRpl5vdBsYLtql85vwy8=">AAAB9HicbVDLSsNAFL3xWeur6tLN0CK4KokIuiy4cVnBPqANZTKdtEMnkzhzUyih3+HGhSJu/Rh3/o2TNgttPTBwOOde7pkTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvTLk2IlaPOEu4H9GREqFgFK3k9yOK4yDMKKKaDyo1t+4uQNaJV5AaFGgOKl/9YczSiCtkkhrT89wE/YxqFEzyebmfGp5QNqEj3rNU0YgbP1uEnpMLqwxJGGv7FJKF+nsjo5Exsyiwk3lIs+rl4n9eL8Xw1s+ESlLkii0PhakkGJO8ATIUmjOUM0so08JmJWxMNWVoeyrbErzVL6+T9lXdc+vew3WtUS3qKME5VOESPLiBBtxDE1rA4Ame4RXenKnz4rw7H8vRDafYOYM/cD5/AFPDklk=</latexit><latexit sha1_base64="gWemvQvYRpl5vdBsYLtql85vwy8=">AAAB9HicbVDLSsNAFL3xWeur6tLN0CK4KokIuiy4cVnBPqANZTKdtEMnkzhzUyih3+HGhSJu/Rh3/o2TNgttPTBwOOde7pkTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvTLk2IlaPOEu4H9GREqFgFK3k9yOK4yDMKKKaDyo1t+4uQNaJV5AaFGgOKl/9YczSiCtkkhrT89wE/YxqFEzyebmfGp5QNqEj3rNU0YgbP1uEnpMLqwxJGGv7FJKF+nsjo5Exsyiwk3lIs+rl4n9eL8Xw1s+ESlLkii0PhakkGJO8ATIUmjOUM0so08JmJWxMNWVoeyrbErzVL6+T9lXdc+vew3WtUS3qKME5VOESPLiBBtxDE1rA4Ame4RXenKnz4rw7H8vRDafYOYM/cD5/AFPDklk=</latexit><latexit sha1_base64="gWemvQvYRpl5vdBsYLtql85vwy8=">AAAB9HicbVDLSsNAFL3xWeur6tLN0CK4KokIuiy4cVnBPqANZTKdtEMnkzhzUyih3+HGhSJu/Rh3/o2TNgttPTBwOOde7pkTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvTLk2IlaPOEu4H9GREqFgFK3k9yOK4yDMKKKaDyo1t+4uQNaJV5AaFGgOKl/9YczSiCtkkhrT89wE/YxqFEzyebmfGp5QNqEj3rNU0YgbP1uEnpMLqwxJGGv7FJKF+nsjo5Exsyiwk3lIs+rl4n9eL8Xw1s+ESlLkii0PhakkGJO8ATIUmjOUM0so08JmJWxMNWVoeyrbErzVL6+T9lXdc+vew3WtUS3qKME5VOESPLiBBtxDE1rA4Ame4RXenKnz4rw7H8vRDafYOYM/cD5/AFPDklk=</latexit><latexit sha1_base64="gWemvQvYRpl5vdBsYLtql85vwy8=">AAAB9HicbVDLSsNAFL3xWeur6tLN0CK4KokIuiy4cVnBPqANZTKdtEMnkzhzUyih3+HGhSJu/Rh3/o2TNgttPTBwOOde7pkTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvTLk2IlaPOEu4H9GREqFgFK3k9yOK4yDMKKKaDyo1t+4uQNaJV5AaFGgOKl/9YczSiCtkkhrT89wE/YxqFEzyebmfGp5QNqEj3rNU0YgbP1uEnpMLqwxJGGv7FJKF+nsjo5Exsyiwk3lIs+rl4n9eL8Xw1s+ESlLkii0PhakkGJO8ATIUmjOUM0so08JmJWxMNWVoeyrbErzVL6+T9lXdc+vew3WtUS3qKME5VOESPLiBBtxDE1rA4Ame4RXenKnz4rw7H8vRDafYOYM/cD5/AFPDklk=</latexit>

x̃L
i<latexit sha1_base64="SM+RTFjEFIUlKGkG4ipPZzHkBpY=">AAAB/3icbVDLSsNAFL3xWesrKrhxE1oEVyURQZcFNy5cVLAPaGKYTCbt0MkkzEzEErPwV9y4UMStv+HOv3HSdqGtBwYO59zLPXOClFGpbPvbWFpeWV1br2xUN7e2d3bNvf2OTDKBSRsnLBG9AEnCKCdtRRUjvVQQFAeMdIPRZel374mQNOG3apwSL0YDTiOKkdKSbx66irKQ5G6M1DCI8oei8OndtW/W7YY9gbVInBmpwwwt3/xywwRnMeEKMyRl37FT5eVIKIoZKapuJkmK8AgNSF9TjmIivXySv7COtRJaUSL048qaqL83chRLOY4DPVnGlPNeKf7n9TMVXXg55WmmCMfTQ1HGLJVYZRlWSAXBio01QVhQndXCQyQQVrqyqi7Bmf/yIumcNhy74dyc1Zu1WR0VOIIanIAD59CEK2hBGzA8wjO8wpvxZLwY78bHdHTJmO0cwB8Ynz/NyJZ9</latexit><latexit sha1_base64="SM+RTFjEFIUlKGkG4ipPZzHkBpY=">AAAB/3icbVDLSsNAFL3xWesrKrhxE1oEVyURQZcFNy5cVLAPaGKYTCbt0MkkzEzEErPwV9y4UMStv+HOv3HSdqGtBwYO59zLPXOClFGpbPvbWFpeWV1br2xUN7e2d3bNvf2OTDKBSRsnLBG9AEnCKCdtRRUjvVQQFAeMdIPRZel374mQNOG3apwSL0YDTiOKkdKSbx66irKQ5G6M1DCI8oei8OndtW/W7YY9gbVInBmpwwwt3/xywwRnMeEKMyRl37FT5eVIKIoZKapuJkmK8AgNSF9TjmIivXySv7COtRJaUSL048qaqL83chRLOY4DPVnGlPNeKf7n9TMVXXg55WmmCMfTQ1HGLJVYZRlWSAXBio01QVhQndXCQyQQVrqyqi7Bmf/yIumcNhy74dyc1Zu1WR0VOIIanIAD59CEK2hBGzA8wjO8wpvxZLwY78bHdHTJmO0cwB8Ynz/NyJZ9</latexit><latexit sha1_base64="SM+RTFjEFIUlKGkG4ipPZzHkBpY=">AAAB/3icbVDLSsNAFL3xWesrKrhxE1oEVyURQZcFNy5cVLAPaGKYTCbt0MkkzEzEErPwV9y4UMStv+HOv3HSdqGtBwYO59zLPXOClFGpbPvbWFpeWV1br2xUN7e2d3bNvf2OTDKBSRsnLBG9AEnCKCdtRRUjvVQQFAeMdIPRZel374mQNOG3apwSL0YDTiOKkdKSbx66irKQ5G6M1DCI8oei8OndtW/W7YY9gbVInBmpwwwt3/xywwRnMeEKMyRl37FT5eVIKIoZKapuJkmK8AgNSF9TjmIivXySv7COtRJaUSL048qaqL83chRLOY4DPVnGlPNeKf7n9TMVXXg55WmmCMfTQ1HGLJVYZRlWSAXBio01QVhQndXCQyQQVrqyqi7Bmf/yIumcNhy74dyc1Zu1WR0VOIIanIAD59CEK2hBGzA8wjO8wpvxZLwY78bHdHTJmO0cwB8Ynz/NyJZ9</latexit><latexit sha1_base64="SM+RTFjEFIUlKGkG4ipPZzHkBpY=">AAAB/3icbVDLSsNAFL3xWesrKrhxE1oEVyURQZcFNy5cVLAPaGKYTCbt0MkkzEzEErPwV9y4UMStv+HOv3HSdqGtBwYO59zLPXOClFGpbPvbWFpeWV1br2xUN7e2d3bNvf2OTDKBSRsnLBG9AEnCKCdtRRUjvVQQFAeMdIPRZel374mQNOG3apwSL0YDTiOKkdKSbx66irKQ5G6M1DCI8oei8OndtW/W7YY9gbVInBmpwwwt3/xywwRnMeEKMyRl37FT5eVIKIoZKapuJkmK8AgNSF9TjmIivXySv7COtRJaUSL048qaqL83chRLOY4DPVnGlPNeKf7n9TMVXXg55WmmCMfTQ1HGLJVYZRlWSAXBio01QVhQndXCQyQQVrqyqi7Bmf/yIumcNhy74dyc1Zu1WR0VOIIanIAD59CEK2hBGzA8wjO8wpvxZLwY78bHdHTJmO0cwB8Ynz/NyJZ9</latexit>

dci
<latexit sha1_base64="gMvFpG7CnpD85pn9/1SygxgMqQo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsNu3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbSSHw3EIxtU627DXYCsE68gdSjQGlS/+lHK8oQrZJIa0/PcDIMp1SiY5LNKPzc8o2xMh7xnqaIJN8F0ceyMnFslInGqbSkkC/X3xJQmxkyS0HYmFEdm1ZuL/3m9HOObYCpUliNXbLkoziXBlMw/J5HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wepk455</latexit><latexit sha1_base64="gMvFpG7CnpD85pn9/1SygxgMqQo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsNu3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbSSHw3EIxtU627DXYCsE68gdSjQGlS/+lHK8oQrZJIa0/PcDIMp1SiY5LNKPzc8o2xMh7xnqaIJN8F0ceyMnFslInGqbSkkC/X3xJQmxkyS0HYmFEdm1ZuL/3m9HOObYCpUliNXbLkoziXBlMw/J5HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wepk455</latexit><latexit sha1_base64="gMvFpG7CnpD85pn9/1SygxgMqQo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsNu3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbSSHw3EIxtU627DXYCsE68gdSjQGlS/+lHK8oQrZJIa0/PcDIMp1SiY5LNKPzc8o2xMh7xnqaIJN8F0ceyMnFslInGqbSkkC/X3xJQmxkyS0HYmFEdm1ZuL/3m9HOObYCpUliNXbLkoziXBlMw/J5HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wepk455</latexit><latexit sha1_base64="gMvFpG7CnpD85pn9/1SygxgMqQo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsNu3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbSSHw3EIxtU627DXYCsE68gdSjQGlS/+lHK8oQrZJIa0/PcDIMp1SiY5LNKPzc8o2xMh7xnqaIJN8F0ceyMnFslInGqbSkkC/X3xJQmxkyS0HYmFEdm1ZuL/3m9HOObYCpUliNXbLkoziXBlMw/J5HQnKGcWEKZFvZWwkZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wepk455</latexit>

softmax
<latexit sha1_base64="Qojh3WozseC2qvsxyJ+hy4hQkU8=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsK3QlpJJM21oHkOSKZahf+LGhSJu/RN3/o2ZdhbaeiBwOOde7smJEs6MDYJvr7SxubW9U96t7O0fHB75xydto1JNaIsorvRjhA3lTNKWZZbTx0RTLCJOO9HkNvc7U6oNU/LBzhLaF3gkWcwItk4a+H5PYDuO4syo2Ar8NB/4taAeLIDWSViQGhRoDvyv3lCRVFBpCcfGdMMgsf0Ma8sIp/NKLzU0wWSCR7TrqMSCmn62SD5H504Zolhp96RFC/X3RoaFMTMRuck8p1n1cvE/r5va+KafMZmklkqyPBSnHFmF8hrQkGlKLJ85golmLisiY6wxsa6siishXP3yOmlf1sOgHt5f1RrVoo4ynEEVLiCEa2jAHTShBQSm8Ayv8OZl3ov37n0sR0tesXMKf+B9/gBCHZPz</latexit><latexit sha1_base64="Qojh3WozseC2qvsxyJ+hy4hQkU8=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsK3QlpJJM21oHkOSKZahf+LGhSJu/RN3/o2ZdhbaeiBwOOde7smJEs6MDYJvr7SxubW9U96t7O0fHB75xydto1JNaIsorvRjhA3lTNKWZZbTx0RTLCJOO9HkNvc7U6oNU/LBzhLaF3gkWcwItk4a+H5PYDuO4syo2Ar8NB/4taAeLIDWSViQGhRoDvyv3lCRVFBpCcfGdMMgsf0Ma8sIp/NKLzU0wWSCR7TrqMSCmn62SD5H504Zolhp96RFC/X3RoaFMTMRuck8p1n1cvE/r5va+KafMZmklkqyPBSnHFmF8hrQkGlKLJ85golmLisiY6wxsa6siishXP3yOmlf1sOgHt5f1RrVoo4ynEEVLiCEa2jAHTShBQSm8Ayv8OZl3ov37n0sR0tesXMKf+B9/gBCHZPz</latexit><latexit sha1_base64="Qojh3WozseC2qvsxyJ+hy4hQkU8=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsK3QlpJJM21oHkOSKZahf+LGhSJu/RN3/o2ZdhbaeiBwOOde7smJEs6MDYJvr7SxubW9U96t7O0fHB75xydto1JNaIsorvRjhA3lTNKWZZbTx0RTLCJOO9HkNvc7U6oNU/LBzhLaF3gkWcwItk4a+H5PYDuO4syo2Ar8NB/4taAeLIDWSViQGhRoDvyv3lCRVFBpCcfGdMMgsf0Ma8sIp/NKLzU0wWSCR7TrqMSCmn62SD5H504Zolhp96RFC/X3RoaFMTMRuck8p1n1cvE/r5va+KafMZmklkqyPBSnHFmF8hrQkGlKLJ85golmLisiY6wxsa6siishXP3yOmlf1sOgHt5f1RrVoo4ynEEVLiCEa2jAHTShBQSm8Ayv8OZl3ov37n0sR0tesXMKf+B9/gBCHZPz</latexit><latexit sha1_base64="Qojh3WozseC2qvsxyJ+hy4hQkU8=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsK3QlpJJM21oHkOSKZahf+LGhSJu/RN3/o2ZdhbaeiBwOOde7smJEs6MDYJvr7SxubW9U96t7O0fHB75xydto1JNaIsorvRjhA3lTNKWZZbTx0RTLCJOO9HkNvc7U6oNU/LBzhLaF3gkWcwItk4a+H5PYDuO4syo2Ar8NB/4taAeLIDWSViQGhRoDvyv3lCRVFBpCcfGdMMgsf0Ma8sIp/NKLzU0wWSCR7TrqMSCmn62SD5H504Zolhp96RFC/X3RoaFMTMRuck8p1n1cvE/r5va+KafMZmklkqyPBSnHFmF8hrQkGlKLJ85golmLisiY6wxsa6siishXP3yOmlf1sOgHt5f1RrVoo4ynEEVLiCEa2jAHTShBQSm8Ayv8OZl3ov37n0sR0tesXMKf+B9/gBCHZPz</latexit>

linearWf
<latexit sha1_base64="Vj4g89QqXyd8NruRhmY3DUvgiXQ=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDC2Cq5KIUJcFNy4r2Ae0IUymk3boZBJmJkII9VfcuFDErR/izr9x0mahrQcGDufcO3PmBAlnSjvOt1XZ2t7Z3avu1w4Oj45P7NOzvopTSWiPxDyWwwArypmgPc00p8NEUhwFnA6C+W3hDx6pVCwWDzpLqBfhqWAhI1gbybfr4wjrWRDmxQVYooEfLny76bScJdAmcUvShBJd3/4aT2KSRlRowrFSI9dJtJdjqRnhdFEbp4ommMzxlI4MFTiiysuX4RfowigTFMbSHKHRUv29keNIqSwKzGQRVa17hfifN0p1eOPlTCSppoKsHgpTjnSMiibQhElKNM8MwUQykxWRGZaYaNNXzZTgrn95k/SvWq7Tcu+vm51GWUcVzqEBl+BCGzpwB13oAYEMnuEV3qwn68V6tz5WoxWr3KnDH1ifP9b7lMY=</latexit><latexit sha1_base64="Vj4g89QqXyd8NruRhmY3DUvgiXQ=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDC2Cq5KIUJcFNy4r2Ae0IUymk3boZBJmJkII9VfcuFDErR/izr9x0mahrQcGDufcO3PmBAlnSjvOt1XZ2t7Z3avu1w4Oj45P7NOzvopTSWiPxDyWwwArypmgPc00p8NEUhwFnA6C+W3hDx6pVCwWDzpLqBfhqWAhI1gbybfr4wjrWRDmxQVYooEfLny76bScJdAmcUvShBJd3/4aT2KSRlRowrFSI9dJtJdjqRnhdFEbp4ommMzxlI4MFTiiysuX4RfowigTFMbSHKHRUv29keNIqSwKzGQRVa17hfifN0p1eOPlTCSppoKsHgpTjnSMiibQhElKNM8MwUQykxWRGZaYaNNXzZTgrn95k/SvWq7Tcu+vm51GWUcVzqEBl+BCGzpwB13oAYEMnuEV3qwn68V6tz5WoxWr3KnDH1ifP9b7lMY=</latexit><latexit sha1_base64="Vj4g89QqXyd8NruRhmY3DUvgiXQ=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDC2Cq5KIUJcFNy4r2Ae0IUymk3boZBJmJkII9VfcuFDErR/izr9x0mahrQcGDufcO3PmBAlnSjvOt1XZ2t7Z3avu1w4Oj45P7NOzvopTSWiPxDyWwwArypmgPc00p8NEUhwFnA6C+W3hDx6pVCwWDzpLqBfhqWAhI1gbybfr4wjrWRDmxQVYooEfLny76bScJdAmcUvShBJd3/4aT2KSRlRowrFSI9dJtJdjqRnhdFEbp4ommMzxlI4MFTiiysuX4RfowigTFMbSHKHRUv29keNIqSwKzGQRVa17hfifN0p1eOPlTCSppoKsHgpTjnSMiibQhElKNM8MwUQykxWRGZaYaNNXzZTgrn95k/SvWq7Tcu+vm51GWUcVzqEBl+BCGzpwB13oAYEMnuEV3qwn68V6tz5WoxWr3KnDH1ifP9b7lMY=</latexit><latexit sha1_base64="Vj4g89QqXyd8NruRhmY3DUvgiXQ=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDC2Cq5KIUJcFNy4r2Ae0IUymk3boZBJmJkII9VfcuFDErR/izr9x0mahrQcGDufcO3PmBAlnSjvOt1XZ2t7Z3avu1w4Oj45P7NOzvopTSWiPxDyWwwArypmgPc00p8NEUhwFnA6C+W3hDx6pVCwWDzpLqBfhqWAhI1gbybfr4wjrWRDmxQVYooEfLny76bScJdAmcUvShBJd3/4aT2KSRlRowrFSI9dJtJdjqRnhdFEbp4ommMzxlI4MFTiiysuX4RfowigTFMbSHKHRUv29keNIqSwKzGQRVa17hfifN0p1eOPlTCSppoKsHgpTjnSMiibQhElKNM8MwUQykxWRGZaYaNNXzZTgrn95k/SvWq7Tcu+vm51GWUcVzqEBl+BCGzpwB13oAYEMnuEV3qwn68V6tz5WoxWr3KnDH1ifP9b7lMY=</latexit>

y1i<latexit sha1_base64="RVAqimbFYJaVdnTpNAVXcZtb4pY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfi0RtU627DXYCsE68gdSjQGlS/+sOEZTFXyCQ1pue5KQZTqlEwyWeVfmZ4StmEjnjPUkVjboLp4tgZObfKkESJtqWQLNTfE1MaG5PHoe2MKY7NqjcX//N6GUY3wVSoNEOu2HJRlEmCCZl/ToZCc4Yyt4QyLeythI2ppgxtPhUbgrf68jppXzY8t+HdX9WbtSKOMpxBDS7Ag2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w99845c</latexit><latexit sha1_base64="RVAqimbFYJaVdnTpNAVXcZtb4pY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfi0RtU627DXYCsE68gdSjQGlS/+sOEZTFXyCQ1pue5KQZTqlEwyWeVfmZ4StmEjnjPUkVjboLp4tgZObfKkESJtqWQLNTfE1MaG5PHoe2MKY7NqjcX//N6GUY3wVSoNEOu2HJRlEmCCZl/ToZCc4Yyt4QyLeythI2ppgxtPhUbgrf68jppXzY8t+HdX9WbtSKOMpxBDS7Ag2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w99845c</latexit><latexit sha1_base64="RVAqimbFYJaVdnTpNAVXcZtb4pY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfi0RtU627DXYCsE68gdSjQGlS/+sOEZTFXyCQ1pue5KQZTqlEwyWeVfmZ4StmEjnjPUkVjboLp4tgZObfKkESJtqWQLNTfE1MaG5PHoe2MKY7NqjcX//N6GUY3wVSoNEOu2HJRlEmCCZl/ToZCc4Yyt4QyLeythI2ppgxtPhUbgrf68jppXzY8t+HdX9WbtSKOMpxBDS7Ag2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w99845c</latexit><latexit sha1_base64="RVAqimbFYJaVdnTpNAVXcZtb4pY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfi0RtU627DXYCsE68gdSjQGlS/+sOEZTFXyCQ1pue5KQZTqlEwyWeVfmZ4StmEjnjPUkVjboLp4tgZObfKkESJtqWQLNTfE1MaG5PHoe2MKY7NqjcX//N6GUY3wVSoNEOu2HJRlEmCCZl/ToZCc4Yyt4QyLeythI2ppgxtPhUbgrf68jppXzY8t+HdX9WbtSKOMpxBDS7Ag2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w99845c</latexit>

yCi<latexit sha1_base64="G5Bj9A3M/+qqeFTDH3Gbw9nVw5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMdCLx4r2FZoY9lsN+3SzSbsToQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6IaCGS6F4BwVK/pBoTqNA8l4wbc393hPXRsTqHrOE+xEdKxEKRtFKnWwoHlvDat1tuAuQdeIVpA4F2sPq12AUszTiCpmkxvQ9N0E/pxoFk3xWGaSGJ5RN6Zj3LVU04sbPF8fOyLlVRiSMtS2FZKH+nshpZEwWBbYzojgxq95c/M/rpxje+LlQSYpcseWiMJUEYzL/nIyE5gxlZgllWthbCZtQTRnafCo2BG/15XXSvWx4bsO7u6o3a0UcZTiDGlyAB9fQhFtoQwcYCHiGV3hzlPPivDsfy9aSU8ycwh84nz+ZO45u</latexit><latexit sha1_base64="G5Bj9A3M/+qqeFTDH3Gbw9nVw5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMdCLx4r2FZoY9lsN+3SzSbsToQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6IaCGS6F4BwVK/pBoTqNA8l4wbc393hPXRsTqHrOE+xEdKxEKRtFKnWwoHlvDat1tuAuQdeIVpA4F2sPq12AUszTiCpmkxvQ9N0E/pxoFk3xWGaSGJ5RN6Zj3LVU04sbPF8fOyLlVRiSMtS2FZKH+nshpZEwWBbYzojgxq95c/M/rpxje+LlQSYpcseWiMJUEYzL/nIyE5gxlZgllWthbCZtQTRnafCo2BG/15XXSvWx4bsO7u6o3a0UcZTiDGlyAB9fQhFtoQwcYCHiGV3hzlPPivDsfy9aSU8ycwh84nz+ZO45u</latexit><latexit sha1_base64="G5Bj9A3M/+qqeFTDH3Gbw9nVw5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMdCLx4r2FZoY9lsN+3SzSbsToQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6IaCGS6F4BwVK/pBoTqNA8l4wbc393hPXRsTqHrOE+xEdKxEKRtFKnWwoHlvDat1tuAuQdeIVpA4F2sPq12AUszTiCpmkxvQ9N0E/pxoFk3xWGaSGJ5RN6Zj3LVU04sbPF8fOyLlVRiSMtS2FZKH+nshpZEwWBbYzojgxq95c/M/rpxje+LlQSYpcseWiMJUEYzL/nIyE5gxlZgllWthbCZtQTRnafCo2BG/15XXSvWx4bsO7u6o3a0UcZTiDGlyAB9fQhFtoQwcYCHiGV3hzlPPivDsfy9aSU8ycwh84nz+ZO45u</latexit><latexit sha1_base64="G5Bj9A3M/+qqeFTDH3Gbw9nVw5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMdCLx4r2FZoY9lsN+3SzSbsToQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6IaCGS6F4BwVK/pBoTqNA8l4wbc393hPXRsTqHrOE+xEdKxEKRtFKnWwoHlvDat1tuAuQdeIVpA4F2sPq12AUszTiCpmkxvQ9N0E/pxoFk3xWGaSGJ5RN6Zj3LVU04sbPF8fOyLlVRiSMtS2FZKH+nshpZEwWBbYzojgxq95c/M/rpxje+LlQSYpcseWiMJUEYzL/nIyE5gxlZgllWthbCZtQTRnafCo2BG/15XXSvWx4bsO7u6o3a0UcZTiDGlyAB9fQhFtoQwcYCHiGV3hzlPPivDsfy9aSU8ycwh84nz+ZO45u</latexit>

xt
i

<latexit sha1_base64="Qkz9mrwb+5ZK2Ot6gQ2WhiylBjs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcvQ/3DjQhG3/os7/8ZMOwutHggczrmXe3L8WAqDrvvlFNbWNza3itulnd29/YPy4VHLRIlmvMkiGemOTw2XQvEmCpS8E2tOQ1/ytj+9zvz2PddGROoOZzHvh3SsRCAYRSsNeiHFiR+kj/OhGOCwXHVr7gLkL/FyUoUcjWH5szeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyalVRiSItH0KyUL9uZHS0JhZ6NvJLKVZ9TLxP6+bYHDVT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUv/yWt85rn1rzbi2q9ktdRhBOowBl4cAl1uIEGNIGBhid4gVfnwXl23pz35WjByXeO4Recj28IZpK+</latexit><latexit sha1_base64="Qkz9mrwb+5ZK2Ot6gQ2WhiylBjs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcvQ/3DjQhG3/os7/8ZMOwutHggczrmXe3L8WAqDrvvlFNbWNza3itulnd29/YPy4VHLRIlmvMkiGemOTw2XQvEmCpS8E2tOQ1/ytj+9zvz2PddGROoOZzHvh3SsRCAYRSsNeiHFiR+kj/OhGOCwXHVr7gLkL/FyUoUcjWH5szeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyalVRiSItH0KyUL9uZHS0JhZ6NvJLKVZ9TLxP6+bYHDVT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUv/yWt85rn1rzbi2q9ktdRhBOowBl4cAl1uIEGNIGBhid4gVfnwXl23pz35WjByXeO4Recj28IZpK+</latexit><latexit sha1_base64="Qkz9mrwb+5ZK2Ot6gQ2WhiylBjs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcvQ/3DjQhG3/os7/8ZMOwutHggczrmXe3L8WAqDrvvlFNbWNza3itulnd29/YPy4VHLRIlmvMkiGemOTw2XQvEmCpS8E2tOQ1/ytj+9zvz2PddGROoOZzHvh3SsRCAYRSsNeiHFiR+kj/OhGOCwXHVr7gLkL/FyUoUcjWH5szeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyalVRiSItH0KyUL9uZHS0JhZ6NvJLKVZ9TLxP6+bYHDVT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUv/yWt85rn1rzbi2q9ktdRhBOowBl4cAl1uIEGNIGBhid4gVfnwXl23pz35WjByXeO4Recj28IZpK+</latexit><latexit sha1_base64="Qkz9mrwb+5ZK2Ot6gQ2WhiylBjs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcvQ/3DjQhG3/os7/8ZMOwutHggczrmXe3L8WAqDrvvlFNbWNza3itulnd29/YPy4VHLRIlmvMkiGemOTw2XQvEmCpS8E2tOQ1/ytj+9zvz2PddGROoOZzHvh3SsRCAYRSsNeiHFiR+kj/OhGOCwXHVr7gLkL/FyUoUcjWH5szeKWBJyhUxSY7qeG2M/pRoFk3xe6iWGx5RN6Zh3LVU05KafLlLPyalVRiSItH0KyUL9uZHS0JhZ6NvJLKVZ9TLxP6+bYHDVT4WKE+SKLQ8FiSQYkawCMhKaM5QzSyjTwmYlbEI1ZWiLKtkSvNUv/yWt85rn1rzbi2q9ktdRhBOowBl4cAl1uIEGNIGBhid4gVfnwXl23pz35WjByXeO4Recj28IZpK+</latexit>

ut
i

<latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="N2MxdMBzQMzHSBgmS5giKbXgUJU=">AAAB6nicbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gPabcmm2TY0m12SF6Us/R9ePCjiD/LmvzHb9qCtA4Fh5j3eZKJMCoO+/+2VtrZ3dvfK+5WD6uHRce2k2jap1Yy3WCpT3Y2o4VIo3kKBknczzWkSSd6JpneF33ni2ohUPeIs42FCx0rEglF00qCfUJxEcW7nQzHAYa3uN/wFyCYJVqQOKzSHta/+KGU24QqZpMb0Aj/DMKcaBZN8XulbwzPKpnTMe44qmnAT5ovUc3LhlBGJU+2eQrJQf2/kNDFmlkRuskhp1r1C/M/rWYxvwlyozCJXbHkotpJgSooKyEhozlDOHKFMC5eVsAnVlKErquJKCNa/vEnaV43AbwQPPpThDM7hEgK4hlu4hya0gIGGF3iDd+/Ze/U+lnWVvFVvp/AH3ucPuneRew==</latexit><latexit sha1_base64="N2MxdMBzQMzHSBgmS5giKbXgUJU=">AAAB6nicbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gPabcmm2TY0m12SF6Us/R9ePCjiD/LmvzHb9qCtA4Fh5j3eZKJMCoO+/+2VtrZ3dvfK+5WD6uHRce2k2jap1Yy3WCpT3Y2o4VIo3kKBknczzWkSSd6JpneF33ni2ohUPeIs42FCx0rEglF00qCfUJxEcW7nQzHAYa3uN/wFyCYJVqQOKzSHta/+KGU24QqZpMb0Aj/DMKcaBZN8XulbwzPKpnTMe44qmnAT5ovUc3LhlBGJU+2eQrJQf2/kNDFmlkRuskhp1r1C/M/rWYxvwlyozCJXbHkotpJgSooKyEhozlDOHKFMC5eVsAnVlKErquJKCNa/vEnaV43AbwQPPpThDM7hEgK4hlu4hya0gIGGF3iDd+/Ze/U+lnWVvFVvp/AH3ucPuneRew==</latexit><latexit sha1_base64="fnpOrgG8i1llcEN7iHQwdYrTgL4=">AAAB9XicbVDLSsNAFL3xWeur6tLN0CK4KokbXRbcuKxgH9CmZTKdtEMnkzBzo5TQ/3DjQhG3/os7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7G5tb2zW9or7x8cHh1XTk7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4Lpbe53Hrk2IlYPOEu4H9GxEqFgFK006EcUJ0GYpfOhGOCwUnPr7gJknXgFqUGB5rDy1R/FLI24QiapMT3PTdDPqEbBJJ+X+6nhCWVTOuY9SxWNuPGzReo5ubDKiISxtk8hWai/NzIaGTOLAjuZpzSrXi7+5/VSDG/8TKgkRa7Y8lCYSoIxySsgI6E5QzmzhDItbFbCJlRThraosi3BW/3yOmlf1T237t27tUa1qKME51CFS/DgGhpwB01oAQMNz/AKb86T8+K8Ox/L0Q2n2DmDP3A+fwACi5K3</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit><latexit sha1_base64="eR5sROvkPZ7N8Q/Nb2tnqD6f7Wk=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRQZcFNy4r2Af0RSbNtKGZzJDcUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4sRQGXffbKWxsbm3vFHdLe/sHh0fl45OWiRLNeJNFMtIdnxouheJNFCh5J9achr7kbX96m/ntR66NiNQDzmLeD+lYiUAwilYa9EKKEz9Ik/lQDHBYrro1dwGyTrycVCFHY1j+6o0iloRcIZPUmK7nxthPqUbBJJ+XeonhMWVTOuZdSxUNuemni9Rzcm6VEQkibZ9CslB/b6Q0NGYW+nYyS2lWvUz8z+smGNz0U6HiBLliy0NBIglGJKuAjITmDOXMEsq0sFkJm1BNGdqiSrYEb/XL66R1WfPcmnd/Va1X8jqKcAYVuAAPrqEOd9CAJjDQ8Ayv8OY8OS/Ou/OxHC04+c4p/IHz+QMDy5K7</latexit>

zti
<latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="xWE0jItXKtFe0R2hPHOHmQm+cXc=">AAAB4XicbZDNSgMxFIXv+Ftr1erWTbAIrsqMG10KblxWcNpCW0smvdOGZjJDckeoQ5/BjQtFfCl3vo3pz0JbDwQ+zknIvSfKlLTk+9/exubW9s5uaa+8Xzk4PKoeV5o2zY3AUKQqNe2IW1RSY0iSFLYzgzyJFLai8e0sbz2hsTLVDzTJsJfwoZaxFJycFT735SP1qzW/7s/F1iFYQg2WavSrX91BKvIENQnFre0Efka9ghuSQuG03M0tZlyM+RA7DjVP0PaK+bBTdu6cAYtT444mNnd/vyh4Yu0kidzNhNPIrmYz87+sk1N83SukznJCLRYfxblilLLZ5mwgDQpSEwdcGOlmZWLEDRfk+im7EoLVldeheVkP/Hpw70MJTuEMLiCAK7iBO2hACAIkvMAbvHvae/U+FnVteMveTuCPvM8fx02NaQ==</latexit><latexit sha1_base64="xWE0jItXKtFe0R2hPHOHmQm+cXc=">AAAB4XicbZDNSgMxFIXv+Ftr1erWTbAIrsqMG10KblxWcNpCW0smvdOGZjJDckeoQ5/BjQtFfCl3vo3pz0JbDwQ+zknIvSfKlLTk+9/exubW9s5uaa+8Xzk4PKoeV5o2zY3AUKQqNe2IW1RSY0iSFLYzgzyJFLai8e0sbz2hsTLVDzTJsJfwoZaxFJycFT735SP1qzW/7s/F1iFYQg2WavSrX91BKvIENQnFre0Efka9ghuSQuG03M0tZlyM+RA7DjVP0PaK+bBTdu6cAYtT444mNnd/vyh4Yu0kidzNhNPIrmYz87+sk1N83SukznJCLRYfxblilLLZ5mwgDQpSEwdcGOlmZWLEDRfk+im7EoLVldeheVkP/Hpw70MJTuEMLiCAK7iBO2hACAIkvMAbvHvae/U+FnVteMveTuCPvM8fx02NaQ==</latexit><latexit sha1_base64="9i/Pybdfoi0d2n+0RqbaLSPS5EU=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLBmLiibRe9EjixSMmFkigku2yhQ3bbbM7NcGG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTKUw6LrfTmljc2t7p7xb2ds/ODyqHp+0TZJpxn2WyER3Q2q4FIr7KFDybqo5jUPJO+HkZu53Hrk2IlH3OE15ENOREpFgFK3kPw3EAw6qdbfhLkDWiVeQOhRoDapf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsj51YZkijRthSShfp7IqexMdM4tJ0xxbFZ9ebif14vw+g6yIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZfXifty4bnNrw7t96sFXGU4QxqcAEeXEETbqEFPjAQ8Ayv8OYo58V5dz6WrSWnmDmFP3A+fwDjx46c</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit><latexit sha1_base64="OkQe709t6nx0hjcS3li4BQv7Bq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToQa+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxyIexxU627DXYD8JV5B6lCgNah+9ocJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMnFplSKJE21JIFurPiZzGxkzj0HbGFMdm1ZuL/3m9DKOrIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9+S9pnzc8t+HdXtSbtSKOMpxADc7Ag0towg20wAcGAp7gBV4d5Tw7b877srXkFDPH8AvOxzflB46g</latexit>

x̃t
i

<latexit sha1_base64="yTM1uURblg6lnDy0jnXIM6fZMLQ=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7sA3G3bTnsFaJk5JGqhE2ze/3GFM0ogKIBwrNXDsBLwMS2CE07zmpoommEzwiA40FTiiystm+XPrRCtDK4ylfgKsmfp7I8ORUtMo0JNFTLXoFeJ/3iCF8NLLmEhSoILMD4UptyC2ijKsIZOUAJ9qgolkOqtFxlhiArqymi7BWfzyMumeNR276dycN1r1so4qOkZ1dIocdIFa6Bq1UQcR9Iie0St6M56MF+Pd+JiPVoxy5xD9gfH5Awp3lqU=</latexit><latexit sha1_base64="yTM1uURblg6lnDy0jnXIM6fZMLQ=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7sA3G3bTnsFaJk5JGqhE2ze/3GFM0ogKIBwrNXDsBLwMS2CE07zmpoommEzwiA40FTiiystm+XPrRCtDK4ylfgKsmfp7I8ORUtMo0JNFTLXoFeJ/3iCF8NLLmEhSoILMD4UptyC2ijKsIZOUAJ9qgolkOqtFxlhiArqymi7BWfzyMumeNR276dycN1r1so4qOkZ1dIocdIFa6Bq1UQcR9Iie0St6M56MF+Pd+JiPVoxy5xD9gfH5Awp3lqU=</latexit><latexit sha1_base64="yTM1uURblg6lnDy0jnXIM6fZMLQ=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7sA3G3bTnsFaJk5JGqhE2ze/3GFM0ogKIBwrNXDsBLwMS2CE07zmpoommEzwiA40FTiiystm+XPrRCtDK4ylfgKsmfp7I8ORUtMo0JNFTLXoFeJ/3iCF8NLLmEhSoILMD4UptyC2ijKsIZOUAJ9qgolkOqtFxlhiArqymi7BWfzyMumeNR276dycN1r1so4qOkZ1dIocdIFa6Bq1UQcR9Iie0St6M56MF+Pd+JiPVoxy5xD9gfH5Awp3lqU=</latexit><latexit sha1_base64="yTM1uURblg6lnDy0jnXIM6fZMLQ=">AAAB/3icbVDLSsNAFJ3UV62vqODGTWgRXJVEBF0W3LisYB/QxDCZTtqhk0mYuRFLzMJfceNCEbf+hjv/xkmbhbYeGDiccy/3zAkSzhTY9rdRWVldW9+obta2tnd298z9g66KU0loh8Q8lv0AK8qZoB1gwGk/kRRHAae9YHJV+L17KhWLxS1ME+pFeCRYyAgGLfnmkQuMD2nmRhjGQZg95LnP7sA3G3bTnsFaJk5JGqhE2ze/3GFM0ogKIBwrNXDsBLwMS2CE07zmpoommEzwiA40FTiiystm+XPrRCtDK4ylfgKsmfp7I8ORUtMo0JNFTLXoFeJ/3iCF8NLLmEhSoILMD4UptyC2ijKsIZOUAJ9qgolkOqtFxlhiArqymi7BWfzyMumeNR276dycN1r1so4qOkZ1dIocdIFa6Bq1UQcR9Iie0St6M56MF+Pd+JiPVoxy5xD9gfH5Awp3lqU=</latexit>

…

…

…

…

…

…

…

…

yci
<latexit sha1_base64="M/yoDohntggc0BuFDKY3rHtXk/I=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfikQ2qdbfhLkDWiVeQOhRoDapf/WHCspgrZJIa0/PcFIMp1SiY5LNKPzM8pWxCR7xnqaIxN8F0ceyMnFtlSKJE21JIFurviSmNjcnj0HbGFMdm1ZuL/3m9DKObYCpUmiFXbLkoyiTBhMw/J0OhOUOZW0KZFvZWwsZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfJu46O</latexit><latexit sha1_base64="M/yoDohntggc0BuFDKY3rHtXk/I=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfikQ2qdbfhLkDWiVeQOhRoDapf/WHCspgrZJIa0/PcFIMp1SiY5LNKPzM8pWxCR7xnqaIxN8F0ceyMnFtlSKJE21JIFurviSmNjcnj0HbGFMdm1ZuL/3m9DKObYCpUmiFXbLkoyiTBhMw/J0OhOUOZW0KZFvZWwsZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfJu46O</latexit><latexit sha1_base64="M/yoDohntggc0BuFDKY3rHtXk/I=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfikQ2qdbfhLkDWiVeQOhRoDapf/WHCspgrZJIa0/PcFIMp1SiY5LNKPzM8pWxCR7xnqaIxN8F0ceyMnFtlSKJE21JIFurviSmNjcnj0HbGFMdm1ZuL/3m9DKObYCpUmiFXbLkoyiTBhMw/J0OhOUOZW0KZFvZWwsZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfJu46O</latexit><latexit sha1_base64="M/yoDohntggc0BuFDKY3rHtXk/I=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoMeCF48VTFtoY9lsN+3SzSbsToRQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ9YJ7yIKYjJSLBKFrJzwfikQ2qdbfhLkDWiVeQOhRoDapf/WHCspgrZJIa0/PcFIMp1SiY5LNKPzM8pWxCR7xnqaIxN8F0ceyMnFtlSKJE21JIFurviSmNjcnj0HbGFMdm1ZuL/3m9DKObYCpUmiFXbLkoyiTBhMw/J0OhOUOZW0KZFvZWwsZUU4Y2n4oNwVt9eZ20Lxue2/Dur+rNWhFHGc6gBhfgwTU04Q5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfJu46O</latexit>
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Figure 5.1: An overview of the architecture of the model and the different
training stages of the network. The input sequence (xti)

Ti
t=1 goes through a recur-

rent sequence encoder, enc, followed by an attention layer, atten, which picks a
starting index ki. This index is used to extract the subsequence x̃i = (xti)

ki+L−1
t=ki

.
This subsequence goes through another recurrent encoder, subenc, followed by
a prototype layer, prot, that measures the (dis)similarity between the embed-
ded subsequence and the prototypes of each class. Eventually, these dissimilarity
values go through a linear layer followed by a softmax function to compute the
estimated class probabilities. The stages listed underneath represent the order in
which the various parts of the network are trained. Cat stands for Categorical.
Symbol � represents recurrent neural network layers.

the architecture and Section 5.3.1 provides more details about each of its various

components. Training is described in Section 5.3.2.

Definitions: Let D = {(xi,yi)}Ni=1 be a dataset of N labelled data points. For

each data point i, yi ∈ [0, 1]C represents the one-hot encoding of the class label (for

instance, the patient group to which subject i belongs), and xi = (xti)
Ti
t=1 represents a

sequence of length Ti. Each element of this sequence is a d-dimensional real vector,

xti ∈ Rd, which for example includes information such as the action of subject i,

reward, and stimulus at time t.

5.3.1 Architecture

Subsequence Extraction

This part of the model – which is mainly based on [172] – receives an input sequence

xi, and outputs a small subsequence of it, denoted by x̃i = (xti)
ki+L−1
t=ki

. Here, ki ∈
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{1, . . . , Ti−L} is the starting index of the subsequence and is selected based on the

specific input xi. The length of the subsequence, L, is a fixed hyper-parameter. The

rest of this subsection explains how the network selects ki.

The entire input sequence xi is processed by a recurrent sequence encoder, de-

noted by enc(θe, .) with parameters θe. On each timestep t, the encoded vector

is uti = enc(θe,x
t
i), where uti ∈ Rm and m � d (i.e., the data point is mapped

to a lower dimensional space). These encoded vectors are used as inputs to an

attention layer [172–174], denoted by atten, which outputs an alignment vector

si = [s1i , . . . , s
Ti
i ]> ∈ RTi . Each sti ∈ R can be thought of as a score which represents

how representative the subsequence (xti)
ki+L−1
t=ki

would be of the whole sequence xi.

We describe below how si is computed; but, for the moment, consider it to be given.

These scores are mapped into a probability vector zi = [z1i , . . . , z
Ti
i ] using a softmax:

zti =
exp(sti)∑Ti
t′=1 exp(st

′
i )
, t = 1, 2, ..., Ti, (5.1)

and an index ki ∼ Categorical(zi) is sampled from the corresponding categorical

distribution. This determines the starting index of the subsequence x̃i = (xti)
ki+L−1
t=ki

which is the input to the prototype layer.

The scores si = [s1i , . . . , s
Ti
i ]> are computed via a one layer “additive attention”

mechanism [172]:

sti = V>a tanh(Wa[u
t
i; u

Ti
i ]), (5.2)

depending on the encoded vector at time t, uti, and the final encoding vector uTii ,

where Wa and Va are parameters. We denote by Θe = {θe,Va,Wa} the set of all

parameters of the subsequence extractor.

Prototype Matching

The next phase of processing encodes the representative subsequence x̃i = (x̃ti)
L
t=1

into a vector vi, and then calculates a vector di ∈ RC that quantifies the dissimilarity
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of the input to the C prototypes of the classes.

More specifically, x̃i is input to a recurrent (sub)sequence encoder,subenc(θs, .).

Similar to enc, subenc is also a GRU-based encoder [180]. However, while enc is

specialised at encoding longer sequences for the purpose of subsequence extraction,

subenc is tasked with encoding shorter (sub)sequences in a way that allows for

immediate prototype matching. The output of subenc is vi, which corresponds to

the last output of the recurrent encoder.

We then follow [178, 179]. The prototype layer, prot, is parameterised by vectors

M = {µµµ1, . . . ,µµµC}, where C is the number of classes1 and each prototype µµµc ∈ Rb

has the same dimensionality as vi. prot calculates the dissimilarity of the input vi

to each prototype µµµc defined by the squared Euclidean distance, dci = ‖vi − µµµc‖22.

Sparse Linear Classification

The final part of the architecture turns the dissimilarity vector di into class probabil-

ities ŷi = {ŷ1i , . . . , ŷCi }. To achieve this, the dissimilarity vector is passed through a

linear layer (linear; oi = Wfdi) and then a softmax layer to produce class probabil-

ities, ŷci = exp(oci)/
∑C

j=1 exp(oji ). Wf is a C ×C weight matrix parameter which is

trained with a sparsity constraint (see the next section), which is required to ensure

that all the class prototypes are meaningful and interpretable (see Section 5.4.2).

5.3.2 Training algorithm

Following [170], the model was trained iteratively until convergence. Each iteration

consists of three sequential stages: (1) training the subsequence encoder, subenc,

and the prototype layer, prot, to classify sequences, thereby generating prototypes

that are helpful in classification (in the first iteration, since the subsequence extractor

is not yet trained, we use randomly sampled subsequences as the input to subenc),

(2) training the sequence encoder, enc, and the attention layer, atten, to extract

1While the number of prototypes could be greater than C in general, choosing C prototypes
helps in providing more interpretable prototypes that correspond to each group/class
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meaningful subsequences, and (3) training the final fully-connected layer, linear, to

improve the overall classification performance using the complete input sequences.

In each training stage, we keep the other parameters of the network fixed. Given

that the subsequence index ki is sampled, conventional gradient-based optimisation

methods cannot be used to train the network end-to-end. Instead, we propose a

novel application of a policy gradient method.

Stage 1

The aim of the first training stage is to learn the parameters of subenc—namely

θs—and the prototype vectors, M = {µµµ1, . . . ,µµµC} keeping the other parameters

fixed, including Wf . We minimise the sum of the cross-entropy loss, which pe-

nalises misclassification of the training data, and a regularisation term that ensures

prototypes remain distinct [179]:

min
θs,M
L(yi, ŷi) + α1Rλ(M), (5.3)

where L(yi, ŷi) = 1
n

∑N
i=1 CrsEnt(yi, ŷi) and Rλ(M) =

∑C
i=1

∑C
j=i+1 max(0, λ −

||µµµi − µµµj||2)2. λ is the threshold that determines whether or not the prototypes are

close in embedding space. This ensures that the prototypes are distinct from each

other and prevents the model from collapsing into learn a single prototype.

Critically, during training, at every M epochs, since the prototypes µµµc, may not

correspond to a subsequence in the training data, we project them onto the closest

subsequence encoding, as described by the rule [178, 179]. This step updates µµµc by

µµµnew
c ← arg min

vi∈subenc(X̃ )

∥∥vi − µµµold
c

∥∥
2
, (5.4)

where X̃ = {x̃i}Ni=1 is the set of all subsequences that are fed to subenc. This ensures

that each prototype corresponds to an observed subsequence and is meaningful and

interpretable.
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Note that in the first iteration (i.e., the first time stage 1 is run), the subsequence

extractor is not trained yet; therefore, we select the subsequences uniformly at

random from the input sequences. In later iterations, subsequences are chosen based

on the output of the attention layer from the previous iteration. We also initialise

the weights of the last fully-connected layer, Wf , in the same manner as [178]: the

weights that connect each prototype µµµc to the logit corresponding to class c are set

to 1.0, and all other weights are set to −0.5. This allows for subsequences that are

similar to a particular prototype, µµµc to increase the probability of being classified

to class c and conversely, decrease the probability of being classified to the other

classes.

Stage 2

After learning the embedding of subsequences and the prototypes that are appro-

priate for classification, the next stage of training involves training a model that

will extract subsequences from the original sequence that approximates the proto-

types as closely as possible. It is necessary to train this stage separately because

of the stochastic sampling associated with the choice of index ki. This is treated

as a Reinforcement Learning (RL) problem where the model (agent) must find an

optimal behavioural strategy that finds the index ki for a sequence that maximises

the negative cross-entropy loss (Equation 5.3) (the reward).

To solve this problem, we use a policy gradient method to set the parameters Θe

of the sequence encoding policy πΘe(a|x) realised by enc and the attention layer,

atten. We use the REINFORCE algorithm [181] with an entropy term. Therefore,

the objective function that is maximised is given as:

J(Θe) = Eπ[−(CrsEnt(yi, ŷi)− L(y, ŷ)) lnπΘe(ai|xi)] + α2H(πΘe(·|xi)), (5.5)

where H(·) is the entropy measure and α2 controls how important the entropy term
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is, known as the temperature parameter [182]. The entropy maximisation leads to

policies that (1) explore more; and (2) assign options with equal probability to be

chosen if there are multiple options that seem to be equally good. The cross entropy

loss averaged across the training set, L(y, ŷ) is subtracted from the reward as a

baseline term to reduce the variance of the gradient updates. Once a subsequence

is chosen according to πΘe(a|x), the evaluation of the cross entropy is conditionally

independent of Θe as the the parameters of the other sections of the network are

fixed and therefore J(Θe) will have valid gradients enabling the use of gradient based

methods to optimise Equation 5.5.

Stage 3

The weights of the final full-connected layer, Wf , are trained to improve the ac-

curacy of the model without changing the sampling model, embedding vectors and

prototypes. While only one meaningful prototype is required for a two-class clas-

sification (one prototype for class c, one prototype that is not class c), we instead

require all the prototypes to be meaningful. Following [178], we also include a L1

regularisation term on the weights that encourages the prototypes to represent their

respective classes rather than the difference between the classes. The final optimi-

sation objective is:

min
Wf

L(y, ŷ) + α3 ‖Wf‖1 . (5.6)

The sparsity encourages the model away from the negative reasoning process to the

positive e.g. ”This is a subsequence of class c because it is of class c” rather than
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”This is a subsequence of class c because it is not of class b”.

Algorithm 2: Prototype Network algorithm

Input: Number of epochs, N , Number of iterations per training stage, K,

Prototype Projection update , M

Output: Model with trained parameters

Initialise enc,subenc, prot,atten layers using Xavier initialisation.

Initialise linear layer described in Stage 1.

for i=1,2,...,N do

Stage 1: for k=1,2,...,K do

Update subenc parameters, θs and prototype vectors M using

Equation 5.3

if k%M == 0 then

Update prototype vectors, M using Equation 5.4

end

end

Stage 2: for k=1,2,...,K do

Update enc and atten using Equation 5.5

end

Stage 3: for k=1,2,...,K do

Update Wf using Equation 5.6

end

end

5.4 Experiments

In this section, we evaluate the model on two synthetically generated and two real-

world datasets. We assess the method in two respects: (i) classification performance

compared with baseline models, which are GRU and Attention RNN [172, 173]; (ii)

interpretability of the extracted prototypes and subsequences. We also performed

ablation studies to investigate the role of the different components of the architecture

and the length of the subsequence, L (Section 5.4.3).
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Figure 5.2: Prototypical subsequences from each of the experiments produced by
our method. The squares show the actions chosen by the agent at each timestep.
The red star shows whether a reward was received on the trial. (a): prototype
subsequences for QLG (upper) and QLR (lower) on the bandit task. (b): pro-
totype subsequences for subjects suffering bipolar disorder (upper) and healthy
controls (lower). (c): prototypes for the first-stage actions of the model-based
(upper) and model-free (lower) agents in the Two-Stage task. Actions in the
first-stage that led to a second-stage state only 30% of the time are labelled R, or
C otherwise. (d): prototypes for the Two-Stage task in the absence of the linear
layer (using the same graphical convention).

Evaluation Regime

Each dataset is subdivided into a training set of 70% of the cases, a validation

set of 10%, used to choose hyper-parameters, and a test set of 20%. For each

collection of hyper-parameter values, learning was repeated using five different seeds

that determined the randomised initialisation of weights and training. The results

presented are for the hyperparameter values associated with the highest validation

score averaged across the five seeds, but evaluated on the test set (with attendant

standard deviations). The final hyperparameter values are listed in Table 5.3.

Hyperparameter settings

The dimensionality of the prototype embedding was b = 5 in all the experiments.

Hyperparameters in Equation 5.3 were also fixed to the following values: λ = 3.0

and α1 = 0.01, however d should be scaled appropriately with b. Table 5.3 shows

the other configurations of our model.
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Dataset L Dim Dropout α2 α3

Bandit 2 20 0.0 0.02 0.02
4 20 0.0 0.05 0.05
6 20 0.0 0.05 0.02
8 20 0.0 0.02 0.05

BD 2 30 0.1 0.05 0.02
4 40 0.1 0.02 0.05
6 30 0.0 0.02 0.02
8 40 0.1 0.02 0.05

Two Stage 2 40 0.0 0.02 0.02
4 20 0.1 0.08 0.02
6 30 0.1 0.08 0.05
8 20 0.1 0.05 0.02

Table 5.3: Parameters for model architecture for various datasets in the following
order: dimensionality of GRU hidden state vector, subsequence length, dropout,
entropy regularisation and l1 regularisation. The bolded settings were used to
present results and graphics.

Training details

We use RMSProp [45] for all the training. We iterated training on Stage 1, Stage

2 and Stage 3 three times, where each stage was trained for 200 epochs using full

batches. The learning rate was initialised to 0.01 for the first 50 epochs followed by

an exponential decay at a rate of 0.015 until a learning rate of 2e-4. Training was

performed on NVIDIA V100 Tensor Core GPU using TensorFlow v1.152.

5.4.1 Classification Performance and Interpretability

Synthetic Bandit

To illustrate that our method can learn the underlying ground truth classifications

and the group-level prototypical subsequences,

We constructed a 2-armed bandit problem where the agent faces two choices, aA

(left) and aB (right). At each trial, t, the actions, left and right each have a

fixed probability of earning reward, P (rt|aA) = 0.1 and P (rt|aB) = 0.3 respectively.

2https://www.tensorflow.org/
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The agent must simultaneously attempt to acquire new knowledge (called ”explo-

ration”) and optimise their decisions based on existing knowledge (called ”exploita-

tion”). The agent attempts to balance these competing tasks in order to maximise

their total value over the period of time considered.

The agents were simulated using SARSA(λ) similar to Equation2.35 except with

only one state. Similarly, state-action values were connected to choices according to

Equation 2.36.

We simulated the Q-learning agents by setting the learning rate, α = 0.3 and the

inverse temperature parameter, β = 1.0 for both classes.

Furthermore, we created two classes of behaviours for these Q-learning agents [79]

and simulated their behaviour on a bandit task involving two stochastically-rewarded

actions, left and right. One class of agents, the Q-learning greedy (QLG) agents,

chooses its action according to its Q-values, updated through SARSA but for a

randomly chosen sequence of 10 trials, it chooses actions in a deterministic greedy

fashion (i.e., stays with the same action after reward and switches otherwise). A

second class of Q-learning repeated (QLR) agents employs the same parameter values

as QLG, but with probability 0.1, they disregard their current Q-values and instead,

choose a particular sequence of actions {left, left, left, right, right, right}.

This specific pattern of actions then will be signature behaviour of QLR. Each agent

generated a sequence of 100 actions and associated rewards (T = 100); we generated

500 agents of each class (N = 1000).

We trained our method to discriminate sequences of actions and rewards from

QLG and QLR agents. Figure 5.2 shows the prototypical subsequences that arose.

The prototype for the QLR agent is the sequence of repeated actions where it begins

with the sequence left three times, and despite earning a reward in the middle of the

subsequence, switches to right three times. The prototype for QLG demonstrates

the reward driven behaviour as defined earlier (stay after reward and switch after

no reward), and also does not include any three actions in a row, helping maximise



CHAPTER 5. INTERPRETABLE MODELLING NEUROPSYCHO- TASKS 108

the distance to the prototype of QLR.

Table 5.4 shows the negative log-likelihood and accuracy performance on the test

sets. Our method outperforms the RNN-based classifier in terms of accuracy even

though discrimination is only based on a short extracted subsequence and not the

entire sequence (as for the RNN).

BD

Figure 5.3: The extracted subsequences of the top 5 most confident classifica-
tions for each class in the BD test set. Left column: Bipolar disorder. Right
column: Healthy.

This dataset [18] comprises behavioural data from 34 patients with depression,

33 with bipolar disorder and 34 matched healthy controls. Similar to the synthetic

dataset above, subjects performed a bandit task with two stochastically-rewarded

actions (left and right). We focus on discriminating patients with bipolar disorder

from healthy controls. Each subject completed the task 12 times using different

reward probabilities for each action and each task comprised of 200 trials. The

dataset thus contains N = 12 (sequences) ×67 (participants) = 804.

The prototypes in Figure 5.2b show that subjects in the bipolar group have a

greater tendency to switch between the actions (left and right) than healthy

controls, who have greater tendency to perform the same action multiple times (i.e.,
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Figure 5.4: (a) The design of the Two-Stage Task along with each action’s
transition probabilities to the second-stage states. ‘L’ and ‘R’ refer to available
actions, and R1...R4 refer to the rewards at stage 2. (b) The probabilities of the
model-free learner to choose the same first stage action, depending on whether a
reward and rare transition was observed (based on the simulated data). (c) The
model-based learner.

to perseverate). This tendency in the bipolar subjects has already been reported in

this dataset, based on intuition [18], but here was extracted without a priori knowl-

edge about the fact that switching between the actions can differentiate between the

groups. Extracted subsequences for five individuals is shown in Figure 5.3 which

highlight the similarity of the subsequence to their respective class prototype.

Synthetic Two-Stage Task

As a final demonstration of the effectiveness of the method, we consider the be-

haviour produced by synthetic model-free (MF) and model-based (MB) reinforce-

ment learning agents on a widely used two-stage Markov decision task [94]. This

task was designed to highlight a signature difference in the behaviour of these agents

according to whether they repeat the same first-stage action in the next trial, based

on whether the previous led to reward and whether it involved a common or rare

transition (see Figure 5.4). Again, we simulated 100 trials for of 500 agents of each

type (see Supplementary for more details).

In our experiments the learning rate, α = 0.9 and the inverse temperature param-

eter, β = 2.0 for both classes.

At each trial, the reward probabilities changed over time, within a limit of 0.25

and 0.75, following a Gaussian random walk with σ = 0.04. Figure 5.5 shows the
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reward probabilities for each of the second-stage actions.

Figure 5.5: Probability of reward at each trial after choosing a second–stage
action.

Figure 5.2c demonstrates the prototype behaviours extracted for MF and MB

agents. As the figure shows, both prototypes include trials with rare and common

transitions and with reward and no-reward. In the case of MB agent, the prototype

shows that the agent stays with the same action if the previous trial was rewarded

in a common transition, or unrewarded in a rare transition, and otherwise switches

to the other action. This is indeed the known signature behaviour of the MB agent

in the two-stage task, which was here detected by the model as the group prototype.

On the other hand, the MF agent stays with the same action irrespective of whether

the transition was common or rare, which is again the signature behaviour of MF

agent. Therefore, the method was able to automatically recover signature behaviour

of each type of model.
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Log-likelihood Accuracy %
Method Bandit BD Two-Stage Bandit BD Two-Stage

GRU -0.07±0.05 -0.60±0.02 -0.12±0.01 97.9±1.6 69.6 ±1.0 96.5±0.8
Attention -0.73±0.00 -0.66±0.01 -0.58±0.03 48.0±0.0 69.6±1.0 68.6±19.3
Ablation 1 -0.72±0.06 -0.67±0.03 -0.68±0.02 42.5±28.6 58.0±8.2 58.3±6.5
Ablation 2 0.33±0.02 -0.59±0.08 -0.41±0.06 99.3±0.0 75.0±5.5 92.1±5.5
Ablation 3 0.71±0.03 -0.67±0.01 -0.70±0.02 55.1±7.7 61.1±2.0 57.4±2.7

Our -0.09±0.02 -0.59±0.06 -0.29±0.04 99.6±0.0 74.2±4.4 93.8±0.8

Table 5.4: Comparison of our method against GRU, Attention Network and the
Ablation studies (See Section 5.4.2). The results show the mean log-likelihood
and accuracy with one standard deviation across 5 runs. Bolded values indicate
the best performance out of the comparators for each dataset and metric.

5.4.2 Ablation studies

To understand which sections of the architecture are critical to classification perfor-

mance and its interpretation, we analysed the results on each of our datasets when

we ablated two different components of the models. The hyperparameters used for

each dataset are shown in bold in Table 5.3; and the resulting performance is shown

in Table 5.4. The scenarios and results are presented below. We also studied the

effect of the length of subsequences, which is presented in Section 5.4.3.

Ablation 1: Performance without subsequence extractor

In order to demonstrate that the model was extracting meaningful and insightful

subsequences from the datasets, we trained the model according to only Stage 1

and Stage 3. The subsequence extractor in the network therefore randomly samples

subsequences from the original input and attempts to classify those subsequences.

Classification performance (Table 5.4) was woeful, suggesting that our model can

find subsequences that discriminate between the class much better than random.

Ablation 2: Performance without final linear layer

We investigated the importance of the final linear layer (labelled Stage 3 in Fig-

ure 5.1), by removing it from the architecture and retraining the network as ac-
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cording to just Stage 1 and Stage 2. The classification is therefore determined

directly by the distance of the prototypes and the embedded subsequence, ŷi =

exp(dc)/
∑C

c=1 exp(dc).

While classification performance without linear is similar to that of the original

model, Figure 5.2d shows the prototypes produced by ablation experiment for the

Two-Stage task. The MF prototype (lower) is essentially the same as that for the full

model (shown in Figure 5.2c; lower). However, the MB prototype (upper) no longer

presents a recognisable signature. Instead, it exhibits a form of negative reasoning

– it is behaviour that the MF agent would not exhibit – and so is less interpretable.

Ablation 3: Performance without sequence encoder

While the subsequence encoder, subenc, is required in our model to learn the pro-

totypes, we investigated if classification was performed where a (jaccard) similarity

metric was computed in the original input space rather than the embedding space

produced by subenc. The experiment for Ablation 3, went as followed: (1) Train

the network as described in Section 5.3 for a given dataset and obtain prototypes for

each of the J classes. (2) For a new input sequence, extract the subsequence as de-

termined by the network. (3) Compute the jaccard similarity metric (chosen because

features were binary) between the subsequence and the prototypes.. (4) Classify the

subsequence based on the highest similarity.

Table 5.4 shows all ablation results. Without the subsequence encoder, the perfor-

mance of the model performs above random chance suggesting that the subsequences

and prototypes extracted by the model are sometimes meaningful for discrimination

but does not compare to the performance to the original model. The ablation demon-

strates the positive effect of modelling the temporal information of the subsequences

using RNNs.
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5.4.3 Effect of Subsequence Length, L

We investigate the effect of changing the length of the subsequence, L, being ex-

tracted from the input sequence of the performance of our method. We re-optimise

the hyperparameter configurations for each L and the results as shown in Figure 5.6.

As the length of the subsequence increases, the accuracy improves in the Two Stage

and Bandit dataset. Furthermore, when the subsequence length is misspecified,

shown in particular by the blue line, where the distinguishing subsequence is de-

signed to be L = 6, the variance is large but decreases as L increases.
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Figure 5.6: The accuracy of classification where the length of the subsequence
being extracted and trained by our method is varied.

5.4.4 Quantifying differences between classes

One possible method of quantifying how distinct these prototypes are for each class is

to bypass the attentional front-end, and look at the statistics of how well the various

prototypes match the embeddings of all subsequences of length L in the input: 1) for

a given input sequence, xi = (xti)
Ti
t=1, extract subsequences, from the sequence using

a sliding window of length L i.e. we have Ti − L subsequences, x̃ki = (xti)
k+L−1
t=k

for k = 1, 2, ..., Ti − L, 2) map each subsequence, x̃ki into the embedding space

and calculate the Euclidean distance between the subsequence and each classes’

prototype embedding, to produce a vector dki ∈ RC , where C is the number of

prototypes, 3) calculate the mean dissimilarity across the subsequences, dmeani . This

is repeated for all other sequences, xi for i = 1, 2, ..., N where N is the number of test

examples and from that, various summary statistics can be generated. Figure 5.7

shows this for the various datasets, with the means shown for each class and the
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respective histogram. The result is very clear for synthetic bandit and two-stage task

where there is a clear difference between the sequences for each class; progressively

less so for BD.

Figure 5.7: Summarizing statistic for the difference between two classes. Left:
Mean Right: Histogram.

5.5 Discussion

Finding signatures of the differences in behaviour between individuals and groups

is a critical step towards understanding the nature and idiosyncrasies of the neural

and psychological algorithms that generate that behaviour. When powerful, norma-

tive, reinforcement learning and Bayesian decision theoretic models fail to describe

choices well – for instance, the reward-independent alternation exhibited by bipolar

patients in a bandit task – it has historically been left to intuition to guess at what

might be different, and hence how the models should be augmented. Here, by ex-

ploiting recent ideas in interpretable machine learning [170, 172–174, 178, 179], we

have taken an important step towards automating this process – finding prototypical

subsequences of actual behaviour that characterise the groups of subjects, and si-

multaneously determining representative elements of the choices of individuals that

underlie their assignment to one of those groups. Our method offers comparable

classification performance to that of credible alternatives, whilst affording improved

interpretability in both synthetic and clinical datasets. We showed that each element

of the architecture plays a critical role.



CHAPTER 5. INTERPRETABLE MODELLING NEUROPSYCHO- TASKS 115

There are many directions for future work. For instance, just to take the last stage

of the network: first, it would be straightforward to use more than one prototype

per group, and to expand the dissimilarity matching process accordingly; this could

facilitate interpretation of short sequences of behaviour when not all characteristics

will be fully on display. Second, we used squared distance to quantify dissimilarity,

whereas other metrics might be worth exploring, for instance if signature behaviour

in different groups involved characteristically different numbers of episodes in the

task. At present, our method could include ‘noise’ from excess, non-discriminative

trials for some classes; a learned metric could help avoid this. Of course, the second

stage of the network re-encodes subsequences in light of this squared distance, but

this only mitigates some of the concerns.

Another future consideration is the use of transformer networks [174] instead of

RNN to process the sequential inputs. The advantage of using transformers is that

sequences are processed in its entirety (i.e. the entire trial) rather than action-by-

action in this context. However, it could be argued that modelling extremely long-

term dependencies is unnecessary as a RNN or even a convolutional network with

a small kernel size is more appropriate to model intertemporal human choices. For

instance, discounting effects (whether it be hyperbolic or exponential discounting)

means that there is an inclination for choices of immediate rewards over rewards

that come later into the future [183].

5.6 Summary

In the context of computational psychiatry, there is an impressive range of decision-

making tasks that are designed to index sub-components of psychological and neu-

ral computations that are distinct across groups of people including people with

an underlying disease. To distinguish these differences amongst the groups, cur-

rent approaches either adopt complex discriminative models—essentially sacrificing
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interpretability—or use traditional computational models and/or manually-chosen

summary statistics at the expense of accuracy and scalability. Especially, applica-

tions of these models can be in high-stake situations, there is an inherent need for

the decision-making processes associated with machine learning algorithms to be

accountable to ensure trust and transparency.

We suggest a method that learns prototypical behaviours of each population in

the form of readily interpretable, subsequences of choices, and classifies subjects by

finding signatures of these prototypes in their behaviour. The method extends recent

suggestions for how the flexibility of recurrent neural networks can be combined

with the interpretability of prototypes. The power of the method is illustrated on

synthetic and real-world datasets, showing directly that we do not need to sacrifice

accuracy for interpretability.



Chapter 6

Conclusion and Future Work

This thesis investigated the application of deep learning models to multiple tasks

in neuroscience. Previous Deep neural networks known for their ability to perform

complex tasks such as object recognition, machine translation and speech recognition

in a multitude of domains. This ability arises from the large number of parameters

in the network, allowing to engineer a large number of features at various abstrac-

tion levels, while learning the task. Furthermore, these models are able to capture

nonlinear relationships within the data which better reflect the nature of the data in

several tasks in neuroscience. The methods proposed are applied to several problems

in this context such as normalising MRI images into a single domain, translating

different modalities of MRI images between each other and modelling the behaviour

of humans in sequential decision making tasks.

6.1 Summary of Contribution

The application and development of machine learning methods to several tasks in

neuroscience are the contributions presented in this thesis. We propose the use of

the CycleGAN for unsupervised normalisation of two distinct MR images from dif-

ferent sites from the same cite in order to improve existing methods that pool data

in order to increase sensitivity and statistical power. The thesis further extends the

117
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model to be used in semi-supervised learning to translate different modalities of MR

images of patients with brain tumours and lesions. Lastly, a deep learning archi-

tecture was discussed that models human behaviour on sequential tasks whilst also

explaining the characteristics that defines the differences between different groups

of participants.

6.1.1 Unsupervised Domain Adaptation for Neuroimaging

Chapter 3 introduces the potential for multi-site studies to present a valuable op-

portunity to advance research by pooling data in order to increase sensitivity and

statistical power. However images derived from MRI are susceptible to both obvious

and non-obvious differences between sites which can introduce bias and subject vari-

ance, and so reduce statistical power. To rectify these differences, we propose a data

driven approach using CycleGANs. Here we transform T1-weighted brain images

collected from two different sites into MR images from the same site. The proposed

model can reduce site-specific differences without loss of information related to gen-

der (male or female) or clinical diagnosis (schizophrenia or healthy). When trained

appropriately, our model is able to normalise imaging sets to a common scanner set

with less information loss compared to current approaches.

6.1.2 Semi-Supervised Domain Adaptation using Adversar-

ial Training

While Chapter 3 discusses translating between two distinct MR scanner sets where

each patient only has an example image from one scanner, Chapter 4 introduces

a novel approach of translating distinct imaging modalities where there is a set of

unpaired data and as well as paired data i.e. examples of corresponding images from

both modalities. The approach looks particularly at the case where the number of

unpaired examples is much larger than the paired examples, and leverages the paired
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examples to improve the domain translation across multiple modalities. The Semi-

Supervised Adversarial CycleGAN uses an adversarial loss to learn from unpaired

data points, cycle loss to enforce consistent reconstructions of the mappings and

another adversarial loss to take advantage of paired data points.

In the experiments, the SSA-CGAN is evaluated on multiple datasets on multiple

modalities, one with brain tumours, BraTS and another with images of patients

with ischaemic lesions, ISLES. The experiments demonstrate that the proposed

framework produces an improvement in reconstruction error and reduced variance

for the pairwise translation of multiple modalities and is more robust to thermal

noise when compared to existing methods.

6.1.3 Interpretable modelling for Neuropsychological Tasks

Chapter 5 introduces problems computational psychiatry and proposes a model that

overcomes some of these issues. The aims of this study are to extract insights about

the behavioural patterns of each group of subjects and individuals to ultimately

predict class label of each subject in an interpretable way. Previous models to achieve

these aims either suffer from not being flexible enough to represent a wide range of

behaviours resulting in poor classification accuracy, or not being interpretable to

extract desired insights.

To address this, here we use the power of recurrent neural networks in producing

flexible data representations with the advantages of prototype learning methods

for making the representations interpretable. Within an end-to-end classification

framework, the method learns a prototype subsequence that is characteristic for each

group of subjects and also learns to extract short subsequences from the behaviour

of each individual which explain how the classification of the individual was made.

Due to the discrete nature of subsequences, we use policy gradient to train the

models.

Through experiments on synthetic and real world datasets, we show that in terms
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of classification accuracy the model is comparable to or better than baseline models,

while is interpretable and able to extract signature behavioural differences across

groups and individuals. The method therefore provides a novel way for interpretable

classification of behaviour, which may find applications in different areas such as

computational psychiatry.

6.2 Future Research

6.2.1 Development of more efficient models for 3D volumet-

ric data

The major limitation of the method described in this thesis is the restriction to 2D

images. Although this loses contextual information provided by the third dimension,

this is considered as a form of data augmentation and has proved very successful

in tasks such as brain segmentation [184]. The extension to brain volumes could

include similar techniques proposed by Wu et al. [185] where convolutions are per-

formed using 3D kernels instead of 2D. MRI volumes can require more memory than

can fit on readily available hardware, particularly to train deep networks, and so

require more advanced cache management for back propagation. However recent

advancements in software such as TensorLy-Torch1 can be incorporated for future

studies.

6.2.2 Including confounds for improved translation

One advantage of conventional regression methods to correct confounds is that they

allow for the inclusion of subject-specific covariates such as age and sex. The pro-

posed GAN on the other hand, does not control for covariates and only learns a

mapping between scanners while maintaining subject variation. Instead, these co-

1http://tensorly.org/torch/dev/
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variates must be included as a pre- or post- processing step using standard regression

techniques.
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