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Abstract
This paper extends the analysis of a much studied singularly perturbed three-
component reaction–diffusion system for front dynamics in the regime where the
essential spectrum is close to the origin. We confirm a conjecture from a preceding
paper by proving that the triple multiplicity of the zero eigenvalue gives a Jordan chain
of length three. Moreover, we simplify the center manifold reduction and computa-
tion of the normal form coefficients by using the Evans function for the eigenvalues.
Finally, we prove the unfolding of a Bogdanov–Takens bifurcation with symmetry
in the model. This leads to the appearance of stable periodic front motion, including
stable traveling breathers, and these results are illustrated by numerical computations.
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1 Introduction

Localized structures, such as fronts, pulses, stripes and spots, are close to spatially
homogeneous states except for relatively small regions in space. Here, a transition
between different homogeneous states, or a local excursion, occurs. Such localized
structures often form the backbone of more complex patterns in reaction–diffusion
equations (e.g., Hagberg andMeron 1994; Nishiura and Ueyama 2001; Pearson 1993)
so that understanding localized structures is a crucial step toward understanding com-
plex patterns. While significant progress has been made over the past few decades to
understand localized structures, see, e.g., Bellsky et al. (2014), Doelman and Kaper
(2003), Doelman et al. (2007), Ei et al. (2002), Kolokolnikov et al. (2006), Promis-
low (2002), Rademacher (2013), Sandstede (2002), Sun et al. (2005), and references
therein, many open questions remain.

One of these concerns the influence of the essential spectrum on bifurcations as
it approaches the imaginary axis. This question is the main motivation of the current
paper, which continues the investigation of Chirilus-Bruckner et al. (2015) on front
bifurcations for nearly critical essential spectrum. Here, the localized structures are
fronts, which are singular perturbations of sharp interfaces of the Allen–Cahn equa-
tion coupled to linear large-scale fields, and we view this as a caricature model for
multiscale effects on interfacial dynamics and energy transfer. There is a large body of
literature on related models and also planar fronts with a more physical perspective,
e.g., Meron et al. (2001), Meron (2015), and the references therein.

We take a mathematical viewpoint and consider the three-component singularly
perturbed reaction–diffusion system

⎧
⎪⎨

⎪⎩

∂tU = ε2∂2xU + U −U 3 − ε(αV + βW + γ ),
τ̂
ε2

∂t V = ∂2x V + U − V ,

θ̂
ε2

∂tW = D2∂2x W + U − W ,

(1)

with x ∈ R, t ≥ 0,U = U (x, t), V = V (x, t),W = W (x, t) ∈ R, and param-
eters α, β, γ ∈ R, τ̂ , θ̂ > 0, D > 1,1 as well as the singular perturbation scale
0 < ε � 1 such that all parameters, including τ̂ , θ̂ , are O(1) with respect to ε. A
dimensional version of this system was introduced in the mid-nineties to study gas-
discharge systems on a phenomenological level (e.g., Or-Guil et al. 1998; Purwins and
Stollenwerk 2014; Schenk et al. 1997). Afterward, versions of (1) have been studied
extensively by mathematicians since it supports localized solutions that undergo com-
plex dynamics while the model is still amendable for rigorous analysis (e.g., Chen and
Choi 2012; Chirilus-Bruckner et al. 2015; Doelman et al. 2009; Nishiura et al. 2003,
2007; van Heijster et al. 2018, 2019, 2008, 2010, 2011; van Heijster and Sandstede
2011, 2014; Vanag and Epstein 2007). In the predecessor paper (Chirilus-Bruckner
et al. 2015), it was shown that system (1) supports uniformly traveling front solutions

1 The condition D > 1 implies that the W -component has the largest diffusion coefficient and its profile
thus changes the slowest (as function of the spatial variable x), see for instance Fig. 1. This condition
stems from the original gas-discharge system and is not a mathematically necessary requirement, though
convenient. For D < 1 the W -component and the V -component simply interchange roles.
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Fig. 1 a Sample profile of a numerically computed stationary front solution near a Hopf bifurcation with
the profiles of u (black) v (blue) and w (red); parameter values are those of Fig. 4 with g2 ≈ −0.003. b
Spectrum of this front with gap between the leading three eigenvalues as theoretically predicted

(U , V ,W )(x, t) = (utf , vtf , wtf )(x − ε2ct) that transition from the background state
near (−1,−1,−1) to the background state near (1, 1, 1) if the system parameters and
the velocity c satisfy the existence condition

Γε(c) = α
cτ̂√

c2τ̂ 2 + 4
+ β

cθ̂

D
√

c2 θ̂2

D2 + 4
+ γ −

√
2

3
c + h.o.t . = 0; (2)

here and below ‘h.o.t’ abbreviates ‘higher-order terms,’ see Chirilus-Bruckner et al.
(2015).

This condition trivially yields γ as a function of the remaining parameters and c,
but for the partial differential equation (PDE) dynamics it is decisive to view Γ as
a function of the auxiliary velocity parameter c. For γ = 0, the existence condition
is an odd function of c, and for γ �= 0, parameters can always be adjusted to find a
traveling front solution with c �= 0. Having inmind the symmetry breaking nature of γ
in (1), we will focus on γ = 0 for the analysis of this paper. From the viewpoint of the
Allen–Cahn energy, γ �= 0 is a nontrivial external energy flux so that traveling fronts
with nonzero velocity for γ = 0 are somewhat surprising, cf., e.g., Ikeda et al. (1989)
and Nishiura et al. (1990). Typically, the energy flux γ �= 0 is transferred to interface
motions, which, as we shall prove, can also be oscillatory due to the coupled fields. It
is well known that the stationary front solutions can undergo stationary bifurcations,
and the full analysis of the bifurcation structure in Chirilus-Bruckner et al. (2015)
yields a (partially unfolded) butterfly catastrophe.

Using geometric singular perturbation theory, the stationary front solutions to (1)
can be specified to leading order in the perturbation parameter ε as

⎡

⎣
U (x, t)
V (x, t)
W (x, t)

⎤

⎦ =
⎡

⎣
uh(x)
vh(x)
wh(x)

⎤

⎦ =
⎡

⎣
uh0(x)
vh0(x)
wh
0(x)

⎤

⎦ + h.o.t ., (3)
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with

⎡

⎣
uh0(x)
vh0(x)
wh
0(x)

⎤

⎦ =
⎡

⎢
⎣

tanh
[

x√
2ε

]

0
0

⎤

⎥
⎦χ f (x) +

∑

σ∈{+,−}
σ

⎡

⎣
1

1 − e−σ x

1 − e−σ x/D

⎤

⎦χsσ (x)

and where the slow/large-scale and fast/small-scale behavior has been captured
through

χs− = χ(−∞,−√
ε), χ f = χ[−√

ε,+√
ε], χs+ = χ(+√

ε,+∞).

It has been shown in Chirilus-Bruckner et al. (2015) that the operator arising from
the linearization of (1) around a stationary front has the following spectral properties,
also illustrated in Fig. 1b: First, its essential spectrum is located in a sector of the left
half plane and bounded away from the imaginary axis by max{−2,−ε2/τ̂ ,−ε2/θ̂}.
Second, the only point spectrum that could lead to instabilities is small eigenvalues
λ = ε2λ̂. As usual for translation symmetric PDE, one such eigenvalue is λ = 0
with eigenfunction being the spatial derivative of the stationary front. Third, the alge-
braic multiplicity of λ = 0 can only be one, two or three, see also the upcoming
Proposition 1.2

In Chirilus-Bruckner et al. (2015), the nonlinear stability analysis and bifurcations
of stationary fronts have been treated for the special case of unfolding around a double
zero eigenvalue. The more challenging case of unfolding the triple zero was left as
an open problem, and is the topic of the present paper. We will use center manifold
analysis in the vicinity of a triple zero eigenvalue to derive the dynamics of pseudo-
front solutions with non-uniform speed c = c(t).

We informally summarize the main results of this paper.

– Linear structureWeprovide an expansion for the existence problem of generalized
eigenfunctions in the singular perturbation parameter and infer that, at criticality,
the generalized kernel has a maximal Jordan chain.

– Reduced vector field We provide an explicit expansion of the reduced vector field
on the center manifold. This entails the identification of the maximal degeneracies
as a symmetric Bogdanov–Takens point with either a butterfly imprint, or a mixed
cubic term degeneracy.

– UnfoldingWe prove the parameters unfold the symmetric Bogdanov–Takens case
without further degeneracy, and analyze this case in detail. Direct numerical sim-
ulations of the PDE and numerical continuation corroborate and illustrate these
results.

– Symmetry breaking The unfolding proves the existence of stable standing
‘breather’ solutions based on single fronts, cf. Fig. 2c. By symmetry breaking,
we additionally infer the existence of stable ‘traveling breathers’ with nonzero
average speed, also based on single fronts. See Fig. 2f. Being a mix of drift and

2 Two of these eigenvalues have emerged from the essential spectrum upon increasing τ̂ and/or θ̂ from
O(ε2) toO(1), see van Heijster et al. (2008).
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Fig. 2 Plots of velocities (a, d) and two views of positions of pseudo-fronts obtained from numerical
simulations of (1) for parameters located by using the center manifold analysis. The solutions correspond
to heteroclinic orbits from an equilibrium to a periodic orbit in the center manifold, see Sect. 3.3 for details.
a–c: a perturbation of an unstable stationary front leads to a periodic front motion in both velocity and
position, see Fig. 5. d–f : non-periodic positions, i.e., a ‘traveling breather,’ occurs due to γ �= 0, see Fig. 7.
f shows a subset from e and reflected for better view

oscillation, the latter are particularly interesting, also from the viewpoint of energy
transfer.

We emphasize that the solutions of the ordinary differential equation (ODE) on the
center manifold, as sketched in the upcoming Fig. 3, possess specific spatio-temporal
forms for the PDE dynamics, cf. Fig. 2. These are organized around the standing front,
which is the basic equilibrium state of this ODE. The Bogdanov–Takens unfolding
entails Hopf bifurcations to periodic solutions, which – in the ODE phase plane –
encircle the stationary front solution and thus create breather-like dynamics in the
PDE by essentially moving the front back and forth periodically, cf. Fig. 3(2). This
is more pronounced in the continuation of these periodic orbits beyond a pitchfork
bifurcation of the standing front, where these encircle the standing front and a pair of
equilibria that correspond to traveling fronts in opposite directions, cf. Fig. 3(3) and
the PDE simulations in Fig. 2a–c. As a signature of the Bogdanov–Takens point, also
homoclinic solutions and some heteroclinic connections emerge that can be interpreted
similarly.

The term breather usually refers to periodically moving pulses rather than our case
of a single front. They predominantly come as sharp spikes or broader plateaus built
from opposing fronts. A rigorous treatment for the former can be found in the recent
paper by Veerman (2015). The latter case relates to our situation, and early numerical
as well as analytical studies on bounded domains can be found in Hagberg and Meron
(1994) and Nishiura and Mimura (1989), where also the crossing of complex conju-
gate eigenvalues through the imaginary axis has been shown. Analogous results for
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Fig. 3 Bifurcation diagram, and sketches of the associated phase planes, of a symmetric Bogdanov–Takens
point in the case g3, g4 < 0. The periodic orbits plotted in red are stable, those in blue unstable. See also
Figures 2 and 4 from Carr (1981)

unbounded domains were obtained in Ikeda and Ikeda (2000) and Ikeda et al. (2000).
Breathers made of opposing fronts in our model were numerically found in Doelman
et al. (2009), and a single breathing front was found in Chirilus-Bruckner et al. (2015).
In the latter also the crossing of eigenvalues through the imaginary axis was proven.
However, we are not aware of a rigorous treatment of the nonlinear unfolding of a
Hopf bifurcation or the existence of standing or moving breathers of front-type in any
of these cases.
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In this paper, the aforementioned results for the symmetric Bogdanov–Takens case
are based on showing that the front positions a(t) satisfy an ODE of the form

d3

dt3
a = ε6G(ȧ, ä, μ),

where μ combines system parameters used for unfolding the bifurcations—we even-
tually use μ = (α, β) for convenience. The invariant subsystem for the velocities c,
with ε2c = ȧ, on the slow time scale ′ = ε−2d/dt has the normal form

c′′ = g1(μ)c + g30c
3 + c′ (g2(μ) + g40c

2
)

and we provide explicit formulas for g30, g40, so as to ensure the non-degeneracy
g30g40 �= 0 and the relevant expansion of g1, g2 with respect to μ.

We close the introduction with some comments on the methods and techniques
used in this paper. While the use of center manifold reduction is by now standard for
instabilities caused by point spectrum, the main novelties of the article are as follows.

First, although the algebraic multiplicity three of the zero eigenvalue can easily
be read off from the Evans function, see Proposition 1, the corresponding eigenspace
needs more analysis. Formal computations, as demonstrated in Appendix A, sug-
gest a Jordan block of length three arises and, hence, that there are two generalized
eigenfunctions. We confirm this by an abstract rigorous argument for the existence
of generalized eigenfunctions, which deals also with the asymptotic criticality of the
essential spectrum as ε → 0. Generally, there are two differentmethods for solving the
singularly perturbed linearized eigenvalue problem: an analytical approach, the Singu-
lar Limit Eigenvalue Problem (SLEP) method (cf., Nishiura and Fujii 1987; Nishiura
et al. 1990), and a geometrical approach, the Nonlocal Eigenvalue Problem (NLEP)
method (cf. Doelman et al. 2001). Although both methods are based on the linearized
stability principle, the former solves the linearized eigenvalue problem directly and
derives a well-defined singular limit equation, the SLEP-equation, as ε → 0. The
latter method defines the Evans function (cf. Alexander et al. 1990) for the linearized
equations and proceeds with a geometric or topological analysis. The SLEP-method
gives very detailed information on the behavior of the critical eigenvalues for small ε,
whereas the NLEP-method can be applied to wider class of equations. Here, we use
the SLEP-method to find generalized eigenfunctions corresponding to the triple zero
eigenvalue. This is slightly different from a usual eigenvalue problem because the zero
eigenvalue has been determined previously, but it is the same in spirit: We find the
relation between the system parameters included in the original eigenvalue problem
and an eigenfunction, and this relation corresponds to an eigenvalue. This is also the
crux to finding generalized eigenfunctions, and these relations play, in essence, the
role of solvability conditions. In fact, we expect our results can be further generalized
to extensions of (1) that lead to Jordan chains of arbitrary length, see Sect. 4.

Second, andmore relevant for analyzing the concretePDEdynamics,we circumvent
the straightforward, but tedious computation of normal form coefficients of the usual
centermanifold reductionprocedure byusing the informationon existence and stability
of uniformly traveling fronts. We believe this strategy is of interest beyond our setting.
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This paper is organized as follows. In Sect. 2, we discuss the results from Chirilus-
Bruckner et al. (2015) and show that the operator arising from linearization around a
stationary front of (1) possesses a Jordan chain of length three and we compute, to
leading order, the second generalized eigenfunction. In Sect. 3, we use center manifold
analysis in the vicinity of a triple zero eigenvalue to derive, and subsequently study,
the dynamics of pseudo-front solutions with non-uniform speed c = c(t). We end
with a discussion of potential directions for future work.

2 Stability and Eigenfunctions of Stationary Front Solutions

In order to state results on the stability of stationary fronts, it is convenient to write
our system (1) in the more concise form

M(τ̂ , θ̂ )∂t Z = F(Z;α, β, D),

where M, F are, with explicit ε-dependence, given by

M(τ̂ , θ̂; ε) =
⎛

⎜
⎝

1 0 0
0 τ̂

ε2
0

0 0 θ̂
ε2

⎞

⎟
⎠ , and

F(Z;α, β, D; ε) =
⎛

⎝
ε2∂2x Z

u + Zu − (Zu)3 − ε(αZv + βZw)

∂2x Z
v − Zv + Zu

D2∂2x Z
w − Zw + Zu

⎞

⎠ .

(4)

Linearization around the stationary front Z sf = (uh, vh, wh) from (3) gives rise to the
eigenvalue problem

λM(τ̂ , θ̂ )Φ = ∂Z F(Z sf ;α, β, D)Φ,

so, in the following, we will be interested in the spectrum of the operator

L := M(τ̂ , θ̂ )−1∂Z F(Z sf ;α, β, D). (5)

Various results on the critical eigenvalues and the corresponding eigenfunctions
were obtained in Lemmas 5–8 and Corollary 3 from Chirilus-Bruckner et al. (2015),
which we reformulate next. As we will see, unfolding the bifurcations can be realized
with α, β, D, which is based on certain normal form coefficients introduced later. It
is, however, instructive to first consider the quantities

κ0
1 := ατ̂ + β

θ̂

D
− 2

√
2

3
, κ0

2 := ατ̂ 2 + β

D
θ̂2, κ0

3 := ατ̂ 3 + β
θ̂3

D3 , (6)

which already appeared (Chirilus-Bruckner et al. 2015) and where the upper index 0
refers to ε = 0, the limit that forms the backbone of all our computations. Statements
in terms of κ0

j , j = 1, 2, 3 thus implicitly refer to the parameters α, β, D, τ̂ , θ̂ .
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Proposition 1 (Stability of stationary front solutions, Chirilus-Bruckner et al. 2015)
Let ε > 0 be chosen sufficiently small. The critical spectrum of L from (5) on L2(R)

with domain H2(R), or C0
unif(R)with domain C2

unif(R), consists of at most three small
eigenvalues λ = ε2λ̂ + o(ε2) given by the roots of the Evans function

D(λ̂) := −
√
2

3
λ̂ + α

(

1 − 1
√

τ̂ λ̂ + 1

)

+ β

D

(

1 − 1
√

θ̂ λ̂ + 1

)

= 0.

Furthermore, there are κε
j = κ0

j + O(ε), j = 1, 2, as in (6) and depending on the

parameters α, β, D, τ̂ , θ̂ , such that the following holds. For 0 < ε � 1, the zero
eigenvalue has multiplicity two if and only if

{
κε
1 (α, β, D, τ̂ , θ̂ ) = 0,

κε
2 (α, β, D, τ̂ , θ̂ ) �= 0,

(7)

while it has multiplicity three if and only if

{
κε
1 (α, β, D, τ̂ , θ̂ ) = 0,

κε
2 (α, β, D, τ̂ , θ̂ ) = 0.

(8)

Hence, only small eigenvalues λ = ε2λ̂ can lead to instabilities, so the relevant eigen-
value problem is scaled as

ε2λ̂Φ̃ = LΦ̃, (9)

with L given by (5). As alluded to, without directly solving the eigenvalue problem,
it is a priori clear that λ = 0 is an eigenvalue with eigenfunction given by ∂x Z sf .
Furthermore, by varying parameters one can increase the algebraic multiplicity for
the zero eigenvalue to two. In this case, we will have a corresponding Jordan block of
length two since the generalized eigenfunctionΨ can be readily found from the smooth
family of traveling front solutions Z tf parameterized by the speed c: The existence
problem −ε2cŻ tf = M−1F(Z tf) (where differentiation is meant with respect to the
traveling wave coordinate (x − ε2c)) implies upon differentiation and evaluation at
c = 0 that we have

−ε2Φ = M−1∂Z F(Z sf)∂c Z
tf |c=0 + b = LΨ ,

since b = d
dc M

−1F(Z sf)|c=0 = 0 at the double root, which coincides with the
bifurcation point of steady states. The smoothness in ε at ε = 0 follows from the
smoothness of ε2Φ, so that the leading order formof the first generalized eigenfunction
can also be found by performing a formal asymptotic expansion and matching, see
Appendix A and, in particular, Lemma 6.

By further adjustment of the parameters, the algebraicmultiplicity of the zero eigen-
value can be increased to three. Formal expansions (again as performed inAppendixA)
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suggest the existence of a second generalized eigenfunction, since the corresponding
solvability condition coincides with the triple zero eigenvalue condition. We give
a rigorous proof of the occurrence of a Jordan block of length three similar to the
SLEP-method, i.e., the ‘Singular Limit Eigenvalue Problem’ as developed and used
in Nishiura and Fujii (1987) and Nishiura et al. (1990). It is quite possible that the
existence of the second generalized eigenfunction can also be derived from the Evans
function construction used to determine the algebraic multiplicity, though we do not
pursue this here.

Proposition 2 (Jordan block structure for the zero eigenvalue) Let ε > 0 be chosen
sufficiently small and α, β, D, τ̂ , θ̂ fulfill (8) such that the zero eigenvalue of the
operator

L := M(τ̂ , θ̂ )−1∂Z F(Z sf ;α, β, D)

is algebraically triple. Then, L possesses a Jordan chain of length 3. Specifically, let
L∗ be the L2-adjoint operator of L with respect to the duality product

〈Z , Z̃〉 = 〈Zu, Z̃ u〉L2 + 〈Zv, Z̃v〉L2 + 〈Zw, Z̃w〉L2 .

Then, there are even functions Φ,Ψ , Ψ̃ , Φ∗, Ψ ∗, Ψ̃ ∗ with

LΦ = 0, LΨ = ε2Φ, LΨ̃ = ε2Ψ ,

L∗Φ∗ = 0, L∗Ψ ∗ = ε2Φ∗, L∗Ψ̃ ∗ = ε2Ψ ∗.

In particular,

〈Φ,Φ∗〉 = 〈Φ,Ψ ∗〉 = 〈Φ∗, Ψ 〉 = 0,

and for any fixed p1, p2, p3 �= 0 the (generalized) eigenfunctions Φ,Ψ , Ψ̃ , Φ∗,
Ψ ∗, Ψ̃ ∗ are uniquely determined by

p1 := 〈Φ, Ψ̃ ∗〉, p2 := 〈Ψ , Ψ̃ ∗〉, p3 := 〈Ψ̃ , Ψ̃ ∗〉. (10)

Moreover, the parameters and (generalized) eigenfunctions lie in a continuous family
with respect to 0 ≤ ε � 1.

Note that the Jordan chain relations imply p1 = 〈Ψ , Ψ ∗〉 = 〈Ψ̃ , Φ∗〉 and p2 =
〈Ψ̃ , Ψ ∗〉.

The following subsection forms the proof in several steps, which in fact reproves
Proposition 1 with the SLEP-approach except for a non-degeneracy condition.

2.1 Existence of a Second Generalized Eigenfunction (Proof of Proposition 2)

Recall that the existence of an eigenfunction and a first generalized eigenfunction is
already settled for κε

1 = 0, so there exist Φ,Ψ with LΦ = 0,LΨ = ε2Φ (with
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leading order expressions given in Appendix A; see also Remark 1). Hence, all we
need to demonstrate is the existence of a second generalized eigenfunction Ψ̃ with

LΨ̃ = ε2Ψ . (11)

Remark that p1, p2, p3 �= 0 in (10) are the normalization constants of the generalized
eigenfunctions, which we keep unspecified for now.

Upon introducing the notation

Ψ̃v,w =
(

Ψ̃v

Ψ̃w

)

, Ψv,w =
(

τ̂Ψv

θ̂Ψw

)

,

Equation (11) can be cast in terms of a block matrix operator as

(
Lε εA
B S

)(
Ψ̃u

Ψ̃v,w

)

=
(

ε2Ψu

Ψv,w

)

, (12)

with the differential and multiplication operators

Lε := ε2∂2x + 1 − 3uh(x)2, S := diag(∂2x − 1, D2∂2x − 1),

A := (−α −β
)
, B :=

(
1
1

)

.

We have Lε : H2 ⊂ L2 −→ L2, S : H2 × H2 ⊂ L2 × L2 −→ L2 × L2, and
A : L2 × L2 −→ L2, B : L2 −→ L2 × L2, where we suppressed the spatial domain
R in each case.

Lemma 1 (Spectrum of the operator Lε) The operator Lε : H2 ⊂ L2 −→ L2 is
self-adjoint with maximal eigenvalue

με = ε2μ̃ε = O(ε2),where lim
ε→0

μ̃ε = μ̃0 = 3
√
2

2

(

α + β

D

)

,

and with corresponding eigenfunction φ = φε = ε−1φ0(x/ε) + O(ε), φ0 =
(
√
2/2)sech2(·/√2).

Proof See Appendix B. ��
Consequently, we have the orthogonal splitting L2 = span(φ) ⊕ X , X = range(Lε)

so that L−1
ε : X → X is bounded. The splitting is associated with the projections P =

〈·, φ〉φ, i.e., ker(P) = X , range(P) = span(φ) and the complementary projection
Q = Id − P . Hence, the ‘partial’ resolvent

Tε := L−1
ε Q : L2 → L2 (13)

is bounded for each ε > 0. Furthermore, we have that S−1 : L2 × L2 → L2 × L2 is
bounded and independent of ε.
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Let us now represent Ψ̃u ∈ L2 according to the splitting induced by Lε, that is,

Ψ̃u = dφ + Q[Ψ̃u]. (14)

Hence, the construction of Ψ̃u amounts to finding d and Q[Ψ̃u]. Then, (12) becomes

LεΨ̃u + εAΨ̃v,w = ε2Ψu �⇒ dμεφ + LεQ[Ψ̃u] + εAΨ̃v,w = ε2Ψu, (15)

and

BΨ̃u + SΨ̃v,w = Ψv,w �⇒ dBφ + BQ[Ψ̃u] + SΨ̃v,w = Ψv,w. (16)

Upon letting P and Q act on (15), we get

dμε‖φ‖2 = 〈ε2Ψu − εAΨ̃v,w, φ〉, and (17)

LεQ[Ψ̃u] = Q[ε2Ψu − εAΨ̃v,w]. (18)

Using the definition of Tε from (13), Eq. (18) can be rearranged to

Q[Ψ̃u] = Tε[ε2Ψu − εAΨ̃v,w]. (19)

Inserting back into (16) gives

dBφ + BTε[ε2Ψu − εAΨ̃v,w] + SΨ̃v,w = Ψv,w.

After rearranging, this can be written as the equation for Ψ̃v,w

NεΨ̃v,w := (S − εBTεA)Ψ̃v,w = Ψv,w − ε2BTεΨu − dBφ.

Since ε is small, Nε is invertible, see Lemma 2 below, and we get

Ψ̃v,w = N−1
ε [Ψv,w − ε2BTεΨu − dBφ]. (20)

Finally, we insert this expression into (17) to get, as solvability condition for the
existence problem (11) of the second generalized eigenfunction Ψ̃ , the equation

0 =
〈

ε2Ψu − εAN−1
ε

[(
τ̂Ψv

θ̂Ψw

)

− ε2BTεΨu − dBφ

]

, φ

〉

− ε2dμ̃ε‖φ‖2

=
〈

ε2Ψu − εAN−1
ε

[(
τ̂Ψv

θ̂Ψw

)

− ε2BTεΨu

]

, φ

〉

+ dE, (21)

with E = 〈εAN−1
ε Bφ, φ〉− ε2μ̃ε‖φ‖2. If E �= 0, one could always—for any param-

eter settings—satisfy this solvability condition by choosing d accordingly and thus
obtain a second generalized eigenfunction. However, from the Evans function we
know that a multiple zero eigenvalue requires adjustment of parameters according to
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(8). Hence, it follows that E = 0 so that d remains unspecified, which is natural since
(11) does not determine Ψ̃ uniquely; any multiple of Φ can be added to create another
solution.

Upon dividing (21) by ε, we thus obtain the so-called SLEP-equation

0 =
〈

εΨu − AN−1
ε

[(
τ̂Ψv

θ̂Ψw

)

− ε2BTεΨu

]

, φ

〉

. (22)

The existence of Ψ̃ is now equivalent to solving (22), and Ψ̃ is then given by (14),
(19) and (20) for an arbitrary scalar d. In order to characterize the solvability of (22),
we conclude as follows. We first compute the leading order in ε and continuity as
ε → 0, which verifies that it coincides with the triple zero condition (8), and then use
the implicit function theorem.

Lemma 2 It holds true for ε → 0 that Tε : L2 → L2 is uniformly bounded, with

(

Tε + 1

2

)

→ 0,

from X ∩ H2 to L2 and

N−1
ε → S−1 : L2 × L2 → H2 × H2.

Proof First note that Tε = L−1
ε Q is bounded on L2 uniformly in ε since rescaling via

y = x/ε, which does not change the operator norm (‖u(·)‖2 = √
ε‖u(ε·)‖2), gives

Lε as ∂yy + aε(εy) with aε(x) = 1 − 3uh(x)2 so a0(x) → −2 as x → ±∞ (uh

being the u-component of the stationary front). Hence, the rescaled Tε is bounded
uniformly in ε. This implies the same for N−1

ε so that N−1
ε → N−1

0 as an operator
on L2. Formally, Tε → T0 = a−1

0 ≡ − 1
2 , which is however incorrect in the sense of

operator converge on L2 and this makes the proof a bit involved. Due to the uniform
boundedness of Tε on L2, we have Tε −a−1

0 : L2 → L2 uniformly bounded in ε > 0,
so that convergence of (Tε −a−1

ε )v with v ∈ L2 follows from consideration of a dense
subset such as v ∈ H2. We compute, using T−1

ε = Lε on X = range(Tε) and that
a−1
0 commutes,

Tε − a−1
0 = a−1

0 a0Tε − a−1
0 TεT

−1
ε

= a−1
0 Tε(a0 − (ε2∂xx + aε))

= a−1
0 Tε(a0 − aε) − ε2a−1

0 Tε∂xx .

Since aε → a0 in L2 it follows that (Tε − a−1
0 ) → 0 from X ∩ H2 to L2 as required.

Furthermore, we have Nε → N0 = S : H2 × H2 → L2 × L2 and for the
resolvent we even have N−1

ε → S−1 : L2 × L2 → H2 × H2 since N−1
ε − S−1 =

εS−1BTεAN−1
ε and S−1BTεAN−1

ε : L2 × L2 → L2 × L2 is uniformly bounded, so
the claim follows from S−1 : L2 × L2 → H2 × H2 being bounded and constant in ε.

��
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Equipped with this, we can compute the leading order of (22) based on the follow-
ing observations: Since limε→0 N−1

ε = S−1 and φε forms a Dirac sequence with
limiting mass

∫

R
φ0 = 2, we have 〈 f , φε〉 → 2 f (0) for, e.g., bounded, integrable

and uniformly continuous f . Regarding S−1, we use (D2∂xx − 1)−1 f = GD2 ∗ f
with Green’s function GD2(y) = − 1

2D , exp(−|y|/D) for localized solutions. This
immediately gives

lim
ε→0

〈AN−1
ε f , φ〉 = 2(AS−1[ f ])(0)

= −2α(G1 ∗ f1)(0) − 2β(GD2 ∗ f2)(0).
(23)

As to the leading order terms in (22), using the leading order computation of Ψ from
Lemma 6 of Appendix A, we see that Ψu is bounded so that

lim
ε→0

〈εΨu, φ〉 = 0,

and also

lim
ε→0

〈ε2AN−1
ε [BTεΨu] , φ〉 = 0.

Hence, for the leading order analysis of the SLEP-equation (22) there is just one
remaining term

〈

AN−1
ε

[(
τ̂Ψv

θ̂Ψw

)]

, φ

〉

.

Finally, taking the explicit form of the leading order approximation of the v,w-
components of Ψ , see Lemma 6 of Appendix A, for f1, f2 in (23)3 gives

lim
ε→0

〈

AN−1
ε

[(
τ̂Ψv

θ̂Ψw

)]

, φ

〉

= −3

4

(

ατ̂ 2 + β

D
θ̂2

)

. (24)

In order to finish the proof of Proposition 2, we show that (22) can be solved
by an implicit function theorem: We seek an ε-dependent family of parameters for
0 ≤ ε � 1 such that (22) holds, which—in view of (24)—at ε = 0 reduces to κ0

2 = 0,
and this can readily be solved by adjusting parameters. For simplicity, we consider
deviations from K = κ0

2 , i.e., K (ε) = κ0
2 + μ(ε), with μ(0) = 0 so K (0) = κ0

2 . Let
h(μ, ε) denote the right-hand side of (22), i.e., we want to solve h(μ, ε) = 0 for each
0 ≤ ε � 1 in terms ofμ. Notably, h is continuously differentiable inμ for 0 ≤ ε � 1
and continuous in ε in this interval (this is pointwise for the operators) so there is
continuous h̃ such that

h(μ, ε) = h(0, ε) + hμ(0, ε)μ + h̃(μ, ε)μ2 = 0.

3 This amounts to solving the exact same inhomogeneous ODEs as in (51) of Appendix A, whose solutions
evaluated at x = 0 yield exactly (52).

123



Journal of Nonlinear Science (2019) 29:2911–2953 2925

From K = ατ̂ 2 + βθ̂2/D, we have

∂K = τ̂ 2∂α +
(
θ̂2/D

)
∂β

so that

hμ(0, 0) = lim
ε→0

hμ(0, ε) = ∂K |K=κ02
lim
ε→0

〈

AN−1
ε

[(
τ̂Ψv

θ̂Ψw

)]

, φ

〉

= τ̂ 2
(

−3

4
τ̂ 2

)

+ (θ̂2/D)

(

−3

4
θ̂2/D

)

,

which is nonzero (strictly negative) since τ̂ , θ̂ > 0.
By continuity, hμ(0, ε) �= 0 for 0 ≤ ε � 1 so that h(μ, ε) = 0 is equivalent to

μ = −hμ(0, ε)−1(h(0, ε) + h̃(μ, ε)μ2).

This can be solved by Banach’s fixed point theorem with continuous parameter since
the contraction constant can be chosen uniform in 0 ≤ ε � 1, which yields the desired
solution family μ = μ(ε) satisfying h(μ(ε), ε) = 0. Therefore, by local uniqueness
of solutions, if α, β, τ̂ , θ̂ , D satisfy h(μ(ε), ε) = 0 for small enough ε = 0 we
can construct a generalized eigenfunction and also continue this, together with the
parameters, uniquely in terms of ε to ε = 0.

This completes the proof of Proposition 2.

Remark 1 The above proof works exactly the same for the existence problem of the
first generalized eigenfunction Ψ

LΨ = ε2Φ,

where LΦ = 0. The SLEP equation (22) then becomes

0 =
〈

ε2Φu − εAN−1
ε

[(
τ̂Φv

θ̂Φw

)

− ε2BTεΦu

]

, φ

〉

. (25)

Since by Lemma 5 of Appendix A we have that Φu = ε−1φ0(·/ε)+φ1 for a bounded
exponentially localized φ1, we have

lim
ε→0

〈εΦu, φ〉 = lim
ε→0

ε−1〈φ0(·/ε), φ0(·/ε)〉 = ‖φ0‖22 = 2
√
2

3
.
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Moreover, for f1 = τ̂Φv = τ̂ exp−|x |, f2 = θ̂Φw = θ̂ exp−|x |/D in (23) we compute

(G1 ∗ f1)(0) = − τ̂
2 and (GD2 ∗ f2)(0) = − θ̂

2D . Therefore, (25) becomes

0 = 2
√
2

3
− ατ̂ − βθ̂/D = κ0

1 ,

see (6), and which is precisely the leading order of (7) as expected.

3 Center Manifold Reduction Using the Triple Zero Eigenvalue as
Organizing Center

Let us again write our original system (1) in the more concise form

M(τ̂ , θ̂ )∂t Z = F(Z;α, β, D), (26)

with M(τ̂ , θ̂ ) and F(Z;α, β, D) as in (4). For the center manifold reduction, we make
an ansatz adjusted to the translation invariance of our problem,

Z(x, t) = Z sf(x − a(t)) + R̃(x − a(t), t), (27)

with Z sf = (uh, vh, wh) the stationary front (whose leading order was given in (3)),
so that a is the position of the pseudo-front solutions.

Theorem 1 Let ε > 0 be sufficiently small and let the system parameters be a per-
turbation of (8). Then, in a ‘tubular’ neighborhood of the spatial translates of Z sf in
(L2(R))3 system (26) possesses an exponentially attracting three-dimensional center
manifold, and the reduced vector field for the center manifold variables (a, c, c̃) can
be cast as follows. The position a satisfies ȧ = ε2c, which identifies ε2c as the velocity,
and it is governed by the planar ordinary differential equations (ODE)

(
ċ
˙̃c
)

= ε2
(
0 1
0 0

)(
c
c̃

)

+
(

0
ε2G(c, c̃)

)

=
(

ε2c̃
ε2G(c, c̃)

)

, (28)

where G is smooth in its arguments and the parameters, and possesses the symmetry
(c, c̃) → −(c, c̃). In particular, G(c, 0) = 0 if and only if TΓ (c) = 0 to any order,
where TΓ is the Taylor expansion of Γ with γ = 0 at c = 0.

In the following, we first prove this reduction and then analyze the reduced dynamics.

3.1 Center Manifold Reduction (Proof of Theorem 1)

Setting η = x −a(t) and substitution of (27) into (26) gives (suppressing parameters)

−ȧ(t)M
(
Φ(η) + ∂η R̃(η, t)

) + M∂t R̃(η, t) = F(Z sf(η) + R̃(η, t)),
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which can be written as

−ȧ(t)
(
Φ(η) + ∂η R̃(η, t)

) + ∂t R̃ = LR̃ + N (R̃),

with L,N as follows. By assumption, we have τ̂ = τ̂0 + τ̌ , θ̂ = θ̂0 + θ̌ (and likewise
for α, β, D), where subindex zero denotes the parameters values of a parameter set at
which (8) holds. Now,L := M(τ̂0, θ̂0)

−1∂Z F(Z sf), which, after some simplifications,
yields

N (R̃) =
⎛

⎜
⎝

0 0 0
0 − τ̌

τ̂0+τ̌
0

0 0 − θ̌

θ̂0+θ̌

⎞

⎟
⎠ M(τ̂0, θ̂0)

−1∂Z F(Z sf)R̃

−
⎛

⎝
3(Z sf)u(R̃u)2 + (R̃u)3

0
0

⎞

⎠ .

Using the Jordan block structure of L (as stated in Proposition 2), we refine the ansatz
to

R̃(x − a(t), t) = b(t)Ψ (x − a(t)) + b̃(t)Ψ̃ (x − a(t)) + R(x − a(t), t),

where R is L2-orthogonal to the adjoint generalized kernel spanned by Φ∗, Ψ ∗, Ψ̃ ∗.
Hence,

Z(x, t) = Z sf(x − a(t)) + b(t)Ψ (x − a(t)) + b̃(t)Ψ̃ (x − a(t)) + R(x − a(t), t),

and, suppressing the dependence of Ψ , Ψ̃ and R on η,

− ȧ(t)
(
Φ + b(t)Ψ ′ + b̃(t)Ψ̃ ′ + ∂ηR(t)

) + ḃ(t)Ψ + ˙̃b(t)Ψ̃ + ∂t R(t)

= ε2b(t)Φ + ε2b̃(t)Ψ + LR(t) + N (b(t)Ψ + b̃(t)Ψ̃ + R(t)). (29)

Recall that Z sf is odd, soΦ = (Z sf)′ is even, andΨ , Ψ̃ ,Φ∗, Ψ ∗, Ψ̃ ∗ are all also even,
such that their derivatives are odd, and, hence,

〈Ψ ′, Φ∗〉 = 〈Ψ̃ ′, Φ∗〉 = 〈Ψ ′, Ψ ∗〉 = 〈Ψ̃ ′, Ψ ∗〉 = 〈Ψ ′, Ψ̃ ∗〉 = 〈Ψ̃ ′, Ψ̃ ∗〉 = 0.

Executing the projections on (29) (and again suppressing parameter dependence) then
gives the equations on the generalized kernel as

⎛

⎝
d1
d2
d3

⎞

⎠ ȧ + A

⎛

⎝

ȧ
ḃ
˙̃b

⎞

⎠ =
⎛

⎝
0 p1 p2
0 0 p1
0 0 0

⎞

⎠

⎛

⎝
a

ε2b
ε2b̃

⎞

⎠ +
⎛

⎝
〈N [bΨ + b̃Ψ̃ + R], Ψ̃ ∗〉
〈N [bΨ + b̃Ψ̃ + R], Ψ ∗〉
〈N [bΨ + b̃Ψ̃ + R], Φ∗〉

⎞

⎠ ,
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with

A :=
⎛

⎝
p1 p2 p3
0 p1 p2
0 0 p1

⎞

⎠ , d1 := −〈∂ηR, Ψ̃ ∗〉, d2 := −〈∂ηR, Ψ ∗〉, d3 := −〈∂ηR, Φ∗〉,

and p1, p2, p3 as in (10) of Proposition 2. Note that d1, d2, d3 → 0 as R → 0 by
integration by parts; in particular |d1| < 1 in the range we consider due to the ansatz
(27) from the tubular vicinity of Z sf .

Multiplying the last equation by

A−1 =
⎛

⎝
1/p1 −p2/p21 (p22 − p1 p3)/p31
0 1/p1 −p2/p21
0 0 1/p1

⎞

⎠

gives the first form of the reduced system

ȧ

⎛

⎝
q1
q2
q3

⎞

⎠ +
⎛

⎝

ȧ
ḃ
˙̃b

⎞

⎠ =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠

⎛

⎝
a

ε2b
ε2b̃

⎞

⎠ +
⎛

⎝
N1[b, b̃, R]
N2[b, b̃, R]
N3[b, b̃, R]

⎞

⎠ , (30)

where

q1 := d1
p1

− d2 p2
p21

+ d3
p22 − p1 p3

p31
, q2 := d2

p1
− d3 p2

p21
, q3 := d3

p1
,

and
⎛

⎝
N1[b, b̃, R]
N2[b, b̃, R]
N3[b, b̃, R]

⎞

⎠ := A−1

⎛

⎝
〈N [bΨ + b̃Ψ̃ + R], Ψ̃ ∗〉
〈N [bΨ + b̃Ψ̃ + R], Ψ ∗〉
〈N [bΨ + b̃Ψ̃ + R], Φ∗〉

⎞

⎠ .

Observe now that the right-hand side of these equations does not depend explicitly on
a. In particular, using the rescaling (b, b̃) = (b/(q1 + 1), b̃/(q1 + 1)) and denoting

N j [b, b̃, R] := N j [(q1 + 1))b, (q1 + 1))̃b, R]
g(b, b̃, R) := ε2b + N 1[b, b̃, R]/(q1 + 1),

we can rewrite the system (30) as

ȧ = ε2b + N 1[b, b̃, R]/(q1 + 1),(
ḃ
˙̃b

)

=
(
0 1
0 0

)(
ε2b
ε2b̃

)

+
(
N 2[b, b̃, R] − q2g(b, b̃, R)

N 3[b, b̃, R] − q3g(b, b̃, R)

)

.

The spectral properties noted in Proposition 2, the semi-linear problem structure and
smoothness of the nonlinearity imply the existence of an exponentially attracting center
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manifold for 0 < ε � 1 (see, e.g., Haragus and Iooss 2011, Thm. 3.22). This means
R = H(b, b̃), with smooth function H independent of a since the right-hand side is
independent of a [cf. Krupa (1990), and Sandstede et al. (1997) for the present case
of a non-compact group; see also Haragus and Iooss 2011, Thm 3.19]. Hence, we get
the reduced system

⎧
⎪⎨

⎪⎩

ȧ = ε2b + ε2F1[b, b̃],
ḃ = ε2b̃ + ε2F2[b, b̃],˙̃b = ε2F3[b, b̃],

(31)

with F1[b, b̃] = ε−2N 1[b, b̃, H(b, b̃)]/(1+q1), F2[b, b̃] = ε−2(N 2[b, b̃, H(b, b̃)]−
q2g(b, b̃, H(b, b̃))), and F3[b, b̃] = ε−2(N 3[b, b̃, H(b, b̃)] − q3g(b, b̃, H(b, b̃))),
and where the seemingly singular scaling of Fj will be justified in the next section.We
will not explicitly compute Fj in terms of projections and the expansion of the center
manifold, but rather perform another transformation that connects the coordinates on
the center manifold with the velocity.

Lemma 3 There exists a near-identity change of variables (b, b̃) �→ (c, c̃) such that
(31) becomes

ȧ = ε2c,(
ċ
˙̃c
)

= ε2
(
0 1
0 0

)(
c
c̃

)

+
(

0
ε2G(c, c̃)

)

.

Proof We first make the near-identity change of variables c := b + F1[b, b̃], which
can be inverted locally to b = A1(c, b̃). So ȧ = ε2c, and taking a derivative gives

ċ = ε2b̃ + ε2F2[c, b̃]

with

F2[c, b̃] =F2[A1(c, b̃), b̃] + ∂1F1[A1(c, b̃), b̃](b̃ + F2[A1(c, b̃), b̃])
+ ∂2F1[A1(c, b̃), b̃]F3[A1(c, b̃), b̃].

Afurther near-identity change of variables by c̃ := b̃+F2[c, b̃] (again locally invertible
to b̃ = A2(c, c̃)) gives ċ = ε2c̃. Finally, taking a derivative as before we obtain

˙̃c = ε2G(c, c̃),

where G can be specified in terms of F2, F1, F2, F3 analogous to the previous step,
though we make no direct use of this. ��
The advantage of this reformulation is that equilibria in these coordinates,G(c, 0) = 0,
are traveling fronts with this c-value as its velocity to any expansion order. Regarding
symmetry, the reflection symmetries of (26) x → −x and Z → −Z imply that H
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can be chosen to respect this in the reduced coordinates, which gives the claimed
symmetry with respect to the reflection

(η, a, c, c̃) → −(η, a, c, c̃).

This completes the proof of Theorem 1.

3.2 Dynamics of the Reduced System on the Center Manifold

Since the planar ODE for the velocity c has the form (28), one can already anticipate
a Bogdanov–Takens-type bifurcation scenario. The type of unfolding is determined
by the degeneracies in the expansion of G(c, c̃) in (28). That is,

G(c, c̃)|ε=0 = g1c + g3c
3 + σ1c

5 + c̃(g2 + g4c
2 + σ2c

4) + O (̃c2) + h.o.t ., (32)

where g j are functions of the systemparameters.Wewill later select systemparameters
to unfold the bifurcation, and for now denote by μ an abstract selection of system
parameters, so that g j = g j (μ) and μ = 0 is the bifurcation point.

Definition 1 Concerning the possible degeneracies we say that we have a

– symmetric Bogdanov–Takens (SBT) iff g1|μ=0 = g2|μ=0 = 0 and g3g4|μ=0 �= 0,
see Fig. 3;

– symmetric Bogdanov–Takens with butterfly imprint (SBTB) iff g1|μ=0 = g2|μ=0 =
g3|μ=0 = 0 and g4|μ=0 �= 0; and

– symmetric Bogdanov–Takens with degeneracy (SBTD) iff g1|μ=0 = g2|μ=0 =
g4|μ=0 = 0 and g3|μ=0 �= 0.

A normal form for these cases, as well as the additional option of g1|μ=0 = g2|μ=0 =
g3|μ=0 = g4|μ=0, has been derived in Knobloch (1986). This normal form is, in the
slow time scale ′ = ε−2d/dt , given by

{
c′ = c̃

c̃′ = g
1
c + g

3
c3 + σ 1c

5 + c̃
(
g
2
+ g

4
c2 + σ 2c

4
)

,

where the underscores emphasize that, in general, an additional coordinate change
is required to reach this normal form. However, in the SBT case this is not needed
and we can also ignore σ 1 and σ 2. In contrast, in the SBTB case the additional
coordinate change depends on the coefficient ∂c∂2c̃ G(0, 0), seeKnobloch (1986). Since
our approach does not provide access to compute ∂c∂

2
c̃ G(0, 0), it does not allow to

rigorously unfold this case.
In this paper, we focus on the SBT case, so that two parameters μ = (μ1, μ2)

suffice, and follow the analysis in Carr (1981) to check the relevant terms in the right-
hand sideG in (28) directly, by explicitly computing some of its derivatives. As alluded
to, in these computations we exploit the analytic information on the (leading order)
existence condition and critical eigenvalues for uniformly traveling fronts, i.e., for the
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fixed points (28). Since all coefficients are continuous at ε = 0, it suffices to focus
on the leading order at ε = 0. For convenience, we first summarize the information
needed from the existence and stability analysis, see also Chirilus-Bruckner et al.
(2015).

The leading order in ε of the Evans function arising from the stability analysis of
uniformly traveling fronts has been determined in Chirilus-Bruckner et al. (2015) to
be

D(λ̂, c) = −
√
2

6
λ̂ + αD̃(λ̂, cτ̂ , τ̂ ) + β

D
D̃

(

λ̂, c
θ̂

D
, θ̂

)

= 0,

with

D̃(λ̂, ρ1, ρ2) =
⎛

⎝
1

√

ρ2
1 + 4

− 1
√

ρ2
1 + 4(λ̂ρ2 + 1)

⎞

⎠ .

Lemma 4 Let κ0
1 , κ0

2 , κ0
3 be as in (6). Then, the Taylor expansion in c = 0 of the

leading order existence condition from (2) for uniformly traveling fronts with velocity
ε2c for γ = 0 is given by

TΓ (c) = 1

2
κ0
1 c − 1

16
κ0
3 c

3 + kc5 + O(c7), (33)

where k = 3
256

(
ατ̂ 5 + β θ̂5

D5

)
does not vanish if κ0

1 = κ0
3 = 0. Furthermore, the

leading order of the Evans function4 arising from the stability analysis of uniformly
traveling fronts (with translational eigenvalue factored out) has the form

E(λ̂, c) = D(λ̂, c)

λ̂
= a0(c) + a1(c)λ̂ + a2(c)λ̂

2 + a3(c)λ̂
3 + O(λ̂4)

and is an even function of c with expansions of the coefficients given by ai =∑
j≥0 a2 j,i c

2 j with

⎧
⎪⎨

⎪⎩

a00 = 1

4
κ0
1 , a20 = − 3

32
κ0
3 , a01 = − 3

16
κ0
2 , a21 = 15

128

(
ατ̂ 4 + β

D3 θ̂
4
)

,

a02 = 5

32

(
ατ̂ 3 + β

D θ̂3
)

, a03 = − 35

256

(
ατ̂ 4 + β

D θ̂4
)

.

(34)

4 Note that the Evans function and E are meaningful only for choices of c and system parameters such that
a traveling front with velocity c exists.
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In the following, we will make use of the Taylor coefficients ai j of the Evans function
to derive expressions for the coefficients of the reduced system on the center manifold
and discuss the unfolding of its bifurcation structure. Hence,

ai j = ai j (μ), (35)

where μ = (μ1, μ2) is some choice of unfolding parameters.

Proof of Lemma 4 A straightforward computation yields the Taylor expansion of the
existence condition (2) (with γ = 0). In order to verify that k �= 0 at κ0

1 = κ0
3 = 0,

we can use that κ0
1 = κ0

3 = 0 can be expressed as

α = −2
√
2

3

θ̂2

τ̂ (D2τ̂ 2 − θ̂2)
, β = 2

√
2

3

D3τ̂ 2

θ̂ (D2τ̂ 2 − θ̂2)
,

with automatically nonzero denominator at κ0
1 = κ0

3 = 0. This gives

k|κ01=κ03=0 = −
√
2

128
τ̂ 2

(
θ̂

D

)2

�= 0.

Another straightforward calculation gives

a0(c) = −
√
2

6
+ 2ατ̂

(
F(cτ̂ )

)3 + 2
β

D
θ̂
(
F(cθ̂/D)

)3
,

a1(c) = −6ατ̂ 2
(
F(cτ̂ )

)5 − 6
β

D
θ̂2

(
F(cθ̂/D)

)5
,

a2(c) = 20ατ̂ 3
(
F(cτ̂ )

)7 + 20
β

D
θ̂3

(
F(cθ̂/D)

)7
,

a3(c) = −70ατ̂ 4
(
F(cτ̂ )

)9 − 70
β

D
θ̂4

(
F(cθ̂/D)

)9
,

with F(ρ1) = (ρ2
1 + 4)−1/2. Further direct computations yield the claimed Taylor

expansions. ��

3.2.1 Unfolding of the Codimension Two Case

Throughout this section, we denote by μ = (μ1, μ2) any choice of parameters in
(1) with (κ0

1 , κ0
2 )|μ=0 = 0, and denote with ∇μ the gradient with respect to μ. The

following proposition allows us to identify and unfold the SBT case.

Proposition 3 The reduced system on the center manifold (28) has, to leading order
in ε, the form

{
ċ = ε2c̃

˙̃c = ε2G(c, c̃, μ) = ε2 (G1(c, μ) + c̃G2(c, μ)) + o(ε2),
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where

G1(c, μ) = [g10 + g11 · μ]c + g30c3 + h.o.t ., and
G2(c, 0, μ) = g20 + g21 · μ + g40c2 + h.o.t .,

(36)

with g j0 ∈ R, g j1 ∈ R
2 (and, hence, linear functions g j1 ·μ). Moreover, with ai j from

(34) and the notation from (35),

g10 = 0, g20 = 0, g30 = −1

3

a20(0)

a02(0)
, g40 = − 1

a02(0)

(

a21(0) − a20(0)a03(0)

a02(0)

)

,

that is, the linear part is, as expected, a Jordan block of length two at the organizing
center, and

g11 = −∇μa00(0)

a02(0)
, g21 = − 1

a02(0)

[

∇μa01(0) − ∇μa00(0)a03(0)

a02(0)

]

,

Corollary 1 The coefficients gi j from Proposition 3 satisfy

g11 = 6
√
2

5τ̂ θ̂

(
∇μκ0

1

)
|μ=0, (37)

g21 = − 3

5
√
2τ̂ θ̂

(

3∇μκ0
2 − 7

2
(τ̂ + θ̂ )∇μκ0

1

)∣
∣
∣
∣
μ=0

, (38)

as well as

g30 = − 3

20
√
2

(
κ0
3

τ̂ θ̂

)∣
∣
∣
∣
∣
μ=0

= 1

5

D2τ̂ − θ̂

D2(τ̂ − θ̂ )

∣
∣
∣
∣
∣
μ=0

,

g40 = − 3

40

3(D2τ̂ 2 − θ̂2) + 7τ̂ θ̂ (1 − D2)

D2(τ̂ − θ̂ )

∣
∣
∣
∣
∣
μ=0

.

In particular, g30 = 0 is equivalent to κ0
3 |μ=0 = 0 and in this case g40 = − 3

4 τ̂ < 0.

Conversely, if g40 = 0 then 7τ̂ > 3θ̂ and g30 = 2τ̂
7τ̂−3θ̂

> 0. Moreover, if g30 < 0 then
g40 < 0.

Remark 2 The fact that g30 = g40 = 0 is not possible implies that the degeneracies
of higher order than the SBT case are either the SBTB case or the SBTD case, see
Definition 1.

Proof of Proposition 3 and Corollary 1 Since eigenvalues are invariant under coordinate
changes, the eigenvalues of the linearization of (28) in equilibria coincide (in the sense
of Taylor expansions) with the two small eigenvalues of the operator L. Recall only
these eigenvalues (and the fixed zero eigenvalue) of L are close to the imaginary axis
and satisfy λ = ε2λ̂, λ̂ = O(1). From this, we infer that G = O(1) with respect
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to ε and also the two small eigenvalues λ̂ε
j , j = 1, 2, coincide with the eigenvalues

of the linearization of (28) in equilibria. All quantities are at least continuous in ε at
ε = 0, and we discuss the leading order next. Since fixed points of (28) are roots of
G(c, 0;μ) = 0, for some functions G1,G2 we have

G(c, c̃;μ)|ε=0 = G1(c;μ) + c̃G2(c, c̃;μ),

where G1 has the same zeros as TΓ from (33). Linearizing the resulting system (in
slow time) and evaluating at c̃ = 0 gives the matrix

(
0 1

∂cG1(c;μ) G2(c, 0;μ)

)

,

whose characteristic equation

λ̂2 − G2(c, 0;μ)λ̂ − ∂cG1(c;μ) = 0, (39)

has the same roots as the (reduced) Evans function E (in the sense of expansion).
Precisely, two of these roots vanish at the SBT point κ0

1 = κ0
2 = 0 and E is analytic.

The Weierstrass preparation theorem, cf. e.g., Chow and Hale (1982), thus yields

E(λ̂, c;μ) =
(
λ̂2 + ã1(c, μ)λ̂ + ã0(c, μ)

)
Ẽ(λ̂, c;μ), (40)

for unique ã0, ã1 and non-vanishing Ẽ , all being holomorphic in c and system param-
eters in a neighborhood of the SBT point. Comparing (39) and (40) implies that

Tc,μ(−G2) = Tc,μ(̃a1), Tc,μ(−∂cG1) = Tc,μ(̃a0), (41)

that is, the Taylor expansions (including c and parameters) of −ã1 and G2(·, 0), as
well as −ã0 and ∂cG1(·) coincide, respectively. Since we know the Taylor expansion
of E from Lemma 4, we can employ a two-step procedure to derive the formulas for
gi j in (36):

Step 1 Compute the unknown ã j recursively from

E(λ̂, c;μ) = (λ̂2 + ã1(c, μ)λ̂ + ã0(c, μ))Ẽ(λ̂, c;μ)

= a0(c, μ) + a1(c, μ)λ + a2(c, μ)λ2 + a3(c, μ)λ3 + . . . ,

where the a j ’s are given in Lemma 4.
Step 2 Use (41) to determine the expressions for the gi j .

Let us now turn our attention to the recursion. By analyticity,

Ẽ(λ̂, c;μ) = ẽ0(c, μ) + ẽ1(c, μ)λ + ẽ2(c, μ)λ2 + ẽ3(c, μ)λ3 + . . .
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and therefore

E(λ̂, c;μ) = (λ̂2 + ã1(c, μ)λ̂ + ã0(c, μ))Ẽ(λ̂, c;μ)

=
!=a0(c,μ)

︷ ︸︸ ︷
[̃a0(c, μ)̃e0(c, μ)] +

!=a1(c,μ)
︷ ︸︸ ︷
[̃a1(c, μ)̃e0(c, μ) + ã0(c, μ)̃e1(c, μ)] λ

+ [̃e0(c, μ) + ã1(c, μ)̃e1(c, μ) + ã0(c, μ)̃e2(c, μ)]
︸ ︷︷ ︸

!=a2(c,μ)

λ2 + . . . .

At (c, μ) = (0, 0) we, hence, get

a0(0, 0) = ã0(0, 0)̃e0(0, 0),

a1(0, 0) = ã1(0, 0)̃e0(0, 0) + ã0(0, 0)̃e1(0, 0),

a2(0, 0) = ẽ0(0, 0) + ã1(0, 0)̃e1(0, 0) + ã0(0, 0)̃e2(0, 0), . . . .

Since we know that a0(0, 0) = 1
4κ

0
1 |μ=0 = 0 and ẽ0(0, 0) �= 0, we can conclude that

ã0(0, 0) = 0, so a1(0, 0) = ã1(0, 0)̃e0(0, 0). But since a1(0, 0) = − 3
16κ

0
2 |μ=0 = 0

and ẽ0(0, 0) �= 0, this also implies ã1(0, 0) = 0. Hence, the above recursion simplifies
to

a j+2(0, 0) = ẽ j (0, 0), j ≥ 0. (42)

In particular,

ẽ0(0, 0) = a02(0), and ẽ1(0, 0) = a03(0),

with ai j from (34). Equipped with this information, we go to the second step and
compare the leading order terms in the Taylor expansions (41) to infer the g j0, that is,
the coefficients at the SBT point. We immediately get

g10 = −ã0(0, 0) = 0, and g20 = −ã1(0, 0) = 0.

In order to compare the higher-order terms in the Taylor expansion, we have to take
derivatives of the above recursion. This implies (where a similar reasoning as before
gives ∂cã0(0, 0) = 0)

∂2c [̃a0(c, μ)̃e0(0, 0)]
∣
∣
∣
(c,μ)=(0,0)

= ∂2c a0(0, 0)

⇔ ∂2c ã0(0, 0) = ∂2c a0(0, 0)

ẽ0(0, 0)
= 2

a20(0)

a02(0)
.

The claimed expression for g30 now immediately follows from

3 · 2 g30 = −∂2c ã0(0, 0).
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A slightly longer, but analogous reasoning gives

∂2c [̃a1(c, μ)̃e0(c, μ) + ã0(c, μ)̃e1(c, μ)]∣∣
(c,μ)=(0,0) = ∂2c a1(0, 0)

⇔ ∂2c ã1(c, μ) = 1

ẽ0(0, 0)

(
∂2c a1(0, 0) − (∂2c ã0(0, 0))̃e1(0, 0)

)

= 1

ẽ0(0, 0)

(

∂2c a1(0, 0) − ∂2c a0(0, 0)

ẽ0(0, 0)
ẽ1(0, 0)

)

.

So we infer the claimed g40 from

2 g40 = −∂2c ã1(0, 0) = − 1

a02(0)

(

2a21(0) − 2
a20(0)

a02(0)
a03(0)

)

.

It remains to compute the expressions that yield the unfolding parameters. To this
end, we need the linear terms in the Taylor expansion of ã0, ã1 with respect to μ,
that is, we again have to differentiate, but this time with respect to μ. Using again
ã0(0, 0) = 0 this gives

∇μa0(0, 0) = ∇μ [̃a0(c, μ)̃e0(c, μ)]∣∣
(c,μ)=(0,0) ⇔ ∇μã0(0, 0) = ∇μa0(0, 0)

ẽ0(0, 0)
,

so that

g11 = −∇μã0(0, 0) = −∇μa00(0)

a02(0)
,

and

∇μa1(0, 0) =∇μ[̃a1(c, μ)̃e0(c, μ) + ã0(c, μ)̃e1(c, μ)]∣∣
(c,μ)=(0,0)

⇔ ∇μã1(0, 0) = 1

ẽ0(0, 0)

(∇μa1(0, 0) − ∇μã0(0, 0)̃e1(0, 0)
)

= 1

ẽ0(0, 0)

(

∇μa1(0, 0) − ∇μa0(0, 0)

ẽ0(0, 0)
ẽ1(0, 0)

)

.

Now using (42), we get

g21 = − 1

a02(0)

(

∇μa01(0) − ∇μa00(0)

a02(0)
a03(0)

)

.

Finally, the statement about g31, g41 follows by continuity. This completes the proof
of the lemma.

In order to verify the expressions in the corollary, we use the explicit expressions
from (34). Noting that κ0

1 = κ0
2 = 0 implies

α = 2
√
2θ̂

3τ̂ (θ̂ − τ̂ )
, β = 2

√
2Dτ̂

3(τ̂ − θ̂ )θ̂
, (43)
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we thus find

ẽ0(0, 0) = a02
∣
∣
κ01=0,κ02=0 = −5

√
2

48
τ̂ θ̂ < 0.

Furthermore,

g11 = 48

5
√
2τ̂ θ̂

∇μa0

∣
∣
∣
∣
μ=0

= 12

5
√
2τ̂ θ̂

∇μκ0
1

∣
∣
∣
∣
μ=0

g21 = − 48

80
√
2τ̂ θ̂

(

3∇μκ0
2 − 7

2
(τ̂ + θ̂ )∇μκ0

1

)∣
∣
∣
∣
μ=0

,

where we used that a3|(c,μ)=(0,0) = − 35
256

(
ατ̂ 4 + β

D θ̂4
)∣
∣
∣
μ=0

gives

a3
a2

∣
∣
∣
∣
(c,μ)=(0,0)

= − 7

8
(τ̂ + θ̂ )

∣
∣
∣
∣
μ=0

.

Finally,

g30 = −3
√
2

20

(
κ0
3

τ̂ θ̂

)∣
∣
∣
∣
∣
μ=0

,

g40 = − 3

40

3(D2τ̂ 2 − θ̂2) + 7τ̂ θ̂ (1 − D2)

D2(τ̂ − θ̂ )

∣
∣
∣
∣
∣
μ=0

,

where the latter follows from simplifying, at κ0
1 = κ0

2 = 0, the expression

− 1

a02(0)

(

a21(0) − a03(0)

a02(0)
a20(0)

)

= 24
√
2

5τ̂ θ̂

(
15

128

(

ατ̂ 4 + β

D3 θ̂4
)

+ 35

256

(

ατ̂ 4 + β

D
θ̂4

)
24

√
2

5τ̂ θ̂

3

32
κ0
3

)∣
∣
∣
∣
∣
μ=0

,

using that at μ = 0 we have

ατ̂ 4 + β

D3 θ̂4 = −2
√
2

3
τ̂ θ̂

D2τ̂ 2 − θ̂2

D2(τ̂ − θ̂ )
, ατ̂ 4 + β

D
θ̂4 = −2

√
2

3

(
τ̂ θ̂ (τ̂ + θ̂ )

)
.

The special case g30 = 0 means D2 = τ̂

θ̂
and θ̂ �= τ̂ , which imply g40 = − 3

4 τ̂ < 0

based on these formulas. Moreover, if τ̂ = 3
7 θ̂ then g40 = − 9

28 θ̂ �= 0, and g40 = 0

is equivalent to τ̂ �= θ̂ and D2 = θ̂
τ̂
3θ̂−7τ̂
3τ̂−7θ̂

, which must be positive. The numerator is

positive if 3θ̂ > 7τ̂ , and the denominator is positive if 7θ̂ < 3τ̂ . So, both must be

negative, which holds for 3
7 < θ̂

τ̂
< 7

3 . In this case, g30 = 2τ̂
7τ̂−3θ̂

> 0.
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Concluding the proof, we show that g30 < 0 implies g40 < 0. For brevity, define

y := θ̂
τ̂
. Then, g30 < 0 is equivalent to 1 < y < D2 due to the standing assumption

that D > 1. So, we assume that 1 < y < D2 and note that g40 > 0 is equivalent to
h(y) := 7

3 (D
2−1)− D2

y + y < 0. Since h′(y) = D2

y2
+1 > 0, the function h is strictly

monotonically increasing and h(1) = 4
3 (D

2 − 1) > 0. In other words, h(y) > 0 for
1 < y < D2 and, thus, g40 < 0 if g30 < 0. ��

In the statement and proof of Proposition 3, we used (43) so that g3, g4 at μ = 0
are independent of α, β. Then, it is natural to fix τ̂ , θ̂ and choose μ affine in α, β as

μ = (α, β) − 2
√
2

3(θ̂ − τ̂ )

(
θ̂

τ̂
,−Dτ̂

θ̂

)

. (44)

With this choice (37), (38) together with (6) give the matrix

∂(α,β)

(
g1
g2

)∣
∣
∣
∣
μ=0

= 3
√
2

5

( 2
θ̂

2
Dτ̂

τ̂+7θ̂
4θ̂

θ̂+7τ̂
4Dτ̂

)

. (45)

We can now prove the main result concerning the unfolding of the SBT case, i.e., the
triple zero eigenvalue of the PDE without additional degeneracy. The corresponding
bifurcation diagram in the case g30, g40 < 0 for the expansion (32) is as plotted in
Fig. 3.

Theorem 2 Let τ̂ , θ̂ > 0, D > 1 and 0 < ε � 1. For D2τ̂ �= θ̂ and D2τ̂ (3τ̂ −7θ̂ ) �=
θ̂ (3θ̂ − 7τ̂ ) the parameters α, β unfold the bifurcation point κ0

1 = κ0
2 = 0 of fronts

in the sense of unfolding the SBT case for the reduced vector field (28) within the odd
symmetry class of G.

Proof Due to Proposition 3, D2τ̂ �= θ̂ and D2τ̂ (3τ̂ − 7θ̂ ) �= θ̂ (3θ̂ − 7τ̂ ) imply
g30, g40 �= 0, which are precisely the non-degeneracy conditions (H1), (H2) in Carr
(1981, Chapter 4) for the vector field (28) with expansion (32); the condition (H3) in
that reference holds since (28) is in second-order form.

The unfolding parameters in Carr (1981, Chapter 4) are g1 (= ∂cG1(0)) and g2 (=
G2(0)). The matrix (45) has determinant 54

25
τ̂−θ̂

Dτ̂ θ̂
�= 0 since τ̂ �= θ̂ if κ0

1 = κ0
2 = 0.

It follows that near the SBT point g1 = g2 = 0, the mapping (g1, g2) �→ (α, β) is
invertible. This and the signs of g30, g40 persist for 0 < ε � 1 by continuity. ��

Remark 3 Recall that due to Corollary 1, the case g30 < 0 and g40 > 0 cannot occur in
(32). Otherwise, this would correspond to reflecting the case g30 < 0 and g40 < 0 by
(̃c, g2, t) → −(̃c, g2, t). This means that the unfolding (with γ = 0) cannot generate
stable ‘traveling breathers,’ i.e., periodically oscillating pseudo-fronts with nonzero
average speed. In other words, there is no Hopf bifurcation from traveling fronts with
c �= 0 to stable periodic orbits in the reduced ODE.
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Remark 4 Invoking the parameter γ breaks the odd symmetry of G as the existence
condition for traveling fronts directly shows. Note that α, β will also unfold bifur-
cations for |γ | > 0 sufficiently small. In particular, consider the Hopf bifurcation
for g30, g40, g1 < 0 from stationary fronts to ‘standing breathers’ with zero average
speed, labeled ho1 in Fig. 3. Changing γ to a nonzero value will move this bifurcation
point to a Hopf bifurcation that creates stable traveling breathers. We plot a numerical
example in Fig. 7.

3.3 Numerical Continuation and Simulation

In this section, we present numerical computations that illustrate and corroborate the
results of the previous sections. We use the software package pde2path (Uecker
et al. 2014) for numerical continuation and bifurcation computations as well as sim-
ulations of the full PDE (1). Our focus lies on recovering numerically the theoretical
bifurcations sketched in Fig. 3. As a starting point, we take the setting from Chirilus-
Bruckner et al. (2015, Fig. 11), which shows a periodic solution found by direct
numerical simulation near a triple root. We fix

ε = 0.03, θ̂ = 10, τ̂ = 4.21, D = 2.2 (46)

and use a domain [−L, L] with homogeneous Neumann boundary conditions. Unless
noted otherwise we take L = 10, which turns out to be large enough so that longer
domains do not noticeably change the results.

The numerical simulations of the time evolution for pseudo-fronts were done using
the ‘freezing method’, cf. Beyn and Thümmler (2004) and Rademacher and Uecker
(2017), where the domain moves effectively along with the traveling front in a comov-

ing frame ζ(t) = x − a(t) with velocity
d

dt
a = c of the pseudo-front (recall that

in the analysis the velocity was rescaled to slow time). The instantaneous velocity is
determined in each time step through the orthogonality condition to the group orbit of
the translation symmetry given by

c(t) = 〈M−1F(Z), Zx 〉
‖Zx‖22

.

In the comoving ζ -coordinate, we can work on a relatively short spatial interval and
with a fixed grid that is refined near the center, where the gradients are concentrated.
We compute the ‘position’ based on this velocity as a(t) = ∫ t

0 c(s)ds, but note that
in general dynamic pseudo-fronts move relative to the ζ variable. For instance, in
bifurcating periodic solutions the zero intersection of the u-component is not stationary
in ζ but moves periodically.

Recall that the theoretical values of the center manifold coefficients g j from the
previous sections were computed in the singular limit ε = 0. Since ε > 0 in the
numerical computations, we expect the values differ slightly from the numerical ones,
which we therefore denoted by g j . We approximate g3 and g4 using the formulas
from Corollary 1 and take α, β as affine functions of g1 and g2 through (44) and (45).
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Fig. 4 From region 1 to 2 of Fig. 3, i.e., g3 ≈ −0.074, g4 ≈ −3.14 with g1 ≈ −0.005, and (46). a Branch
of fronts from numerical continuation (stable thick, unstable thin) destabilizing at a Hopf bifurcation point
(diamond) at g2 ≈ 0.001, theoretically predicted for g30, g40 < 0 at g2 = 0. b, c Plots of velocity and
position from a simulation of a perturbation from the solution at the bullet in a, where g2 ≈ 0.02, and PDE
parameters in (1) are α ≈ 0.45, β ≈ −0.24 and (46)

Fig. 5 From region 2 to 3,4 of Figure 3, i.e., g3 ≈ −0.074, g4 ≈ −3.14 with g2 = 0.042, and (46).
a Branches of fronts from numerical continuation (stable thick, unstable thin) connected at a pitchfork
bifurcation at g1 ≈ 0.0002 stabilizing at Hopf points (diamonds) at g1 ≈ 0.001, matching the theoretical
prediction. b, c Plots of velocity and position from a simulation of a perturbation from the solution at the
bullet in a, where g1 ≈ 0.0006, and PDE parameters in (1) are α ≈ 0.44, β ≈ −0.19 and (46). See also
Fig. 2

The results plotted in Figs. 4 and 5 correspond to the crossing from region 1 of
Fig. 3 to region 2 – a Hopf bifurcation—and further to regions 3 and 4 – a pitchfork
bifurcation followed by another Hopf bifurcation. The crossing from region 1 to region
6 in Fig. 3, i.e., crossing the g2-axis with g2 < 0, corresponds to the results plotted
in Fig. 6. Here, a pitchfork bifurcation occurs, near which the emerging heteroclinic
connection lies in a one-dimensional center manifold and is thus monotone. However,
the phase portrait plotted for region 6 in Fig. 3 illustrates the case of complex leading
eigenvalues of the bifurcated stable equilibrium. This highlights the underlying two-
dimensional dynamics, which we find also numerically, as plotted in Fig. 6b.

Finally, as noted in Remark 4 for γ = 0 there are no stable periodic traveling fronts
with nonzero average speed, while for γ �= 0 these can be created.We plot an example
in Fig. 7.
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Fig. 6 From region 1 to 6 of Fig. 3, i.e., g3 ≈ −0.074, g4 ≈ −3.14 with g2 ≈ −0.02, and (46). a Branches
of fronts from numerical continuation (stable thick, unstable thin) connected at a pitchfork bifurcation at
g1 ≈ 0.003. b, c Plots of velocity and position from a simulation of a perturbation from the solution at the
bullet in a with inset a magnification to highlight the oscillatory convergence. Here g1 ≈ 0.003, and PDE
parameters in (1) are α ≈ 0.34, β ≈ −0.09 and (46)

Fig. 7 Symmetry breaking with the parameter γ . a branch from numerical continuation starting at the
rightmost point in Fig. 4a. b, c plots of velocity and position from a simulation upon perturbing at the point
marked with a bullet in a, and PDE parameters in (1) are α ≈ 0.48, β ≈ −0.27 and (46), See also Fig. 2

4 Conclusions and Outlook

We have demonstrated novel aspects in the rich dynamics of front solutions in the PDE
(1) by focusing on instabilities of stationary front solutions. Specifically, we gave a
rigorous analysis revealing that the temporal evolution of the velocity of fronts is
governed by a planar ODE, and we unfolded the bifurcation scenario of a Bogdanov–
Takens point with symmetry for these. The main novelties of the present work consist
of the rigorous argument for the existence of a second generalized eigenfunction for
the operator arising from linearization around a stationary front, and in the effec-
tive method to compute the critical coefficients for the reduced system on the center
manifold using solely information on the previously computed Evans function and
existence condition for uniformly traveling fronts.

These results put us in a position to analyze the unfolding of the triple zero eigen-
value for front dynamics in the PDE (1) with higher degeneracies: either the SBTD
case or the imprint of a butterfly catastrophe in the SBTB case, see Definition 1. These
higher codimension problems require determining an additional center manifold coef-
ficient, and also pose challenges on the level of the unfolding theory for ODEs, e.g.,
Khibnik et al. (1998).
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Equipped with the presented framework, we expect to find Jordan chains of higher
order upon addition of more slow components. That is, for the (n + 1)-component
system with the perturbed Allen–Cahn ‘fast’ componentU coupled to n ‘slow’ linear
equations. In particular, such a 4-component system

{
∂tU = ε2∂2xU + U −U 3 − εG(V1, V2, V3),

τ̂ j

ε2
∂t V j = D2

j ∂
2
x Vj + U − Vj , j = 1, 2, 3,

would yield a Jordan block of length four and, hence, a three-dimensional reduced
system on the center manifold (after factoring out translations). By appropriately
changing the coupling of all components to imprint the desired singularity structure,
a similar analysis as illustrated here could lead to a normal form of a chaotic system,
and thus to one of the rare cases where chaos can be rigorously proved in the context
of a nonlinear PDE.
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to project M2 of the Collaborative Research Centre TRR 181 ‘Energy Transfer in Atmosphere and Ocean’
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number
274762653. The authors also acknowledge that a crucial part of this paper was established during the first
and second joint Australia–Japan workshop on dynamical systems with applications in life sciences.

A Leading Order Form of Eigenfunctions

In the proof of Proposition 2 and Remark 1, we use leading order information on
the eigenfunction and first generalized eigenfunction for the zero eigenvalue. The
corresponding statements and proofs can be found here in Lemmas 5 and 6. The
section is completed by giving the leading order expressions for the second generalized
eigenfunction in Lemma 7.

Lemma 5 (Leading order of the eigenfunctions) The eigenfunctions Φ
λ̂
belonging to

the small eigenvalues from Proposition 1 are to leading order given by

⎡

⎢
⎣

0

hv(λ̂)ehv(λ̂)x

hw(λ̂)ehw(λ̂)x

⎤

⎥
⎦χs−(x) +

⎡

⎢
⎣

1
2

√
2

ε
sech2

[
x√
2ε

]

hv(λ̂)

hw(λ̂)

⎤

⎥
⎦χ f (x) +

⎡

⎢
⎣

0

hv(λ̂)e−hv(λ̂)x

hw(λ̂)e−hw(λ̂)x

⎤

⎥
⎦χs+(x),

with

hv(λ̂) = 1
√

τ̂ λ̂ + 1
, hw(λ̂) = 1

D
√

θ̂ λ̂ + 1
.

Proof Using the notation Φ
λ̂

= (u, v, w) for the eigenfunction corresponding to the

eigenvalue λ = ε2λ̂, the ODE arising from the eigenvalue problem (9) for small
eigenvalues reads
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εu′ = p,
εp′ = ε2λ̂u + (3(uh)2 − 1)u + ε(αv + βw),

v′ = q,

q ′ = (τ̂ λ̂ + 1)v − u,

w′ = r ,
r ′ = 1

D2 (θ̂ λ̂ + 1)w − 1
D2 u,

In the language of slow–fast ODEs, this is the slow system with corresponding fast
system given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇ = p,
ṗ = ε2λ̂u + (3(uh)2 − 1)u + ε(αv + βw),

v̇ = εq,

q̇ = ε(τ̂ λ̂ + 1)v − εu,

ẇ = εr ,
ṙ = ε

D2 (θ̂ λ̂ + 1)w − ε
D2 u,

where the dot denotes differentiation with respect to ξ = x/ε. In the regions Is± ,
we will use a regular expansion of the eigenfunction in the slow system, while in the
regions I f wewill use a regular expansion of the eigenfunction in the fast system. In the
following,wewill use the following notation:Regular expansions of the amplitudewill
be denoted by u = u0 + εu1 + ε2u2 + . . . and similarly for v,w and uh. Furthermore,
we add to the index ‘ f ’ in the fast field and ‘s±’ in the slow fields.

Before we demonstrate the calculations, we would like to remark that we make use
of the following observations from Chirilus-Bruckner et al. (2015) [which can already
be found in Doelman et al. (2009)]: We have that

uhf = uh0, f + ε2uh2, f + O(ε3), (47)

that is, there is no first-order correction of the stationary front in the fast field. Fur-
thermore, we will need to use the value of the integral

6
∫ ∞

−∞
uh0, f (ξ)uh2, f (ξ)sech4

(
1

2

√
2ξ

)

dξ = −4

(

α + β

D

)

. (48)

Equipped with these facts, we will now recursively solve the perturbation hierarchy
to construct an eigenfunction, i.e., a homoclinic to zero.

Fast field, O(1): We get for the u-component

ü0, f =
(
3(uh0, f

)2 − 1)u0, f , u0, f (ξ) = C sech

(
1

2

√
2ξ

)

, C ∈ R.

while v̇0, f = q̇0, f = ẇ0, f = ṙ0, f = 0. In order to compute the constant values
assumed by these latter components, we need to switch to the slow fields.
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Slow fields, O(1): We have u0,s± = p0,s± = 0, while the equations for v,w-
components read

v′′
0,s± = (τ̂ λ̂ + 1)v0,s±, w′′

0,s± = 1

D2 (θ̂ λ̂ + 1)w0,s±,

which are solved by exponentials. Using the information from the fast field that
v, q, w, r are constant andmatching slow and fast solutions gives that v0,s± = q0,s± =
w0,s± = r0,s± = 0, therefore also v0, f = q0, f = w0, f = r0, f = 0.

Fast field, O(ε): We get for the u-component due to (47) and v0, f = w0, f = 0
again

ü1, f =
(
3(uh0, f

)2 − 1)u1, f , u1, f (ξ) = c̃, sech

(
1

2

√
2ξ

)

, c̃ ∈ R.

andwe choose in this case c̃ = 0 since, otherwise, thiswould simply add an ε correction
to C from the leading order. Furthermore, we have v̇1, f = ẇ1, f = 0 and

q̇1, f = −u0, f , ṙ1, f = − 1

D2 u0, f . (49)

Again, in order to compute the constant values assumed by these latter components
we need to switch to the slow fields.

Slow fields, O(ε): We have u1,s± = p1,s± = 0, while the equations for v,w-
components read

v′′
1,s± = (τ̂ λ̂ + 1)v1,s±, w′′

1,s± = 1

D2 (θ̂ λ̂ + 1)w1,s±,

which is solved by

v1,s±(x) = A±e∓
√

τ̂ λ̂+1x , w1,s±(x) = B±e∓ 1
D

√
θ̂ λ̂+1x ,

where we already took into account that the eigenfunction components need to
approach zero at the infinities. Againmatching these solutions over the fast fields using
v1,s−(0) = v1,s+(0), w1,s−(0) = w1,s+(0) gives A+ = A− =: A, B+ = B− =: B.
Furthermore, matching the q, r -components using (49) gives

q1,s+(0) − q1,s−(0) =
∫ ∞

−∞
q̇1, f (ξ)dξ =

−
∫ ∞

−∞
u0, f (ξ)dξ = −2

√
2C = −2A

√

τ̂ λ̂ + 1,

hence, A = √
2C/

√
τ̂ λ̂ + 1. The analogous procedure for the r -component gives

B = √
2C/(D

√
θ̂ λ̂ + 1). Hence, the values of the components in the fast fields are

v1, f = A, w1, f = B.
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Fast field, O(ε2): We get for the u-component due to (47) the equation

ü2, f =
(
3(uh0, f

)2 − 1)u2, f + 6uh0, f u
h
2, f u0, f + αv1, f + βw1, f + λ̂u0, f ,

for which we enforce the solvability condition

6
∫ ∞

−∞
uh0, f (ξ)uh2, f (ξ)u20, f (ξ)dξ

︸ ︷︷ ︸
=−4C2(α+β/D)

+
(

α

√
2C

√
τ̂ λ̂ + 1

+ β

√
2C

D
√

θ̂ λ̂ + 1

)∫ ∞

−∞
u0, f (ξ)dξ

︸ ︷︷ ︸

=2
√
2C

+λ̂

∫ ∞

−∞
u0, f (ξ)2dξ

︸ ︷︷ ︸

=C2(4
√
2/3)

= 0,

where we made use of (48). Note that C drops out of the equation since, of course,
eigenfunctions are only unique up to multiplication with a constant. We choose in the
statement of the proposition C = 1

2

√
2/ε, since this scaling naturally arises when

computing the eigenfunction for λ = 0 through differentiation of the stationary front.
��

Lemma 6 (Leading order of first generalized eigenfunction) Let the parameters be
chosen such that (7) is satisfied, that is, that the zero eigenvalue has algebraic mul-
tiplicity two. Then, there is a generalized eigenfunction Ψ which is to leading order
given by

⎡

⎣
Ψu(x)
Ψv(x)
Ψw(x)

⎤

⎦ =
⎡

⎣
εus−(x)
v0,s−(x)
w0,s−(x)

⎤

⎦χs−(x) +
⎡

⎢
⎣

ε

3
√
2

− τ̂
2

− θ̂
2D

⎤

⎥
⎦χ f (x) +

⎡

⎣
εus+(x)
v0,s+(x)
w0,s+(x)

⎤

⎦χs+(x),

(50)

with

v0,s±(x) = −1

2
τ̂ (1 ± x)e∓x , w0,s±(x) = −1

2

θ̂

D

(

1 ± 1

D
x

)

e∓x/D .

and

us,±(x) = −1

2
αv0,s±(x) − 1

2
βw0,s±(x).
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Proof For notational simplicity, we write (Ψu, Ψv, Ψw) = (u, v, w). The ODE arising
from the equation for the generalized eigenfunction reads

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εu′ = p,
εp′ = ε2Φu + (3(uh)2 − 1)u + ε(αv + βw),

v′ = q,

q ′ = v + τ̂Φv − u,

w′ = r ,

r ′ = 1
D2 w + θ̂

D2 Φw − 1
D2 u,

recalling thatΦ is the eigenfunction for the zero eigenvalue and uh is the u-component
of the front solution (3). The corresponding fast system given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇ = p,
ṗ = ε2Φu + (3(uh)2 − 1)u + ε(αv + βw),

v̇ = εq,

q̇ = εv + ετ̂Φv − εu,

ẇ = εr ,
ṙ = ε

D2 w + ε
D2 θ̂Φw − ε

D2 u,

where again the dot denotes differentiation with respect to ξ = x/ε.
Fast field, O(1): As before, we get

ü0, f =
(
3(uh0, f

)2 − 1)u0, f , v̇0, f = q̇0, f = ẇ0, f = ṙ0, f = 0,

We can choose u0, f = 0 this time: On the one hand, its value will not change the
computations later on (it will appear as product with uh1, f which is zero), and on the
other hand, it is already part of the eigenfunction itself. In order to compute the constant
values assumed by the other components, we need to switch to the slow fields.

Slow fields, O(1): We have u0,s± = p0,s± = 0, while the equations for v,w-
components read

v′′
0,s± = v0,s± + τ̂e∓x , w′′

0,s± = 1

D2w0,s± + θ̂

D3 e
∓x/D .

We have that

v0,s±(x) = A±e∓x ∓ 1

2
τ̂ xe∓x ,

w0,s±(x) = B±e∓x/D ∓ 1

2

θ̂

D2 xe
∓x/D, A±, B± ∈ R.

Matching with the information of the fast components v1,s−(0)
= v1,s+(0), w1,s−(0) = w1,s+(0) gives A+ = A− =: A, B+ = B− =: B , while
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q1,s−(0) = q1,s+(0), r1,s−(0) = r1,s+(0) gives A = −τ̂ /2, B = −θ̂/(2D), so

v0,s±(x) = −1

2
τ̂ (1 ± x)e∓x , w0,s±(x) = −1

2

θ̂

D

(

1 ± 1

D
x

)

e∓x/D .

Hence, the values of the components in the fast fields are

v0, f = −1

2
τ̂ , w0, f = −1

2

θ̂

D
.

Fast field, O(ε): We get for the u-component due to (47) and the fact that

Φu(ξ) =
(
1

ε

)
1

2

√
2 sech2

(
1

2

√
2ξ

)

the equation

ü1, f =
(
3(uh0, f

)2 − 1)u1, f + 1

2

√
2sech2

(
1

2

√
2ξ

)

+αv0, f + βw0, f
︸ ︷︷ ︸

=−
(
1
2ατ̂+ 1

2
β
D θ̂

)

,

for which we get the solvability condition

1

2

√
2
∫ ∞

−∞
sech4

(
1

2

√
2ξ

)

dξ

︸ ︷︷ ︸
=4/3

−
(
1

2
ατ̂ + 1

2

β

D
θ̂

)∫ ∞

−∞
sech2

(
1

2

√
2ξ

)

dξ

︸ ︷︷ ︸

=2
√
2

= 0,

and, hence, the condition (7) which can also be written as D′(0) = 0. Rewriting this
condition as

−
(
1

2
ατ̂ + 1

2

β

D
θ̂

)

= −
√
2

3
,

and using the ansatz u1, f = K ∈ R, we get

0 =
[

3 tanh2
(
1

2

√
2ξ

)

− 1

]

K + 1

2

√
2sech2

(
1

2

√
2ξ

)

−
√
2

3
,

which, by the identity sech2(z) = 1 − tanh2(z) becomes

0 =
[

3 tanh2
(
1

2

√
2ξ

)

− 1

]

K +
√
2

6

[

1 − 3 tanh2
(
1

2

√
2ξ

)]

,

which gives K = 1
3
√
2
. ��
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The previous lemma was used in the proof of Proposition 2 for the existence of a
second generalized eigenfunction. Here, we give the formal computations that lead to
first-order expressions for it.

Lemma 7 (Leading order of second generalized eigenfunction) Let the parameters be
chosen such that (8) is satisfied, that is, that the zero eigenvalue has algebraic mul-
tiplicity three. Then, there are two generalized eigenfunctions: Ψ as in Proposition 6
and Ψ̃ which is to leading order given by

⎡

⎣
Ψ̃u(x)
Ψ̃v(x)
Ψ̃w(x)

⎤

⎦ =
⎡

⎣
εũs−(x)
ṽ0,s−(x)
w̃0,s−(x)

⎤

⎦χs−(x) +
⎡

⎢
⎣

O(ε2)
3τ̂ 2
8

3θ̂2
8D

⎤

⎥
⎦χ f (x) +

⎡

⎣
εũs+(x)
ṽ0,s+(x)
w̃0,s+(x)

⎤

⎦χs+(x) + h.o.t ..

with

ṽ0,s±(x) = 1

8
τ̂ 2(x2 ± 3x + 3)e∓x , w̃0,s±(x) = θ̂2

8D3 (x2 ± 3Dx + 3D2)e∓x/D .

and

ũs,±(x) = −1

2
αṽ0,s±(x) − 1

2
βw̃0,s±(x).

Proof For notational simplicity, we write (Ψ̃u, Ψ̃v, Ψ̃w) = (u, v, w). The ODE arising
from the equation for the second generalized eigenfunction reads

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εu′ = p,
εp′ = ε2Ψu + (3(uh)2 − 1)u + ε(αv + βw),

v′ = q,

q ′ = v + τ̂Ψv − u,

w′ = r ,

r ′ = 1
D2 w + θ̂

D2 Ψw − 1
D2 u,

recalling that Ψ is the first generalized eigenfunction for the zero eigenvalue (50) and
uh is the u-component of the front solution (3). The corresponding fast system given
by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇ = p,
ṗ = ε2Ψu + (3(uh)2 − 1)u + ε(αv + βw),

v̇ = εq,

q̇ = εv + ετ̂Ψv − εu,

ẇ = εr ,
ṙ = ε

D2 w + ε
D2 θ̂Ψw − ε

D2 u,

where again the dot denotes differentiation with respect to ξ = x/ε.
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Fast field, O(1): Exactly as before, we get

¨̃u0, f =
(
3(uh0, f

)2 − 1)̃u0, f , ˙̃v0, f = ˙̃q0, f = ˙̃w0, f = ˙̃r0, f = 0,

and once again we can choose ũ0, f = 0, and switch to the slow fields to determine
the constant values the remaining components assume.

Slow fields, O(1): We have ũ0,s± = p0,s± = 0, while the equations for v,w-
components read

ṽ′′
0,s± − ṽ0,s± = −1

2
τ̂ 2(1 ± x)e∓x ,

D2w̃′′
0,s± − 1

D2 w̃0,s± = −1

2

θ̂2

D

(

1 ± 1

D
x

)

e∓x/D . (51)

We have that

ṽ0,s±(x) = Ae∓x + 1

8
τ̂ 2(x2 ± 3x)e∓x ,

w̃0,s±(x) = Be∓x/D + θ̂2

8D3 (x2 ± 3Dx)e∓x/D,

with A, B ∈ R and where we already used the matching with the information of the
fast components

ṽ1,s−(0) = ṽ1,s+(0), w̃1,s−(0) = w̃1,s+(0).

Furthermore, q1,s−(0) = q1,s+(0), r1,s−(0) = r1,s+(0) gives

ṽ0,s±(x) = 1

8
τ̂ 2(x2 ± 3x + 3)e∓x , w̃0,s±(x) = θ̂2

8D3 (x2 ± 3Dx + 3D2)e∓x/D .

Hence, the values of the components in the fast fields are

ṽ0, f = 3

8
τ̂ 2, w̃0, f = 3

8

θ̂2

D
. (52)

Fast field, O(ε): We get for the u-component due to (47) the equation

¨̃u1, f =
(
3(uh0, f

)2 − 1)̃u1, f + αṽ0, f + βw̃0, f ,

for which we get the solvability condition

3

8

(

ατ̂ 2 + β

D
θ̂2

)∫ ∞

−∞
sech2

(
1

2

√
2ξ

)

dξ

︸ ︷︷ ︸

=2
√
2

= 0,
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and, hence, the triple zero eigenvalue condition (8), which can also be written as
D′′(0) = 0. Since by this condition, we again recover

¨̃u1, f =
(
3(uh0, f

)2 − 1)̃u1, f ,

we choose with a similar argument as before ũ1, f = 0. ��

B Proof of Lemma 1 (Spectrum of the Operator L")

Introducing the notation

Φ =
(

Φu

Φv,w

)

,

for the eigenfunction of the zero eigenvalue,we canwrite the corresponding eigenvalue
problem as

(
Lε εA
B S

)(
Φu

Φv,w

)

=
(
0
0

)

.

By solving the second equation for Φv,w, we get Φv,w = −S−1BΦu , and inserted
into the first equation this gives

LεΦu = εAS−1BΦu .

Recalling that Lε has the form

Lε = ε2∂2x +
(

1 − 3uh0
( x

ε

)2
)

+ O(ε2),

we change to the fast variable to y = x
ε
and write

Lε = L0 + ε2L1 + . . . ,

with

L0 = ∂2y +
(
1 − 3uh0(y)

2
)

.

Note that since S−1 is a convolution operator with respect to x , changing to y = x
ε

gives an additional factor of ε, so we write S−1 = εS
−1

, where now S
−1

gives the
convolution with respect to y. Furthermore, we set

Φu(y) = 1

ε
φ0(y) + εΦ1(y) + . . . ,
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and after plugging all these expanded quantities back into

LεΦu = ε2AS
−1

BΦu,

we get the equation for Φ1 given by

L0Φ1 = −L1φ0 + AS
−1

Bφ0,

which yields the solvability condition

〈L1φ0, φ0〉 = 〈AS−1
Bφ0, φ0〉. (53)

Equipped with this, we can now turn to the eigenvalue problem

Lεφ = ε2μ̃εφ.

Setting φ = 1
ε
φ0 + εφ1 + . . . , μ̃ε = μ̃0 + . . . (noting that Φu and φ must coincide in

leading order, but might differ in the next orders), we get

L0φ1 = −L1φ0 + μ̃0φ0,

yielding the solvability condition

μ̃0 = 〈L1φ0, φ0〉
〈φ0, φ0〉 . (54)

Combining (53) and (54) gives

μ̃0 = 〈AS−1
Bφ0, φ0〉

〈φ0, φ0〉 .

Finally, using that S
−1 = 1

ε
S−1 and that 1

ε
φ0

( x
ε

)
is a Dirac sequence, we get as

claimed in the limit ε → 0

μ̃0 = 3
√
2

2

(

α + β

D

)

.
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