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Abstract. Although over 90 oversampling approaches have been devel-
oped in the imbalance learning domain, most of the empirical study
and application work are still based on the “classical” resampling tech-
niques. In this paper, several experiments on 19 benchmark datasets are
set up to study the efficiency of six powerful oversampling approaches,
including both “classical” and new ones. According to our experimental
results, oversampling techniques that consider the minority class distri-
bution (new ones) perform better in most cases and RACOG gives the
best performance among the six reviewed approaches. We further vali-
date our conclusion on our real-world inspired vehicle datasets and also
find applying oversampling techniques can improve the performance by
around 10%. In addition, seven data complexity measures are considered
for the initial purpose of investigating the relationship between data
complexity measures and the choice of resampling techniques. Although
no obvious relationship can be abstracted in our experiments, we find
F1v value, a measure for evaluating the overlap which most researchers
ignore, has a strong negative correlation with the potential AUC value
(after resampling).

Keywords: Class imbalance · Minority class distribution · Data
complexity measures

1 Introduction

The classification problem under class imbalance has caught growing attention
from both academic and industrial field. Due to recent advances, the progress
in technical assets for data storage and management as well as in data science
enables practitioners from industry and engineering to collect a large amount of
data with the purpose of extracting knowledge and acquire hidden insights. An
example may be illustrated from the field of computational design optimization
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where product parameters are modified to generate digital prototypes which
performances are evaluated by numerical simulations, or based on equations
expressing human heuristics and preferences. Here, many parameter variations
usually result in valid and producible geometries but in the final steps of the opti-
mization, i.e. in the area where the design parameters converge to a local/global
optimum, some geometries are generated which violate given constraints. Under
this circumstance, a database would contain a large number of designs which
are according to specs (even if some may be of low performance) and a smaller
number of designs which eventually violate pre-defined product requirements.
By far, the resampling techniques have proven to be efficient in handling imbal-
anced benchmark datasets. However, the empirical study and application work
in the imbalanced learning domain are mostly focusing on the “classical” resam-
pling techniques (SMOTE, ADASYN, and MWMOTE etc.) [11,15,20], although
there are many recently developed resampling techniques.

In this paper, we set up several experiments on 19 benchmark datasets to
study the efficiency of six powerful oversampling techniques, including SMOTE,
ADASYN, MWMOTE, RACOG, wRACOG and RWO-Sampling. For each
dataset, we also calculate seven data complexity measures to investigate the
relationship between data complexity measures and the choice of resampling
techniques, since researchers have pointed out that studying the data complex-
ity of the imbalanced datasets is of vital importance [15] and it may affect the
choice of resampling techniques [20]. We also perform the experiment on our
real-world inspired vehicle dataset. Results of our experiments demonstrate that
oversampling techniques that consider the minority class distribution (RACOG,
wRACOG, RWO-Sampling) perform better in most cases and RACOG gives the
best performance among the six reviewed approaches. Results on our real-world
inspired vehicle dataset further validate this conclusion. No obvious relation-
ship between data complexity measures and the choice of resampling techniques
is found in our experiment. However, we find F1v value, a measure for evalu-
ating the overlap which most researchers ignore [15,20], has a strong negative
correlation with the potential AUC value (after resampling).

The remainder of this paper is organized as follows. In Sect. 2, the research
related to our work are presented, also including the relevant background knowl-
edge on six resampling approaches and data complexity measures. In Sect. 3, the
experimental setup is introduced in order to understand how the results are
generated. Section 4 gives the results of our experiments. Further exploration
through data from a real-world inspired digital vehicle model is presented in
Sect. 5. Section 6 concludes the paper and outlines further research.

2 Related Works

Many effective oversampling approaches have been developed in the imbalanced
learning domain and the synthetic minority oversampling technique (SMOTE)
is the most famous one among all. Currently, more than 90 SMOTE extensions
have been published in scientific journals and conferences [6]. Most of review paper
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and application work are based on the “classical” resampling techniques and do
not take new resampling techniques into account. In this paper, we briefly review
six powerful oversampling approaches, including both “classical” ones (SMOTE,
ADASYN, MWMOTE) and new ones (RACOG, wRACOG, RWO-Sampling)
[2,3,5,7,24]. The six reviewed oversampling techniques can be divided into two
groups according to whether they consider the overall minority class distribu-
tion. Among the six approaches, RACOG, wRACOG, and RWO-Sampling con-
sider the overall minority class distribution while the other three not. Apart from
developing new approaches to solve class-imbalance problem, various studies have
pointed out that it is important to study the characteristics of the imbalanced
dataset [13,20]. In [13], authors emphasize the importance to study the overlap
between the two-class samples. In [20], authors set up several experiments with
the KEEL benchmark datasets [1] to study the relationship between various data
complexity measures and the potential AUC value. It is also pointed out in [20]
that the distinctive inner procedures of oversampling approaches are suitable for
particular characteristics of data. Hence, apart from evaluate the efficiency for the
six reviewed oversampling approaches, we also aim to investigate the relationship
between data complexity measures and the choice of resampling techniques.

2.1 Resampling Technique

In the following, the six established resampling techniques SMOTE, ADASYN,
MWMOTE, RACOG, wRACOG and RWO-Sampling are introduced.

SMOTE and ADASYN. The synthetic minority oversampling technique
(SMOTE) is the most famous resampling technique [3]. SMOTE produces syn-
thetic minority samples based on the randomly chosen minority samples and their
K-nearest neighbors. The new synthetic sample can be generated by using the ran-
domized interpolation scheme above for minority samples. The main improvement
in the adaptive synthetic (ADASYN) sampling technique is that the samples which
are harder to learn are given higher importance and will be oversampled more often
in ADASYN [7].

MWMOTE. The majority weighted minority oversampling techniques
(MWMOTE) improves the sample selection scheme and the synthetic sample
generation scheme [2]. MWMOTE first finds the informative minority samples
(Simin) by removing the “noise” minority samples and finding the borderline
majority samples. Then, every sample in Simin is given a selection weight (Sw),
according to the distance to the decision boundary, the sparsity of the located
minority class cluster and the sparsity of the nearest majority class cluster.
These weights are converted in to selection probability (Sp) in the synthetic
sample generation stage. The cluster-based synthetic sample generation process
proposed in MWMOTE can be described as, 1). cluster all samples in Simin

into M groups; 2). select a minority sample x from Simin according to Sp and
randomly select another sample y from the same cluster of x; 3). use the same
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equation employed in k-NN-based approach to generate the synthetic sample;
4). repeat 1)–3) until the required number of synthetic samples is generated.

RACOG and wRACOG. The oversampling approaches can effectively
increase the number of minority class samples and achieve a balanced training
dataset for classifiers. However, the oversampling approaches introduced above
heavily reply on local information of the minority class samples and do not take
the overall distribution of the minority class into account. Hence, the global
information of the minority samples cannot be guaranteed. In order to tackle
this problem, Das et al. [5] proposed RACOG (RApidy COnverging Gibbs) and
wRACOG (Wrapper-based RApidy COnverging Gibbs).

In these two algorithms, the n-dimensional probability distribution of minor-
ity class is optimally approximated by Chow-Liu’s dependence tree algorithm
and the synthetic samples are generated from the approximated distribution
using Gibbs sampling. Instead of running an “exhausting” long Markov chain,
the two algorithms produce multiple relatively short Markov chains, each start-
ing with a different minority class sample. RACOG selects the new minority
samples from the Gibbs sampler using a predefined lag and this selection pro-
cedure does not take the usefulness of the generated samples into account. On
the other hand, wRACOG considers the usefulness of the generated samples and
selects those samples which have the highest probability of being misclassified
by the existing learning model [5].

RWO-Sampling. Inspired by the central limit theorem, Zhang et al. [24] pro-
posed the random walk oversampling (RWO-Sampling) approach to generate
the synthetic minority class samples which follows the same distribution as the
original training data.

In order to add m synthetic examples to the n original minority examples
(m < n), we first select at random m examples from the minority class and then
for each of the selected examples x = (x1, . . . , xm) we generate its synthetic
counterpart by replacing ai(j) (the ith attribute in xj , j ∈ 1, 2, . . . ,m) with
μi − ri · σi/

√
n, where μi and σi denote the mean and the standard deviation of

the ith feature restricted to the original minority class, and ri is a random value
drawn from the standard normal distribution. When m > n, we can repeat the
above process until we reach the required amount of synthetic examples. Since
the synthetic sample is achieved by randomly walking from one real sample, so
this oversampling is called random walk oversampling.

2.2 Data Complexity Measures

In this section, we introduce the feature overlapping measures and linearity mea-
sures among various data complexity measures (Table 1).

Feature Overlapping Measures. F1 measures the highest discriminant ratio
among all the features in the dataset [14]. F1v is a complement of F1 and a higher
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Table 1. Complexity measures information. “Positive” and “Negative” indicate the
positive and negative relation between measure value and data complexity respectively.

Measure Description Complexity

F1 Maximum fisher’s discriminant ratio Negative

F1v The directional-vector maximum fisher’s discriminant ratio Negative

F2 Volume of overlapping region Positive

F3 Maximum individual feature efficiency Negative

L1 Sum of the error distance by linear programming Positive

L2 Error rate of linear classifier Positive

L3 Non-linearity of a linear classifier Positive

value of F1v indicates there exists a vector that can separate different class sam-
ples after these samples are projected on it [19]. F2 calculates the overlap ratio of
all features (the width of the overlap interval to the width of the entire interval)
and returns the product of the ratios of all features [19]. F3 measures the individ-
ual feature efficiency and returns the maximum value among all features.

Linearity Measures. L1 and L2 both measure to what extent the classes can
be linearly separated using an SVM with a linear kernel [19], where L1 returns
the sum of the distances of the misclassified samples to the linear boundary and
L2 returns the error rate of the linear classifier. L3 returns the error rate of
an SVM with linear kernel on a test set, where the SVM is trained on training
samples and the test set is manually created by performing linear interpolation
on the two randomly chosen samples from the same class.

3 Experimental Setup

The experiments reported in this paper are based on 19 two-class imbalanced
datasets from the KEEL-collection [1] and six powerful oversampling approaches
(using R package imbalance [4]), which have been reviewed in Sect. 2.1. The
collected datasets are divided into 5 stratified folds (for cross-validation) and
only the training set is oversampled, where the stratified fold is to ensure the
imbalance ratio in the training set is consistent with the original dataset and
only oversampling the training set is to avoid over-optimism problem [14].

The 19 collected datasets can be simply divided into 4 groups, ecoli, glass,
vehicle and yeast (Table 2). IR indicates the imbalance ratio, which is the ratio
of the number of majority class samples to the number of minority class samples.
In this paper, we aim to study the efficiency of different oversampling approaches
and investigate the relationship between data complexity measures and the
choice of oversampling techniques. Therefore, we need to calculate the 7 data
complexity measures (shown in Table 1) for each dataset. In our 20 experiments
for each dataset, we calculate the 7 data complexity measures for every training
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Table 2. Information on datasets in 4 groups

Datasets #Attributes #Samples Imbalance Ratio (IR)

ecoli{1, 2, 3, 4} 7 336 {3.36, 5.46, 8.6, 15.8}
glass{0, 1, 2, 4, 5, 6} 9 214 {2.06, 1.82, 11.59, 15.47, 22.78, 6.38}
vehicle{0, 1, 2, 3} 18 846 {3.25, 2.9, 2.88, 2.99}
yeast{1, 3, 4, 5, 6} 8 1484 {2.46, 8.1, 28.1, 32.73, 41.4}

set (using R package ECoL [14]). Since we use 5 stratified cross-validations, we
average each data complexity measures for these 5 training sets and make it the
data complexity measure for the dataset.

In a binary classification problem, the confusion matrix (see Table 3) can
provide intuitive classification results. In the class imbalance domain, it is widely
admitted that Accuracy tends to give deceptive evaluation for the performance.
Instead of Accuracy, the Area Under the ROC Curve (AUC) can be used to
evaluate the performance [13] and can be computed as AUC = 1+TPrate−FPrate

2 ,
where TPrate = TP

TP+FN , FPrate = FP
FP+TN . Apart from the AUC value, there

are some other measures to assess the performance for imbalanced datasets, such
as geometric mean (GM) and F-measure (FM) [13].

Table 3. Confusion matrix for a binary classification problem

Positive prediction Negative prediction

Positive class True Positives (TP) False Negatives (FN)

Negative class False Positives (FP) True Negatives (TN)

4 Simulation Analysis and Discussions

Due to the limited space, only the AUC results for C5.0 decision tree in our
experiments are presented in Table 4. We can observe that RACOG outperforms
the other 5 oversampling techniques in 9 out of 19 datasets and MWMOTE
is the 2nd best oversampling approaches. From our experimental results, we
can conclude that, in most cases, oversampling approaches which consider the
minority class distribution (RACOG, wRACOG and RWO-Sampling) perform
better. It was expected that data complexity can provide some guidance for
choosing the oversampling technique, however, from our experimental results,
no obvious relationship between data complexity and the choice of oversampling
approaches can be concluded. This is because the 6 introduced oversampling
approaches are designed for common datasets and do not take a specific data
characteristic into account.
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Table 4. AUC results for C5.0 decision tree.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

ecoli1 0.9418 0.9407 0.9364 0.9399 0.9471 0.9390 0.9423

ecoli2 0.8598 0.9019 0.9140 0.9071 0.9144 0.8959 0.9168

ecoli3 0.7795 0.9049 0.8943 0.8991 0.9098 0.8757 0.9001

ecoli4 0.8172 0.9247 0.9080 0.9286 0.9169 0.8875 0.9038

glass0 0.8286 0.8476 0.8377 0.8435 0.8442 0.8463 0.8515

glass1 0.7082 0.7496 0.7338 0.7489 0.7500 0.7421 0.6986

glass2 0.7264 0.8024 0.8072 0.7925 0.7990 0.7862 0.7173

glass4 0.8468 0.9291 0.9273 0.9364 0.9255 0.8648 0.9322

glass5 0.9905 0.9904 0.9903 0.9905 0.9927 0.9915 0.9916

glass6 0.9332 0.9337 0.9310 0.9357 0.9384 0.9378 0.9340

vehicle0 0.9734 0.9743 0.9725 0.9731 0.9753 0.9751 0.9675

vehicle1 0.7639 0.8031 0.7974 0.7987 0.8035 0.8094 0.7810

vehicle2 0.9742 0.9715 0.9741 0.9741 0.9787 0.9777 0.9772

vehicle3 0.7756 0.8045 0.8006 0.8196 0.8169 0.8166 0.7956

yeast1 0.7317 0.7437 0.7386 0.7449 0.7585 0.7109 0.7166

yeast3 0.9357 0.9584 0.9591 0.9600 0.9647 0.9564 0.9450

yeast4 0.7592 0.9030 0.9001 0.8940 0.8669 0.8245 0.8286

yeast5 0.9574 0.9774 0.9768 0.9782 0.9775 0.9727 0.9782

yeast6 0.7472 0.8760 0.8825 0.8825 0.8802 0.8085 0.8851

According to our experimental results, although the data complexity mea-
sures cannot provide guidance for choosing the oversampling approaches, we find
there is a strong correlation between the potential best AUC (after oversample)
and some of the data complexity measures. From Fig. 1 and Table 5, it can be
concluded that the potential best AUC value that can be achieved through over-
sampling techniques has an extreme negative correlation with the F1v value
and linearity measures. In the imbalanced learning domain, there are many
researchers focus on studying data complexity measures. In [14], the authors
propose that the potential best AUC value after resampling can be predicted
through various data complexity measures. In [10], the authors demonstrate
that F1 value has an influence on the potential improvement brought by over-
sampling approaches. However, they did not consider the F1v measure, which
has the strongest correlation with AUC value. Hence, we recommend using F1v
to evaluate the overlap in imbalanced dataset.
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Fig. 1. Correlation matrix.

Table 5. Results of hypothesis test.

Measure Correlation
coefficient

P-value Correlation
level

F1 −0.4878 0.0341 Medium

F1v −0.9048 1.041 × 10−7 Extreme

F2 0.1018 0.6782 None

F3 −0.7019 0.0008 High

L1 −0.8913 3.054 × 10−7 Extreme

L2 −0.8471 4.735 × 10−6 Extreme

L3 −0.8693 1.354 × 10−6 Extreme

5 Efficient Oversampling Strategies for Improved Vehicle
Mesh Quality Classification

In this section, we propose the application of the reviewed methods on the qual-
ity prediction of geometric computer aided engineering (CAE) models. In CAE
applications, engineers often discretize the simulation domains using meshes
(undirected graphs), i.e. a set of nodes (vertices), where the equations that
describe the physical phenomena are solved, and edges connecting the nodes to
form faces and volumes (elements), where the solution between nodes is approx-
imated. The meshes are generated from an initial geometric representation, e.g.
non-uniform rational B-Splines (NURBS) or stereolithography (STL) representa-
tions, using numerical algorithms, such as sweep-hull for Delaunay triangulation
[23], polycube [12] etc.

In most cases the quality of the mesh plays an important role on the accu-
racy and fidelity of the results [9]. Engineers use different types of metrics to
infer about the quality of the mesh, but it is common sense that increasing the
number and uniformity of the elements in the mesh improves the accuracy of the
simulation results. However, the computational effort associated with meshing is
proportional to the target level of refinement. Therefore, a match between accu-
racy and available computational resources is often required, specially for cases
that demand iterative geometric modifications, such as shape optimization.

Shape morphing techniques address this issue by operating on the mesh nodes
through a polynomial-based lower-dimensional representation. Such techniques
avoid re-meshing the simulation domain, speeding up the optimization process.
Several cases of optimization using morphing techniques are published in the lit-
erature [16–18,22]. For our experiments, we implemented the free form deforma-
tion (FFD) method presented in [21]. The FFD embeds the geometry of interest
in a uniform parallelepiped lattice, where a trivariate Bernstein polynomial maps
the position of the control points of the lattice to the nodes of the mesh, as an
IR3 → IR3 function. Therefore, by deforming the lattice, the nodes of the mesh
are moved accordingly (Fig. 2).
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Fig. 2. Example of free form deformation applied to a configuration of the TUM Dri-
vAer model [8] using a lattice with four planes in each direction.

The continuity of the surfaces is ensured by the mathematical formulation of
the FFD up to the order of k − 1, where k is the number of planes in the direc-
tion of interest, but the mesh quality is not necessarily maintained. The designer
can either avoid models with ill-defined elements by applying constraints to the
deformations, which might be unintuitive, or eliminate them by performing reg-
ular quality assessments. Addressing this issue, we propose the classification of
the deformation parameters with respect to the quality of the output meshes,
based on a data set of labeled meshes. Further than reducing the risk generating
infeasible meshes for CAE applications, our approach avoids unnecessary com-
putation to generate the deformed meshes, which is aligned with the objective
of increasing the efficiency of shape optimization tasks.

5.1 Generation of a Synthetic Data Set

For the experiments we adopted the computer fluid dynamics (CFD) simula-
tion of a configuration of the TUM DrivAer model [8]. The simulation model
is deformed using the discussed FFD algorithm, using a lattice with 7 planes
in x- and z-directions, and 10 in y-direction (Fig. 3). The planes closer to the
boundaries of the control volume are not displaced in order to enable a smooth
transition from the region affected by the deformations to the original domain.
Assuming symmetry of the shape with respect to the vertical plane (xz) and
deformations caused by displacement of entire control planes only in the direc-
tion of their normal vectors, it yields a design space with 9 parameters. To gen-
erate the data set, the displacements xi were sampled from a random uniform
distribution and constrained to the volume of the lattice, allowing the overlap
of planes.

The initial mesh was generated using the algorithms blockMesh and snap-
pyHexMesh of OpenFOAM®1. We automatically generated 300 meshes based
on the FFD algorithm implemented in python and evaluated them using the
OpenFOAM checkMesh rounting. The quality of the meshes was verified using
the checkMesh routine, also available in OpenFOAM®, and we generated 300
deformed meshes. In the process, 6 meshes were discarded due to errors in the
meshing process. The metrics used to define the quality of the meshes were the

1 https://www.openfoam.com.

https://www.openfoam.com
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Fig. 3. Free form deformation lattice used to generate the data set for the experiments.

number of warnings raised by the meshCheck algorithm, the maximum skewness
and maximum aspect ratio. We manually labeled the feasible meshes according
to the rules shown in Table 6. The imbalance ratios after manually labeling are
also given in Table 6. Please note that the input attributes are exactly the same
for all three sets of datasets, only the “class” labels are different. In this way, the
values of data complexity measures for the three datasets vary from each other.

Table 6. Feasible meshes labeling rule.

Dataset #Attribute #Sample #Warnings Max skewness Max aspect ratio IR

set1 9 294 <4 <6 <10 6.35

set2 9 294 <4 <6.2 <10.5 2.54

set3 9 294 <2 <5.8 <10.3 12.36

5.2 Results and Discussion

The experimental results on the digital vehicle dataset are given in Table 7. It
is consistent with the conclusion we draw in Sect. 4 that, RACOG outperforms
the other 5 oversampling techniques in 2 out of 3 datasets. Therefore, combining
our experimental results on both benchmark and real-world inspired datasets, we
can conclude RACOG is the most powerful one of the considered 6 oversampling
approaches. Moreover, we find that applying the oversampling techniques can
improve the performance by around 10% for our digital vehicle datasets. We
also calculate the data complexity measures for our digital vehicle datasets,
our findings on the correlation between the potential AUC value and the data
complexity measures remains consistent with the conclusion in Sect. 4.
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Table 7. Experimental results (AUC) on digital vehicle dataset.

Dataset Baseline SMOTE ADASYN MWMOTE RACOG wRACOG RWO

set1 0.7786 0.8412 0.8315 0.8354 0.8543 0.8406 0.8502

set2 0.6952 0.7575 0.7560 0.7651 0.7614 0.7421 0.7452

set3 0.6708 0.7780 0.7792 0.7660 0.7823 0.7534 0.7743

6 Conclusion and Future Work

In this work, we reviewed six powerful oversampling techniques, including “clas-
sical” ones (SMOTE, ADASYN and MWMOTE) and new ones (RACOG,
wRACOG and RWO-Sampling), in which the new ones consider the minor-
ity class distribution while the “classical” ones not. The six reviewed oversam-
pling approaches were performed on 19 benchmark imbalanced datasets and
an imbalanced real-world inspired vehicle dataset to investigate their efficiency.
Seven data complexity measures were considered in order to find the relation-
ship between data complexity measures and the choice of resampling techniques.
According to our experimental results, two main conclusions can be derived:

1) In our experiment, in most cases, oversampling approaches which consider
the minority class distribution (RACOG, wRACOG and RWO-Sampling)
perform better. For both benchmark datasets and our real-world inspired
dataset, RACOG performs best and MWMOTE comes to the second.

2) No obvious relationship between data complexity measures and the choice
of resampling techniques can be abstracted from our experimental results.
However, we find F1v value has a strong correlation with the potential best
AUC value (after resampling) while rare researchers in the imbalance learning
domain do not consider F1v value for evaluating the overlap between classes.

We only simply apply the oversampling techniques for our digital vehicle
dataset and evaluate their efficiency in this paper. In future work, we will focus
on adjusting the imbalance learning algorithms to solve the proposed engineer-
ing problem. Additionally, the effect of the interaction between various data
complexity measures on the choice of resampling technique will be studied.

References
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