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Abstract—Automated machine learning (AutoML) aims to
automatically produce the best machine learning pipeline, i.e.,
a sequence of operators and their optimized hyperparameter
settings, to maximize the performance of an arbitrary machine
learning problem. Typically, AutoML based Bayesian optimiza-
tion (BO) approaches convert the AutoML optimization problem
into a Hyperparameter Optimization (HPO) problem, where the
choice of algorithms is modeled as an additional categorical
hyperparameter. In this way, algorithms and their local hyper-
parameters are referred to as the same level. Consequently, this
approach makes the resulting initial sampling less robust. In
this study, we describe a first attempt to formulate the AutoML
optimization problem as its nature instead of transfer it into a
HPO problem. To take advantage of this paradigm, we propose a
novel initial sampling approach to maximize the coverage of the
AutoML search space to help BO construct a robust surrogate
model. We experiment with 2 independent scenarios of AutoML
with 2 operators and 6 operators over 117 benchmark datasets.
Results of our experiments demonstrate that the performance of
BO significantly improved by using our sampling approach.

Keywords—Robust AutoML, Optimization, initial sampling

I. INTRODUCTION

Automated machine learning (AutoML) aims at producing
the best machine learning pipeline in order to minimize con-
siderably human efforts in the machine learning development
cycle to real-world problems. Recent studies have proved the
power of AutoML in many real-world problems with minimal
human effort while improved performance (e.g., [1], [2]). The
existing AutoML approaches (e.g., [3], [4]) can be seen as
optimization processes, where the best ML pipeline is searched
for. Every such pipeline includes an architecture and a set of
hyperparameter settings. A typical AutoML approach has three
fundamental parts – a search space, an optimizer, and a target
program. The search space defines the feasible search domain.
The target program is a particular ML pipeline, resulting in a
real-valued performance when evaluated on the target dataset
(given by user). The optimizer is used to find the best setting
that maximizes the performance of the target program. In
other words, the goal of AutoML is to explore an efficient
target program out of a large set of possibilities defined by
the search space. Bayesian Optimization (BO) is a commonly
used approach in AutoML as it has been successfully used
in Hyperparameter Optimization (HPO) problems and plays a
role of an optimizer in many AutoML frameworks, e.g., Auto-
sklearn [3], Auto-Weka [4], and Hyperopt-sklearn (HPsklearn)
[5]. BO is an efficient global optimization approach (in terms
of the number of function evaluations), where the trade-off
between local exploitation and global exploration is well-

handled. Therefore, in this work, we focus on improved BO
in using it to solve the AutoML optimization problem.

Traditionally, the AutoML optimization problem is treated
as a HPO process, where the optimizer is inherited from the
HPO domain. Since HPO was originally developed to find the
best hyperparameter setting from a single algorithm. Thus,
it naturally does not consider the choice of algorithm. The
choice of algorithms is then modeled as an extra categorical
hyperparameter. Consequently, this HPO-based approach in
handling the choice of algorithm is a mismatch with the nature
of the AutoML optimization problem.

The search space in AutoML approach is large due to the
many possible choices of algorithms for the operators in the
pipeline. The main reason for this is the desired automated
nature of the AutoML solution which aims to solve ML
problems without (or with minimal) human effort and be able
to work well for a wide range of ML problems. Unfortunately,
the best algorithm for all problems does not exist. Thus, to
maximize ML performance on an arbitrary problem, AutoML
has to integrate the choice of as many algorithms as possible.

Finally, we note that each choice of an algorithm has a
set of local hyperparameters to be tuned (see the discussion
regarding CASH in Section III-A). However, including many
algorithms in the search space naturally leads to BO being
slow convergence or might be stuck in a local optimum [6]–
[8]. One reason for this is that the initial sampling step in
AutoML is typically restricted to a tiny budget, which is much
smaller than the number of possible pipelines that can be
constructed in the search space. The reason for this setting
is because the effectiveness of BO becomes evident mainly in
the later stages of optimization when it learns to produce better
configurations. Many well-known sampling approaches, e.g.,
discrepancy-based quasi-random (quasi-random) [8], Latin
Hypercube (LHD) [9], have been employed for initial sam-
pling in this optimization context. However, they have shown
themselves not robust enough [6], [10], [11], since, they have
been used in conjunction with the traditional approach of
solving an AutoML optimization problem which, as explained
above, consists in converting it to an HPO, thus rendering
obscure the differences between the choice of an algorithm
and the choice of algorithm’s parameters.

To alleviate the above issues, in this paper, we propose
a new two-fold approach to improve BO used in AutoML
optimization: 1. use a new hyperparameter class to model the
choice of algorithms instead of categorical hyperparameter,
namely "Algorithm choice"; 2. group the similar operator algo-



rithms when allocating initial sampling budget. Additionally,
building on top of other sampling approaches, we propose
a novel sampling method that aims to allocate reasonable
budgets for each set of algorithms to maximize the coverage
of sampling areas in terms of the grouping of algorithms to
provide a robust surrogate model. In other words, our proposed
approach is complementary to other sampling approaches
rather than competitive, aiming to optimize performance for
the search space of AutoML.

To summarize, our main contributions are as follows:
1) We formulate AutoML as an optimization process of

the ML pipeline. Under this formulation, the search
space is hierarchical with three major levels: Operator,
Algorithm, and Hyperparameter.

2) We introduce a new hyperparameter class to model the
choice of algorithms in an operator (instead of using cat-
egorical hyperparameter as done traditionally), together
with an approach to grouping the algorithms that might
have similarities. To the best of our knowledge, this is
the first work modeling the choice of algorithms and the
relationship between algorithms.

3) We propose a robust sampling technique based on the
combination of algorithms over operators, which aims
to improve the quality and robustness of the surrogate
model. We present results of the empirical studies on
117 benchmark datasets in 2 independent scenarios of
AutoML with 2 operators and 6 operators that demon-
strate the improved performance of BO the help of our
proposed sampling approach.

The remainder of this paper is organized as follows. The
AutoML optimization problem is defined in Section II. In
Section III, the relevant background knowledge on CASH
problem and Bayesian optimization are provided. Next, our
contributions are highlighted in Section IV, and Section V lays
out the experimental setup. Experimental results are discussed
in Section VI. Finally, the paper is concluded, and further work
is outlined in Section VII.

II. FRAMEWORK FORMULATION

A generic ML pipeline p : X → Y designed for solving
problem P is a sequence of operators that transforms a set of
features x ∈ X into a target value y ∈ Y which can be e.g.,
a predicted value for a regression problem or a label for a
classification problem. Examples of possible pipeline operators
depend on problem P and can include data pre-processing,
encoding, feature selection, resampling, etc.

Let M = (O1, . . . ,Oz) denote the sequence of opera-
tors in the pipeline p, where each subsequent operator is
applied to the output of the previous operator: p(x) =
Oz(Oz−1(. . . (O1(x)) . . .)). Functionality of each such op-
erator can typically be delivered by one of the multiple
available ML algorithms: here we assume Oi∈{1,...,z−1} =
{∅,A1

i , . . . ,A
ni
i } for all operators except the last and Oz =

{A1
z, . . . ,Anzz } for the last operator which defines the learning

algorithm – i.e. unlike the first z−1 operators, the last operator
Oz has to be selected and cannot be ∅.

Sequence of
Operators

Set of
Algorithms

Hyperparameters
spaces

Fig. 1. The structure of AutoML search space Λ

Furthermore, since typically all algorithms have parame-
ters, let Λ = {{Λ1

1, . . . ,Λ
n1
1 }, . . . , {Λ1

z, . . .Λ
nz
z }} be a set

of hyperparameters sets of all considered algorithms for all
considered operators. The overall structure of the resulting
AutoML search space Λ is illustrated in Fig. 1. For readability,
let Ai,λ represent algorithm Ai selected for operator Oi and
configured by a hyperparameter setting λ ∈ Λji , j ≤ ni. Then,
we denote a pipeline with algorithms selected and configured
with their hyperparameters for all operators in the pipeline p
as p(A1,λ,...,Az,λ).

In order to eventually solve the AutoML problem (see
Equation (4)) and find the best choice of algorithms and their
hyperparameters for the operators of the pipeline, every such
choice needs to be evaluated. Let R(ŷ, y) denote a metric
that returns the accuracy of value ŷ predicted by the pipeline
compared to the real value y. Then, performance f of pipeline
configuration p(A1,λ,...,Az,λ) when trained on a training dataset
Dt = {(x1, y1), . . . , (xm, ym)} and evaluated on a validation
dataset Dv = {(xm+1, ym+1), . . . , (xm+t, ym+t)} is calcu-
lated as:

f(p(A1,λ,...,Az,λ), Dt, Dv) =
1

t

t∑
j=1

R(ŷm+j , ym+j) (1)

To prevent overfitting when solving the AutoML problem,
the k-fold cross-validation can be added to Equation (1), which
leads to the following formulation of the AutoML problem:

(A1,λ, . . . ,Az,λ)∗ = arg max
l,λ

1

k

k∑
j=1

f
(
p(A1,λ,...,Az,λ)l ,D

j
t ,Djv

)
(2)

where (A1, . . . ,Az)l ∈×z

i=1
Oi are all possible choices of

algorithms for all pipeline operators, λ = {(λ1, . . . , λz)|λ1 ∈
Λj11 , . . . , λz ∈ Λjzz } are algorithms’ hyperparameters and
f
(
p(A1,λ,...,Az,λ)l ,D

(j)
t ,D(j)

v

)
is performance of the sequence

operators and their corresponding hyperparameter choices
when trained and evaluated on the jth data fold Djt and Djv ,
correspondingly.

III. BACKGROUND

In this section, we first provide a brief introduction of the
traditional approach to handle AutoML (Section III-A), and



the Bayesian optimization approaches (Section III-B).

A. AutoML as a CASH problem

In practice, the AutoML optimization problem is commonly
referred to as the Combined Algorithm Selection and Hyper-
parameter optimization (CASH) [3], [4] and Full Model Se-
lection (FMS) [12] problem, in which the choice of algorithm
is modeled as an additional categorical hyperparameter. Then,
the AutoML optimization (AO) problem is treated as a HPO
problem. As such, the choice of algorithms for each operator
is modeled as an extra categorical hyperparameter λ0. The
AutoML search space is then defined as:

Λ =
(
{λ0

1,Λ
1
1, . . . ,Λ

n1
1 }︸ ︸

corresponds to operator O1

, . . . , {λ0
z,Λ

1
z, . . . ,Λ

nz
z }︸ ︸

corresponds to operator Oz

)
(3)

Hence, the AO problem becomes the HPO maximizing prob-
lem:

λ∗ = arg max
λ∈Λ

f(λ) , (4)

In this setting, the categorical hyperparameters after the root
of this hierarchical search space (see Fig. 1) are known as
the choice of algorithm for an operator. Consequently, algo-
rithms and their local hyperparameters are treated at the same
level. However, unlike the pure categorical hyperparameter,
i.e., choose one in a set of nominal options, the choice of
algorithms heavily affects other hyperparameters, i.e., once the
algorithm is known, only its hyperparameters are relevant.

Another point worth mentioning is that HPO was originally
developed to find the best hyperparameter setting from a
single algorithm – a much more straightforward problem
compared to the AutoML optimization problem. In addition
to HPO, AutoML optimization also searches for an optimized
pipeline of algorithms. In AutoML, multiple algorithms have
to be considered, and those algorithms can belong to different
phases in the ML pipeline, e.g., pre-processing and learning
model. This pipeline is restricted by some constraints, such
as the learning task, i.e., classification for supervised learning
and regression (or clustering) for unsupervised learning, is the
last step. For example, Auto-sklearn has up to six sequence
operation steps: categorical encoder, numerical transformer,
imputation transformer, rescaling, feature preprocessor, and
learning operator. In comparison, Auto-Weka and HPsklearn
only have two operators: preprocessor and learning operator.
Although, generally speaking, AutoML can have different
sizes in terms of operators and algorithms under operators,
most operators are optional, but the learning operator is
mandatory.

Furthermore, the used algorithms/techniques in an ML
pipeline are tightly coupled since every operator step is directly
affected by the previous step, e.g., the data pre-processing step
aims to produce a new dataset (balanced, reduced-dimensions,
etc.), which can change the performance of the subsequent op-
erator such as the learning model. Consequently, the traditional
approach in handling the choice of algorithm is a mismatch
with the nature of the AutoML optimization problem.

B. Bayesian optimization

The Bayesian optimization (BO) is a commonly used
approach in many AutoML frameworks, including: Auto-
sklearn [3], [13], HPsklearn [5], Auto-Weka [4], [14]. BO is a
historical-based approach which uses a probabilistic regression
model P (f |H) as a surrogate model of the true objective
function f , based on the so-far evaluated configurations H =
{(λi,∆i)

n
i=1}, where λ denoted for the evaluated configura-

tion and ∆ denoted the corresponding reward. This surrogate
model is used to predict the performance of a numeric set
of configurations with a much cheaper computational budget
than evaluating them on the true objective function. The
next configuration is chosen by maximizing some acquisition
function [15], which handles the trade-off between exploration
and exploitation of the search.

Gaussian processes (GPs) [16] are the traditional surrogate
models for BO, which model P (f |H) to capture the proba-
bility distribution of the reward conditioned on configuration
from the historical information. GPs typically work well in
low-dimensional optimization problems. However, the search
spaces of AutoML problems are typically high-dimensional,
structured, and mixed (discrete and continuous), which GPs
do not naturally support [3], [17], [18].

An alternative to a GP is a tree-based model called Tree-
structured Pazen Estimator (TPE). Instead of modeling the
distribution of the true objective function f , TPE models the
likelihood P (H|f) by using a kernel density estimator [19].
In this setting, the so-far evaluated configurations split into
two density distributions of a well l(λ) and a badly g(λ)
performing set depending on whether its performance is below
or above a predefined threshold α1. The next configuration is
then chosen by maximizing the ratio l(λ)

g(λ) . Since TPE has been
successfully used in several AutoML frameworks [4], [5], here
we therefore use TPE as the BO approach.

IV. THE PROPOSED APPROACHES FOR AUTOMATED
MACHINE LEARNING

Now we discuss our contributions in this study. First, we
introduce the new class of hyperparameter in terms of using
BO for AutoML, namely "Algorithm Choice" and a new
attribute of hyperparameter to visualize the relationship of
algorithms. Second, we introduce our proposed combination-
based sampling approach for increasing the efficiency and
robustness of AutoML . Lastly, we introduce a new BO python
library for AutoML optimization and an AutoML framework
that implements this paradigm.

A. Hyperparameter classes

As mentioned in Section III-A, using a categorical hyper-
parameter to model the choice of algorithm is a mismatch
with the nature of the AutoML optimization problem. Thus,
to clarify the categorical hyperparameter vs. algorithm choice
in AO problems, we use a new hyperparameter class, named
"Algorithm Choice", a sub-class of the categorical class.

1By default, α = 25%



TABLE I
HYPERPARAMETER TYPES AND FUNCTIONS USED IN OUR IMPLEMENTATION

Hyperparameter Annotation Description
Continuous FloatParam(min,max) Choose a float value in range of [min,max] ∩ R
Ordinal IntegerParam(min,max) Choose a integer value in range of [min,max] ∩ Z
Nominal CategoricalParam(C1, . . . , Cn) Choose a value in set {C1, . . . , Cn}
∗Algorithm AlgorithmChoice(A1, . . . , An) Choose a value in set {A1, . . . , An}

Hierarchical ConditionalParam(Parent, {Pvalue}, {Child1, . . . , Childn}) when a HyperParam has children
Infeasible ForbiddenParam((Param1, {P 1

value(s)}), (Param2, {P 2
value(s)})) when the combination of Param1 and Param2 is forbidden

∗ Grouping HyperParam({value11, . . . , value1v1}︸ ︸
group1

, . . . , {valuen1 , . . . , valuenvn}︸ ︸
groupn

) each groupi can be of any type: {Continuous,Ordinal,
Nominal, Algorithm}

Additionally, in order to construct a robust surrogate model,
BO requires good coverage of the search space [6], but as
the number of algorithms increases, the number of samples
needed to cover the search space increases exponentially.
Past works [20], [21] have pointed out that some algorithms
can be grouped based on their technical behaviors. To take
advantage of this property, we introduce a new attribute of
hyperparameter for grouping the choices of algorithms for an
operator, e.g., the grouping of linear classifiers vs. the grouping
of rule-based classifiers [20]. Moreover, this function allows
different types of hyperparameters input, which is helpful in
the case that some hyperparameters allow different input types.
For example, the max_features2 in the Random Forest classifi-
cation algorithm implemented in scikit-learn [22], allows three
value types: a categorical value, e.g., name of a predefined
formula such as "sqrt" (square root of the number of features),
"log2" (binary logarithm of the number of features), a real
value for the ratio as the percentage of the number of features
and an integer value to set the number of features directly.
Table I summaries different hyperparameter classes with their
semantics in our work.

B. Novel combination-based initial sampling for Bayesian
optimization for AutoML optimization

The key idea of our approach is to provide an optimized
coverage of the algorithm-hyperparameter search space al-
ready at the stage of the initial sampling of BO, to be able to
characterize the response surface better earlier.

First, let us introduce a grouping of algorithms of op-
erator Oi. Lets assume that the set of all algorithms
{∅,A1

i , . . . ,A
ni
i } available to be employed for operator Oi3

can be partitioned into gi non-empty and non-overlapping
subsets according to their inner workings4: {G1

i , . . . , G
gi
i },

gi ≤ ni + 15. We call such partitioning a grouping of
algorithms.

The operator can then be represented as Oi =
{G1

i , . . . , G
gi
i }. According to our proposed combination-based

initial sampling method (see Algorithm 1), the sequence of
pipeline operators M = (O1, . . . ,Oz) should be sampled in

2the maximum number of features can be used when splitting a node.
3if i < z or {A1

z , . . . ,A
nz
z } if i = z

4or any other user-defined logic
5if i < z and gz < nz otherwise

BO from the set of sets {{G1
1, . . . , G

n1
1 }, . . . , {G1

z, . . . G
nz
z }}

and the total initial sampling budget should be split equally
per group. The main idea behind such reallocation of sam-
pling budget is potential exploitation of similarities between
the algorithms within the group: sampling fewer of similar
algorithms frees up the budget to be distributed to other (dif-
ferent) algorithms, thus improving the coverage of algorithm-
hyperparameter search space at the earlier stage of BO.

As an input parameter for our method, we require a number
of data points Binit for the initial sampling and a maximum
number of combinations K, K ≤ Binit. If K is greater
than the maximum number of possible combinations computed
based on the input operation steps k =

∏z
i=1|Oi|, then we use

the Algorithm 2 to randomly regroup algorithms in operators
to ensure k ≤ K. Algorithm 1 consists of the three following
steps:

1) Generate the list of combinations: List out k all possible
combinations of groups for all z operators; apply RAN-
DOMREGROUPPING until k is small enough (k ≤ K)
(lines 4− 6).

2) Allocate budget to combinations: first allocate budget to
all combinations based on the number of algorithms and
hyperparameters behind (lines 6 - 12). Then, if there
is any remaining budget Bremain, randomly allocate
Bremain to the top k

η combinations ordered by their
size (i.e. the number of algorithms and hyperparameters
in the combination). We take into account the size of
the combination to allow larger combination get more
chance to get a larger budget.

3) Sampling configurations: each combination s is sam-
pled by an existing sampling approach (e.g., LHD,
quasi-random, here we use quasi-random) to get a
trial sequence sj = (G1, . . . , Gz) (lines 7 − 17);
Lastlty, the generated configurations must be verified by
CHECKFORBIDDEN6.

Lastly, the generated configurations are shuffled to remove
potential impact of grouped configurations by combinations.
This is highly recommended since, in some cases, the com-
putational optimization budget, e.g., run time limit, ran out
before finishing this initialization step.

6 an external function uses to verify a combination of algorithms/a config-
uration with the forbidden rules defined by user.



Algorithm 1: Combination-based sampling
Input:
M: sequence of operators, Λ: hyperparameter spaces, Binit:
number of initial samples, K: number of combinations of
grouping of algorithms over operators, η = 2: proportion of
combinations to be chosen to assign more budget if any
remaining budgets are available.
Output: Θ: set of configurations
// 1-GENERATING COMBINATIONS

1 k =
∏z
i=1|Oi| // maximum number of possible

combinations
2 if k > K then
3 (M, k) = RANDOMREGROUPPING(M,K)

// Algorithm 2

4 Create a list s of all possible combinations from
{G1

1, . . . , G
g1
1 } × . . .× {G1

z, . . . , G
gz
z }

// 2-ALLOCATE BUDGETS TO k COMBINATIONS

5 lc = Binit
k

// number of inital samples per
combination

6 m = 1
k

∑k
i=1 (|Λsi |+|si|)// average number of

algorithms and hyperparameters of all
combinations

7 Θ = ∅ // set of initial configurations
8 foreach j ∈ {1, . . . , k} do
9 lj = blc ×

|Λs(j)|+|sj |
m

c

10 lj =

{
1, if lj = 0.

lj , otherwise.

11 if Bremain = Binit −
∑k
i=1 j > 0 then

// Randomly allocate Bremain to the top k
η

combinations based on the number of
algorithms and hyperparameters

// 3-SAMPLING CONFIGURATIONS
12 foreach j ∈ {1, . . . , k} do
13 Θj = ∅ // feasible configurations in the jth

combination
14 while |Θj |≤ lj do
15 Θj = Θj ∪ SAMPLING(sj ,Λj , lj − |Θj |)

// SAMPLING is done via an existing
approach, here we opted quasi-random
sampling with minor adjustments

16 foreach λ ∈ Θj do
17 if CHECKFORBIDDEN(λ) then
18 Θj = Θj \ λ

19 Θ = Θ ∪ Θj

RANDOMREGROUPING method used in Algorithm 1 is
presented in Algorithm 2. For a sequence of operators which
consists of multiple grouping of algorithms, it produces, via
a regrouping, k combinations of operators (k ≤ K) using the
following steps:

1) Step 1 (lines 3 − 9): Based on the number of the
grouping in operators, we list out all possible solutions
of regrouping to have k combinations.

2) Step 2 (line 10): Randomly choose one solution
schosen = (c1, . . . , cz) where ci is number of grouping
to be created for the operator Oi.

3) Step 3 (lines 12 − 28): For each operator Oi, we
randomly group into ci groups.

Algorithm 2: Random Regrouping
Input:
M =

(
{G1

1, . . . , G
g1
1 }, . . . , {G1

z . . . G
gz
z }
)

: sequence of
operators, K: number of combinations
Output: Mnew: new sequence of operators, k: new number

of combinations
1 k = K // number of all possible combinations
2 S = ∅ // split solutions
3 C1 = {1, . . . , g1}, . . . , Cz = {1, . . . , gz} // set of

possible groupings of Oi∈{1,...,z}
// List out all split solutions

4 Create a list of all possible splits H = {hi} where
hi = (c1, . . . , cz) : cj ∈ Cj∀j // Select split
solutions which can produce k combinations,
k ≤ K

5 while S = ∅ do
6 S ← {h = (c1, . . . , cz) ∈ H :

(∏
j cj
)

= k}
7 if S = ∅ then
8 k = k − 1

9 schosen ∼ U(S)// randomly choose one solution
10 Mnew = (∅1, . . . ,∅z), i = 1
11 foreach c ∈ schosen do
12 ni = |Oi|
13 if c = ni then
14 Oi = {{G1

i }, . . . , {Gnii }}
15 else if c = 1 then
16 Oi = {G1

i , . . . , G
ni
i }

17 else
18 G = ∅, O0 = Oi
19 while ni > 0 do
20 G0 = ∅, nsize = dni

c
e

21 if ni > nsize then
22 G0 ={Random pick nsize items in O0}
23 else
24 G0 = {O0}
25 G = G ∪G0, O0 = O0 \G0, ni = |O0|
26 Oi = {G}

27 M(i)
new = Oi, i = i+ 1

28 return Mnew, k

C. The proposed BO and AutoML approaches

To take advantage of the new hyperparameter class and
the regrouping of algorithms proposed in Section IV-A and
the new sampling approach introduced in Section IV-B, we
introduce a new BO library for AutoML and an AutoML
framework:

• We introduce a BO library for AutoML optimization,
named BO4AutoML7, where the new hyperparameter
classes and our sampling approaches are implemented. In
this work, we use Tree-structured Parzen Estimator (TPE)
implemented in Hyperopt [23] for the surrogate model
and Expected improvement (EI) [15] for the acquisition
function. The schematic overview of BO4AutoML is
shown in the grey rounded rectangle in Fig. 2.

7 Available at https://github.com/ECOLE-ITN/BO4ML
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Fig. 2. Schematic overview of the proposed RobustAutoML framework

• Built on top of BO4AutoML and the well-known Au-
toML framework -Auto-sklearn, we introduce a new Au-
toML framework7, here we dub RobustAutoML8, where
BO4AutoML opts as the underlying optimizer and search
space is converted from Auto-sklearn. The overall struc-
ture of Robust4AutoML is summarized in Fig. 2.

In this work, we use a budget of 50 samples for the initial
sampling step, and the selected algorithms are grouped follows
the suggestions in [20] and [22].

V. EXPERIMENTAL SETUP

The performance of our proposed approach is empirically
evaluated on two scenarios with 2 and 6 operators in the
pipelines. In both scenarios, we will compare the results
against the TPE approach without our proposed initial sam-
pling approach. The first scenario (section V-A) involves the
class imbalanced problems with a search space of two opera-
tors, i.e., imbalanced resampling techniques and classification
algorithms, which are used in [21]. The second scenario
(section V-B) will be implemented with the full search space
used in the Auto-Sklearn framework [3].

A. First experiment

In this experiment, we compared the performance of our
proposed BO approach, i.e., BO4AutoML, to against the BO
implemented in Hyperopt [23] (Hyperopt) on the scenario of
optimizing the ML pipeline of two operators, i.e., imbalanced-
resampling operator and classification operator for the class-
imbalanced problems. We reproduced the experimental setup
of [21]:
• Dataset: we used 44 binary class imbalanced datasets,

which are presented in Fig. 3. For each dataset, the
Imbalance Ratio (IR)9 on the x-axis and the number
of instances (#Instances) on the y-axis. The number of
attributes marks with colors. Their number of instances
ranges from 129 to 5472, and their number of features

8Due to the page limitation, the detailed discussion on RobustAutoML can
be found in Section I of the supplementary material.

9The ratio of the number of majority class instances to that of minority
class instances, ranges here from 1.82 to 129.44.
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Fig. 3. Overview of the characteristics of 44 imbalanced benchmark datasets.
The scatter plot shows the Imbalance Ratio (#IR) and the number of instances
(#Instances) for all considered imbalanced datasets on a logarithmic scale. The
color indicates the number of attributes (#Features).
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Fig. 4. Overview of the characteristics of 73 AutoML benchmark datasets.
The scatter plot shows the number of features (#Features) and the number of
instances (#Instances) for all examined datasets on a logarithmic scale. The
color indicates the number of samples that contain missing value (#Incomplete
instances). The symbols indicate the number of classes, which ranges from 2
to 355 classes and includes 41 binary-class datasets, 32 multi-class datasets.

ranges from 3 to 19. The full list of datasets is given in
the Section II-A of the supplementary material.

• Operators: The first operator is the resampling operator,
aiming to resamples the imbalanced input dataset to have
a balanced dataset. The resampling operator includes 21
resampling approaches; they fall into 4 major groups,
such as No resampling, Over-resampling (7 algorithms),
Under-resampling (11 algorithms), Combine-resampling
(2 algorithms). The final operator is the classification
operator, with 5 classification algorithms (i.e., Support
Vector Machines (SVM), Random Forest (RF), K-Nearest
Neighbors (KNN), Decision Trees (DTC), and Logistic
Regression (LR)).

• Parameter setting: We used a budget of 500 function
evaluations, with the original experimental setup, data
pre-processed and source code provided by [21]. Our
results for Hyperopt resemble those of [21], with minor
differences because of our higher versions of python en-
vironment (Python-3.7.2). We select two different values
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Fig. 5. Illustration on the number of samples allocated to different combina-
tion of methods in random sampling implemented in Hyperopt (top) vs. our
proposed approach (bottom). Cases with 20 (left) and 50 (right) samples are
shown here. Figure best viewed in color.

of the initial sample size as 20 and 50. The 5-fold cross-
validation approach is used, and the averaged geometric
mean values over 10 repetitions are reported.

B. Second experiment

In order to evaluate the proposed approach in a higher
number of operators, we compared the performance of our
AutoML framework, includes two BO approaches, to six
well-known AutoML frameworks, i.e., Auto-sklearn (BO and
Random search), HPsklearn, TPOT [24], ATM [25], H20 [26].
We experiment with our approaches as the same experimental
setup with 73 AutoML benchmark datasets reported in [18],
with their original data train/test split technique, i.e., 30% for
testing and the remaining for training. The full list of datasets
is given in Section II-B of the supplementary materials file.

For a fair comparison, we use a similar computational
resource with that used in [18]. For clarification, all exper-
iments are conducted using our available computation clus-
ters, namely DAS-5 [27], each computation node (32 cores)
parallelly runs 4 experiments, i.e., a fixed 8 cores for one
experiment. All experiments performed 10 runs with different
random seeds, with a time limit of 1 hour. The performance
of a single configuration is limited to 10 minutes with 4-
folds cross-validation on training data, i.e., the evaluation of
a fold is allowed to take 150 seconds. The evaluation of a
configuration will be aborted and returned a zero if any folds
got an error, e.g., infeasible configuration, timeout. Lastly, the
average accuracy values on test data over 10 runs are reported.

VI. RESULTS AND DISCUSSION

In this section, we report and discuss the results obtained
from the above experimental setups. We have two goals in per-
forming our experiments. Firstly, to compare the performance
of the Bayesian optimization with the help of our proposed
sampling approach against that without our contributions in
terms of AutoML optimization for class-imbalance problems,
with a search space of two operators. Secondly, we compare
those against the state-of-the-art AutoML frameworks with a
search space of six operators.
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Fig. 6. Illustration on the distribution of samples obtained via initial sampling
methods on the level of individual methods. The left part shows the case with
20 samples, while the case with 50 samples is shown on the right.

A. First experiment results

The results of the first experiment are presented in Table II
to illustrate the performance between BO with and without
the help of our proposed approach in two different initial
sample sizes, i.e., 20 (left, not shaded) and 50 (right, grey
shaded). In both scenarios, the highest performance for the
corresponding dataset is highlighted in bold. The method
performs significantly worse than the best according to the
Wilcoxon sign-rank test with α = 0.05 is underlined. A
value labeled with ∗ indicates the highest result obtained for
the corresponding dataset. Two extra rows at the end display
additional summaries. The first extra row shows the number
of times each scenario got the highest value over 44 datasets.
The last extra row indicates the number of times each approach
was significantly better than the other in group. Looking at the
table, we can observe that:
• In the scenario of 20 initial samples, Hyperopt achieves

the highest result on 28/44 cases, and our approach - on
20/44 cases. However, our approach significantly wins
on 2 tested cases, i.e., "ecoli3" and "yeast-2_vs_8" and is
not significantly worse than Hyperopt in any tested cases.

• In the second scenario, our approach achieves the highest
value on 31/44 cases and Hyperopt- on 16/44 cases.
Similarly, our approach is not significantly worse than
Hyperopt in any tested cases but significantly better on
4 examined datasets, i.e., "glass0", "yeast1", "ecoli4",
"yeast-1-2-8-9_vs_7".

To investigate the sampling behaviour of both approaches
in those initial sample sizes, we provide two plots: Fig. 5
shows the distributions of samples, and Fig. 6 displays those
distributions on the level of individual algorithms. In both
plots, the case with 20 samples on the left and 50 on the
right of the plot. Looking at that figures, we can observe that
our approach sampled over all combinations of grouping over



TABLE II
AVERAGE GEOMETRIC MEAN (ROUNDED TO 4 DECIMALS) BASED ON TWO
DIFFERENT INITIAL SAMPLING SETTINGS, I.E., HYPEROPT APPROACH AND

OUR APPROACH (OUR), OVER 10 REPETITIONS FOR THE 44 EXAMINED
DATASETS, ORDERED BY INCREASING IMBALANCE RATIO (#IR) VALUE.

Dataset #IR 20 initial samples 50 initial samples
Hyperopt Our Hyperopt Our

glass1 1.82 0.7935 0.7944 ∗0.7970 0.7944
ecoli-0_vs_1 1.86 0.9864 0.9864 0.9864 ∗0.9868
wisconsin 1.86 0.9814 0.9817 0.9818 ∗0.9819
pima 1.87 ∗0.7712 0.7696 0.7703 0.7707
iris0 2 ∗1 ∗1 ∗1 ∗1
glass0 2.06 0.8777 0.8748 0.8740 ∗0.8853
yeast1 2.46 0.7319 0.7332 0.7321 ∗0.7345
haberman 2.78 ∗0.7049 0.7012 0.6991 0.7040
vehicle2 2.88 0.9908 ∗0.9927 0.9912 0.9918
vehicle1 2.9 0.8690 0.8684 0.8713 ∗0.8735
vehicle3 2.99 0.8463 0.8486 0.8416 ∗0.8506
glass-0-1-2-3_vs_4-5-6 3.2 ∗0.9567 0.9539 0.9534 0.9553
vehicle0 3.25 ∗0.9876 0.9867 0.9867 0.9867
ecoli1 3.36 0.9038 ∗0.9053 0.9050 0.9043
new-thyroid1 5.14 0.9980 0.9972 ∗0.9983 0.9966
new-thyroid2 5.14 ∗0.9972 0.9964 0.9952 0.9966
ecoli2 5.46 0.9363 0.9353 ∗0.9365 0.9360
segment0 6.02 ∗0.9993 0.9992 0.9992 0.9992
glass6 6.38 0.9488 0.9514 ∗0.9518 0.9511
yeast3 8.1 0.9423 0.9421 0.9427 ∗0.9441
ecoli3 8.6 0.9038 0.9059 0.9064 ∗0.9072
page-blocks0 8.79 ∗0.9475 0.9472 0.9464 0.9457
yeast-2_vs_4 9.08 0.9549 0.9542 ∗0.9554 0.9531
yeast-0-5-6-7-9_vs_4 9.35 0.8245 0.8177 ∗0.8261 0.8193
vowel0 9.98 0.9567 ∗0.9593 0.9525 0.9561
glass-0-1-6_vs_2 10.29 0.8404 0.8421 0.8334 ∗0.8460
glass2 11.59 ∗0.8504 0.8461 0.8462 0.8471
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 ∗1
yeast-1_vs_7 14.3 0.7991 0.8013 ∗0.8033 0.8010
glass4 15.46 ∗0.9390 0.9230 0.9299 0.9324
ecoli4 15.8 0.9712 0.9694 0.9632 ∗0.9737
page-blocks-1-3_vs_4 15.86 0.9931 0.9874 0.9917 ∗0.9944
abalone9-18 16.4 ∗0.8899 0.8829 0.8856 0.8859
glass-0-1-6_vs_5 19.44 0.9494 ∗0.9571 0.9564 0.9565
shuttle-c2-vs-c4 20.5 ∗1 ∗1 ∗1 ∗1
yeast-1-4-5-8_vs_7 22.1 0.6989 0.7024 ∗0.7052 0.7045
glass5 22.78 0.9589 0.9558 0.9591 ∗0.9595
yeast-2_vs_8 23.1 0.8136 ∗0.8348 0.8136 0.8150
yeast4 28.1 0.8764 0.8788 0.8782 ∗0.8788
yeast-1-2-8-9_vs_7 30.57 0.7500 0.7489 0.7397 ∗0.7538
yeast5 32.73 ∗0.9802 0.9798 ∗0.9802 0.9800
ecoli-0-1-3-7_vs_2-6 39.14 ∗0.9265 0.9076 0.9113 0.8982
yeast6 41.4 0.8953 0.8918 0.8939 ∗0.8955
abalone19 129.44 0.7958 0.7974 0.7992 ∗0.7998

Highest performance 15 8 12 19
Significantly better performance 0 2 0 4

two operators in both sample sizes. In contrast, the sampling
strategy used in Hyperopt samples has much less coverage in
terms of those combinations. This is because we consider the
choice of algorithms in operators is different with categorical
parameters, while Hyperopt does not. The plots clearly explain
the reason BO performs better with the help of our approach.

B. Second experiment results

The experimental results of the second experiment are pre-
sented in Table III. This table reports the average accuracy over
10 repetitions to illustrate the performance differences between
the two implemented approaches in our AutoML framework10,
i.e., TPE with (RobustAutoML) and without (Auto-Hyperopt)

10For readability, RobustAutoML stands for TPE with our sampling ap-
proach, and Auto-Hyperopt stands for the original version of TPE imple-
mented by Hyperopt without our improvement

1 2 3 4 5 6 7 8

RobustAutoML
TPOT

Auto-sklearn
H2O ATM

Auto-Hyperopt
HPsklearn
Random

CD

Fig. 7. Comparison of all approaches against each other with the Nemenyi
test with 5% significance level.

our sampling approach, to compare them against other well-
known AutoML frameworks, i.e., Auto-sklearn-SMAC (Auto-
sklearn) and Auto-sklearn-Random search (Random), HP-
sklearn, TPOT, ATM, H20. Values in bold indicate the highest
value in the corresponding dataset. Underline indicates signif-
icantly different results from the best method according to a
Wilcoxon signed-rank test with p < 0.05. Two extra rows
at the end show additional summaries. The first extra row
shows the number of times each approach achieved the highest
performance over 73 examined datasets. The last row presents
the number of cases that those methods significantly win other
compared methods. The results allow the following insights:

• Comparing the results of approaches using the search
space of Auto-sklearn includes our two approaches, Auto-
sklearn and Random. Firstly, it should not be surprising
that all Bayesian optimization approaches perform better
than Random search in most tested cases. This has been
proved in other works [4], [21]. Secondly, Auto-sklearn
won on more tested cases than Auto-Hyperopt with
the same search space. A possible explanation for this
might be that Hyperopt lacks support for K-fold cross-
validation yet, while SMAC, BO variant used in Auto-
sklearn, uses racing algorithms to skip performing on
unnecessary folds. Consequently, within the same budget
of time, Auto-Hyperopt evaluated much less number of
configurations than Auto-sklearn. Lastly, the experimental
results clearly indicate that the performance of TPE with
the help of our sampling approach significantly improved.

• From the results of three approaches using TPE, we can
observe that: Firstly, comparing the two approaches not
use our sampling, i.e., HPsklearn vs. Auto-Hyperopt, we
can conclude that the search space of Auto-sklearn does
not improve the final performance of TPE. Secondly,
results clearly demonstrate that significant improvement
was achieved with the help of our sampling approach.
More precisely, in our 23 times significantly outperforms
others, our approach significantly won Auto-Hyperopt 16
cases, won HPsklearn -20 cases. Furthermore, in all 3
cases where Auto-Hyperopt achieves the highest results,
e.g., tasks 24, 3543, and 14967, both our approach and
Auto-Hyperopt get maximum accuracy in those cases.
On the other hand, HPsklearn got the highest results
in 3 cases, e.g., tasks 24, 146607, 189355, but never
significantly better than our approach in any of those.



TABLE III
AVERAGE ACCURACY (ROUNDED TO 5 DECIMALS) OVER 10 REPETITIONS FOR THE 73 OPENML DATASETS, ORDERED BY #TASK ID. THE THIRD AND

FOURTH COLUMNS SHOWS OUR EXPERIMENTAL RESULTS, I.E., TPE WITH AND WITHOUT OUR SAMPLING APPROACH. THE REMAINING COLUMNS
CONTAIN RESULTS OBTAINED BY OTHER AUTOML FRAMEWORKS ACCORDING TO [18]

OpenML IDs Our AutoML framework Existing AutoML frameworks [18]
#TaskID Dataset TPE with TPE without Auto-sklearn HPsklearn TPOT ATM H2O

Name (#ID) our sampling our sampling SMAC Random
(RobustAutoML) (Auto-Hyperopt)

3 kr-vs-kp (3) 0.99656 0.99510 0.98986 0.99062 0.99051 0.99431 0.99326 0.99426
12 mfeat-factors (12) 0.98417 0.98117 0.97767 0.97633 0.94758 0.97333 0.98178 0.97433
15 breast-w (15) 0.97952 0.97048 0.96875 0.95873 0.96000 0.96571 0.98474 0.96286
23 cmc (23) 0.57285 0.55158 0.54638 0.53262 0.53047 0.55882 0.58100 0.53733
24 mushroom (24) 1 1 1 0.99993 1 1 1 0.99848
29 credit-approval (29) 0.88744 0.86522 0.87289 0.85507 0.85956 0.86377 0.89133 0.86184
31 credit-g (31) 0.76600 0.72733 0.73433 0.72400 0.70121 0.74400 0.76578 0.74867
41 sick (42) 0.95171 0.92878 0.91954 0.91911 0.92585 0.92732 0.94504 0.93122
53 soybean (54) 0.86457 0.83858 0.82008 0.81969 0.75787 0.81811 0.81522 0.82717

2079 vehicle (188) 0.69502 0.66018 0.63886 0.62670 0.64072 0.65566 0.64190 0.65570
3021 eucalyptus (38) 0.99152 0.98737 0.98288 0.98550 0.97438 0.98746 - 0.98419
3543 irish (451) 1 1 0.99019 0.99081 0.99404 0.99091 1 0.97967
3560 analcatdata_dmf (469) 0.23042 0.21125 0.20365 0.20382 0.19139 0.20833 0.27028 0.19542
3561 profb (470) 0.63119 0.64752 0.65687 0.64563 0.63762 0.66832 0.71221 0.71089
3904 jm1 (1053) 0.82404 0.81393 0.81344 0.81126 0.80998 0.81810 0.82100 0.74819
3917 kc1 (1067) 0.87393 0.85972 0.85118 0.85340 0.84044 0.86019 0.86856 0.80869
3945 KDDCup09_appete (1111) 0.98323 0.98197 0.98244 0.98228 0.98189 0.98182 - 0.96555
3946 KDDCup09_churn (1112) 0.92901 0.92624 0.92725 0.92586 0.92599 0.92624 - 0.78802
3948 KDDCup09_upsell (1114) 0.94345 0.94116 0.95094 0.95030 0.95068 0.95085 - 0.93415
7592 airlines (1590) 0.86251 0.85769 0.86938 0.87013 0.86727 0.87089 0.85448 0.86656
7593 bank-marketing (1596) 0.70278 0.80902 0.96395 0.89143 0.95227 0.94542 0.66390 0.92908
9910 blood-transfusi (4134) 0.80107 0.78073 0.78890 0.77762 0.77798 0.80249 0.77087 0.80044
9952 cnae-9 (1489) 0.91319 0.90826 0.89716 0.89205 0.89273 0.90450 0.89963 0.89205
9955 first-order-the (1492) 0.67167 0.65146 0.65172 0.62795 0.54667 0.61146 0.61097 0.56435
9977 nomao (1486) 0.96525 0.95924 0.96903 0.96656 0.96891 0.97026 0.96055 0.97146
9981 phoneme (1468) 0.95093 0.94228 0.94167 0.93117 0.94012 0.94784 0.96049 0.95216
9985 one-hundred-pla (1475) 0.61029 0.59853 0.59695 0.58601 0.58293 0.61291 0.60272 0.61656
10101 adult (1464) 0.80667 0.76578 0.76667 0.77778 0.78044 0.78711 0.81956 0.73378
14952 covertype (4534) 0.97094 0.96623 0.96590 0.96244 0.96964 0.96913 0.96464 0.97160
14954 Bioresponse (6332) 0.83642 0.81111 0.79012 0.76173 0.76667 0.81009 0.81701 0.78333
14965 Amazon_employee (1461) 0.90307 0.90007 0.90447 0.90398 0.90451 0.90705 0.89957 0.90060
14967 PhishingWebsite (23380) 1 1 0.98265 0.99841 0.97131 1 - 1
14968 GesturePhaseSeg (6332) 0.83580 0.80432 0.77353 0.77058 0.75823 0.81173 0.79155 0.80000
14969 MiceProtein (4538) 0.64001 0.61864 0.67733 0.65004 0.67272 0.67586 0.66217 0.70165
34538 cylinder-bands (4550) 1 0.99907 1 0.99907 0.99983 1 1 1
34539 cylinder-bands (4135) 0.94825 0.94557 0.94761 0.94444 0.94750 0.94891 0.94606 0.95114

125920 cjs (23381) 0.63133 0.56200 0.56667 0.55556 0.56844 0.56867 0.66978 0.58400
146195 dresses-sales (40668) 0.77358 0.77321 0.82109 0.79628 0.82886 0.84123 0.77698 0.86500
146212 higgs (40685) 0.99965 0.99945 0.99978 0.99968 0.99253 0.99974 0.99955 0.99987
146606 numerai28.6 (23512) 0.70605 0.69761 0.72296 0.71930 0.70743 0.72031 0.67135 0.71281
146607 SpeedDating (40536) 0.86611 0.85871 0.86291 0.86225 0.86661 0.86392 0.86128 0.84968
146800 connect-4 (40966) 0.99969 0.99321 0.99043 0.99506 0.96380 0.99506 1 0.99551
146817 dna (40982) 0.80497 0.78216 0.78268 0.76364 0.75955 0.79091 0.76415 0.78062
146818 shuttle (40981) 0.88647 0.85845 0.87053 0.85556 0.86913 0.86184 0.89050 0.87633
146819 churn (40994) 0.95802 0.93951 0.94074 0.92407 0.92593 0.94547 0.96975 0.93642
146820 Devnagari-Scrip (40983) 0.97355 0.97906 0.98612 0.98581 0.95289 0.98540 0.98657 0.98574
146821 CIFAR_10 (40975) 0.99441 0.98748 0.97264 0.97958 0.98786 0.99422 0.96763 0.99191
146822 MiceProtein (40984) 0.94473 0.93189 0.93088 0.93333 0.90664 0.94055 0.92564 0.94185
146824 car (40979) 0.98433 0.98117 0.97783 0.97367 0.98121 0.96883 0.97750 0.97600
146825 Internet-Advert (40996) 0.84300 0.83891 0.87844 0.84450 0.85060 0.78089 0.82114 0.87341
167119 mfeat-pixel (41027) 0.84647 0.83956 0.86775 0.85378 0.88691 0.88735 0.87540 0.90047
167120 Australian (23517) 0.52257 0.52134 0.51926 0.51939 0.52033 0.52082 0.51941 0.50635
167121 steel-plates-fa (40923) 0.86652 0.74910 0.74009 0.02169 0.86438 - 0.89470 0.58220
167124 wilt (40927) 0.39675 0.37813 - - 0.32093 0.29429 0.32001 0.36389
167125 segment (40978) 0.97713 0.97033 0.97774 0.97114 0.97358 0.97398 0.96900 -
167140 climate-model-s (40670) 0.96485 0.95397 0.95962 0.95889 0.96109 0.95931 0.95282 0.96904
167141 Fashion-MNIST (40701) 0.96273 0.95367 0.95620 0.95313 0.94533 0.96000 0.95007 0.95370
168329 jungle_chess_2p (41169) 0.31690 0.29294 0.30692 0.29566 0.28741 0.33576 0.32108 -
168330 APSFailure (41168) 0.68479 0.66670 0.71814 0.69273 0.68494 0.69642 0.63788 0.71786
168331 christine (41166) 0.60445 0.59520 0.66933 0.63762 0.65451 0.65075 0.67940 0.67841
168332 jasmine (41165) 0.42507 0.38497 0.44843 0.39922 0.34203 - 0.35252 -
168335 sylvine (41150) 0.92248 0.91035 0.94334 0.92891 0.87477 0.93850 0.90234 0.94604
168337 albert (41159) 0.78205 0.72707 0.64227 - 0.74347 0.72548 0.66063 0.81928
168338 MiniBooNE (41161) 0.98303 0.98035 0.74757 0.75042 0.82518 0.98495 0.90729 0.95625
168868 guillermo (41138) 0.98985 0.98900 0.99287 0.99137 0.99360 0.99339 0.97097 0.99369
168908 riccardo (41142) 0.73659 0.72565 0.74754 0.73081 0.71630 0.72645 0.72169 0.72811
168909 dilbert (41163) 0.95040 0.94437 0.98357 0.94793 0.97243 0.96254 0.95391 0.96988
168910 fabert (41164) 0.67565 0.66177 0.70255 0.67395 0.69104 0.68336 0.67357 0.71752
168911 robert (41143) 0.83259 0.80748 0.82009 0.80603 0.80078 0.82366 0.79911 0.80906
168912 volkert (41146) 0.95709 0.94655 0.93921 0.94753 0.94675 0.95533 0.93476 0.92510
189354 dionis (1169) 0.64626 0.63957 0.66665 0.59845 0.65080 0.66895 0.63671 0.61266
189355 jannis (41167) 0.73916 0.68112 - - 0.77971 - 0.38666 -
189356 helena (41147) 0.64810 0.64737 0.68314 0.66709 0.66694 0.66110 0.80064 0.64798

Number of cases achieved the highest values 28 3 11 - 3 9 18 15
Significant wins over other approaches 23 - 9 - 1 6 13 13



• Overall, our proposed approach shows the highest results
in more cases than all compared approaches, 28/73.
Moreover, according to the results of the Wilcoxon
signed-rank test, our approach significantly outperforms
other compared approaches in 23/73 test cases. In con-
trast, Auto-Hyperopt, without our improvement, does not
significantly win in any datasets.

Comparing all approaches together, they are significantly
different according to Friedman’s test in average accuracy with
p = 6.35E − 11. Thus, we perform a post-hoc multiple com-
parison test with the Nemenyi test (α = 0.05), shown in Fig. 7,
approaches that have a distance greater than CD 11 are consid-
ered significantly different. Looking at this figure, we conclude
that the proposed approach is significantly better than both
TPE-based approaches. Additionally, the proposed approach is
significantly better than five other AutoML frameworks, e.g.,
H20, ATM, Auto-Hyperopt, HPSklearn, and Random Search.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we formulate AutoML as an optimization
process of the machine learning pipeline. Then, built on
this paradigm, we proposed: a new class for modeling the
choice of algorithms and the concept of grouping algorithms;
Second, a robust sampling approach for Bayesian optimization
for AutoML optimization problems; Third, a BO approach
for AutoML optimization, where our proposed sampling ap-
proached and new hyperparameter classes are implemented;
Lastly, a robust AutoML framework, which taking advantage
of the proposed BO approach above. The experimental results
demonstrated the effectiveness of our approaches in two in-
dependent experiments over 117 datasets. The results clearly
show significant improvement achieved by using our approach.

There are several interesting research directions for extend-
ing this work. First, we intend to apply the proposed sampling
approach to other AutoML frameworks. Additionally, we plan
to apply some pruning approaches such as Hyperband [7] and
racing algorithm to reduce the time of evaluating configura-
tions that are not promising by evaluating fewer folds.
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