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A spatially oscillating pair potential ΔðrÞ ¼ Δ0e2iK·r with momentum K > Δ0=ℏv drives a deconfine-
ment transition of the Majorana bound states in the vortex cores of a Fu-Kane heterostructure (a 3D
topological insulator with Fermi velocity v, on a superconducting substrate with gap Δ0, in a perpendicular
magnetic field). In the deconfined phase at zero chemical potential the Majorana fermions form a
dispersionless Landau level, protected by chiral symmetry against broadening due to vortex scattering. The
coherent superposition of electrons and holes in the Majorana Landau level is detectable as a local density
of states oscillation with wave vector

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − ðΔ0=ℏvÞ2

p
. The striped pattern also provides a means to

measure the chirality of the Majorana fermions.

DOI: 10.1103/PhysRevLett.126.226801

Introduction.—Deconfinement transitions in physics refer
to transitions into a phase where particles can exist as
delocalized states, rather than only as bound states. Unlike
thermodynamic phase transitions, the deconfinement tran-
sition is not associated with a spontaneously broken sym-
metry but with a change in the momentum space topology of
theground state [1].Aprominent example in superconductors
is the appearance of a Fermi surface for Bogoliubov quasi-
particles when a superconductor becomes gapless [2–5].
Such a Bogoliubov Fermi surface was observed recently [6].
Motivated by these developments we consider here the

deconfinement transition for Majorana zero modes in the
vortex core of a topological superconductor. We will
demonstrate, analytically and by numerical simulations,
that the delocalized phase at zero chemical potential
remains a highly degenerate zero-energy level—a super-
conducting counterpart of the Majorana Landau level in a
Kitaev spin liquid [7,8]. Unlike a conventional electronic
Landau level, the Majorana Landau level has a nonuniform
density profile: quantum interference of the electron and
hole components creates spatial oscillations with a wave
vector set by the Cooper pair momentum that drives the
deconfinement transition.
The system of Ref. [6] is shown in Fig. 1. It is a thin layer

of topological insulator deposited on a bulk superconduc-
tor, such that the proximity effect induces a pairing gap Δ0

in the surface states. A superflow with Cooper pair
momentum K lowers the excitation energy for quasipar-
ticles with velocity v by the Doppler shift v · K, closing the
gap when vK exceeds Δ0. Following Fu and Kane [9], we
add a perpendicular magnetic field B to confine a Majorana
zero mode to the core of each h=2e vortex that penetrates
the superconductor. We seek to characterize the deconfined
phase that emerges when vK > Δ0.

Confined phase.—To set the stage we first investigate the
confined phase for vK < Δ0. Electrons on the two-dimen-
sional (2D) surface of a 3D topological insulator have the
Dirac Hamiltonian vk · σ − μ, with μ the chemical poten-
tial, v the energy-independent Fermi velocity, k ¼ ðkx; kyÞ
the momentum operator in the x − y surface plane, and
σ ¼ ðσx; σyÞ two Pauli spin matrices. (The 2 × 2 unit
matrix σ0 is implicit when the Hamiltonian contains a
scalar term.) Application of a perpendicular magnetic field
B (in the z direction), adds an in-plane vector potential
A ¼ ðAx; AyÞ to the momentum, k ↦ k − eA. The electron
charge is þe, and for ease of notation we will set v and ℏ
both equal to unity in most equations.
The superconducting substrate induces a pair potential

Δ ¼ Δ0eiϕ. The phase field ϕðrÞ winds by �2π around
each vortex, at position Rn, as expressed by

FIG. 1. Schematic of the Fu-Kane heterostructure [9], a
topological insulator with induced superconductivity (gap Δ0)
in a perpendicular magnetic field B. Vortices (red) bind midgap
states known as Majorana zero modes. Here we study the
deconfinement transition in response to an in-plane supercurrent
(blue arrows, momentum K). When vK > Δ0 the zero modes
delocalize into a Majorana Landau level.
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∇ × ∇ϕðrÞ ¼ �2πẑ
X
n

δðr − RnÞ; ∇2ϕ ¼ 0: ð1Þ

The pair potential couples electrons and holes in the 4 × 4
Bogoliubov–de Gennes (BdG) Hamiltonian

H ¼
�
Kσx þ ðk − eAÞ · σ Δ0eiϕ

Δ0e−iϕ Kσx − ðkþ eAÞ · σ

�
; ð2Þ

at zero chemical potential, including a superflow momen-
tum field K ≥ 0 in the x direction [10]. The superflow can
be a screening current in response to a magnetic field in the
y direction [6], or it can result from an externally imposed
flux bias or current bias. The Zeeman energy from an in-
plane magnetic field has an equivalent effect [3] (although
it was estimated to be negligible relative to the orbital effect
of the field in the experiment [6]).
For vK < Δ0 a pair of Majorana zero modes will appear

in each vortex core, one at the top surface and one at the
bottom surface. We consider these separately [11,12].
Setting ΔðrÞ ¼ Δ0ðrÞe�iθ, in polar coordinates ðr; θÞ for
a�2π phase vortex at the origin, we need to solve the zero-
mode equation H�Ψ� ¼ 0 with

H� ¼
�
Kσx − ði∇þ eAÞ · σ Δ0ðrÞe�iθ

Δ0ðrÞe∓iθ Kσx þ ði∇ − eAÞ · σ

�
:

ð3Þ

The pair potential amplitude Δ0ðrÞ increases from 0 at
r ¼ 0 to a value Δ0 > 0 when r becomes larger than the
superconducting coherence length ξ0 ¼ ℏv=Δ0.
When K ¼ 0 this is a familiar calculation [13] which is

readily generalized to K > 0. The Majorana zero mode has
a definite chirality C, meaning that its four-component wave
function Ψ� is an eigenstate of the chirality operator Λ ¼
diagð1;−1;−1; 1Þ with eigenvalue C ¼ �1. One has
Ψþ ¼ ðiψþ; 0; 0;ψþÞ, Ψ− ¼ ð0; iψ−;ψ−; 0Þ with [14]

ψ�ðrÞ ¼ e∓Kye∓χðrÞ exp
�
−
Z

r

0

Δ0ðr0Þdr0
�
; ð4aÞ

χðrÞ ¼ e
2π

Z
dr0Bðr0Þ ln jr − r0j: ð4bÞ

The factor e∓χðrÞ is a power law for large r, so the zero
mode is confined exponentially to the vortex core as long as
K < Δ0. When K > Δ0 the solution (4) is no longer
normalizable: it diverges exponentially along the y axis.
This signals a transition into a deconfined phase, which we
consider next.
Deconfined phase.—In Fig. 2 we show results from a

numerical simulation of the deconfinement transition for
the model Hamiltonian described below. The left panel
shows zero modes confined to a pair of vortex cores for
K < Δ0; the right panel shows the deconfined state for

K > Δ0. The decay jΨj ∝ e−Kye−Δ0r in the confined phase
is anisotropic, with a decay rateΔ0 along the x axis and two
different decay rates Δ0 � K in the �y direction. The
direction into which the zero mode decays more slowly is
set by the chirality [15]: Fig. 2 shows C ¼ þ1 with a slow
decay in the −y direction, and for C ¼ −1 the slow decay is
in the þy direction.
In the deconfined phase the zero-mode density profile

has a pronounced periodic modulation in the x direction,
parallel to the superflow, with bifuration points at the vortex
cores. This striped pattern is unexpected for a Landau level.
We present an analytical description.
Chiral symmetry protected Majorana Landau level.—

The chiral symmetry of the Hamiltonian (2) plays a key role
in our analysis of the Majorana Landau level, similar to the
role it plays for Landau level quantization in graphene
[17,18] and in a Weyl superconductor [19]. Chiral sym-
metry means that H at μ ¼ 0 anticommutes with Λ. The
Hamiltonian then becomes block off diagonal in the basis
of eigenstates of Λ,

U†HU ¼
�

0 Ξ
Ξ† 0

�
; U ¼

0
BBB@

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1
CCCA; ð5aÞ

Ξ ¼
�
k− − eA− þ K Δ0eiϕ

Δ0e−iϕ −kþ − eAþ þ K

�
; ð5bÞ

where we have abbreviated k� ¼ kx � iky, A� ¼ Ax � iAy.
A zero mode is either a wave function ðu; 0Þ of positive

chirality with Ξ†u ¼ 0 or a wave function ð0; uÞ of negative
chirality with Ξu ¼ 0. The difference between the number
of normalizable eigenstates of either chirality is called the

FIG. 2. Intensity profile jΨðx; yÞj2 of a Majorana zero mode in
the vortex lattice [16]. Left panel: confined phase (K < Δ0).
Right panel: deconfined phase (K > Δ0). The dotted square
indicates the unit cell containing a pair of h=2e vortices. These
plots are for Majorana fermions of positive chirality; for negative
chirality the density profile is inverted, y ↦ −y.
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index of the Hamiltonian. It is topologically protected,
meaning it is insensitive to perturbations [20].
Vortices are strong scatterers [21], completely obscuring

the Landau level quantization in a nontopological super-
conductor [22]. Here chiral symmetry ensures that the
vortices cannot broaden the zeroth Landau level.
Helmholtz equation for the Majorana Landau level.—

Let us focus on the Landau level of positive chirality,
described by the equation Ξ†u ¼ 0. This 2 × 2 matrix
differential equation can be simplified by the substitution

uðrÞ ¼ e−Ky−qðrÞeð1=2ÞiϕðrÞσz ũðrÞ; ð6Þ

with ∂xq ¼ −
1

2
∂yϕþ eAy; ∂yq ¼ 1

2
∂xϕ − eAx;

ð7Þ

⇒

�−i∂x þ ∂y Δ0

Δ0 i∂x þ ∂y

�
ũ ¼ 0: ð8Þ

The fields A, ϕ, and K no longer appear explicitly in the
differential equation (8) for ũ, but they still determine the
solution by the requirements of normalizability and single
valuedness of the zero mode u.
Outside of the vortex core the spatial dependence of the

pair potential amplitude Δ0 may be neglected, and one
further simplification is possible: Substitution of ũ ¼ ðf; gÞ
gives g ¼ Δ−1

0 ði∂x − ∂yÞf and a scalar second-order differ-
ential equation for f,

∇2f ¼ Δ2
0f: ð9Þ

In the context of classical wave equations this is the
Helmholtz equation with an imaginary wave vector.
Equation (6) requires that ũ and hence f have an

exponential envelope eKy in the y direction. The
Helmholtz equation (9) then ties that to a plane wave ∝
e�iQx in the x direction, with wave vector Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − Δ2

0

p
.

This already explains the striped pattern in the numerical
simulations of Fig. 2. For a more detailed comparison we
proceed to a full solution of the Helmholtz equation.
Analytical solution of the Majorana Landau level wave

function.—The solutions of Eq. (9) for f are constrained by
the requirements of normalizability and single valuedness of
u. To determine the normalizability constraint we give the
field qðrÞ defined in Eq. (7) the integral representation [23]

qðrÞ ¼ 1

2Φ0

Z
dr0Bðr0Þ ln jr − r0j − 1

2

X
n

ln jr − Rnj: ð10Þ

We considerN vortices (each ofþ2π vorticity) in a region S
enclosing a flux Φ ¼ NΦ0, with Φ0 ¼ h=2e the super-
conducting flux quantum [24]. If we set B → 0 outside of S,
the field qðrÞ → ð1=2ÞðΦ=Φ0 −N Þ ln r ¼ 0 for r → ∞.
In view of Eq. (6), normalizability requires that e−Kyf is

square integrable for r → ∞. Near a vortex core e−qf ∝
jr − Rnj1=2f must be square integrable [25].
Concerning the single valuedness, the factor eiϕ=2 in

Eq. (6) introduces a branch cut at each vortex position Rn,
across which the function f should change sign, to ensure a
single-valued u. This is a local constraint: branch cuts can
be connected pairwise; hence there is no sign change in f
on a contour encircling a vortex pair.
We have obtained an exact analytical solution [26] of the

Helmholtz equation in the limit in which the separation of a
vortex pair goes to zero. We place the two vortices at the
origin of a disk of radius R, enclosing a flux h=e, with zero
magnetic field outside of the disk. The envelope function
then equals e−qðrÞ ¼ rmine−r

2
min=2R

2

, with rmin ¼ minðr; RÞ.
The two independent solutions are given by ũ ¼ ðf1; f0Þ

and ũ0 ¼ σxũ�, with

fn ¼ 2ine−inθKnðΔ0rÞ −
Z

Q

−Q
dpCnðpÞeixpþy

ffiffiffiffiffiffiffiffiffiffi
Δ2

0
þp2

p
;

CnðpÞ ¼ Δ−n
0 ðΔ2

0 þ p2Þ−1=2ðp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ p2

q
Þn: ð11Þ

The vortex pair is at the origin, with xþ iy ¼ reiθ, and Kn
is a Bessel function.
The corresponding zero modes follow from Eq. (6),

u ¼ e−qðrÞe−Kyðeiθf1; e−iθf0Þ; u0 ¼ σxu�: ð12Þ

For small r the zero modes tend to a constant (the factor 1=r
from K1 is canceled by the factor r from e−q). The large-r
asymptotics follows upon an expansion of the integrand
around the extremal points �Q, giving

fn → ð−1Þn e
Ky

Δn
0

�ðKþQÞne−iQx

iKx−Qy
−
ðK −QÞneiQx

iKxþQy

�
: ð13Þ

The zero modes decay as e−Kyfn ∝ 1=r for r ≫ R,
which needs to be regularized for a square-integrable wave
function [27–29]. In a chain of vortices (spacing b), the
superposition of the solution (13) decays exponentially in
the direction perpendicular to the chain [26]. The decay
length is λ ¼ bK=Q or λ ¼ bQ=K for a chain oriented
along the x or y axis, respectively.
Numerical simulation.—For a numerical study of the

deconfinement transition we represent the topological
insulator layer by the low-energy Hamiltonian [30,31]

H0ðkÞ ¼ ðv=a0Þ
X
j¼x;y

σj sin kja0 þ σzMðkÞ − μ;

MðkÞ ¼ M0 − ðM1=a20Þ
X
j¼x;y

ð1 − cos kja0Þ; ð14Þ

in the basis Ψ ¼ 2−1=2ðψ↑upper þ ψ↑lower;ψ↓upper − ψ↓lowerÞ
of spin-up and spin-down states on the upper and lower
surfaces [32]. The atomic lattice constant is a0, the Fermi
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velocity is v, and the chemical potential is μ. Hybridization
of the states on the two surfaces introduces the mass term
MðkÞ. We set M0 ¼ 0 to avoid the opening of a gap at
k ¼ 0 [11] but retain a nonzero M1 ¼ 0.2a0v in order to
eliminate the fermion doubling at a0k ¼ ðπ; πÞ.
In the corresponding BdG Hamiltonian the electron

block H0ðk − eAþ KÞ is coupled to the hole block
−H0ðkþ eA − KÞ by the s-wave pair potential Δ0eiϕ,
which we take to be the same for both layers. We assume
a strong type-II superconductor, for which we can take a
uniform magnetic field B and uniform pair potential
amplitude Δ0. The þ2π vortices are positioned on a square
lattice (lattice constant d0 ¼ 302a0) with two vortices per
unit cell.
The spectrum is calculated using the KWANT tight-

binding code [33,34]. In Fig. 3 we show the dispersionless
Landau levels for both chemical potential μ ¼ 0 and for
nonzero μ. The zeroth Landau level has energy
E0 ¼ �qeffμ, with qeffe the charge expectation value.

For the model Hamiltonian (2) we have [35]
qeff ¼ Q=K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

0=K
2

p
. The numerics at K ¼ 2Δ0

give a value 0.85, which is within 2% of
ffiffiffiffiffiffiffiffi
3=4

p ¼ 0.866.
The first Landau level is expected at energy E1 ¼ EL �
qeffμ with EL ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4πqeff
p

ℏv=d0, again in very good agree-
ment with the numerics. Notice that the flatness of the
dispersion persists at nonzero μ, even though the topo-
logical protection due to chiral symmetry [36] is only
rigorously effective at μ ¼ 0.
In Fig. 4 we compare the numerical and analytical results

for the case in which the two h=2e vortices are both placed
at the center of the unit cell. The agreement is quite
satisfactory, given the different geometries (a vortex lattice
in the numerics, a single h=e vortex in the analytics).
Striped local density of states.—The striped pattern of

the Majorana Landau level is observable by tunneling
spectroscopy, which measures the local density of states

ρðrÞ ¼
X
k

½jψeðrÞj2f0ðE0 − eVÞ þ jψhðrÞj2f0ðE0 þ eVÞ�;

ð15Þ

averaged over the 2D magnetic Brillouin zone,P
k ¼ ð2πÞ−2 R dkxdky, weighted by the derivative of the

Fermi function. If E0 is much larger than the temperature,
the sign of the bias voltage V determines whether the
electron component ψe or the hole component ψh contrib-
utes, so these can be measured separately.
As shown in Fig. 5, the oscillations are most pronounced

for the hole component when μ > 0 (or, equivalently, the
electron component when μ < 0). This asymmetry in the
tunneling current for V ¼ �E0 is an additional experimen-
tal signature of the effect.
Conclusion.—Concerning the experimental feasibility,

we note that the gap closing due to a superflow has already
been observed [6], and Majorana vortex lattices in a
perpendicular field of 250 mT have been detected by
scanning probes in several experiments [38]—so by

FIG. 4. Left panel: numerically calculated intensity profile
jΨðx; yÞj2 of the zeroth Landau level in a vortex lattice with a
pair of h=2e vortices at the center of the unit cell
(K ¼ 2Δ0 ¼ 40ℏv=d0, μ ¼ 0). Right panel: analytical result
from the solution of the Helmholtz equation (9) for a single
h=e vortex [37].

FIG. 5. Electron and hole contributions to the local density of
states in the zeroth Landau level along a line parallel to the x axis
which passes close to a vortex core at x ¼ y ¼ 3d0=4. The curves
are plots of

P
k jψe;hðx; yÞj2 normalized to unit peak height at the

vortex core. The parameters are K ¼ 2Δ0 ¼ 40ℏv=d0,
μ ¼ 0.5ℏv=d0. The expected oscillation period of πℏ=Q ¼
0.091d0 is indicated.

FIG. 3. Dispersion relation of the topological superconductor,
calculated from the model Hamiltonian (14) for zero magnetic
field (black dashed lines, chemical potential μ ¼ 0) and in the
presence of the magnetic vortex lattice (colored flatbands at
charge �qeffe for two values of μ). For both datasets
K ¼ 2Δ0 ¼ 20ℏv=d0.
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combining these two ingredients the Majorana Landau
level should become accessible. The main additional
requirement is for the Fermi level to be sufficiently small,
μ < minðEL;Δ0Þ ≃ 1 meV at 250 mT, to benefit from the
protection afforded by chiral symmetry. Experiments [39]
where μ was tuned through the charge neutrality point give
confidence that this is feasible.
The striped interference pattern in the local density of

states, with wave number Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − ðΔ0=ℏvÞ2

p
(≃2π=0.2 μm for K ¼ 2Δ0=ℏv at typical values of Δ0 ¼
1 meV and v ¼ 105 m=s) should be accessible by scanning
probe spectroscopy. Surface defects would themselves
introduce Friedel oscillations in the density of states, but
the highly directional pattern that is the hallmark of the
Majorana Landau level would stand out.
The Majorana Landau level provides a realization of a

flatband with extended wave functions, in which interac-
tion effects are expected to be enhanced due to the
quenching of kinetic energy. Interacting Majorana fermions
in a Fu-Kane superconductor have been studied by placing
vortices in close proximity inside a quantum dot [40]. The
deconfinement transition provides a means to open up the
system and obtain a fully 2D flatband with widely
separated vortices. An intriguing topic for further research
would be to investigate how the exchange of vortices
operates on this highly degenerate manifold.
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