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ABSTRACT: Background: Subthalamic deep brain
stimulation (STN DBS) may relieve refractory motor
complications in Parkinson’s disease (PD) patients.
Despite careful screening, it remains difficult to deter-
mine severity of alpha-synucleinopathy involvement
which influences the risk of postoperative complications
including cognitive deterioration. Quantitative electroen-
cephalography (QEEG) reflects cognitive dysfunction in
PD and may provide biomarkers of postoperative cogni-
tive decline.
Objective: To develop an automated machine learning
model based on preoperative EEG data to predict cogni-
tive deterioration 1 year after STN DBS.
Methods: Sixty DBS candidates were included;
42 patients had available preoperative EEGs to compute
a fully automated machine learning model. Movement
Disorder Society criteria classified patients as cognitively
stable or deteriorated at 1-year follow-up. A total of
16,674 EEG-features were extracted per patient; a Boruta
algorithm selected EEG-features to reflect representative
neurophysiological signatures for each class. A random
forest classifier with 10-fold cross-validation with Bayes-
ian optimization provided class-differentiation.
-

~

Results: Tweny-five patients were classified as cogni-
tively stable and 17 patients demonstrated cognitive
decline. The model differentiated classes with a mean
(SD) accuracy of 0.88 (0.05), with a positive predictive
value of 91.4% (95% CI 82.9, 95.9) and negative pre-
dictive value of 85.0% (95% CI 81.9, 91.4). Predicted
probabilities between classes were highly differential
(hazard ratio 11.14 [95% CI 7.25, 17.12]); the risk of
cognitive decline in patients with high probabilities of
being prognosticated as cognitively stable (>0.5) was
very limited.

Conclusions: Preoperative EEGs can predict cognitive
deterioration after STN DBS with high accuracy. Corti-
cal neurophysiological alterations may indicate future
cognitive decline and can be used as biomarkers dur-
ing the DBS screening. © 2021 The Authors. Movement
Disorders published by Wiley Periodicals LLC on behalf
of International Parkinson and Movement Disorder
Society
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Patients with Parkinson’s disease (PD) may be eligible
for subthalamic deep brain stimulation (STN DBS) in
cases of debilitating motor complications refractory to
oral therapy. STN DBS has similar, or even better,
effects on motor function compared to oral therapy,
reduces motor complications, and improves quality of
life (QoL)."™ However, deterioration in one or more
cognitive domains may be observed after STN DBS:
34 of 59 studies on STN DBS reported deterioration in
>1 cognitive domain, and 12 of 20 studies reported
cognitive deterioration in >1 cognitive domain in con-
trolled settings.” Careful and accurate assessment of
cognitive functioning is a crucial element during the
DBS eligibility screening,®” but mild cognitive deterio-
ration can occur even after rigorous patient selection.®
It remains difficult to determine the severity of the
impact of alpha-synucleinopathy on the central nervous
system, which may in turn influence the long-term
impact of DBS in terms of postoperative complications,
including worsening of specific cognitive functions. Bio-
markers based on quantitative electroencephalography
(qEEG) have been previously described to reflect cogni-
tive functioning in both the general PD population” and
DBS candidates specifically.''* The utility of qEEG in
predicting future cognitive decline has been previously
described in the general PD population in studies with
3-S5 years’ follow-up.” Given that cognitive deteriora-
tion may already be manifest within 1 year post-
surgery,”® we hypothesize that qEEG may have poten-
tial utility during the DBS screening to prognosticate
cognitive decline after DBS.

In previous studies'®'> we demonstrated the utility of
a fully automated machine learning algorithm to clas-
sify patients according to their cognitive status through
EEGs. These models apply a series of automatic pro-
cesses to sequentially extract a large number of EEG-
features, select EEG-features to create a comprehensive
EEG-signature of either class, and subsequently build
and optimize a classification model without requiring
arbitrary decisions by the researcher.'® This process is
considered highly efficient and reduces the need for
prior knowledge of existing EEG-features, thereby
increasing the likelihood of identifying previously
unknown biomarkers of cognitive decline.

The aim of this study was to develop an EEG-based
fully-automated machine learning model to evaluate the
utility of EEG during the DBS screening to prognosticate
cognitive deterioration according to Movement Disorder
Society (MDS) criteria 1 year after STN DBS.'®

PREDICTS

Methods

Consecutive patients who underwent STN DBS at the
DBS Center of the Leiden University Medical Center
(LUMC) and Haga Teaching Hospital between May

COGNITIVE

DECLINE AFTER STN DBS
2017 and July 2019 were included, as part of the OPTI-
MIST trial (OPTIMIzing patient selection for deep brain
STimulation of the subthalamic nucleus) (Netherlands
Trial Register NL6079). Sample size calculation was
based on a different research question. All patients ful-
filled MDS PD criteria.'” Written informed consent was
obtained from all participants. The study was approved
by the local medical ethics committee of the LUMC.
Anonymized data may be shared upon request. The Stan-
dards for Reporting Diagnostic Accuracy (STARD)

guidelines were followed during the writing process.

Procedures and Inclusion

All patients received standard questionnaires, a neuro-
psychological assessment, and routine EEG as part of the
DBS screening procedure.® After acceptance for STN
DBS, patients were invited for participation in the study
(1 patient declined during the inclusion period). Inclusion
criteria included age >18 years, diagnosis of idiopathic
PD according to established criteria, clinical indication
for STN DBS, written informed consent, ability to com-
ply with the study assessments, and ability to read or
understand Dutch. Exclusion criteria included Hoehn &
Yahr stage 5, Mattis Dementia Rating Scale (MDRS)
scores <120, psychiatric contraindications for STN DBS,
and general contraindications for stereotactic surgery.
Surgery took place approximately 1-2 months after the
DBS eligibility screening. Surgical procedures have been
published elsewhere.'® Lead implantation was performed
during an awake procedure, withdrawn from sedatives
and dopaminergic medication. On average, 2-3 cannulas
and microelectrodes were inserted simultaneously in a
Ben-Gun array. Individual adjustments were made to
avoid ventricles, blood vessels, and sulci. All procedures
were performed bilaterally and during the same session.
Permanent leads were usually positioned with the middle
two contacts located at the site of best therapeutic effect.
Follow-up visits were carried out 1 year after surgery
(£ 6 weeks) and included similar assessment of cognition
and questionnaires. EEG was only performed
preoperatively.

EEG Acquisition

EEG acquisition and preprocessing procedure has
been detailed previously.' EEGs were recorded with
patients in a supine position, eyes closed, and in a state
of relaxed wakefulness. Twenty-one Ag/AgCl EEG elec-
trodes were positioned according to a standard 10-20
setup. Medication was continued according to individ-
ual schedules (ie, “ON”); dyskinesias were not
observed. All data were re-referenced towards a source-
derivation approaching the surface Laplacian derivation
to amplify spatial resolution."”?? Five consecutive
artifact-free non-overlapping epochs (4096 points,
8.192 seconds, sampling rate 500 Hz) were manually
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selected for offline analysis; patients with fewer artifact-
free epochs were excluded. Brainwave software was
used to calculate global peak frequencies and spectral
slowing ratios (relative [6 + 0]/[ax + B] band-power)
(BrainWave version 0.9.152.12.26, C. J. Stam; avail-
able at https://home.kpn.nl/stam7883/brainwave.html).

Used Scales and Determination of Outcome

From the neuropsychological assessment, six tests were
selected to reflect cognitive functioning: Rey Auditory
Verbal Learning Test (RAVLT),>' Verbal Fluency,*
Trail Making Test (TMT) B corrected for A,*® Stroop
Color and Word Test (Stroop) section 3 - interference,”*
and Digit Cancellation Test (DCT) sections “correct”
and “wrong + corrected”.*> All six scores provided a
Test-score (T-score) with normally distributed popula-
tion means of 50 and standard deviations (SD) of 10. A
global cognitive composite score (Cog-score) was calcu-
lated by averaging scores from all six tests; a maximum
of two missing subscores was allowed. Cognitive deterio-
ration was based on MDS level I criteria, that is, pres-
ence of significant cognitive decline in >2 tests (ie, 210
points deterioration).'®

Secondary outcomes included motor function
(Movement Disorder Society-Unified Parkinson’s Dis-
ease Rating Scale [MDS-UPDRS] III),*® motor fluctua-
tions (MDS-UPDRS 1V),%® Levodopa Equivalent Dose
(LED),”” DBS impairment scale (DBS IS),*® (SENS-
PD),>” Parkinson’s Disease Quality of Life scale
39 (PDQ39),30 MDRS,*! Montreal Cognitive Assess-
ment (MoCA),>* psychiatric symptoms (depression:
Becks Depression Inventory [BDI]),** Parkinson Anxi-
ety Scale (PAS),>* Apathy Evaluation Scale (AES),>’
impulse-control disorder (Quip-RS and Quip-RS-
ICD),?® autonomic symptoms (SCOPA-AUT),*” night-
time sleeping problems (SCOPA-SLEEP),>” and exces-
sive daytime sleepiness (EDS).%®

Motor outcomes after STN DBS were assessed using
a Stimulation Challenge Test (SCT) as published
previously,>® in the conditions “Med-OFF-Stim-ON”,
“Med-OFF-Stim-OFF”, and “Med-ON-Stim-ON”. Base-
line levodopa-response was determined through a Levo-
dopa Challenge Test (LCT) wusing a 120%
suprathreshold dosage of the early morning LED.*

Machine Learning Classification Algorithm

The machine learning algorithm has been previously
reported in relation to EEG research.'®!> The machine
learning pipeline consists of four fully automated
phases: feature-extraction, feature-selection, classifier-
training, and hyperparameter-optimization. EEG-
features are derived from the “Time Series FeatuRe
Extraction on basis of Scalable Hypothesis tests”
(tsfresh) library,*"** resulting in 16,674 features per
patient (794 features per EEG-channel). Features from

all five epochs were averaged per patient. A Boruta
selection algorithm was used for feature-selection,
which tests the variable importance (VIMP) against fic-
tive features created by random shuffling of the
extracted features. Multiple independent trials test
whether the VIMP of the real features are consistently
higher than the VIMP of the fictive features during a
random forest classifier (RFC).*® After saturation of the
feature-selection (ie, only “real features” are retained), a
RFC was trained using the resulting feature set;
a majority vote from all individual decision trees was
used for binary classification.** Hyperparameter-
optimization was performed using a Bayesian optimiza-
tion method (Mixed Integer Parallel Efficient Global
Optimization).*>**¢ The robustness of the resulting
model was validated using 10-fold cross-validation;
the resulting T-scores were averaged to obtain
cross-validated metrics. Split-sample validation was
considered, but demonstrated to be inferior to our
cross-validation approach.'® Each model was devel-
oped five times sequentially to evaluate its robust-
ness. All models were built, tested, and validated
without manual interference in relation to feature-
extraction or feature-selection.

Statistical Analyses

Differences between baseline and follow-up were
compared using paired ¢ tests or Wilcoxon signed-rank
tests and Pearson x” tests, if appropriate. P values were
reported using Monte Carlo estimation in the case of
Wilcoxon signed-rank tests, and Fisher’s exact test in
cases of dichotomous y* tests. Continuous demographic
and clinical data, including change indices (ie, follow-
up — baseline values), was compared among the cogni-
tive groups in a similar fashion.

The machine learning classification algorithm was
evaluated using sensitivity, specificity, accuracy, and
F1 scores; receiver—operator characteristic (ROC) cur-
ves were used for visualization. Kaplan—-Meier curves
were used to demonstrate the differentiation in
predicted probabilities between the groups, in which
the predicted probability of being classified as cogni-
tively stable was used as “time” and the label as
“event”. The y-axis is the inverse likelihood of being
classified (100% - % classified), separate lines show at
what levels of the predicted probability of being classi-
fied as cognitively stable patients were indeed classified
(ie, green: stable cognition; red: cognitive deteriora-
tion). The assumption of proportional hazards was
confirmed through visual inspection of the log minus
log plots. Curves were compared using Cox regression
analyses.

All analyses were performed using IBM Statistical
Package for the Social Sciences (SPSS) 25 Software and
Python software.
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Results

Seventy-three patients were originally included in
this study. Two patients had missing baseline Cog-
scores, and 11 patients were lost-to-follow-up (rea-
sons for lost-to-follow-up were not systematically
documented): 60 patients were included for analyses,
of which 42 had usable preoperative EEG-recordings;
18 patients had EEGs with insufficient artifact-free
epochs (see Fig. S1 for the STARD flowchart). Mean
age at baseline was 60.3 (8.3) years, with 10.0 (5.7)

TABLE 1 Cohort description

r EEG PREDICTS COGNITIVE DECLINE AFTER STN DBS

years disease duration, 33% were female (n = 20)
(see Table 1 for a full overview). Mean duration
between screening and follow-up was 14.5 (2.0)
months. Cognitive performance was significantly
reduced after STN DBS, mean Cog-score reduction
—3.6 (4.3) points (FU-baseline) (P < 0.001). Patients
without available EEG-recordings did not differ sig-
nificantly from patients with EEG-recordings for any
demographic or clinical characteristic.

Based on a cut-off of significant deterioration of >2 tests,
25/60 patients were classified as having clinically established

Clinical characteristic Baseline Follow-up P value
Age at baseline, y* 60.0 (55.0, 67.8)

% temale sex (n) 33 (20)

Disease duration, y* 8.8 (6.6, 11.7)

% opt for DBS again (n) 81 (46)

MDS-UPDRS III (Med-OFF [Stim-OFF]) 43.3 (11.1) 50.6 (13.6) 0.001
MDS-UPDRS III (Med-ON [Stim-ON]) 19.0 (8.4) 17.2 (9.9) 0.140
Therapy—responsivenessb € 56.4 (15.1) 66.0 (15.2) <0.001
MDS-UPDRS IV* 9.0 (6.3, 11.0) 0 (0.0, 5.0) <0.001
LEDD" 1129 (482) 435 (273) <0.001
LEDD-DA? 80 (0, 248) 0 (0, 120) 0.036
Cog-score 49.2 (5.4) 45.5 (6.2) <0.001
MDRS* 140.0 (137.0, 142.0) 140.0 (138.0, 142.8) 0.658
MoCA® 26.4 (2.1) 25.7 (2.5) 0.025
BDI® 12.2 (7.0) 10.1 (6.3) 0.005
PAS* 10.0 (6.0, 18.0) 0 (3.0, 14.0) 0.017
Apathy Scale” 10.5 (3.0) 12.0 (3.8) 0.014
Quip-RS* 8.0 (2.0, 18.8) 0 (0.0, 13.0) 0.007
SENS-PD? 11.0 (7.3, 14.0) 11.0 (6.8, 15.0) 0.660
DBS IS" 17.3 (9.9) 18.6 (12.8) 0.568
Scopa-AUT® 16.2 (7.1) 13.9 (7.2) 0.004
Scopa-Sleep® 6.0 (3.0) 7 (3.4) <0.001
Scopa-EDS® 42 (3.3) 42.7) 0.021
PDQ39" 47.4 (21.8) 36.1 (23.4) <0.001
EQ5D* 11.0 (9.0, 12.0) 0 (7.0, 10.0) <0.001

*Median (interquartile range), Wilcoxon signed-rank tests.
"Mean (standard deviation), paired f tests.

“Therapy-responsiveness: percentage (%) response to dopaminergic therapy (baseline) or oral dopaminergic therapy + stimulation (follow-up) ([OFF-ON]/[OFF]).

Abbreviations: DBS, deep brain stimulation; MDS-UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating Scale; LEDD, Levodopa Equivalent Dose (DA,
dopamine agonists); Cog-score, global composite cognitive scores; MDRS, Mattis Dementia Rating Scale; MoCA, Montreal Cognitive Assessment; BDI, Becks Depression
Inventory; PAS, Parkinson’s Disease Anxiety Scale; SENS-PD, Severity of Predominantly Non-Dopaminergic Symptoms in Parkinson’s Disease; DBS IS, Deep Brain Stimula-

tion Impairment Scale; Scopa, Scales for Outcomes of Parkinson’s Disease; AUT, autonomic symptoms; EDS, Excessive Daytime Sleepiness; PDQ39, Parkinson’s Disease Ques-

tionnaire 39; EQ5D, EuroQoL 5 Dimensions.
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TABLE 2 Clinical differences between the cognitive classes

Clinical characteristic Stable cognition Cognitive deterioration P value
Age at baseline, y* 58.5 (53.5, 68.0) 62.0 (55.5, 67.0) 0.470
% female sex (n) 41 (14) 20 (5) 0.100
Disease duration, y* 8.1 (6.3, 11.4) 9.6 (6.6, 12.3) 0.342
% opt for DBS again (n) 100 (30) 67 (16) 0.030
MDS-UPDRS III OFF® Baseline 41.5 (11.9) 45.7 (10.0) 0.155
Follow-up 47.6 (13.1) 54.3 (13.7) 0.068

Change* 5.8 (14.9) 8.3 (14.8) 0.535

MDS-UPDRS III ONP Baseline 18.4 (8.7) 19.7 (8.2) 0.565
Follow-up 15.6 (9.5) 19.0 (10.4) 0.215

Change® —3.2 (9.0) —0.9 (12.7) 0.456

Thcrapy—rcsponsivenessb d Baseline 56.1 (16.0) 57.0 (14.3) 0.816
Follow-up 66.9 (14.8) 64.9 (16.3) 0.645

Change® 0.1 (0.2) 0.1 (0.2) 0.611

MDS-UPDRS IV* Baseline 9.0 (5.0, 12.0) 9.0 (7.0, 11.0) 0.787
Follow-up 2.0 (0.0, 5.0) 0.0 (0.0, 6.0) 0.853

Change* —5.1 (6.6) —6.4 (4.6) 0.503

LEDD? Baseline 1009 (411) 1276 (535) 0.039
Follow-up 391 (266) 500 (276) 0.140

Change® —596 (437) —798 (535) 0.136

LEDD-DA*" Baseline 80 (0, 240) 60 (0, 240) 0.789
Follow-up 58 (0, 120) 0 (0, 160) 0.327

Change® 5.0 (305) —66.0 (151.5) 0.347

Cog—scored Baseline 49.3 (5.7) 49.3 (5.2) 0.994
Follow-up 47.3 (6.0) 43.0 (5.7) 0.008

Change* —2.0 (3.9) —6.3 (4.6) <0.001

RAVLT? Baseline 41.9 (10.5) 44.4 (10.6) 0.381
Follow-up 41.8 (10.7) 38.0 (11.5) 0.189

Change* —0.1 (8.9) —6.4 (10.0) 0.013

Verbal Fluency* Baseline 59.3 (13.5) 60.6 (13.1) 0.703
Follow-up 49.2 (11.5) 41.6 (10.1) 0.011

Change* —10.1 (10.5) —19.5 (14.1) 0.005

TMT B corrected for A% Baseline 46.0 (12.6) 41.2 (12.6) 0.169
Follow-up 45.1 (11.6) 43.9 (9.1) 0.708

Change® —2.5 (14.8) 1.3 (11.9) 0.349

Stroop 3 — interference® Baseline 52.1 (7.6) 53.0 (8.3) 0.676
Follow-up 53.2 (8.0) 48.4 (9.5) 0.040

Change* 1.1 (5.6) —4.9 (10.7) 0.016

DCT - total correct Baseline 45.7 (9.4) 43.3 (9.1) 0.342
(Continues)
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TABLE 2 Continued

Clinical characteristic Stable cognition Cognitive deterioration P value
Follow-up 44.1 (10.8) 37.7 (9.1) 0.021
Change® —0.9 (6.8) —4.4 (6.2) 0.058
DCT - total wrong and corrected? Baseline 50.9 (9.2) 52.6 (8.4) 0.484
Follow-up 50.6 (10.4) 49.4 9.1) 0.648
Change® —0.3 (8.6) —3.2 (8.1) 0.218
MDRS* Baseline 140.0 (138.5, 142.5) 139.0 (13.6, 141.8) 0.294
Follow-up 140.4 (138.0, 143.0) 140.0 (136, 142.0) 0.548
Change® —0.2 (3.0) 0.7 3.7) 0.323
MoCA? Baseline 26.6 (2.3) 26.2 (1.7) 0.442
Follow-up 25.9 (2.7) 25.6 (2.3) 0.655
Change® —0.7 (2.3) —0.6 (2.1) 0.762
BDI? Baseline 12.8 (7.2) 11.4 (6.9) 0.452
Follow-up 7 (5.5) 10.2 (7.0) 0.730
Change® —3.1 (6.3) —1.1 (4.2) 0.181
PAS* Baseline 11.0 (6.0, 18.0) 10.0 (8.0, 17.5) 0.730
Follow-up 5 (3.0, 15.5) 10.0 (4.5, 14.0) 0.549
Change® —2.6 (7.7) —1.3 (6.1) 0.510
Apathy Scale? Baseline 10.4 (3.4) 10.4 (2.4) 0.948
Follow-up 12.2 (3.4) 11.9 (4.4) 0.806
Change® 1.1 (3.7) 1.5 (3.5) 0.710
Quip-RS* Baseline 9.0 (1.5, 18.8) 7.0 (2.0, 23.0) 0.849
Follow-up 5 (0.0, 12.8) 2.5 (0.0, 13.3) 0.614
Change® —3.8 (8.0) —4.2 (17.6) 0.922
SENS-PD* Baseline 0 (6.8, 13.0) 12.0 (8.5, 15.0) 0.162
Follow-up 11.0 (6.0, 15.0) 11.0 (7.3, 15.0) 0.666
Change® 14.2) —0.4 (3.7) 0.665
DBS Is¢ Baseline 18.3 (10.2) 15.8 (9.5) 0.350
Follow-up 18.3 (11.9) 18.8 (14.3) 0.875
Change* —0.8 (10.6) 3.0 (13.0) 0.224
Scopa—AUTd Baseline 14.6 (6.6) 17.9 (7.2) 0.077
Follow-up 13.3 (7.0) 14.6 (7.7) 0.505
Change® —1.3 (5.7) —3.2 (5.9) 0.199
Scopa—SleepOl Baseline 0 (2.9) 5.9 (2.9) 0.906
Follow-up 7 (2.9) 3.3 (3.2) 0.598
Change® —2.3 (3.2) —2.6 (4.2) 0.729
Scopa-EDS? Baseline 3(3.4) 3.9 (3.0) 0.639
Follow-up 7 (2.7) 2.8 (2.2) 0.223
Change® —0.7 (2.8) —1.1 (2.4 0.563

(Continues)
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TABLE 2 Continued

Clinical characteristic Stable cognition Cognitive deterioration P value
PDQ39¢ Baseline 47.4 (24.1) 46.9 (18.9) 0.931
Follow-up 33.1 (20.4) 38.1 (25.4) 0.400
Change* —14.3 (22.2) —8.8 (21.4) 0.339
EQ5D* Baseline 10.5 (9.0, 12.0) 11.0 (9.0, 12.0) 0.852
Follow-up 8.0 (7.0, 10.0) 8.0 (7.0, 10.5) 0.913
Change* —1.7 (2.6) —-15(2.2) 0.739

*Median (interquartile range), Mann—Whitney U tests.

bFnllow—up: MDS-UPDRS III Med-OFF-Stim-OFF or Med-ON-Stim-ON.
“Follow-up — baseline (mean [standard deviation], Student f tests).

Mean (standard deviation), Student  tests.

“Therapy-responsiveness: percentage (%) response to dopaminergic therapy (baseline) or oral dopaminergic therapy + stimulation (follow-up) ((OFF-ON]/[OFF]).

Abbreviations: DBS, deep brain stimulation; MDS-UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating Scale; LEDD, Levodopa Equivalent Dose (DA,
dopamine agonists); Cog-score, global composite cognitive scores; RAVLT, Rey Auditory Verbal Learning Test; TMT, Trail Making Test; Stroop 3, Stroop Color and Word
Test section 3; DCT, Digit Cancellation Test; MDRS, Mattis Dementia Rating Scale; MoCA, Montreal Cognitive Assessment; BDI, Becks Depression Inventory; PAS, Park-
inson’s Disease Anxiety Scale; SENS-PD, Severity of Predominantly Non-Dopaminergic Symptoms in Parkinson’s Disease; DBS IS, Deep Brain Stimulation Impairment Scale;
Scopa, Scales for Outcomes of Parkinson’s Disease; AUT, autonomic symptoms; EDS, Excessive Daytime Sleepiness; PDQ39, Parkinson’s Disease Questionnaire 39; EQS5D,

EuroQoL 5 Dimensions.

cognitive decline (of which 17 had EEG-recordings), and
34 patients were classified as cognitively stable (of which
25 had EEG-recordings) (1 patient was missing due to miss-
ing data on two follow-up cognitive tests, such that the
criteria for cognitive decline could not be assessed).

Clinical Differences Between Cognitive Classes

Both cognitive classes were not significantly different
in any baseline characteristic, including baseline indi-
vidual cognitive T-scores (see Table 2). Of note, mean
baseline Cog-score was 49.3 points in both groups, rel-
atively similar to the population average of 50.0.

At follow-up, groups differed in terms of Cog-score
(47.3 (6.0) points versus 43.0 (5.7) points, P = 0.008);
patients classified as having cognitive decline at 1 year
follow-up had similarly significantly lower T-scores for
the Verbal Fluency, Stroop 3, and DCT - total correct
tests. Patients with stable cognition were unanimous in
choosing DBS again if given the opportunity, however
only two-thirds of patients with cognitive deterioration
would opt for DBS again (P = 0.030), despite no signif-
icant difference in QoL. Apart from cognitive perfor-
mance, the groups did not differ at 1 year follow-up or
in change index in any other domain. Both groups did
not differ in spectral EEG band-powers (see Table S1).

Machine Learning Performance

Eighteen EEG-features were selected by the machine
learning pipeline during each of the five cross-validation
runs. None of the features were retained in each of the
individual runs; one feature was selected four times,
two features were selected three times, and six features
were selected twice (see Fig. S2 for an overview of each
of the relative feature-importances; the cerebral location

TABLE 3  Model performance

Dataset Accuracy Sensitivity Specificity F1

Training- 0.97 (0.02) 0.99 (0.01) 0.93 (0.05) 0.97 (0.02)
set”

Validation 0.88 (0.05) 0.95 (0.04) 0.76 (0.07) 0.84 (0.06)
results”

"Mean (standard deviation); all metrics were averaged over five separate computa-
tion runs.
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FIG. 1. Receiver—operator characteristic (ROC) curve of all individual
cross-validation runs combined. Individual ROC curves of the cross-
validation runs separately are shown in Figure S2.

of each feature is shown in Figure S3; see Table S2 for
a brief explanation of the mathematical background).
The machine learning algorithm differentiated
patients with stable cognition at 1 year follow-up from
patients with cognitive deterioration with a mean
(SD) accuracy of 0.88 (0.05) in the test-set (see
Table 3), with a positive predictive value (PPV) (ie, like-
lihood of stable cognition 1 year after surgery) of
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FIG. 2. Kaplan—-Meier curve using predicted probability as “time” and
labeled class as “event”, combined over all cross-validation runs. The
dispersion between the curves demonstrates the differentiation in
predicted probabilities between the classes (hazard ratio [95% CI] 11.14
[95% CI 7.25, 17.12]). For high predicted probabilities of being classi-
fied as cognitively stable (ie, >0.5), the likelihood of cognitive deteriora-
tion appears slim. Kaplan—Meier curves for all cross-validation runs
separately are shown in Figure S3. Green: cognitively stable patients;
red: patients with cognitive deterioration; dotted line: 95% CI. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

91.4% (95% CI 82.9, 95.9) and a negative predictive
value (NPV) (ie, likelihood of cognitive deterioration)
of 85.0% (95% CI 81.9%, 91.4%). Performance met-
rics of all five individual model-runs, as well as overall,
are shown in Figure S4. A ROC curve based on the
predicted probabilities of all the individual model-runs
combined is shown in Fig. 1; ROC curves for the indi-
vidual runs are shown in Figure S5; the robustness of
the cross-validation runs indicates no large effect of
overfitting. A Kaplan—-Meier curve (Fig. 2) using the
pertaining class as “event” and the predicted probability
of being classified as cognitively stable as “time” shows
the differentiation between the predicted probabilities
of the two classes, combined over all cross-validation
runs, with a hazard ratio (HR) 11.14 (95% CI 7.25,
17.12) (individual Kaplan—Meier curves for each of the
individual cross-validation runs are shown in Fig. S6).
For high predicted probabilities of being classified as
cognitively stable (ie, >0.5), the likelihood of cognitive
deterioration approached zero.

Discussion

The aim of this study was to develop a fully auto-
mated machine learning model based on preoperative
EEGs to predict cognitive deterioration 1 year after
STN DBS. Our model differentiates patients with stable
cognition with 88% accuracy from patients with cogni-
tive decline according to MDS criteria, with a PPV of
91.4% and a NPV of 85.0%. The robustness of this
approach is demonstrated by relatively stable
performance-metrics for each of the individual cross-
validation runs, and the stable difference in predicted
class-probabilities between the groups. Survival

COGNITIVE DECLINE AFTER STN DBS
analyses demonstrate that the cognitive classes had
highly differential predicted probabilities; the chance of
suffering from cognitive decline 1 year after STN DBS
was particularly small in cases of probabilities >0.5.

To our knowledge, no previous study has investi-
gated the actual model-performance of EEG to predict
cognitive decline after STN DBS. Although the exact
retest reliability of the individual tests used to compose
the Cog-score in patients both with and without
neuromodulation is unknown, previous literature
reported cognitive test performance as relatively stable
in PD patients without DBS.*” A previous paper investi-
gated the potential of qEEG to predict cognitive decline
after STN DBS in 17 patients'® by evaluating the pre-
dictive potential of relative 0 power in predicting cogni-
tive decline. Although results indicated the utility of
qEEG to predict postoperative decline, only one spec-
tral metric was studied and correlated with only 3/13
cognitive tests, whereas its predictive potential was not
discussed. Another paper described Grand Total EEG
(GTE) scores to predict cognitive decline after STN
DBS in 30 patients,*® and reported an odds ratio of
2.78 (95% CI 1.25-6.18) in predicting cognitive
decline, although the minority class (cognitive decline
based on Mini-Mental State Examination [MMSE]/
DemTect scores) consisted of only six patients and
model performance was not reported. Moreover, GTE
scores are semiquantitative in nature and still require
expert knowledge of EEGs, limiting generalizability
compared to automated machine learning.

Eighteen features were retained in total during cross-
validation runs, none of which were selected in all five
models. This suggests that there is not one representa-
tive neurophysiological signature of cognitive deteriora-
tion, but that several patterns of preoperative cognitive
(dys)function exist with roughly equal potential to
reflect postoperative cognitive decline. Eleven of 18 fea-
tures were Fast Fourier Transformation (FFT)-based,
although baseline spectral features that are more rou-
tinely studied in PD did not differ between the two
groups. We hypothesize that our more in-depth spectral
features are more suitable as novel biomarkers
reflecting neurophysiological signaling speed than con-
ventional band-powers. Three other metrics were
related to the mass quantile (ie, calculation of a relative
index in which q% of the mass of the time series is left
of the index). To our knowledge, quantile functions
have not been studied previously in relation to qEEG in
PD, or in cognitive research, and represent a novel
mathematical approach in this setting. The retained
EEG-features for modeling cognitive state in a cross-
sectional model (using the same methodology and
feature-library) are different from those retained for
modeling future cognitive deterioration,’* however
both congregate by prioritizing FFT-features. We specu-
late that different FFT-aspects underlie either current
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cognitive functioning or future cognitive dysfunction.
Conventional EEG band-powers are probably too inter-
related to optimally reflect this distinction. It should be
noted that our model pertains to cognitive decline after
STN DBS specifically and has not been validated for
use in prognosticating cognition without DBS. Future
research should evaluate its utility in non-surgical
cohorts as well, and investigate cognitive functioning
after a longer follow-up. However, including a non-
surgical cohort would have introduced substantial bias
as ineligibility for surgery is often based on poor cogni-
tive functioning, which would have set these patients
apart from the groups characterized here.

A limitation of many machine learning models is the
“black-box-problem”, in which it is unclear how the
model reaches a decision or what these decisions are
based on.*” As we minimized arbitrary choices in our
model, the resulting EEG-features can be considered
novel biomarkers in relation to EEG research in PD,
and results can be traced back to pathophysiological
EEG alterations (eg, EEG-slowing, mass quantile alter-
ations, etc.). However, we realize that the exact mathe-
matical background of the resulting features may be
relatively unclear and, as a consequence, their patho-
physiological substrate. In terms of etiology, we cannot
readily explain why some features were selected and
others were not; however, in terms of implications for
clinical practice the prognostic performance of the
selected features currently supersedes their content.
Despite our relatively small sample size, we have dem-
onstrated good accuracy in differentiating cognitively
stable patients from those with cognitive decline. We
demonstrate that overfitting did not play a major role
in our models despite an approximate drop in accuracy
of 9% relative to the training-set, and differentiation of
the groups based on predicted probability was stable.

Our results further demonstrate that a standard
21-channel EEG probably suffices to predict cognitive
decline after STN DBS. Further insight into pathophysi-
ological alterations underlying cognitive decline may be
provided through source localization to more closely
pinpoint anatomical substrates,”®’! especially when
combined with high-density EEG setups or pre—post
EEG settings.’> However, these setups are less applica-
ble in a clinical prediction setting which would have
limited its current utility.

In this study, cognitive deterioration was classified
based on MDS criteria for cognitive decline,'® which
increases the generalizability of our results. MDS level I
criteria for cognitive decline (ie, >2 tests showing signif-
icant deterioration) are less strict than those for PD
dementia (PDD),*® which is the likely reason for our
observed high incidence of cognitive decline. Similar to
previous studies,’ the observed cognitive decline is still
within the range of normal cognitive functioning. Our
classification therefore reflects “deterioration” rather

than actual clinical impairment. Although class-
transition to mild cognitive impairment or PDD would
have been clinically more relevant, this transition within
1 year is most likely rare after DBS and would require
larger sample sizes than currently available, as well as
introducing a significant class imbalance. Whether the
observed cognitive deterioration is a result of disease
progression, a differential impact of stimulation, or a
postoperative hypodopaminergic state cannot be deter-
mined. However, since the groups did not differ in any
baseline characteristic, our results indicate the prognos-
tic utility of EEG regardless of the mechanism behind
cognitive deterioration.

Strikingly, generic tests such as the MDRS and MoCA
did not show the same deterioration as the Cog-score,
even in patients classified as cognitively deteriorated. This
is in line with previous literature, as 27/29 studies
reported no significant cognitive decline in these global
tests after STN DBS.” Both generic tests are subject to
confounding such as educational level.’**” We hypothe-
size that T-score-based cognitive tests resulted in more
sensitive metrics to reflect cognitive functioning. Our
observed cognitive deterioration was predominantly
fueled by deterioration in the domains “executive func-
tioning” and “language™® in line with previous research.’
As there are multiple possible cognitive tests to quantify
cognition in PD, the ideal classification would be based
on >2 tests per cognitive domain according to Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) and
MDS level II criteria to provide a more complete over-
view of cognitive functioning.>®

Our results imply that EEG may be used to prognos-
ticate cognitive decline after STN DBS in a clinical set-
ting. A risk of (mild) cognitive decline does not
necessarily equal ineligibility for surgery, but improved
prognostication may contribute to better patient educa-
tion and informed consent. Moreover, a risk of postop-
erative decline as indicated by our machine learning
algorithm could skew clinicians towards targets with
possible less impact on cognition such as pallidal DBS,
although our model has not been tested for prognosti-
cation in these settings. Strikingly, patients classified as
cognitively stable were unanimous in choosing DBS
again if given the opportunity, whereas this was signifi-
cantly lower in patients with cognitive deterioration
despite no differences in any other characteristic. This
underscores the importance of cognitive function for
patient satisfaction after DBS.>’> Our results indicate
that EEG-based prognostication could be included in
the DBS screening to improve shared-decision-making.

Strengths of this study include using a fully auto-
mated machine learning algorithm which enhances the
generalizability and potential clinical utility of our
results. Based on the nature of the Boruta selection
algorithm which uses multiple independent trials during
feature-selection, we are confident that the resulting
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model provides an accurate and robust electrophysio-
logical signature underlying the cognitive classes,
despite a relatively small sample size. A limitation of
our study is a possibly selective loss-to-follow-up as
several patients that declined the follow-up assessments
reported that cognitive assessments would be burden-
some for them at this stage, which may result in an
underrepresentation of cognitively impaired patients in
the entire cohort, although this would not affect the
prediction analyses. Although patients without EEG-
recordings did not differ clinically from patients with
available recordings, the utility of EEG may be limited
due to unavailability of artifact-free epochs. The
amount of missing data due to EEG-artifacts is similar
in previous literature.'® Given our lack of external vali-
dation, our results are best interpreted as proof-of-
concept that machine learning algorithms can accu-
rately predict cognitive deterioration after STN DBS.

Our results indicate that cortical neurophysiological
alterations prior to STN DBS may reflect a risk of post-
operative cognitive deterioration, and the use of algo-
rithms such as those detailed here may be helpful
during the DBS eligibility screening to directly improve
clinical practice. Automated analyses such as these have
the ability to identify new biomarkers. Further explora-
tion of the features selected by our model may ulti-
mately provide greater insight into pathophysiological
processes and the mechanism behind the association
between EEG and cognitive decline. @
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