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Countries around the globe have introduced renewable energies (RE) and minimized the dependency of
fossil resources in power systems to address extensive environmental risks. However, such large-scale
energy transitions pose a great challenge to power systems due to the volatility of RE. Meanwhile, power
demand is increasing over time and it shows temporal characteristics, such as seasonal and peak-valley
patterns. Whether the future power system with a larger proportion of RE can meet the surging but fluc-
tuated electricity demand remains problematic. Previous studies on short-term load forecasting focused
more on forecasting accuracy than stability. Further, there is a relative paucity of research into temporal
patterns. In order to fill in these research gaps, this paper proposes a fuzzy theory-based machine learn-
ing model for workdays and weekends short-term load forecasting. Fuzzy time series (FTS) is applied for
data mining and back propagation (BP) neural network is used as the main predictor for short-term load
forecasting. To exploit the trade-offs between forecasting stability and accuracy, multi-objective opti-
mization is applied to modify the parameters of BP. Moreover, an interval forecasting architecture with
several statistical tests is constructed to address forecasting uncertainties. Short-term load data from
Victoria in Australia is selected as a case study. Results demonstrate that the proposed method can sig-
nificantly boost forecasting stability and accuracy, and help strategy making in the field of energy and
electricity system management and planning.
� 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Transitions on power systems are happening as countries
around the globe are introducing RE and minimizing the depen-
dency of fossil resources. Integration of large-scale RE such as wind
and solar energy into the electricity grids has been increasing.
However, this integration poses a great challenge that hampers
the stable operation of the electricity systems as RE’s unstable
power output. Meanwhile, electricity demand is prone to be highly
temporal: it varies between workdays and weekends, also shows
seasonal and festival variation.

Research on short-term load forecasting has been conducted for
decades. In the early stage, classic arithmetic has been widely
deployed with its simple mathematical principles and assump-
tions. Classic arithmetic is mainly based on statistical models, such
as regression-based models [1,2], Box-Jenkins models [3,4] and
Bayesian models [5]. However, this arithmetic is highly dependent
on the quantity of historic data and strict statistical assumptions.
Also, it cannot achieve high forecasting accuracy when dealing
with non-linear time series.
Owing to the shortcomings of classic arithmetic, intelligent
arithmetic has been developed that comprises of artificial neural
networks (ANNs) [6,7], ANNs simulate the human brain and can
yield satisfactory training results when dealing with multi-
structural and non-linear problems. In the year of 1991, Park et.
al [8] used ANN for power forecasting for the first time, which
proved the good forecasting performance of ANN. Based on this
pioneer work, various types of ANNs have been developed and
used to short-term load time series forecasting [9,10,11]. However,
intelligent arithmetic has some limitations: a) they are easy to fall
into local optima due to their slow self-learning convergence rates
[12]; b) it is difficult to determine parameters such as layer and
neuron numbers in a network structure [13].

Given the limitations of intelligent arithmetic, hybrid arith-
metic has developed in these years and gradually become the
mainstream in short-term forecasting fields [14]. The basic princi-
ple of hybrid arithmetic is to integrate the outputs of different indi-
vidual models in terms of utilizing certain weights and narrowing
the value ranges [15]. To improve the extrapolation ability and
reduce the learning time of ANNs, ANNs have been combined with
some methods [16,17]. For example, Azimi et al. [18] developed a
hybrid short-term load forecasting model based on ANNs and
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autoregressive moving average (ARMA). Lu et al. [19] integrated a
growing hierarchical self-organizing map (SOM) with support vec-
tor machines (SVMs); Okumus et al. [20] proposed an adaptive
neuro-fuzzy inference system that combines of ANNs. Elvira et al.
[21] used several prediction models to predict the electricity
demand in the southeastern region of Oklahoma. The choice of a
combination of models depends largely on the characteristics of
the research problem and on error evaluation. To optimize the
parameters of ANNs, heuristic algorithms are employed to inte-
grate with ANNs. For example, enlightened by the biological evolu-
tion, Pandian et al. [22] and Pai et al. [23] proposed a set of
optimization algorithms to combine with ANNs for electricity fore-
casting. Goudarzi et al. developed a hybrid model optimized by the
particle swarm optimization (PSO) for the optimal configuration of
building-wide energy dissemination policies [24]. Moreover, dif-
ferential evolution optimization is used to combine with the SVMs
for half-hourly and daily electricity consumption [25].

Hybrid arithmetic significantly improves short-term load fore-
casting accuracy but stability is too large extent missing. Also,
there is a relative paucity of research into dynamicity and volatility
of short-term electricity in terms of multiply temporal patterns.
Important temporal characteristics, such as seasonal and
weekday-weekend patterns are also not well addressed in current
model settings. To fill in these gaps, this paper proposes a hybrid
short-term load forecasting model based on data de-noising, the
fuzzy time series (FTS) and ANNs with multi-objective optimiza-
tion. Workdays and weekends short-term load data in four seasons
from Victoria in Australia is chosen as a case study. The proposed
model is concluded as following steps: 1) The original short-term
load data are filtered by using a de-noising method; 2) A modified
FTS model based on fuzzy sets further mines hidden features of the
pre-processed data; 3) the fuzzified data is imported to BP neural
network; 4) the parameters of BP are optimized by a multi-
objective optimization algorithm and 5) the forecasted results are
exported by BP and finally generated by defuzzification (See
Fig. 1). This paper provides separate forecasting results in regard
to seasonal and workday-weekend patterns. An interval forecast-
ing is also used to provide the possible intervals of forecasting
results. Moreover, multiply tests including algorithm tests, statisti-
cal tests and error measurement metrics are employed to validate
the proposed model.

The novelties of the proposed model are summarized as
follows:

� A data cleaning is conducted to eliminate the noise and further
mine hidden characteristics through data de-nosing methods
and the FTS, respectively.

� To boost the forecasting stability and accuracy simultaneously,
a multi-objective optimization algorithm is used to optimize
ANNs.

� Seasonal and workday-weekend temporal patterns are consid-
ered. Separate short-term load forecasting, varying in seasons,
in workdays and weekends, is provided.

� This paper is organized as follows: The methodology is intro-
duced in Section 2. Section 3 describes the datasets and fore-
casting results. Section 4 shows the discussion and Section 5
presents the conclusion.

2. Methodology

2.1. Data de-noising method—ICEEMDAN

The improved complete ensemble empirical mode decomposi-
tion with adaptive noise (ICEEMDAN) is considered as one of
state-of-the-art data de-noising methods. This paper employs the
ICEEMDAN to mitigate noise and chaos of the original short-term
2

load time series. The ICEEMDAN decomposes the original signal
into several intrinsic mode functions (IMFs) [26,27] and overcomes
cumulative noise neutralization and residual noise modification
problems [28]. The ICEEMDAN has been successfully applied for
wind speed forecasting [29], air quality early-warning [30], and
electricity price forecasting [31].

2.2. Further mine hidden characteristics- fuzzy time series (FTS)

The FTS is applied for short-term forecasting with its capability
of dealing with non-linear problems. It has been successfully used
for predicting nonlinear and dynamic datasets in various fields,
such as offshore wind energy [32], electricity consumption [33],
the stock market [34], subject enrollment [35], and environmental
materials [36]. In this paper, the FTS is modified with fuzzy sets
and employed to fuzzify the preprocessed short-term load time
series. The fuzzified short-term load series later is then imported
into input layers of ANNs. The final forecasted results are obtained
by defuzzification. The basic theory of the FTS is clarified in Appen-
dix C.

2.3. Back propagation (BP) neural network

The BP is one of the commonly used ANNs [37] and it can learn
and store a number of input–output map relations through feed-
forward back propagation. Here the BP is selected as the main pre-
dictor for short-term load forecasting. The preprocessed and fuzzi-
fied load data is fed into BP through the input layer, which
communicates to hidden layers. And the output of the output layer
is considered as forecasting values. The mechanism of the BP relies
on the steepest descent approach, in which the neural network
continuously amends the weights and thresholds until it reaches
the minimized sum of squared errors [38].

2.4. Multi-objective optimization algorithm

The dragonfly algorithm (DA) is one of the novel swarm intel-
ligence algorithms. To address multi-objective optimization prob-
lems, Seyedali et al. developed a multi-objective version of DA,
e.g., multi-objective dragonfly algorithm (MODA) [39]. The
detailed description of the DA and MODA models can be found
in [39,40] and the pseudo-code of the MODA is shown in Appen-
dix D. In this paper, the parameters (e.g. the weights and thresh-
olds) of the BP are optimized by the MODA to achieve higher
forecasting accuracy and stability simultaneously. In doing so, this
paper uses Pareto optimal strategy to determine the balance of
two objects [41]. An introduction of Pareto optimal strategy can
be found in Appendix E.

2.5. The hybrid forecasting model

A hybrid model that comprises of several components is pro-
posed in this paper to achieve reliable short-term load forecasting
results. To eliminate negative noise and extract inner characteris-
tics of the raw short-term load, a data de-noising method ICEEM-
DAN and the FTS are performed. The preprocessed and fuzzified
data is then imported into the BP. To achieve high forecasting sta-
bility and accuracy simultaneously, the MODA is applied to opti-
mize the parameters of the BP. Based on the bias-variance
system [42], the fitness function of the MODA has denoted both
accuracy and stability. The calculation of the bias-variance frame-
work is expressed as Eqn 1.

Eðx̂� xÞ2 ¼ E½x̂� Eðx̂Þ þ Eðx̂Þ � EðxÞ�2

¼ E½x̂� Eðx̂Þ�2 þ ½Eðx̂Þ � EðxÞ�2 ¼ Varðx̂Þ þ Bias2ðx̂Þ
ð1Þ



Fig 1. Flowchart of the proposed hybrid forecasting model.
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where E represents the mathematical expectation, x and x̂ denote
the actual value and the forecasted value, respectively. The bias
measures the average difference between the actual and forecasted
values, and the variance represents the forecasting volatility. In this
paper, the fitness function for accuracy and stability is designed as
Eqn 2:

min
fitnessa ¼ Biasðx̂Þj j
fitnessb ¼ Stdðx� x̂Þ

�
ð2Þ

where the first objective is the absolute bias and the second objec-
tive is the standard deviation. The final forecasted results are
exported by BP and finally generated by defuzzification.

2.6. Interval forecasting theory

To provide the lower and upper intervals of forecasting results,
an interval forecasting (IF) based on point forecasting is used in
this paper. In the IF, predictive range and confidence level of fore-
casting are provided [43,44]. With a significance level a, the prob-
ability formula with the interval limits (Imin and Imax) and the
observed value Yt can be calculated as follows:

PðImin 6 Yt 6 ImaxÞ ¼ 1� 2a ð3Þ
Lognormal distribution is considered as a desirable distribution

to fit the input short-term load data. In this paper, the distribution
of the output data is assumed the same of the input data. To do the
IF, the output layer of the BP is set to two to indicate the minimum
and maximum of intervals.
3

3. Experimental setting and results

3.1. Database

Short-term load data (30-min) from the Victoria in Australia is
used as a case study in this paper. To consider seasonal and
weekday-weekend patterns, the selected database is divided into
multiply subsets, i.e., quarter I, quarter II, quarter III, quarter IV,
workday and non-workday. A descriptive statistic of these subsets
is shown in Table 1, where the train-test ratio of each dataset is set
to 4:1 by the ‘trial and error’ rule [45,46]. Unsurprisingly, workdays
have more electricity consumption than non-workdays. Among
four quarters, quarter I has larger variety but less complexity than
the other three quarters.

3.2. Experiment setup

The simulation in this paper is performed on Windows 8 with a
64-bit 3.30 GHz Intel Core i5 4590HQ CPU and 8 GB of RAM on the
platform of MATLAB R2018a environment. To validate the pro-
posed short-term load forecasting model, two experiments are car-
ried out, namely Experiment I: point forecasting on workdays and
non-workdays, and Experiment II: interval forecasting on work-
days and non-workdays.

The proposed forecasting model is named as ICE-FTS-MODA-BP
in this paper. To testify the effectiveness and superiority of the ICE-
FTS-MODA-BP, four types of comparisons, i.e., comparison to Naïve
forecasting models, traditional statistic models, artificial



Table 1
Descriptive statistical analysis of datasets.

Quarter Date Dataset Length Min Max Std. Complexity

Quarter I Workday All samples 3072 3865.07 9587.51 1110.914 0.2849
Training set 2458 3865.07 9138.75 1084.544 0.2991
Testing set 614 4028.46 9587.51 1156.986 0.2882

Non-workday All samples 1248 3833.48 7843.03 782.3815 0.4258
Training set 998 3874.07 7843.03 820.4033 0.3783
Testing set 250 3833.48 5553.79 391.4460 0.6051

Quarter II Workday All samples 3120 3979.31 7813.35 820.1743 0.3132
Training set 2496 3979.31 7481.25 767.2383 0.3500
Testing set 624 4310.93 7813.35 846.7359 0.3677

Non-workday All samples 1248 3839.88 6860.55 590.1071 0.4913
Training set 998 3839.88 6548.54 562.3212 0.4606
Testing set 250 4396.26 6860.55 581.6237 0.5835

Quarter III Workday All samples 3168 3848.86 7699.93 806.7898 0.3718
Training set 2534 4007.27 7699.93 813.6822 0.3859
Testing set 634 3848.86 6856.18 686.4078 0.4173

Non-workday All samples 1248 3705.93 6857.28 603.1894 0.4304
Training set 998 3705.93 6857.28 614.8645 0.4167
Testing set 250 3943.52 5855.58 437.6508 0.6699

Quarter IV Workday All samples 3168 3748.16 9007.52 742.0011 0.3495
Training set 2534 3798.98 7408.14 652.4790 0.3919
Testing set 634 3748.16 9007.52 878.8699 0.3627

Non-workday All samples 1248 3551.60 5926.84 437.4109 0.4632
Training set 998 3587.77 5629.87 416.6170 0.5099
Testing set 250 3551.60 5926.84 530.1535 0.6267
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intelligence (AI) models, and different optimization algorithm-
based models are taken into consideration. For traditional statis-
tic models, the typical time series model AR and ARIMA models,
and the FTS are implemented as the benchmarks; for AI models,
the BPNN and ELMAN model are selected; For different decom-
position approach-based models, the EEMD method is chosen,
which derives from EMD family and has developed the new
form—ICEEMDAN; and the PSO and the MODA algorithms are
employed to optimize the BPNN model (i.e., PSO-BP, and
MODA-BP), which are selected as different optimization algo-
rithm based models. To guarantee the experimental fairness,
the neuron numbers of each ANN model are all supposed to
set to optimal ones. As there is no uniform theory to determine
the exact best neuron number of ANNs, this paper also applied
the trial-and-error [47,48] for parameter settings of ANNs. In
doing so, the parameters of ANNs are determined by a number
of experiments. Each AI model was repeated 10 times to assure
the reliability and independency in ultimate results, especially
about the initial random weight values and the optimization
algorithm. The experimental parameters employed in this paper
are shown in Appendix H.
3.3. Experiment I: point forecasting on workdays and non-workdays

Experiment I is aimed at short-term load point forecasting on
workdays and non-workdays. To comprehensively assess the
accuracy and stability of the proposed forecasting model, this
paper employs multiple error criteria (shown in Appendix F).
Tables 2 and 3 show the forecasting results and the values in
bold indicate the best values for each criterion among all the
benchmarks. Forecasting on workdays shows poorer performance
than that of on non-workdays in terms of both accuracy and sta-
bility. Interestingly, according to most criteria the forecasting
performance on quarter I is better than the other three quarters.
Fig. 2 shows the results of the first day in each testing sample,
which are selected as examples to reveal the superiority of the
proposed forecasting model in terms of various criterion. The
proposed hybrid model possesses the smallest values in terms
of the majority of criteria and a detailed analysis is presented
as follows:
4

(a) Data preprocessing makes large contributions to enhance
the forecasting performance. Compared the hybrid models
based on the ICEEMDAN or the FTS to other individual mod-
els, it is clearly shown that the data preprocessing-based
models significantly outperform individual models. Further,
the ICEEMDAN-FTS data pre-processing is also shown better
performance than the simple ICEEMDAN or FTS. Tables 2 and
3 show the forecasting results of the FTS, ICEEMDAN-FTS,
MODA-BP and ICE-FTS-MODA-BP model. According to the
listed results, it is concluded that the proposed ICE-FTS-
MODA-BP model outperforms three other models in various
forecasting horizons.

(b) Compared the BP to classical statistical model (e.g., ARIMA)
and AI model (e.g., ELMAN), the results show that the BP is
superior to the other two models in terms of forecasting
accuracy and stability. For example, on workdays, the BP
achieves the least MAPE values of 1.4416%, 1.4374%,
1.5562% and 1.5844% in four quarters, respectively. How-
ever, the ELMAN has comparatively larger MAPE values of
1.5743%, 1.5494%, 1.5806% and 1.9741% in four quarters,
respectively. The ARIMA performs well in the second quarter
but shows large bias in other quarters. In terms of forecast-
ing stability, the proposed model achieves better results
than individual models regarding to DA, FB and TIC values
in most situations.

(c) Compared the proposed model ICE-FTS-MODA-BP to other
hybrid models, it is found that the proposed model has a
positive influence on improving the forecasting accuracy
and stability. For example, in comparing the proposed model
with the ICE-FTS-MODA-BP and EEMD-MODA-BP, the origi-
nal EEMD can also enhance the forecasting performance but
the contribution to forecasting accuracy is comparatively
limited. The forecasting stability is also further improved
when in comparison with simple hybrid models, e.g., PSO-
BP and MODA-BP.

3.4. Experiment II: Interval forecasting on workdays and non-
workdays

In this section, an interval forecasting was conducted to estab-
lish forecasting intervals. Point forecasting in Experiment I pro-



Table 2
The proposed model in comparison with benchmark models on workdays.

DATASET MODEL AE MAE RMSE MAPE DA FB(–) TIC(–)

Naïve 16.1269 233.9330 354.3321 4.4031 0.7619 0.0033 0.0017
AR 33.6785 465.3611 707.9355 8.4154 0.6464 �0.0049 0.0023

Quarter I ARIMA 26.6856 417.0460 673.9117 6.9712 0.6828 �0.0045 0.0022
ELMAN 1.1692 88.3886 121.1396 1.5743 0.7116 �0.0002 0.0001
BPNN �2.5901 81.1295 110.2048 1.4416 0.7202 0.0004 0.0002
PSO-BP �2.0167 80.9192 103.7989 1.4384 0.7385 0.0004 0.0002
MODA-BP �2.2314 77.1690 100.4598 1.4024 0.7736 0.0002 0.0001
EEMD-FTS-MODA-BP 0.8732 69.9264 89.6573 1.3243 0.8212 0.0002 0.0001
ICE-FTS-MODA-BP 0.2005 54.5045 75.2808 0.9580 0.8058 0.0000 0.0000

Naïve �10.6500 80.9413 137.5630 1.7036 0.7827 0.0577 0.0301
AR �0.2160 77.9150 111.8873 1.5164 0.7660 0.0385 0.0606

Quarter II ARIMA �0.1759 75.2649 96.6758 1.2774 0.8007 0.0000 0.0000
ELMAN �26.3098 93.1895 125.4139 1.5494 0.7941 0.0043 0.0022
BPNN �29.2107 87.2830 117.8140 1.4374 0.7842 0.0048 0.0024
PSO-BP �30.2352 82.4159 116.7411 1.4361 0.7991 0.0052 0.0021
MODA-BP �32.3276 81.2479 111.4140 1.4293 0.8178 0.0046 0.0020
EEMD-FTS-MODA-BP �17.4184 67.3829 89.5283 1.1963 0.8865 0.0037 0.0015
ICE-FTS-MODA-BP �19.4186 61.8046 83.5457 1.0130 0.9014 0.0032 0.0016

Naïve 33.7407 132.0464 273.0754 2.5385 0.7084 �0.0028 0.0026
AR 22.2995 257.3217 301.2899 4.9387 0.6943 �0.0055 0.0027

Quarter III ARIMA 19.3877 226.4415 282.0416 4.2734 0.7239 �0.0036 0.0018
ELMAN 28.9227 83.4954 126.6667 1.5806 0.7579 �0.0053 0.0026
BPNN 10.0044 83.6873 116.2518 1.5562 0.7408 �0.0018 0.0009
PSO-BP 9.7047 82.1706 114.6825 1.5457 0.7427 �0.0018 0.0008
MODA-BP 9.4829 83.6923 113.4370 1.5225 0.7747 �0.0014 0.0008
EEMD-FTS-MODA-BP 3.3299 70.6198 98.0094 1.2739 0.8364 �0.0005 0.0003
ICE-FTS-MODA-BP 2.3158 64.4928 91.9450 1.2251 0.8909 �0.0004 0.0002

Naïve 23.9068 190.1425 384.5889 6.7303 0.7104 �0.0322 0.0044
AR 80.2634 555.9149 980.6115 12.0061 0.7098 �0.2208 0.0070

Quarter IV ARIMA 74.6988 542.2105 837.6239 9.7783 0.7051 �0.0140 0.0069
ELMAN 1.9311 111.8817 216.4933 1.9741 0.7255 �0.0004 0.0002
BPNN 2.3071 87.2307 141.6930 1.5844 0.7279 �0.0004 0.0002
PSO-BP 2.2877 86.3005 139.1835 1.5549 0.7390 �0.0010 0.0003
MODA-BP 2.0986 82.7770 140.4068 1.5401 0.7307 �0.0008 0.0003
EEMD-FTS-MODA-BP �8.8232 62.8767 122.8767 1.1021 0.8344 0.0020 0.0009
ICE-FTS-MODA-BP �13.7248 60.6163 118.0424 1.0780 0.8284 0.0026 0.0013
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vides deterministic forecasting results while interval forecasting
provides the forecasting range under a certain confidence level.
The interval forecasting highly relies on point forecasting accuracy
and stability in Experiment I. The IFCP and IFAW (introduced in
Appendix F) are used to measure the capability of interval forecast-
ing in this paper. The interval forecasting results are shown in
Table 4.

Given a certain significance level a, a desirable situation for
interval forecasting is that the predictive range covers most of
the observed data. Meanwhile, the smaller predictive range the
better. However, there is a trade-off between high IFCP and low
IFAW values. This paper employs interval forecasting under
a = 0.30, where the IFCP and IFAW achieve comparatively good
results. Take quarter I as an example, under a = 0.30, the IFCP
and IFAW values are 0.7679 and 0.1533, respectively. As for the
non-workdays, the values of IFCP and IFAW are 0.9184 and
0.4778, respectively. The performance of the interval forecasting
is shown in Figs. 3 and 4.
4. Discussion

4.1. Significance of the forecasting performance

This paper employed the DM test and the FE (details can be
found in Appendix G) to verify the outperformance of the proposed
forecasting model over comparison models. It is shown in Table 5
that the proposed model is significantly superior to comparison
models, e.g., the BPNN, GRNN, ELMAN and ARIMA models, with
the DM test values greater than critical values under 1% signifi-
5

cance level in quarters I, II and III. In quarter IV, the DM test results
for the BPNN and ELMAN is 10% and 5% significant, respectively.
From the FE test results we can see the 1st-order forecasting effec-
tiveness provided by the proposed forecasting framework is
greater than 0.94, whereas the 2nd-order values are greater than
0.90.

4.2. Effectiveness and improvement of each component

To quantify the contribution of each component that is embed-
ded in the proposed ICE-FTS-MODA-BP model, the reduced relative
error (RRE) of the MAPE is used. The REE results can be found in
Table 6 and the formula of the RRE is shown as follows:Table D1.

RREMAPEij ¼
MAPE mod eli �MAPE mod elj

MAPE mod eli

����
���� ð4Þ

From the contribution analysis we can conclude that data clean-
ing and mining framework, including ICEEMADAN and FTS, can
boost forecasting performance significantly. Their contributions
to forecasting performance are larger than optimization
algorithms.

4.3. Practical applications and limitations

The proposed short-term load forecasting model could effec-
tively reduce risks of power generation caused by variability.
Results show that the proposed can achieve accurate and stable
forecasting. However, parameters in the proposed model do not
continuously update in an online implementation. In general,



Table 3
The proposed model in comparison with benchmark models on non-workdays.

DATASET MODEL AE MAE RMSE MAPE DA FB(–) TIC(–)

Naïve 3.1742 50.1982 76.1645 1.6795 0.6511 0.0045 0.0016
AR 2.9058 44.6449 57.2942 0.9517 0.8045 0.0076 0.0026

Quarter I ARIMA 1.2021 40.8306 53.4681 0.8602 0.8458 �0.0003 0.0001
ELMAN 5.5077 68.1617 94.1227 1.4447 0.7089 �0.0011 0.0006
BPNN 2.4138 63.5111 91.8614 1.3377 0.7173 �0.0005 0.0003
PSO-BP 2.5687 62.6704 88.4742 1.3042 0.8520 �0.0005 0.0003
MODA-BP 2.6513 60.9577 86.1611 1.2731 0.8234 �0.0004 0.0003
EEMD-FTS-MODA-BP 2.9024 36.5225 50.6454 0.8967 0.8391 �0.0007 0.0002
ICE-FTS-MODA-BP 3.9974 29.2106 41.7554 0.6231 0.8517 �0.0008 0.0004

Naïve �27.8890 81.4261 128.8215 1.5647 0.8736 0.0028 0.0041
AR �20.2634 68.9149 77.0061 1.2315 0.9031 0.0033 0.0013

Quarter II ARIMA �14.6946 56.3361 68.9003 0.9994 0.9322 0.0027 0.0013
ELMAN �30.9636 77.3054 117.0300 1.3729 0.8143 0.0057 0.0028
BPNN �11.4325 72.4860 110.4069 1.2867 0.8312 0.0021 0.0010
PSO-BP �17.1471 71.4402 108.4957 1.2963 0.8484 0.0018 0.0010
MODA-BP �13.9109 69.4179 106.9065 1.2531 0.8511 0.0017 0.0004
EEMD-FTS-MODA-BP �2.7874 58.4439 77.5950 1.1253 0.9399 0.0004 0.0001
ICE-FTS-MODA-BP �0.1682 55.4968 70.1216 0.9982 0.9417 0.0000 0.0000

Naïve 27.1711 86.6645 145.6941 1.5695 0.7833 �0.0040 0.0020
AR 13.3924 55.6238 79.3940 1.2403 0.8054 �0.0027 0.0020

Quarter III ARIMA 11.7223 51.7582 69.0258 1.0770 0.8686 �0.0025 0.0012
ELMAN 15.7889 70.1882 116.2407 1.4432 0.7257 �0.0033 0.0017
BPNN 17.0724 67.8703 102.2224 1.4015 0.7384 �0.0036 0.0018
PSO-BP 17.0063 65.8411 100.3045 1.3830 0.7633 �0.0031 0.0011
MODA-BP 16.3213 65.0572 98.5833 1.3345 0.7701 �0.0033 0.0009
EEMD-FTS-MODA-BP 2.0165 43.9885 66.0198 1.0958 0.8725 �0.0008 0.0003
ICE-FTS-MODA-BP 1.0438 41.5602 57.1816 0.8557 0.8958 �0.0002 0.0001

Naïve 5.2401 80.0778 125.9585 1.8716 0.6927 �0.0009 0.0008
AR 6.6482 65.4412 70.7058 1.3212 0.8207 �0.0009 0.0016

Quarter IV ARIMA 5.5848 51.4666 65.5011 1.1111 0.8559 �0.0012 0.0006
ELMAN �3.5854 70.6211 101.1660 1.4903 0.7215 0.0008 0.0004
BPNN 2.7865 64.5021 89.4172 1.3773 0.7468 �0.0006 0.0003
PSO-BP 2.7752 62.7497 87.1616 1.2894 0.7748 �0.0004 0.0003
MODA-BP 2.7127 59.7035 87.7709 1.2200 0.7915 �0.0002 0.0003
EEMD-FTS-MODA-BP 0.6242 44.4048 60.8851 0.9295 0.8514 �0.0004 0.0001
ICE-FTS-MODA-BP 0.3693 39.4680 53.6836 0.8505 0.8792 �0.0001 0.0000
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non-linear models are difficult to parametrize, while nearly all
methods are adaptive if the model parameters are updated on a
regular basis. The update of hybrid models requires the solution
of large optimization problems and thus is computationally costly.
In practical application, the model parameters in the proposed
model could be continuously updated by using historical data
[49]. For example, parameters can be redetermined for the respec-
tive type of the day (working days vs. weekend days) by using his-
torical data [50]. On the other hand, numbers of training days and
the correction parameters can also be redetermined dynamically
by online implementation.

The proposed model enables to obtain accurate and reliable
short-term forecasting results but unfortunately, it cannot adapt
to future changing conditions automatically and dynamically. For
example, certain parameters such as the improvement of transmis-
sion technology and the change of consumption habits will affect
load demand but they are not included in the proposed model.
Further, the proposed model may encounter problems when catas-
trophic events happen in the future. However, the time resolution
of short-term forecasting models is always from several minutes-
ahead to several hours-ahead, but not for a long period. Short-
term forecasting models focus more on instability, intermittency
and complex fluctuation of short-term load demand. While the
proposed model is applicable for long-term (e.g., day-ahead,
week-ahead or even longer) power prediction, the forecasting
accuracy will be largely reduced. The longer the time interval of
prediction, the greater the fluctuation and the worse the regularity
of the electricity. In terms of long-term load forecasting, there is no
state-of-art method to address it. Most of long-term load forecast-
6

ing models are based on certain scenarios and rough estimation,
which is out of the scope of this paper. However, short-term fore-
casting with long-term scenarios analysis could provide practical
solutions in parallel with the changing and uncertain future.

Despite the limitations, the proposed short-term forecasting
model could be used, for instance, by policy makers and industrial
stakeholders to support and orient the development of power sys-
tems toward the use of the most stable and efficient type of renew-
able energies. Moreover, the proposed method may provide
statistics to support renewable energy-oriented policy scenarios
and accurate forecasting information to project developers. This
novel approach designed for large territories, here applied to Aus-
tralian cases, is generic and can be applied to other territories. Fur-
thermore, the proposed model could be implemented to various
real-time tasks, such as RE generation and distribution, real-time
maintenance and security check [51] in power systems, and the
household energy consumption reducing and management.
5. Conclusions

In this paper, a hybrid weekday-weekend short-term load fore-
casting model was proposed that consists of data cleaning, fore-
casting, optimization and evaluation. The raw short-term load
time series is decomposed and reconstructed by the ICEEMDAN.
Then, the FTS further mines the characteristics of the preprocessed
data and the fuzzified data is imported to ANNs. A multi-objective
optimization algorithm is employed to boost forecasting accuracy
and stability simultaneously. Finally, the forecasting results are



Fig 2. The forecasting result on workdays and non-workdays.

Table 4
The interval forecasting results under different significance levels.

Quarter a Workday Non-workday

IFCP IFAW IFCP IFAW

Quarter I 0.10 0.3575 0.0511 0.4133 0.1593
0.20 0.6335 0.1022 0.7143 0.3186
0.30 0.7679 0.1533 0.9184 0.4778
0.40 0.8575 0.2044 0.9796 0.6371
0.50 0.9185 0.2556 0.9949 0.7964

Quarter II 0.10 3.6276 0.1175 0.2296 0.1351
0.20 0.4830 0.2088 0.4847 0.2701
0.30 0.7007 0.3131 0.7296 0.4052
0.40 0.8414 0.4175 0.9133 0.5403
0.50 0.9167 0.5219 0.9745 0.6753

Quarter III 0.10 0.4185 0.1080 0.3316 0.1423
0.20 0.5726 0.2160 0.5918 0.2845
0.30 0.7177 0.3240 0.8061 0.4268
0.40 0.8495 0.4319 0.8980 0.5690
0.50 0.9086 0.5399 0.9694 0.7113

Quarter IV 0.10 0.4203 0.0552 0.3622 0.1141
0.20 0.6362 0.1104 0.6122 0.2282
0.30 0.7733 0.1657 0.8571 0.3423
0.40 0.8602 0.2209 0.9490 0.4564
0.50 0.9238 0.2761 0.9694 0.5705
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obtained by defuzzying. Both point and interval forecasting were
conducted to the short-term load forecasting. To consider the sea-
sonal and workday-weekend patterns, separate forecasting results
7

regarding those patterns are provided. Comprehensive measure-
ment and evaluation were used to verify the effectiveness of the
proposed forecasting model. The results and discussion show that



Fig 3. Electrical power interval forecasting performance on workdays.

Fig 4. Electrical power interval forecasting performance on non-workdays.

Table 5
The DM test and the FE results.

Test Datasets Proposed Model BPNN GRNN ELMAN ARIMA

DM test Quarter I – 10.0736*** 12.0238*** 11.4516*** 12.2955***

Quarter II – 4.5084*** 10.015*** 9.3209*** 13.2921***

Quarter III – 6.3854*** 10.4656*** 4.7530*** 21.9588***

Quarter IV – 1.8411* 10.5858*** 2.3242** 13.8611***

FEa Quarter I 0.9897 0.9852 0.9821 0.9839 0.9537
Quarter II 0.9896 0.9857 0.9815 0.9846 0.9485
Quarter III 0.9876 0.9818 0.9772 0.9846 0.9530
Quarter IV 0.9857 0.9832 0.9756 0.9814 0.9552

FEb Quarter I 0.9798 0.9704 0.9650 0.9686 0.9145
Quarter II 0.9797 0.9733 0.9627 0.9714 0.9087
Quarter III 0.9748 0.9642 0.9540 0.9669 0.9142
Quarter IV 0.9658 0.9679 0.9478 0.9587 0.9168

The values in bold indicate the best values.
* Indicates the 10% significance level, ** indicates the 5% significance level, and *** indicates the 1% significance level.

a Indicates the 1st-order forecasting effectiveness.
b Indicates the 2nd-order forecasting effectiveness.
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Table 6
The REE results of the proposed model and comparison models.

Dataset Model Workdays Non-workdays

MAPE RRE MAPE REE

Quarter I FTS 1.2745 24.8038 1.1453 45.5895
ICE-FTS 1.0843 11.6236 0.9544 34.6960
BPNN 1.4427 33.5645 1.3380 53.4380
FTS-MODA-BP 1.1080 13.5379 0.8380 25.6563
ICE-FTS-BP 1.0022 4.3912 0.7095 12.1298
ICE-FTS-MODA-BP 0.9580 / 0.6231 /

Quarter II FTS 2.1599 53.0801 2.4378 59.0480
ICE-FTS 1.8156 44.1873 2.0313 50.8616
BPNN 1.4376 29.5059 1.2878 22.4553
FTS-MODA-BP 1.4434 29.7990 1.7525 43.0365
ICE-FTS-BP 1.3837 26.7534 1.5344 34.9413
ICE-FTS-MODA-BP 1.0130 / 0.9982 /

Quarter III FTS 1.7902 31.5642 1.9404 55.8763
ICE-FTS 1.4948 18.0054 1.6175 47.0625
BPNN 1.5566 21.2725 1.4020 38.9444
FTS-MODA-BP 1.7286 29.1088 1.5939 46.2649
ICE-FTS-BP 1.4917 17.8404 1.4213 39.7607
ICE-FTS-MODA-BP 1.2251 / 0.8557 /

Quarter IV FTS 1.1886 9.2593 2.1571 60.5471
ICE-FTS 0.9974 �8.1244 1.7976 52.6433
BPNN 1.5844 31.9444 1.3773 38.1990
FTS-MODA-BP 1.4435 25.2945 1.7423 51.1481
ICE-FTS-BP 1.3261 18.7029 1.5576 45.3436
ICE-FTS-MODA-BP 1.0780 / 0.8505 /
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the proposed hybrid model ICE-FTS-MODA-BP takes advantage of
each component and achieves high forecasting stability and accu-
racy. The proposed model can provide an effective and efficient
weekday-weekend and seasonal forecasting, which assists the
decision-makers for strategy making in the field of energy and
electricity system development.
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Appendix A. . List of abbreviations
RE
 Renewable energy
 CEEMDAN
 Complete ensemble empirical mode
decomposition with adaptive noise
ANN
 Artificial neural network
 FLR
 Fuzzy logical relationship

SVM
 Support vector machines
 LHS
 Left-hand side

ARMA
 Autoregressive moving average
 RHS
 Right-hand side

SOM
 Self-organizing map
 DA
 Dragonfly algorithm

FTS
 Fuzzy time series
 MODA
 Multi-objective dragonfly algorithm

BPNN
 Back propagation neural network
 IF
 Interval forecasting

DM
 Diebold–Mariano
 FVD
 Forecasting validity degree

AI
 Artificial intelligence
 PSO
 Particle swarm optimization

FE
 Forecasting effectiveness
 MOPSO
 Multi-objective particle swarm optimization

ICEEMDAN
 Improved complete ensemble empirical mode

decomposition with adaptive noise

MOALO
 Multi-objective ant lion optimization
EMD
 Empirical mode decomposition
 IGD
 Inverted generational distance

IMF
 Intrinsic mode functions
 SP
 Spacing

EEMD
 Ensemble empirical mode decomposition
 RRE
 educed relative error
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Appendix B. List of nomenclature
Y
 Set of continuous
values
H
 Output of the output
layer
f
 Fuzzy set
 K
 Input signal

u
 Universe of discourse
 d
 Error signals

F
 Fuzzy time series (set of

f)

h
 Thresholds of the

BPNN

R
 Fuzzy logical

relationship

a, b
 Learning parameters
Ai
 Left-hand side of the
FLR
T
 The target output of
the output layer
Aj
 Right-hand side of the
FLR
o
 Number of objectives
Rmin
 Upward range
 m
 Number of unequal
constraints
Rmax
 Downward range
 p
 Number of equal
constraints
a
 A constant
 Li
 The lower frontiers of
the ith variables
W_s
 Standardized weighting
matrix
Ui
 The upper frontiers of
the ith variables
D
 Defuzzied matrix
 x!, y!
 Vectors

W
 Unstandardized

weights matrix factors

E
 Mathematical

expectation
Ŵi

Standardized weights
matrix factors
Imin,
Imax
Interval limits
F_u
 Ultimate forecasting
value
a
 Confidence level
f
 A coefficient
 Ĥ
 A Function
W
 Weights between layers
of the BPNN
e
 Forecasting error
k
 Number of input nodes
 S
 The variance

l
 Number of hidden

nodes

L
 The loss function
h
 Number of output
nodes
Z
 The critical z-value
L
 Output of the hidden
layer
Q
 Discrete probability
distribution
Appendix C. The basic theory of the FTS

Definition 1: Yt is denoted as a set of continuous values. Fuzzy
sets fj and the universe of discourse u are obtained on the basis of
Yt. After that, Ft, a set of f1,t, f1,t, ∙∙∙, refers to the fuzzy time series
[52].

Definition 2: Ft is supposed to be only related to Ft-1. A forecast-
ing model is defined as Ft = Ft-1*Rt-1, in which Ft-1 and Ft are two
fuzzy sets and Rt-1,t is the fuzzy logical relationship (FLR) between
this two fuzzy sets.

Definition 3: Given Ft-1 = Ai and Ft = Aj. The FLR between two
fuzzy values can be denoted as Ai ? Aj, where Ai and Aj reflect
the left-hand side (LHS) and right-hand side (RHS) of the FLR,
respectively.

Definition 4: Based on the same LHS of the FLR, every single FLR
can be assembled into several groups. Then, the calculation steps of
the weighted fuzzy time series can be expressed as in [53]:

Step 1: Define universe of discourse ui = [Rmin-a, Rmax + a], where
Rmin and Rmax are the upward and downward of Yi, respectively.
10
a is a constant and u is afterwards split into several intervals
based on the equidistant interval partitioning methods.
Step 2: Set a fuzzy membership function and then obtain the
fuzzy sets. The fuzzy sets Ai is divided based on the above-
mentioned intervals. In this paper, five subsets are employed
as in [54].

A1 ¼ 1=u1 þ 0:5=u2 þ 0=u3 þ 0=u4 þ 0=u5

A2 ¼ 0:5=u1 þ 1=u2 þ 0:5=u3 þ 0=u4 þ 0=u5

A5 ¼ 0=u1 þ 0=u2 þ 0=u3 þ 0:5=u4 þ 1=u5

ð1Þ

Step 3: Fuzzifier the observation values. For instance, the fuzzi-
fied result of one single data is Aj, and the maximum degree of
membership of this value is in Aj.
Step 4: Determine the fuzzy logical relationships and assemble
them. For instance, if Ai ? Aj, Ai ? Ak, and Ai ? Al can be assem-
bled to Ai ? Aj, Ak, Al.
Step 5: Construct weights matrix. The fuzzified matrix can be
expressed by using the centroid defuzzification method and
the weights matrix also can be further standardized.
Step 6: Obtain the prediction results. Prediction results can be
obtained by multiplication of the fuzzified and standardized
weights matrix that determined as follows:

W st ¼ ðŴ1; Ŵ2; � � � ; ŴkÞ; Ŵi ¼ Wi=
Xk

i¼1

Wi ð2Þ

Ft ¼ Dt�1 �W st�1 ð3Þ
where W_s is the standardized weighting matrix, and D is the
defuzzied matrix. W is defined as the unstandardized weights

matrix factors; Ŵis the standardized factor, and F represents the
forecasting result.

Step 7: Finally, the forecasting results are improved by applying
Eq. (3) to achieve the ultimate forecasting results. Where yt-1
indicates the actual value on time t�1, and F_ut represents
the ultimate forecasting value.

F ut ¼ yt�1 þ f � ðFt � yt�1Þ ð4Þ
where f is a coefficient.
Appendix D. . Test on the MODA

To testify the efficiency and superiority of the MODA, four test
functions (shown in Appendix I) are used for algorithm test in this
paper. Two multi-objective optimization algorithms, e.g., multi-
objective particle swarm optimization (MOPSO) and multi-
objective ant lion optimization algorithm (MOALO) are employed
for comparison. In order to achieve effective and robust simulation
results, each algorithm has been repeatedly simulated for 20 times,
and the final result is obtained by averaging those 20 results. All
experiments were performed with 100 iterations, 50 search agents,
and 100 number of archives. Inverted generational distance (IGD)
[55,56] and spacing (SP) [57,58] are implemented to quantitatively
evaluate the performance of three algorithms. The statistic values
of IGD and SP are shown in Table 5. The obtained Pareto optimal
solutions by each algorithm are shown in Appendix J. Two main
conclusions are made from the algorithm test:

The MODA algorithm obtains the optimal IGD and SP values in
most statistic magnitudes, which indicates its better optimization
capacity than two comparison algorithms.



Table D1
Statistical values of the IGD and SP for four test functions.

Statistic Magnitude Algorithm ZDT1 ZDT2 ZDT3 ZDT1 in linear front

ICP SP ICP SP ICP SP ICP SP

Ave. MODA 0.0023 0.0200 0.0030 0.1653 0.0247 0.0211 0.0026 0.1310
MOPSO 0.0024 0.0251 0.0127 0.0250 0.0254 0.0290 0.0027 0.0262
MOALO 0.0078 0.0145 0.0102 0.0145 0.0266 0.0260 0.0070 0.0165

Std. MODA 0.0014 0.0121 0.0007 0.3040 0.0003 0.0054 0.0013 0.2411
MOPSO 0.0005 0.0033 0.0001 0.0031 0.0009 0.0042 0.0005 0.0043
MOALO 0.0047 0.0047 0.0067 0.0069 0.0020 0.0154 0.0070 0.0061

Median MODA 0.0015 0.0179 0.0032 0.0202 0.0246 0.0203 0.0028 0.0309
MOPSO 0.0023 0.0253 0.0127 0.0243 0.0252 0.0285 0.0026 0.0258
MOALO 0.0068 0.0160 0.0081 0.0136 0.0260 0.0219 0.0046 0.0147

Worst MODA 0.0055 0.0634 0.0038 0.7501 0.0253 0.0308 0.0045 0.7900
MOPSO 0.0040 0.0305 0.0129 0.0322 0.0276 0.0376 0.0040 0.0334
MOALO 0.0198 0.0209 0.0212 0.0292 0.0316 0.0566 0.0328 0.0291

Best MODA 0.0010 0.0087 0.0021 0.0166 0.0244 0.0149 0.0010 0.0109
MOPSO 0.0018 0.0155 0.0126 0.0207 0.0244 0.0221 0.0020 0.0203
MOALO 0.0022 0.0033 0.0031 0.0040 0.0243 0.0082 0.0024 0.0083
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The MODA algorithm covers more Pareto optimal solutions than
the MOPSO and MOALO, which verifies its better universality.

Algorithm 1: Pseudo code of the MODA

Fitness function:

min fitness1 ¼ Biasðx̂Þj j
fitness2 ¼ Stdðx� x̂Þ

�

Output:

X̂ � Xwith the best fitness
Parameters:

IterMax — the maximum iterations
n — the dragonflies’ number
Fi —the fitness of i-th dragonfly
[Li,Ui] — the boundaries of the variable
Xi — the position of i-th variable
DXi — the step vactor
t — the current iterations
d — the dimension of the optimize problem

1. /*Set the basic parameters of the MODA.*/
2. /*Initialize the dragonflies population Xi (i = 1, 2,. . ., n) ran-

domly.*/
3. /*Initialize the step vectors DXi (i = 1, 2,. . ., n) .*/
4. /*Define the maximum number of hyper
5. spheres (segments).*/
6. /*Define the archive size.*/
7. FOR EACH i: 1 � i � n DO
8. Calculate the corresponding Fi using ranking process
9. END FOR
10. /*Determine the best dragonflies and suppose it as

the elite.*/
11. WHILE (t < iterMax) DO
12. /*Calculate the objective values of all dragonflies.*/
13. /*Find the non-dominated solutions.*/
14. /*Update the archive in regard to the obtained non-

dominated solutions.*/
15. IF the archive is full DO
16. /*Omit some solutions from the archive to add the

new solutions.*/
17. END IF
18. IF any new added solutions to the archive is outside

hyper spheres DO
19. /*Update and re-position all of the hyper to cover

the new solutions.*/
20. END IF
11
(continued)

Algorithm 1: Pseudo code of the MODA

21. Select a food source from archive: X + = SelectFood
(archive)

22. Select an enemy from archive: X �= SelectEnemy
(archive)

23. /*Update the step vectors.*/
24. DXt+1 = (sSi + aAi + cCi + fFi + eEi) + wDXt

25. /*Update the position vectors according to different
conditions.*/

26. Xt+1 = Xt + DXt+1

27. Xt+1 = Xt + Le’vy(d) � Xt

28. Check and correct the new positions based on the
boundaries [Li,Ui]

29. t = t + 1
30. END WHILE
31. RETURN xb

Appendix E. . Pareto optimal solutions

Minimize:

Fð x!Þ ¼ ff 1ð x!Þ; f 2ð x!Þ; :::; f oð x!Þg ð1Þ
Subject to:

gið x!Þ P 0; i ¼ 1;2; :::;m ð2Þ

hið x!Þ P 0; i ¼ 1;2; :::; p ð3Þ

Li 6 xi 6 Ui; i ¼ 1;2; :::;n ð4Þ
Suppose that there are o objectives, m unequal constraints, and

p equal constraints. And Li and Ui denote the lower and upper fron-
tiers of the ith variables, respectively.

Definition 6. Pareto dominance [59]:
Assume that there are two

vectors x!¼ ðx1; x2; :::; xlÞ; y!¼ ðy1; y2; :::; ylÞ.
Vector x! dominates y!, defined as x! > y!, if:

8if1;2; :::; lg; ½f ðxiÞ P f ðyiÞ� ^ ½i 2 1;2; :::; l : f ðxiÞ� ð5Þ
Definition 7. Pareto optimality [60]:
A Pareto optimal can be through x!2 X, if:

9 y!2 XjFð y!Þ 	 Fð x!Þ ð6Þ
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If neither of the solutions governs the other, and then they are
non-dominated.

Definition 8. Pareto optimal set:
Pareto set are the set that contains all non-dominated solutions:

Ps ¼ f x!; y!2 Xj9Fð y!Þ 	 Fð x!Þg ð7Þ
Definition 9. Pareto optimal front:
A set including the corresponding values of Pareto optimal solu-

tions in a Pareto optimal set is named as Pareto optimal front:

Pf ¼ fFð x!Þj x!2 Psg ð8Þ
To handle the multi-objective optimization problems through

the MODA approach, it is essential to construct an archive which
is utilized to store and then retrieve the optimal approximations
of the true Pareto optimal solutions. The food resources are
selected from the archive and the updating position of each search
agent is identical to the DA algorithm. Finally, through the least
populated field of the Pareto optimal front, a food resource is cho-
sen to attain a well-spread front.

The key to finding the least populated region of the Pareto opti-
mal front is to divide the search space into several segments. Next,
the selection applies the roulette wheel mechanism. The worst
hyper-sphere enemies from the archive are to be chosen according
to the roulette-wheel results, which prevents the dragonflies from
searching through non-promising crowded regions. During the
whole process, the archive is supposed to update regularly as it
can become gradually complete. In this paper, the research of
Coello et al. [61] is used to manage the archive.

Appendix F. The evaluation metrics

It is essential to make a comprehensive evaluation whereas
there is no unified standard for model measurement [62]. There-
fore, this paper employs multiple error criteria. AE roughly mea-
sures the difference between the forecasted values and actual
values; MAE shows the degree of the difference between the fore-
casted values and actual values; RMSE is another relative error
estimator that pays more attention to the impact of extreme values
based on the MAE; MAPE is a common index in statistics for eval-
uating the accuracy of forecasting models; DA indicates the fore-
casting direction of each model; FB measures of mean bias and
indicate only systematic errors which lead to always underesti-
mate or overestimate the measured values; TIC provides a measure
of how well a time series of estimated values compares to a corre-
sponding time series of observed values. IFCP is a quantitative
measure that shows the probability of actual values covered by
the lower and upper bounds; and IFNAW is a significant character-
istic of IFs. A general description of nine criteria is shown below,
where Fi and Ai indicate the forecasted and actual values at time
i, respectively.
Metric
 Definition
 Equation
AE
 The average error
of N forecasting
results
AE =1
N

PN
i¼1ðFi � AiÞ
MAE
 The mean
absolute error of
N forecasting
results
MAE =1
N

PN
i¼1 Fi � Aij j
RMSE
 The square root
of the mean
square error
RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N �PN

i¼1ðFi � AiÞ2
q
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Metric
 Definition
 Equation
MAPE
 The mean
absolute percent
error of N
forecasting
results
MAPE =1
N

PN
i¼1

Ai�Fi
Ai

��� ���� 100%
DA
 The direction
accuracy of
forecasting
results
DA

= 1; if ðAiþ1 � AiÞðFiþ1 � AiÞ > 0
0; otherwise

�

FB
 The fractional
bias of
forecasting
results
FB =2ðA
�
� F

�
Þ=ðA

�
þ F

�
Þ

TIC
 Theil’s inequality
coefficient of
forecasting
results
TIC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�
PN

i¼1
ðFi�AiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�
PN

i¼1
A2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�
PN

i¼1
F2i

q

IFCP
 The internal
forecasting
coverage
probability
IFCP

=1
N

PN
i¼1yi; yi ¼

1; if yi Li;Ui½ �
0; otherwise

�

IFAW
 The internal
forecasting
average width
IFAW =1
N

PN
i¼1ðUi � LiÞ
Appendix G. Test methods

G-1: Diebold-Mariano (DM)

The DM test is a statistical test to evaluate whether two models
have a significant difference in regard to forecasting performance
[63]. The null and alternative hypothesis of the DM test are shown
below:

H0 : EðdhÞ ¼ 0; 8n; H1 : EðdhÞ–0; 9n ð1Þ
The statistics of DM test is

DM ¼
Pk

h¼1ðLðe Að Þ
tþhÞ � Lðe Bð Þ

tþhÞÞ=kffiffiffiffiffiffiffiffiffiffi
S2=k

q s2 ð2Þ

where et+h, S2 and L represent the forecasting error, the variance and
the loss function, respectively. In this paper, the square error loss
function is used. The statistics of DM is convergent to the standard
normal distribution, where the null hypothesis cannot be accepted
if

DMj j > za=2 ð3Þ
where za/2 is the critical z-value and a is the significance level. The
statistics of DM is subject to a normal distribution, so it will be
rejected the null hypothesis if |DM| > 1.96, given the 5% significant
level [64].

G-2: Forecasting effectiveness (FE)

This paper uses forecasting effectiveness (FE) to evaluate aver-
age accuracy along forecasting periods [65]. Assume the forecasted
short-term load series x, (xt ; t ¼ 1;2; . . . ;N) and m forecasting
methods are to be compared. xit represents the forecasting value
at time t with the ith method, where i = 1,2,. . .,m.
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Definition 1. The value of eit is the relative error of the ith
method at time i = 1,2,. . .,m, t = 1,2,. . .,N. E = (eit)m�N is the matrix
of relative errors.

eit ¼
�1; xt�xit

xt
< �1

xt�xit
xt

; �1 < xt�xit
xt

< 1

1; xt�xit
xt

> 1

8>><
>>:

ð4Þ

Definition 2. The forecasting accuracy of the ith method at time
t is calculated by Ait = 1 � |eit| (i = 1,2,. . .,m, t = 1,2,. . .,N). Naturally,
0 � Ait � 1 and Ait = 0 when (xt � xit)/xt > 1.

Definition 3. The element of the k-order forecasting validity
degree (FVD) with the ith method:

mk
i ¼

XN
t¼1

QtA
k
it ð5Þ

where k is the positive integer and (Qt, t = 1,2,. . .,N) is the discrete
probability distribution of the mth forecasting method at time t:
13
XN
t¼1

Qt ¼ 1; ðQt > 0Þ ð6Þ

Definition 4. H (mi
1 mi

2,. . ., mi
k) is a k-element continuous func-

tion that illustrates the k-order FVD.
Definition 5. When H(x) = x is a one-element continuous func-

tion, H(mi
1) = mi

1

is the one-order forecasting validity of the ith forecasting

method; when H(xi) = xi (1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y� x2i

q
) is a two-element continuous

function, the two-order forecasting validity of the ith forecasting
method is represented as:

Hðm1
i ;m

2
i Þ ¼ m1

i ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i � ðm1
i Þ

2
q

Þ ð7Þ
Definition 6. The 1st-order forecasting effectiveness and the

2nd-order forecasting effectiveness are the expectation forecasting
accuracy sequence, and the difference between the expectation
and standard deviation of the forecasting accuracy sequence,
respectively.
Appendix H. . Parameter settings
Model
 Experimental Parameter
 Value
BPNN
 Maximum iteration times
 1000

Learning rate
 0.01

Training accuracy goal
 0.00001

Neuron number of the input layer
 3

Neuron number of the hidden layer
 7

Neuron number of the output layer
 1
ELMAN
 Neuron number of the input layer
 3

Neuron number of the hidden layer
 7

Neuron number of the output layer
 1

Iteration number of displays once in an image
 20

Maximum iteration times
 1000
ARIMA (p, d, q)
 Autoregressive term (p)
 1

Moving average number (q)
 1

Difference times (d)
 1
Appendix I. Test functions
ZDT1
 ZDT1 with linear PF
Minimize :f 1ðxÞ ¼ x1
 Minimize :f 1ðxÞ ¼ x1

Minimize :f 2ðxÞ ¼ gðxÞ � hðf 1ðxÞ; gðxÞÞ
 Minimize :f 2ðxÞ ¼ gðxÞ � hðf 1ðxÞ; gðxÞÞ

Where : GðxÞ ¼ 1þ 9

N�1

PN
i¼2xi
 Where : GðxÞ ¼ 1þ 9

N�1

PN
i¼2xi
hðf 1ðxÞ; gðxÞÞ ¼ 1�
ffiffiffiffiffiffiffiffi
f 1ðxÞ
gðxÞ

q� �2

0 6 xi 6 1;1 6 i 6 n
hðf 1ðxÞ; gðxÞÞ ¼ 1� f 1ðxÞ
gðxÞ

0 6 xi 6 1;1 6 i 6 n
ZDT2
 ZDT3
Minimize:f 1ðxÞ ¼ x1
 Minimize: f 1ðxÞ ¼ x1

Minimizef 2ðxÞ ¼ gðxÞ � hðf 1ðxÞ; gðxÞÞ
 Minimize:f 2ðxÞ ¼ gðxÞ � hðf 1ðxÞ; gðxÞÞ

Where : GðxÞ ¼ 1þ 9

N�1

PN
i¼2xi
 Where : GðxÞ ¼ 1þ 9

29

PN
i¼2xi
hðf 1ðxÞ; gðxÞÞ ¼ 1�
ffiffiffiffiffiffiffiffi
f 1ðxÞ
gðxÞ

q� �2

0 6 xi 6 1;1 6 i 6 n
hðf 1ðxÞ; gðxÞÞ ¼ 1�
ffiffiffiffiffiffiffiffi
f 1ðxÞ
gðxÞ

q
� f 1ðxÞ

gðxÞ
� �

sinð10pf 1ðxÞÞ
0 6 xi 6 1;1 6 i 6 n
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Appendix J. Pareto optimal results for MODA, MOPSO and
MOALO (Figure 5)
Fig 5.
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