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Originally, reaction systems were introduced to describe in a formal way the interactions 
between biochemical reactions taking place in living cells. They are also investigated as 
an abstract model of interactive computation. A reaction system is determined by a finite 
background set of entities and a finite set of reactions. Each reaction specifies the entities 
that it needs to be able to occur, the entities which block its execution, and the entities 
that it produces if it occurs. Based on the entities available in a state of the system, all 
reactions of the system that are enabled take place and together produce the entities that 
form the next state. In this paper we compare reactions in terms of their enabledness 
and results. We investigate three partial orders on reactions that build on two definitions 
of equivalence of (sets of) reactions. It is demonstrated how each partial order defines a 
lattice (with greatest lower bounds and least upper bounds) for all nontrivial reactions. 
Together, these orders provide an insight in possible redundancies and (re)combinations of 
the reactions of a reaction system.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Reaction systems were introduced in [12] with the aim to formalize the interactions between biochemical reactions 
that take place in living cells. The mechanisms behind such interactions are facilitation and inhibition. In the framework of 
reaction systems these are captured in the definition of a reaction. Each reaction a specifies a set Ra of entities (reactants) 
that must be present in order for it to be able to take place, as well as a set Ia of entities (inhibitors) that cannot be present 
as they block its execution. If a reaction is enabled (i.e. facilitated, but not inhibited), it produces new entities specified as 
a set Pa of (products). Thus a is enabled by a set of entities (a state) T if Ra ⊆ T and Ia ∩ T = ∅ and in that case resa(T ), 
the result of a on T is Pa (otherwise resa(T ) = ∅). Reaction systems are determined by a finite (background) set S of entities 
and a set A of reactions with reactants, inhibitors, and products from S . Based on the entities available in a state of the 
system (a subset of S), all reactions in A that are enabled take place and together produce the entities that form the next 
state. So, an important aspect of reaction systems is non-permanency: entities that are not produced will not (no longer) 
be present in the next state. Another important feature, and most relevant to this paper, is the ‘threshold assumption’: 
either a reactant x is not present or it is present in a sufficient amount for all reactions that have x in their reactant 
sets, to use it. There is no ‘conflict’ of resources. Consequently, the basic reaction system model is qualitative rather than 
quantitative. This abstract model however, is well-suited to be extended with concrete features of the cellular biochemistry. 
Indeed, reaction systems currently form a broad and flexible framework comprising all kinds of extensions introduced to 
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study computational aspects of biochemical processes taking place in the living cell (see, e.g. [1,2,4,8,10,12,13]). Apart from 
biological considerations, reaction systems are also an interesting abstract model of computation and they have been studied 
extensively as such since their introduction (see, e.g. [3,6,7,14,15,20]).

Obviously, how a system behaves is one of its most important characteristics and, from a computational point of view, 
behavioural equivalence is an appropriate method to compare systems, once the relevant aspects of behaviour have been 
identified and formally defined. Already in [12], a notion of equivalence was introduced to compare reaction systems. This 
functional equivalence identifies two systems if their result functions are the same. Another equivalence (introduced in [8]) 
is enabling equivalence that compares the effect of two sets of reactions only for those states that enable all reactions 
involved. Here the motivation comes from reaction systems that may evolve, i.e. their sets of reactions may change over 
time provided such transformations are ‘invisible’. As demonstrated in [8], enabling equivalence and functional equivalence 
are incomparable relations. Whereas these two relations are based on the effect of reactions on states, there are also 
equivalences that take into account the dynamic behaviour of reaction systems in terms of their transitioning from state to 
state with or without interaction with the environment. In [18], a framework is presented for considering various notions 
of behavioural equivalence for reaction systems. Some of these equivalences, are defined directly in terms of reactions 
and (interactive) processes, while others (e.g. bisimulation) are based on labelled transition systems and may involve a 
controlled environment. Also in [16], reaction systems are compared through their labelled transition systems. Now they 
are considered equivalent if their labelled transition systems are isomorphic. In [19], a reaction algebra is presented with 
two different types of compositional semantics and a behavioural equivalence that subsumes functional equivalence. When 
compared with functional equivalence, enabling equivalence is more subtle in the sense that it focuses on specific states 
namely those where all reactions under consideration are active. In fact, it treats a set of reactions as if it were a single 
reaction. This approach is discussed in [17] and applied to transition system representations of the behaviour of reaction 
systems.

Motivated by the idea that the external behaviour of a system is better understood, if the internal structure of the 
system has been identified, we investigate in this paper how reactions relate to each other in terms of enabledness and 
results. In particular, we are interested in how the effect of combining a reaction with another one may subsume the effect 
of the reaction on its own. The cover relation, a relation derived from functional equivalence, was introduced already in [12]. 
Reaction b is said to be covered by reaction a if {a, b} is functional equivalent to a. In other words, the result of a and b
together is always the same as that of a alone (resa(T ) ∪ resb(T ) = resa(T ) for all states T ). Thus b can be considered to be 
redundant in the context of a. The new exact cover relation introduced in this paper, refines the cover relation in the sense 
that for a to exactly cover b it is required that a and b have the same result resa(T ) = resb(T ) whenever b is enabled by 
T . Finally, we introduce the enabling cover relation that is derived from enabling equivalence in the same way as the cover 
relation is derived from functional equivalence, formally resa(T ) ∪ resb(T ) = resa(T ) for all states T that enable both a and 
b. In fact we consider a and b together as a single, combined reaction r{a,b} . As our main results, we describe the landscape 
of reactions over a given background set in the form of lattices defined by the three relations. We compare these lattices 
and we prove how the difference between cover and exact cover is captured by the enabling cover relation.

The paper is organized as follows. In the preliminary Section 2, we set the terminology and notation for partially ordered 
sets and lattices used in the body of the paper. In Section 2, we also recall the definitions of reactions and reaction systems 
and explicitly identify trivial reactions as reactions that are never enabled. We discuss functional and enabling equivalence 
of sets of reactions in Section 3 as well as consistency of reactions which guarantees that reactions can be combined into a 
single nontrivial reaction. Sections 4 and 5 explore the cover relation and its associated lattice of reactions. The concept of 
exact cover is introduced in Section 6 and compared with the cover relation. In Section 7, we invoke enabling equivalence 
and demonstrate how it fills the gap between the cover and exact cover relations. The concluding Section 8 wraps up the 
results and draws conclusions with pointers to future work.

2. Preliminaries

After a brief discussion of partial orders and lattices, we formally introduce reactions and reaction systems.

2.1. Partial orders and lattices

In this section, we recall some basic notions and results on partially ordered sets and lattices to set the notation and 
terminology for the results we present about the relations between reactions discussed in the body of the paper. For more 
details, we refer the reader to [5].

Ordered sets. Let V be a set. A partial order on V is a binary relation � on V with the following properties for all x, y, z ∈ V : 
(i) x � x (reflexivity), (ii) x � y and y � x imply x = y (anti-symmetry), and (iii) x � y and y � z imply x � z (transitivity). We 
refer to V , equipped with a partial order, as a partially ordered set, or simply as an ordered set. Clearly, � is a partial order 
on V if and only if the inverse relation � is a partial order (where x � y if and only if y � x). Given a set X , set-inclusion 
(the subset relation) ⊆ and its inverse (the superset relation) ⊇ are partial orders on the powerset, P(X), of X .

Let (V 1, �1), . . . , (Vn, �n) be ordered sets. Then, the cartesian product, V 1 × · · · × Vn , is an ordered set with the compo-
nentwise product order �, defined by (x1, . . . , xn) � (y1, . . . , yn), if xi �i yi for every 1 ≤ i ≤ n.
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Let V be an ordered set1 and let W ⊆ V . Then, a ∈ W is a maximal element of W , if for every x ∈ W , a � x ∈ W implies 
a = x. Also, a ∈ W is the greatest (maximum) element of W , if x � a for every x ∈ W . Dually, a ∈ W is a minimal element 
of W , if for every x ∈ W , x � a ∈ W implies a = x. It is the least (minimum) element of W , if a � x for every x ∈ W . The 
greatest element of V (if it exists) is called the top element of V and, usually, denoted by 	. Similarly, bottom ⊥ denotes 
the least element of V , if it exists.

Given an ordered set V (with or without ⊥), we form V⊥ , V lifted, by taking a new element 0 /∈ V and extending � to 
V ∪ {0} by: x � y if x = 0 or x � y in V .

Lattices. Let V be an ordered set and let W ⊆ V . An element x ∈ V is an upper bound of W , if w � x for every w ∈ W . 
Moreover, x is the least upper bound of W , if: (i) x is an upper bound of W , and (ii) x � y for every upper bound y of W . 
Dually, we have a (greatest) lower bound. It is convenient to consider the binary case separately. Then, we write x ∨ y for the 
least upper bound of {x, y}, called the join of x and y (when it exists) and x ∧ y for the greatest lower bound of {x, y}, called 
the meet of x and y (when it exists). An ordered set, in which every pair of elements has a join, is called a join-semilattice
and, dually, if every pair of elements has a meet, the ordered set is called a meet-semilattice. A lattice is an ordered set, in 
which the meet and the join exist for every pair of elements, i.e. if it is both a join-semilattice and a meet-semilattice. Note 
that, (V , �) is a lattice if and only if (V , �) is. Usually, we do not distinguish between the two and define upper bounds 
and lower bounds in relation to �.

It follows immediately that, a finite nonempty lattice always has a top element and a bottom element.

Example 2.1. Given a set X , its powerset, V = P(X), is a lattice under set-inclusion ⊆. The join of any two subsets A, B ⊆ X
equals their union A ∪ B , whereas their meet equals their intersection A ∩ B . Hence, P(X) is a lattice. If X is finite, then X
is the top element of P(X) and ∅ its bottom element. ♦

Let (V , �) be a lattice. Then it is immediate that ∨ and ∧ are associative, commutative, idempotent (x ∨ x = x and 
x ∧ x = x), and satisfy the absorption laws x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x.

We conclude with stating an observation used throughout the paper; it also follows easily from the definitions.

Fact 2.2. If V 1, . . . , Vn are lattices, then the product order on V 1 × · · · × Vn is a lattice when join and meet are taken 
componentwise: (x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , xn ∨ yn) and (x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn).

2.2. Reactions and reaction systems

We build upon the definitions for reactions, reaction systems, and related notions from [12].
Let S be a background set, i.e. a finite, nonempty set. The elements of a background set are called entities. A reaction 

(over S) is a triple a = (Ra, Ia, Pa) of nonempty subsets of S , where Ra is the reactant set of a, Ia is the inhibitor set of a, 
and Pa is the product set of a, respectively. Sometimes (see, e.g. [9]) the elements of Ra ∪ Ia are referred to as the resources 
of a. Throughout the paper, we assume that two distinct symbols r and i are present in every background set. Moreover, 
every reaction (Ra, Ia, Pa) satisfies: r ∈ Ra \ Ia , i ∈ Ia \ Ra , and r ∈ Pa . We refer to r and i as universal entities as they are 
assumed to be always present as reactant and product, and as inhibitor, respectively. This guarantees that Ra , Ia , and Pa are 
never empty. Note that, in [12], each of Ra , Ia , and Pa may be empty. In later papers on reaction systems however, e.g. [8], 
reactions a are required to have nonempty Ra , Ia , and Pa; in other words, every reaction needs reactants in order to occur 
and will always produce something; moreover there always exists an entity that – when present – inhibits the occurrence 
of a reaction. Furthermore, Ra ∩ Ia = ∅ is required in these papers to exclude reactions that are never enabled. As we want 
to be able to distinguish between different types of trivial situations (when reactions can never occur or will not produce 
anything), we have chosen to be more explicit, and therefore, assume the existence of universal entities. Moreover, the 
assumption that r and i are the same elements for all reactions, guarantees that they are maintained in combinations of 
reactions defined using unions and intersections of the reactant, inhibitor, or product sets as a means to describe upper and 
lower bounds. In the sequel, we will point out explicitly, where our assumptions could lead to observations different from 
those presented in the papers we cite.

The set of all reactions over S is denoted by rac(S).

For the rest of the paper, assume that S is an arbitrary, but fixed background set, unless stated otherwise.

For a reaction a = (Ra, Ia, Pa) ∈ rac(S) and a finite set T ⊆ S , we say that a is enabled by T , denoted by ena(T ), if Ra ⊆ T
and Ia ∩ T = ∅. Thus, a reaction a is enabled by T , if T separates Ra from Ia . The result of a on T , denoted by resa(T ), is 
defined by resa(T ) = Pa if a is enabled by T and resa(T ) = ∅, otherwise. This has led, in [12], to the following natural idea 
to compare two reactions.

1 If the order is not explicitly given, we use � as a default.
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Definition 2.3. Let a, b ∈ rac(S). Then a and b are functionally equivalent in S , denoted by a ∼S b, if resa(T ) = resb(T ) for 
every T ⊆ S .

Clearly, functional equivalence is an equivalence relation.
A reaction a ∈ rac(S) is called trivial if resa(T ) = ∅ for all T ⊆ S . A reaction that is not trivial, is nontrivial. We use Rac(S)

to denote all nontrivial reactions in rac(S). Note that, if a ∼ b for two reactions a and b and one of them is trivial, then 
the other one is trivial, as well. Moreover, all trivial reactions are functionally equivalent to one another. So they form a 
single functional equivalence class. As every enabled reaction produces at least r, it must be that a trivial reaction is never 
enabled. Observe that, if a reaction a is never enabled, then necessarily, Ra ∩ Ia �= ∅ for, otherwise, a will be enabled by 
T = Ra . Thus, we arrive at the following characterization.

Lemma 2.4. Let a ∈ rac(S). Then a is trivial if and only if Ra ∩ Ia �= ∅.

In [12], a reaction a is said to be trivial if it is functionally equivalent to � = (∅, ∅, ∅), i.e. if and only if Pa = ∅ (nothing 
is produced) or Ra ∩ Ia �= ∅ (nothing can be produced). In both cases, resa(T ) = ∅. Having r ∈ Pa for every a, makes it 
possible to distinguish between these two trivial situations. On the other hand, as proved in [12] and also in our setting, for 
nontrivial reactions a and b, a ∼ b if and only if Ra = Rb , Ia = Ib and Pa = Pb . So, whenever a ∼S b and a is not trivial, then 
a = b.

Reaction systems are specified as a background set of entities together with a set of reactions over that background set. 
The states of the system are subsets of the entities from the background set and states change when (all enabled) reactions 
take place.

For a set of reactions A and a finite set T , the result of A on T , denoted by resA(T ), is defined by: resA(T ) = ⋃
a∈A resa(T ). 

Hence, the result of A on T is the accumulation of the results of all individual reactions a ∈ A.
A reaction system is an ordered pair A = (S, A), where S is a background set and A ⊆ rac(S). The function resA is defined 

by resA(T ) = resA(T ) for all T ⊆ S . Thus, resA is a function from P(S) to P(S). It has the property that both resA(∅) = ∅
and resA(S) =∅. Moreover, as a consequence of our assumptions, r ∈ resA(T ) whenever there is at least one reaction in A
enabled by T .

3. Equivalence and consistency of sets of reactions

In this section we focus on sets of reactions. First, we lift functional equivalence to the level of sets of reactions (using 
the same notation as before).

Definition 3.1. Let A, B ⊆ rac(S). Then A and B are functionally equivalent in S , denoted by A ∼S B , if resA(T ) = resB(T ) for 
every T ⊆ S .

Note that if A and B consist of trivial reactions only, then resA(T ) = resB(T ) = ∅ for all T ⊆ S . On the other hand, if 
A contains at least one nontrivial reaction, then there exists a T ⊆ S such that resA(T ) �= ∅. Consequently, all subsets of 
rac(S) \ Rac(S) are a single equivalence class of ∼S⊆ P(S) ×P(S).

Extending functional equivalence further to reaction systems, we can say that two reaction systems A = (S, A) and B =
(S, B) with the same background set S , are functionally equivalent, denoted as A ∼ B, whenever A ∼S B , i.e. if resA = resB . 
In contrast to the situation for single reactions, determining whether two sets of reactions (and hence in particular two 
reaction systems) are functionally equivalent is not trivial. As shown in [12], this problem is Co-NP-complete.

We now turn to a second equivalence, introduced in [8], which is based not only on the result of reactions but also on 
their enabledness. When considering the application of a set A of reactions to a set T of entities, then it may be that none, 
some, or all of the reactions in A are enabled by T . For the next equivalence, we interpret A acting as a “block” of reactions, 
all taking place at the same time, i.e. we handle it as a single reaction. Let A ⊆ rac(S) be a nonempty set of reactions. Then 
rA = (R A, I A, P A) is the reaction defined by A, where R A = ⋃

a∈A Ra , I A = ⋃
a∈A Ia , and P A = ⋃

a∈A Pa . Hence, if A = {a} for 
some a ∈ rac(S), then rA = a. In general, (R A, I A, P A) ∈ rac(S) as r ∈ R A \ I A , i ∈ I A \ R A , and r ∈ P A . Thus, rA is enabled 
by T if R A ⊆ T and I A ∩ T = ∅, i.e. if T separates R A from I A . Consequently, we arrive at the following result.

Lemma 3.2. Let A ⊆ rac(S) be nonempty. Then enrA (T ) if and only if ena(T ) for all a ∈ A.

Here we should remark that enrA (T ) has the same meaning as enA(T ) used in [8]; actually the concept also occurs 
in [12], but is left there without notation. We chose this new notation to avoid confusion, since in general, the result of a 
set of reactions applied when combined in one reaction is not the same as the result of that same set of reactions, when 
they are applied independently: the result of rA on T is resrA (T ) = PrA = ⋃

a∈A Pa if rA is enabled by T , meaning that every
a ∈ A is enabled by T ; otherwise, resrA (T ) = ∅. The result of applying the set A on T is resA(T ) = ⋃

a∈A resa(T ), meaning 
the union of those Pa for which a is enabled by T . Hence, in general, resrA (T ) �= resA(T ) for a set of reactions A ⊆ rac(S)

and a subset T ⊆ S . Consider for example, a set of reactions A = {a, b} ⊆ rac(S) and T ⊆ S , such that a is enabled by T , 
86



D. Genova, H.J. Hoogeboom and J. Kleijn Theoretical Computer Science 881 (2021) 83–96
but b is not. Thus, we have ena(T ) but not enb(T ) and, hence, also not enrA (T ). Consequently, resA(T ) = resa(T ) = Pa �= ∅, 
while resrA (T ) = ∅.

We are now ready to introduce the enabling equivalence from [8].

Definition 3.3. Let A, B ⊆ rac(S). Then A and B are enabling equivalent (in S), denoted by A ≈S B , if for each T ⊆ S:

1. enrA (T ) if and only if enrB (T );
2. if enrA (T ), then resA(T ) = resB(T ).

So, two sets of reactions are enabling equivalent when they have the same result on every set T that enables all of their 
reactions. Clearly, ≈S is an equivalence relation. Extending this equivalence to reaction systems as we did for functional 
equivalence, we have that reaction systems A = (S, A) and B = (S, B), are enabling equivalent if A ≈ B .

It may happen that the reaction defined by a set of reactions is trivial (and hence never enabled) even if each reaction 
individually is nontrivial. Let A = {a, b} and assume that a is a nontrivial reaction and Ra ∩ Ib �= ∅. Then, R A ∩ I A �=∅. Thus, 
rA is trivial and resrA (T ) = ∅ for all T ⊆ S , even though there exists a subset T such that resA(T ) ⊇ Pa �= ∅. Thus, when 
combining reactions into a single reaction, the following notion is crucial.

Definition 3.4. Let A ⊆ rac(S) be a nonempty set of reactions. Then A is consistent if rA is nontrivial.

In [8], consistency of a set of reactions A is defined by R A ∩ I A = ∅. By Lemma 2.4, this is the same as the requirement 
that rA is nontrivial. Hence, the two definitions are equivalent. If a set of reactions is not consistent, it is called inconsis-
tent. The following observation is easily proved. It demonstrates that inconsistent sets of reactions form a single enabling 
equivalence class.

Lemma 3.5. Let A, B ⊆ rac(S).

1. If A and B are inconsistent, then A ≈S B.
2. If A ≈S B and A is consistent, then so is B.

Like Lemma 3.5, the following result is from [8]. Its proof here would be the same as given there since it does not 
depend on the presence or absence of r and i in the reactant, inhibitor, and product sets of reactions.

Theorem 3.6. Let A, B ⊆ rac(S) be two consistent sets of reactions. Then A ≈S B if and only if R A = R B , I A = I B , and P A = P B .

In other words, if A and B are consistent set of reactions, then A ≈S B if and only if rA = rB .

Example 3.7. Let A = {a} with a = ({r, 1, 2}, {i, 3, 4}, {r, 1, 3}), and let B = {b1, b2} with b1 = ({r, 1}, {i, 3}, {r, 1, 3}) and 
b2 = ({r, 2}, {i, 4}, {r, 1, 3}). Then A ≈S B , because R A = R B = {r, 1, 2}, I A = I B = {i, 3, 4}, and P A = P B = {r, 1, 3}. ♦

By Theorem 3.6 and Lemma 3.5, we can omit the subscript S from ≈S .
Note that, for a reaction a ∈ rac(S), we have that a is nontrivial if and only if {a} is consistent. In general, if a nonempty 

set A of reactions is consistent, then every a ∈ A is nontrivial, but not necessarily vice versa (as exemplified above).

Theorem 3.8. Let A ⊆ rac(S) be a nonempty set. Then A is consistent if and only if every pair of not necessarily distinct reactions 
a, b ∈ A forms a consistent set {a, b}.

Proof. By Definition 3.4 and Lemma 2.4, A is inconsistent if and only if 
⋃

a∈A Ra ∩ ⋃
b∈A Ib �= ∅. This latter intersection is 

nonempty if and only if there exist, not necessarily distinct, reactions a, b ∈ A such that Ra ∩ Ib �= ∅. Hence equivalently, 
either there is a single reaction a = b ∈ A that is trivial ({a} is inconsistent) or there are two distinct reactions a and b such 
that {a, b} is inconsistent. �

As a corollary to this result, we observe that every nonempty subset of a consistent set is consistent and, in particular, 
also that every reaction in a consistent set is nontrivial.

Since by Theorem 3.6 for consistent sets of reactions, A ≈ B if and only if rA = rB , we have that, in particular, for 
nontrivial reactions a and b, {a} ≈ {b} if and only if a = b. Hence, it follows that functional equivalence ∼S and enabling 
equivalence ≈ are the same for all pairs of reactions a, b ∈ rac(S) (cf. the observations in Subsection 2.2). Thus, also A ≈ B
if and only if rA ∼S rB . However, as shown in [8], in general, enabling equivalence and functional equivalence are incompa-
rable. Moreover, as mentioned above, deciding whether two sets of reactions are functionally equivalent, is Co-NP-complete, 
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whereas deciding enabling equivalence is no more than a simple syntactic check. Consequently, when comparing the results 
of sets of reactions, the requirement that all reactions in the sets are enabled is an essential restriction.

By definition, a set A of reactions is consistent, if rA is not trivial, i.e. if there exists a T ⊆ S such that resrA (T ) is 
nonempty and, in that case, resrA (T ) = resA(T ). We characterize the sets T , for which this occurs.

Theorem 3.9. Let A ⊆ rac(S) be nonempty, and let T ⊆ S. Then, resrA (T ) and resA(T ) are equal and nonempty if and only if ena(T )

for all a ∈ A.

Proof. If resrA (T ) is nonempty, then rA is enabled by T . By Lemma 3.2, all a ∈ A are enabled by T . Conversely, suppose 
all a ∈ A are enabled by T . By Lemma 3.2, rA is enabled. Then resA(T ) and resrA (T ) both consist of the union of all Pa , 
a ∈ A. �
4. The cover relation

In this section, we investigate a binary relation on rac(S) that expresses redundancy of a reaction when combined with 
another one. It was first defined in [12] (and denoted there by ≥).

Definition 4.1. Let a, b ∈ rac(S). Then a covers b (in S), denoted by a �S b, if res{a,b}(T ) = resa(T ) for all T ⊆ S .

If a reaction a covers reaction b in background set S , then we also say that b is covered by a in S , denoted by b �S a. As 
usual, we can switch between �S and �S and we will consider b to be the “smaller” reaction when a �S b.

The cover relation can be characterized in terms of functional equivalence as formulated in Definition 3.1. It explicitly 
demonstrates the redundancy of a reaction in the context of a reaction that covers it.

Lemma 4.2. Let a, b ∈ rac(S). Then a �S b if and only if {a, b} ∼S {a}.

The result of a set of reactions is defined as the union of the results of the individual reactions. Hence, the requirement 
in Definition 4.1 can be rephrased as the inclusion between the individual result sets.

Lemma 4.3. Let a, b ∈ rac(S). Then a �S b if and only if resb(T ) ⊆ resa(T ) for all T ⊆ S.

Proof. Let T ⊆ S . By definition, res{a,b}(T ) = resa(T ) ∪ resb(T ). Hence, res{a,b}(T ) = resa(T ) if and only if resa(T ) ∪ resb(T ) =
resa(T ) if and only if resb(T ) ⊆ resa(T ). �

Consequently, if b is trivial (resb(T ) = ∅), then it is covered by every reaction a ∈ rac(S). If b is nontrivial, then we have 
the following characterization similar to [12, Theorem 2].

Theorem 4.4. Let a, b ∈ rac(S) with b nontrivial. Then a �S b if and only if Ra ⊆ Rb, Ia ⊆ Ib and Pa ⊇ Pb.

Proof. By Lemma 4.3, a �S b if and only if resb(T ) ⊆ resa(T ) for all T ⊆ S . In other words, a �S b if and only if (i) whenever 
b is enabled by some T ⊆ S , then so is a; and (ii) Pb ⊆ Pa because b is nontrivial and hence enabled by some subset T of 
S . Point (i) is equivalent to Ra ⊆ Rb and Ia ⊆ Ib . �

From Theorem 4.4 it follows that the subscript S can be omitted from a �S b if b is not trivial. Moreover, if b is trivial 
all reactions in rac(S) cover b. Since b is trivial if and only if Rb ∩ Ib �= ∅, it follows that also in this case, the subscript S is 
not relevant in a �S b and can be omitted.

In addition to Lemma 4.2, it can now be seen that in a reaction system, reactions that are covered by one or more other 
reactions of the system, are indeed redundant in the sense that they can be removed from the system without changing 
its functioning. As trivial reactions can always be deleted from a reaction system A without changing its function resA , we 
thus have:

Corollary 4.5. Let (S, A) be a reaction system. Let a, b ∈ A be such that a �= b and a � b. Then, (S, A) ∼ (S, A \ {b}).

Furthermore note that, by Theorem 4.4, a � b with b nontrivial is equivalent to r{a,b} = (Rb, Ib, Pa). Thus if a � b and b
is nontrivial, then both a and r{a,b} are nontrivial. Conversely, by Theorem 3.8, if a � b and {a, b} is consistent, i.e. r{a,b} is 
nontrivial, then b is nontrivial. Summarizing:

Corollary 4.6. Let a, b ∈ rac(S) such that a � b. Then
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1. r{a,b} = (Rb, Ib, Pa) if b is nontrivial.
2. a is nontrivial if b is nontrivial.
3. r{a,b} is nontrivial if and only if {a, b} is consistent if and only if b is nontrivial.

As demonstrated next, consistency of two reactions does not imply that one covers the other.

Example 4.7. If a = ({r, 1}, {i, 2}, {r, 1}) and b = ({r, 3}, {i, 4}, {r, 2}), then the set {a, b} is consistent, but none of a and b
covers the other, as e.g. {r, 1} � {r, 3} and {r, 3} � {r, 1}. ♦

Finally, it also follows from Theorem 4.4, that whenever two reactions a and b form a consistent pair, we can characterize 
how their combined reaction r{a,b} = (Ra ∪ Rb, Ia ∪ Ib, Pa ∪ Pb) is related to a and b.

Corollary 4.8. Let a, b ∈ rac(S) be such that {a, b} is consistent. Then

1. r{a,b} � b if and only if Ra ⊆ Rb and Ia ⊆ Ib .
2. a � r{a,b} if and only if Pb ⊆ Pa.
3. a � r{a,b} � b if and only if a � b.

Theorem 4.4 strongly resembles [12, Theorem 2]. The only difference is that the latter has the additional assumption 
that also a is not trivial. However, as both Corollary 4.6(2) and the proof of [12, Theorem 2] show, this assumption can be 
left implicit.

Let us now investigate the statements of Lemma 4.3 and Theorem 4.4.
First of all, the lemma deals with all reactions while the theorem concerns only nontrivial reactions. Then, an important 

difference between the two seems to be that the lemma considers the semantics (the effect or the result) of reactions, 
whereas the theorem is concerned with their syntax (their form). In general, one would prefer a structural (syntax) check to 
compare reactions a and b to establish whether a � b holds. However, whether or not a reaction b is trivial, can be checked 
syntactically (by checking whether Rb ∩ Ib =∅), and since all trivial reactions are covered by all other reactions, there is no 
need to explicitly verify that the relation a � b holds.

In addition, Lemma 4.3 shows that � is a preorder (i.e. it is reflexive and transitive) on the set of all reactions. It is not 
anti-symmetric as all trivial reactions cover each other. However, as is immediate from Theorem 4.4, � is anti-symmetric 
when restricted to nontrivial reactions. Hence, � is a partial order on Rac(S), the set of all nontrivial reactions in rac(S).

Finally, the characterization in Theorem 4.4 invites to explicitly consider the product order � on rac(S). This order relates 
the three sets constituting reactions componentwise using set inclusion. We define a � b if and only if Ra ⊆ Rb , Ia ⊆ Ib , 
Pa ⊇ Pb . Thus, � is a partial order, also when restricted to Rac(S).

Remark 4.9. Informally, each of the three components of � is the powerset P(S) ordered by set inclusion (or its reverse). 
Recall, however, that the components are assumed to contain or not to contain a specific universal element (either r or i), 
so formally, only a quarter of the elements of the power set occur in the first two components, and half of the elements of 
P(S) occur in the third element. This does not, essentially, change the order theoretic properties of the components.

To conclude this section, we summarize the relationship between cover and product order. As illustrated by the following 
example, the product order and the cover relation are not the same.

Example 4.10. Let b = ({r, 1}, {i, 1}, {r}). Then, b is trivial, so a � b, for every a ∈ rac(S). Take however, a = ({r, 2}, {i}, {r}), 
then a is nontrivial and a �� b. ♦

The following observation follows from Theorem 4.4, together with the observation that a � b whenever b is trivial.

Corollary 4.11. Let a, b ∈ rac(S). Then, a � b if and only if either b is trivial or a � b.

When restricted to nontrivial reactions, the two relations are the same. This follows from Corollary 4.11 and the obser-
vations just before Remark 4.9

Corollary 4.12. Both � and � are partial orders on Rac(S) and they coincide on that domain.

5. A lattice of reactions

We now introduce two operations on pairs of reactions with the aim to identify a least common covering reaction and 
a greatest common covered reaction. These operations are tentatively called ‘meet’ and ‘join’, as they are those operations 
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for the (inverted) product order �. We first investigate their role for the cover relation (actually, to be more precise, for its 
inversion �). Next, to interpret Rac(S) with the cover relation as a lattice, we identify a top and a bottom element with the 
latter representing the (functional equivalence class of) trivial reactions.

Definition 5.1. Let a, b ∈ rac(S).
Then a � b = (Ra ∩ Rb, Ia ∩ Ib, Pa ∪ Pb) is the join of a and b and a � b = (Ra ∪ Rb, Ia ∪ Ib, Pa ∩ Pb) is the meet of a and b.

Clearly, a � b and a � b are reactions in S if a and b are. And, as join and meet for the product order on rac(S), the 
operations are commutative, associative, and idempotent. Furthermore, a � b and a � b are a lower bound and an upper 
bound respectively, for a and b under the cover relation.

Lemma 5.2. Let a, b ∈ rac(S). Then a � b � a and a � a � b.

Proof. The proposed relations hold as join and meet for the product order �. By Corollary 4.11, � implies � and the 
statement of the lemma follows. �
Remark 5.3. Recall that r{a,b} = (Ra ∪ Rb, Ia ∪ Ib, Pa ∪ Pb). Hence r{a,b} = a � b if and only if Pa = Pb . Indeed, by Corol-
lary 4.8(2), if {a, b} is consistent, then Pa = Pb if and only if r{a,b} is a lower bound for a and b. Note that in case {a, b} is 
not consistent, both a � b and r{a,b} are trivial reactions. �

We cannot conclude that rac(S) with the cover relation forms a lattice since as observed in Section 4, � is not even a 
partial order on rac(S). On the other hand, � is a partial order on Rac(S), but it may be that the meet of two nontrivial 
reactions is a trivial reaction. Moreover, the join of two trivial reactions is in some cases trivial and in other cases nontrivial.

Example 5.4. Let a = ({r, 1}, {i}, {r}) and b = ({r, 2}, {i, 1}, {r, 2}) be two nontrivial reactions. Then the meet of 
these a � b = ({r, 1, 2}, {i, 1}, {r}) is a trivial reaction. On the other hand, the join of the two trivial reactions a′ =
({r, 1}, {i, 1}, {r, 1}) and b′ = ({r, 2}, {i, 2}, {r, 2}) is the nontrivial reaction a′ �b′ = ({r}, {i}, {r, 1, 2}). However, the join of 
the two trivial reactions a′ and b′′ , for b′′ = ({r, 1, 2}, {i, 1, 2}, {r, 2}), is the trivial reaction a′ � b′′ = ({r, 1}, {i, 1}, {r, 1, 2}). 
Finally, note that the join of a trivial reaction and a nontrivial one may be nontrivial, e.g., a � b′ = ({r}, {i}, {r, 2}). ♦

The following lemma states that the join of a trivial reaction and a nontrivial one is always nontrivial. It moreover relates 
the meet operation to the consistency of reactions. Note that, as a consequence of this and in contrast with the situation 
for the join, the meet of two reactions is necessarily trivial if at least one of these reactions is trivial.

Lemma 5.5. Let a, b ∈ rac(S). Then

1. a � b is a nontrivial reaction in S if a or b is nontrivial.
2. a � b is a nontrivial reaction in S if and only if {a, b} is consistent.

Proof. (1) The join a � b is nontrivial if and only if Ra�b ∩ Ia�b = ∅, i.e. if and only if (Ra ∩ Rb) ∩ (Ia ∩ Ib) = ∅. Given the 
fact that a or b is nontrivial, we know that Ra ∩ Ia = ∅ or Rb ∩ Ib = ∅, and so is their intersection.

(2) The meet a � b is nontrivial if and only if Ra�b ∩ Ia�b = ∅. Observe that Ra�b = Ra ∪ Rb = R{a,b} and Ia�b = Ia ∪ Ib =
I{a,b} , and we see that this requirement is equivalent to the consistency of {a, b}. �

As argued next, the operation meet yields the greatest lower bound of any two reactions, not only for the product order, 
but also for the cover relation.

Lemma 5.6. Let a, b, c ∈ rac(S). Then a � b � c whenever a � c and b � c.

Proof. If c is trivial then we are done. Otherwise, when c is nontrivial, we use Theorem 4.4. Since a � c and b � c, we have 
Ra, Rb ⊆ Rc , Ia, Ib ⊆ Ic , and Pc ⊆ Pa, Pb . Hence, Ra ∪ Rb ⊆ Rc , Ia ∪ Ib ⊆ Ic , and Pc ⊆ Pa ∩ Pb , by which a � b � c. �

It follows that the meet of two (nontrivial) reactions is nontrivial if there exists a nontrivial reaction covered by both. 
Note that for the reactions a and b in Example 5.4, there exists no nontrivial reaction that is covered by both.

We would want to obtain a result like Lemma 5.6 for the join � as the least upper bound for the cover relation, (c � a �b
whenever c � a and c � b), but unfortunately this cannot be proved in a similar way. In fact, the result cannot be proved at 
all.
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Example 5.7. Consider a = ({r, 1}, {i}, {r}) and b′ = ({r, 2}, {i, 2}, {r, 2}) from Example 5.4 and their join a � b′ =
({r}, {i}, {r, 2}). Let c′ = ({r}, {i}, {r}). Then c′ � a (by Theorem 4.4) and c′ � b′ (as b′ is trivial). However, resc′ ({r}) = {r}, 
whereas resa�b′({r}) = {r, 2}. Hence, by Lemma 4.3, c′ �� a � b′ . ♦

However, when restricted to nontrivial reactions cover and product order coincide, so the join satisfies its requirements 
for both orders.

Lemma 5.8. Let a, b ∈ Rac(S) and c ∈ rac(S). Then c � a � b whenever c � a and c � b.

Proof. Assume a and b are two nontrivial reactions. By Lemma 5.5, a �b is nontrivial, as well. Suppose c � a and c � b. Then, 
it follows by Theorem 4.4 that Rc ⊆ Ra, Rb , Ic ⊆ Ia, Ib and Pa, Pb ⊆ Pc . This implies Rc ⊆ Ra ∩ Rb = Ra�b , Ic ⊆ Ia ∩ Ib = Ia�b , 
and Pa ∪ Pb = Pa�b ⊆ Pc . Then, again by Theorem 4.4, since a � b is nontrivial, we conclude that c � a � b. �

There are two extremal objects in the set rac(S) of all reactions: top 	S = ({r}, {i}, S), and bottom ⊥S = (S \ {i}, S \
{r}, {r}). That these are indeed the greatest and the least element, respectively, in rac(S) follows directly from the defini-
tions.

Theorem 5.9. Let a ∈ rac(S). Then 	S � a and a �⊥S . Moreover, a � 	S = a, a � 	S = 	S , a � ⊥S = ⊥S , and a � ⊥S = a.

Note that 	S and ⊥S differ, even when S just consists of the universal entities r and i (and in that case rac(S) =
{	S , ⊥S }). Clearly, 	S is always nontrivial, while ⊥S is trivial if S has three or more elements.

From here on, we assume that S has at least one entity apart from r and i.

Moreover, to simplify the notation and since S is fixed, we omit the subscript S and simply write 	 and ⊥.
Recall that, as stated in Corollary 4.12, � is a partial order on Rac(S). There is a greatest element in Rac(S) (namely 

	, see Theorem 5.9), but Rac(S) has no smallest element, as all reactions of the form (X, S \ X, S) are minimal. Reactions 
with such complementary R and I are called maximally inhibited in [21]. Consequently, (Rac(S), �) is not a lattice, but it 
is a join-semilattice. We can extend it into a lattice by lifting it (see Subsection 2.1). Thus, we add a new element, smaller 
than any existing element from the domain. Rather than choosing a new abstract element, we can use ⊥ as the new, added 
minimal element, since ⊥ /∈ Rac(S) and a � ⊥ for every a ∈ Rac(S). Alternatively, adding ⊥ as a bottom element, can be 
seen as a quotient construction (with ⊥ representing the functional equivalence class comprising all trivial reactions), a 
common tool to change a preorder into an partial order.

Theorem 5.10. The set Rac⊥(S), with the cover relation �, forms a lattice.

Proof. We already know that � is a partial order on Rac⊥(S). Thus, we only have to show that every pair of elements in 
Rac⊥(S) has a greatest lower bound and a least upper bound.

As in the case with only nontrivial reactions, we can use the join a �b as the least upper bound of a and b. By Lemma 5.5, 
a � b is a nontrivial reaction in S , if a or b is nontrivial. The only trivial element in Rac⊥(S) is ⊥ and since a � ⊥ = a for all 
a ∈ Rac(S) ∪ {⊥} by Theorem 5.9, we have a least upperbound for any reaction a and ⊥.

For the greatest lower bound we have to adapt the existing meet operation. The reason is that ranging over nontrivial 
reactions a, b the meet a � b can be various trivial reactions, whereas our current domain Rac⊥(S) has only a single trivial 
reaction. We have to merge these trivial reactions into one. Define the new meet operation �̂ for Rac⊥(S) by a ̂� b = a � b
when {a, b} is consistent, and let a ̂� b = ⊥ when {a, b} is not consistent. By Lemma 5.5 this is well-defined: {a, b} consistent 
implies that a � b is nontrivial. This operation produces the greatest lower bound indeed. This follows from the fact that the 
original meet is a greatest lower bound. If {a, b} is consistent, then there can be no reaction ordered below a, b and above 
a � b. Otherwise, if {a, b} is inconsistent, then there can be no nontrivial reaction below both a, b (as otherwise that would 
be a � b). Hence the greatest lower bound is ⊥. �

The lattice formed by Rac⊥(S) and � is sketched in Fig. 1.

6. The exact cover relation

The cover relation is based on functional equivalence, cf. Definitions 2.3 and 4.1. That is, if a covers b, then the combined 
result function res{a,b} of a and b coincides with the result function resa of a. In this section, we study a new relation which 
compares a and b directly, rather than {a, b} and a.

Definition 6.1. Let a, b ∈ rac(S). Then a exactly covers b (in S), for short a e-covers b (in S), denoted by a ≥e,S b if, for all 
T ⊆ S , enb(T ) implies that resa(T ) = resb(T ).
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Fig. 1. A sketch of the lattices based on � (left) and on ≤e (right). The dotted box stands for the functional equivalence class of all trivial reactions. For �, 
the solid box comprises Rac(S). For ≤e , there is a solid box for each product set P .

The requirement that the results of a and b are compared only when b is enabled, expresses that b indeed is seen as the 
‘lesser’ reaction. It also implies that if b is a trivial reaction, then it is e-covered by all reactions in rac(S). Note furthermore 
that, if b is enabled by a state T ⊆ S , then resb(T ) �= ∅. Hence if a ≥e,S b and enb(T ) then resa(T ) �= ∅, which implies that 
a is enabled by T as well.

The following example demonstrates that the cover relation � does not imply ≥e,S .

Example 6.2. Consider a = ({r}, {i}, {r, 1}) and b = ({r, 1}, {i, 2}, {r}). Since b is nontrivial we can use Theorem 4.4 and, 
thus, we have that a � b. Consider now T ⊆ S . If b is enabled by T , then {r, 1} ⊆ T and {i, 2} ∩ T = ∅. Consequently, also 
a is enabled by T . However resa(T ) = {r, 1} �= {r} = resb(T ). Hence a ≥e,S b does not hold. ♦

If a ≥e,S b, then resb is the restriction2 of resa to the states that enable b. This is different from the cover relation 
which requires for a � b to hold that resa and res{a,b} are the same function. Moreover, by Lemma 4.3, this requirement (i.e.
resa(T ) = res{a,b}(T ), for all T ) is equivalent to resb(T ) ⊆ resa(T ) for all T , an inclusion rather than an equality. This crucial 
difference is reflected in the next result, which should be compared with Theorem 4.4.

Theorem 6.3. Let a, b ∈ rac(S) with b nontrivial. Then a ≥e,S b if and only if Ra ⊆ Rb, Ia ⊆ Ib and Pa = Pb.

Proof. If Ra ⊆ Rb and Ia ⊆ Ib , then it is immediate that, for all T ⊆ S , enb(T ) implies ena(T ). If moreover, Pa = Pb , then 
resa(T ) = resb(T ) whenever enb(T ) holds. Hence a ≥e,S b.

Conversely, let us consider T = Rb . Since b is nontrivial, we have Rb ∩ Ib =∅ and so enb(T ). Since enb(T ) implies ena(T ), 
it follows that Ra ⊆ T = Rb . Moreover, Pa = resa(T ) = resb(T ) = Pb . Now let T = S \ Ib . Again, enb(T ) and because enb(T )

implies ena(T ), it follows that Ia ∩ S \ Ib =∅. So, Ia ⊆ Ib and we are done. �
From Theorem 6.3, it follows that the subscript S can be omitted from a ≥e,S b, if b is not trivial. If b is trivial, then 

a ≥e,S b holds for all reactions a and, thus, also in this case, the subscript S is not relevant. Another consequence of 
Theorem 6.3 and Theorem 4.4 is that a ≥e b implies a � b.

Corollary 6.4. Let a, b ∈ rac(S). Then a ≥e b implies a � b.

However, as shown in Example 6.2, the converse does not hold.
Since ≥e is contained in �, the statements of Corollary 4.6 also hold for exact cover. More specifically, if a ≥e b, 

then r{a,b} = (Rb, Ib, Pa) if b is nontrivial. By Theorem 6.3, a ≥e b with b nontrivial implies that Pa = Pb and so 
r{a,b} = (Rb, Ib, Pb) = b. As a result, the following observation holds for exact cover, but not for cover (cf. Corollary 4.8
(1) and (3)).

2 Here resb is considered as a partial function, undefined for those states T that do not enable b, i.e. resb(T ) =∅.
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Corollary 6.5. Let a, b ∈ rac(S) such that a ≥e b. Then r{a,b} = b if b is nontrivial.

Given the above observations, the structure imposed on rac(S) by ≥e is rather straightforward. It follows immediately 
from Definition 6.1 that ≥e is a preorder. Also, every trivial reaction is e-covered by any other reaction, while Theorem 6.3
implies that ≥e is a partial order when restricted to Rac(S). Again by Theorem 6.3, nontrivial reactions with different 
product sets are always incomparable with respect to the exact cover relation (in contrast with the cover relation). In 
addition, for any pair of nontrivial reactions with the same product set, the exact cover relation is the product order of the 
superset relations for their reaction and inhibitor sets. Thus, for two nontrivial reactions a and b such that Pa = Pb , the join 
a �b = (Ra ∩ Rb, Ia ∩ Ib, Pa ∪ Pb) from Definition 5.1 is their least upper bound w.r.t. ≤e , as it is nontrivial and also has Pa =
Pb as product set. If a and b are nontrivial reactions with different product sets, they do not have any common upper bound 
in Rac(S). Similarly, every pair a, b of nontrivial reactions such that Pa = Pb , has the meet a � b = (Ra ∪ Rb, Ia ∪ Ib, Pa ∩ Pb)

from Definition 5.1 as their greatest lower bound, provided {a, b} is consistent. It is worthwhile to note that in this case 
a � b = r{a,b} (see also Remark 5.3). If a and b are nontrivial reactions with different product sets, they do not have a lower 
bound in Rac(S) w.r.t. the exact cover relation.

Using a technique similar to the one employed in Theorem 5.10 for the cover relation, it is possible to turn Rac(S) with 
the e-cover relation into a lattice. This time, we have to extend the domain not only with a bottom element ⊥ (representing 
all trivial reactions), but also with a new (artificial) top element 1. This top element cannot be taken to be 	 = ({r}, {i}, S), 
as 	 itself is a nontrivial reaction in Rac(S), incomparable to reactions with other product sets. In Rac(S), extended with ⊥
and 1, the join of any pair of incomparable reactions will be defined as 1. We summarize the above.

Theorem 6.6. The set Rac(S) ∪ {⊥, 1}, with the exact cover relation ≥e, forms a lattice.

The two lattices based on Rac(S) as discussed in this and the previous section are illustrated in Fig. 1. The lattice 
defined by the cover relation � is depicted on the left of the figure, while the one based on the exact cover ≤e is presented 
on the right. For �, we have 	 = ({r}, {i}, S) as the maximum element. The maximally inhibited reactions (X, S \ X, P )

where {r} ⊆ X ⊆ S \ {i} and {r} ⊆ P ⊆ S are the minimal reactions w.r.t. � in Rac(S). Adding ⊥ (which can be seen as 
representing the equivalence class of trivial reactions) yields the lattice. For the second lattice, defined by ≤e , recall that by 
Corollary 6.4 we know that ≤e is contained in �. There are, however, components (solid boxes), one for each P ⊆ S with 
r ∈ P , consisting of all nontrivial reactions with P as their product set. Reactions in different components are not related by 
≤e . Each subset of Rac(S) determined by a product set P has its own maximum element ({r}, {i}, P ), and the maximally 
inhibited nontrivial reactions (X, S \ X, P ) are minimal elements in this subset. By adding ⊥ and the artificial top 1 we, 
again, obtain a lattice.

Finally, consider r{a,b} , the reaction defined by a and b. First, recall that if {a, b} is not consistent, then both r{a,b} and 
a � b are trivial reactions. In the case, however, that {a, b} is consistent, we know from Corollary 4.8, that a � r{a,b} � b if 
and only if a � b; moreover in this case, a � b = r{a,b} for all consistent pairs a, b with Pa = Pb (see the right side of Fig. 1).

7. Cover, exact cover, and enabling cover

In this section, we propose and investigate a third relationship, next to cover and exact cover, between reactions a and b
now based on the equality of the functions res{a,b} and resa when restricted to those T for which a and b are both enabled. 
We provide in Theorem 7.5, a characterization of each of the three relations in terms of reactant, inhibitor, and product sets. 
Then, as a corollary, we can capture the precise difference between the cover and the exact cover relations.

As stated in Lemma 4.2, the cover relation a � b can be expressed as the functional equivalence {a, b} ∼S {a} and as such 
reflects the equality of the functions res{a,b} and resa on P(S). In other words, resa(T ) ∪ resb(T ) = resa(T ) should hold for all 
states T that enable either a or b which means that b never contributes additional products in addition to those produced 
by a. The new relation is defined using enabling equivalence.

Definition 7.1. Let a, b ∈ rac(S). Then a covers b when enabled (in S), for short a en-covers b (in S), denoted by a �S b, if 
{a, b} ≈ {a}.

In other words, by Definition 3.3, a �S b holds if and only if, for each T ⊆ S , (i) enr{a,b}(T ) if and only if ena(T ) and (ii)
resr{a,b}(T ) = resa(T ) whenever enr{a,b}(T ). So, intuitively, the en-cover relation expresses that reaction b has no additional 
products to contribute when both a and b are enabled. Note that, by (i), b is enabled whenever a is enabled. The next 
lemma gives different formulations for the same condition.

Lemma 7.2. Let a, b ∈ rac(S). Then the following are equivalent:

1. ena(T ) implies enb(T ).
2. ena(T ) implies enr{a,b}(T ).
3. ena(T ) if and only if enr (T ).
{a,b}
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Proof. Since by Lemma 3.2, enr{a,b}(T ) if and only if both ena(T ) and enb(T ), the three propositions are easily seen to be 
logically equivalent. �

Note that by Lemma 7.2(1), the above condition (i) for a �S b can be replaced by the condition that b is enabled 
whenever a is enabled. This is the opposite of the situation for a ≥e b where the result of a and b should be the same if b
is enabled (see Definition 6.1) and hence a should be enabled whenever b is. Another relevant observation is that for trivial 
reactions a, we have that {a, b} ≈ {a} and a �S b hold for all reactions b. Moreover, by the next result, every reaction that is 
en-covered by a nontrivial one, is itself nontrivial. It is interesting to compare this observation with Corollary 4.6(2).

Lemma 7.3. Let a, b ∈ rac(S) such that a �S b. Then b is nontrivial if a is nontrivial.

Proof. Since a is nontrivial, Ra ∩ Ib �= ∅ and so there exists a T ⊆ S that enables a. Since a �S b we have {a, b} ≈ {a} and 
hence by Definition 3.3, T also enables r{a,b} . Consequently, by Lemma 3.2, T enables b. Thus Rb ∩ Ib = ∅ and b is not 
trivial. �

For any trivial reaction b we have b �S a, a ≥e b and a � b for all reactions a. Furthermore, if b is not trivial and any of 
b �S a, a ≥e b, and a ≥ b holds, the set {a, b} is consistent by Lemma 3.5, Corollary 6.5, and Corollary 4.6(3), respectively.

The following theorem is a consequence of Theorem 3.6.

Theorem 7.4. Let a, b ∈ rac(S) with a nontrivial. Then a �S b if and only if Rb ⊆ Ra, Ib ⊆ Ia, and Pb ⊆ Pa.

Proof. Suppose first that a �S b. Thus we have {a, b} ≈ {a}. Since a is nontrivial, {a} is consistent. Hence {a, b} ≈ {a} implies 
that {a, b} is consistent. Now we can apply Theorem 3.6 to conclude that Ra ∪ Rb = Ra , Ia ∪ Ib = Ia , and Pa ∪ Pb = Pa . 
Consequently, Rb ⊆ Ra , Ib ⊆ Ia , and Pb ⊆ Pa .

Conversely, if a is nontrivial, then Ra ∩ Ia =∅. It then follows from Rb ⊆ Ra and Ib ⊆ Ia that also (Ra ∪ Rb) ∩ (Ia ∪ Ib) = ∅
and hence {a, b} is consistent. Moreover Ra ∪ Rb = Ra , Ia ∪ Ib = Ia , and Pa ∪ Pb = Pa . Thus, we can apply Theorem 3.6 and 
it follows that {a, b} ≈ {a}, i.e. a �S b. �

By this theorem and our earlier observation on trivial reactions it follows that we can safely omit the subscript S from 
�S as we did before for ≈.

Theorem 7.4 resembles Theorem 4.4 for � and Theorem 6.3 for ≥e . However, the set inclusion relations for reactant 
sets and for inhibitor sets are now reversed. In particular, if a � b, then Ra ⊆ Rb and Ia ⊆ Ib and, similarly, for a ≥e b. To 
summarize, the cover, exact cover, and enabling cover can be characterized as follows.

Theorem 7.5. Let a, b ∈ rac(S) with b nontrivial. Then

1. b � a if and only if Ra ⊆ Rb, Ia ⊆ Ib , and Pa ⊆ Pb;
2. a ≥e b if and only if Ra ⊆ Rb, Ia ⊆ Ib , and Pa = Pb;
3. a � b if and only if Ra ⊆ Rb, Ia ⊆ Ib , and Pa ⊇ Pb.

Moreover, we have a characterization of the difference between the cover and the exact cover relations.

Corollary 7.6. Let a, b ∈ rac(S) with b nontrivial. Then

1. a ≥e b if and only if a � b and b � a.
2. a ≥e b if and only if {a, b} ∼ {a} and {a, b} ≈ {b}.

Functional equivalence of {a, b} and {a} (in other words, a � b) means that b is redundant and can be dropped (cf.
Corollary 4.5) because whenever b is enabled and can contribute its products, a will produce the same (and possibly more). 
On the other hand, enabling equivalence of {a, b} and {b} (in other words, b � a) means that a is redundant in those states 
by which b is enabled (and hence a). So, whenever b is enabled, b will produce at least the products of a, but it doesn’t 
say anything about the states that do not enable b, but perhaps enable a. When combined, a � b and b � a say that if b is 
enabled by a state T , then also a and, moreover, resa(T ) = resb(T ). In other words, a ≥e b holds.

Obviously � is a reflexive relation. By Lemma 7.3 and Theorem 7.4 and because trivial reactions en-cover all reactions, 
it is also transitive. Hence it is a preorder on rac(S). It is not anti-symmetric as all trivial reactions en-cover each other. 
However, through the product order as given in Theorem 7.4, � is a partial order on Rac(S).

As with the cover relation, we can construct a lattice based on en-cover � by representing the trivial reactions by a single 
element. This time a �S b holds if each of the three components of reaction a are a superset of the respective components 
of reaction b. The minimal element w.r.t. �S in rac(S) is ({r}, {i}, {r}) and as the maximal element we choose the trivial 
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({r}, {i}, P )

({r}, {i}, {r})

(X, S \ X, {r})

⊥′

(X, S \ X, P )

a ∩ b

r{a,b}

a b

Fig. 2. A sketch of the lattice based on �. The dotted box stands for the class of all trivial reactions. The solid box comprises Rac(S).

reaction ⊥′
S = (S \ {i}, S \ {r}, S) rather than ⊥ = (S \ {i}, S \ {r}, {r}). Note that 	 = (({r}, {i}, S) is neither minimal nor 

maximal with S having at least three elements. Consistent with the product order, the greatest lower bound of reactions a
and b equals the componentwise intersection a ∩ b = (Ra ∩ Rb, Ia ∩ Ib, Pa ∩ Pb), even when either a or b (or both) are trivial 
(i.e. equals ⊥′

S ). Note that a ∩ b is nontrivial if either a or b is nontrivial, cf. Lemma 5.5. Dually, the least upper bound of 
a and b equals their componentwise union a ∪ b = (Ra ∪ Rb, Ia ∪ Ib, Pa ∪ Pb) = r{a,b} , provided the pair {a, b} is consistent. 
Otherwise the least upper bound equals ⊥′

S . We summarize. (See Fig. 2.)

Theorem 7.7. The set Rac(S) ∪ {⊥′
S }, with the en-cover relation �, forms a lattice.

8. Discussion

In this paper we have been concerned with comparing the reactions of a reaction system in terms of resources and 
results. Next to the cover relation from [12], we have introduced two new order relations, viz. exact cover and enabling 
cover. The cover relation expresses the redundancy of one reaction in the context of another one, i.e. the covered reaction 
needs more resources (more reactants and more inhibitors) and produces nothing that the other reaction cannot produce as 
well. Exact cover expresses that the two reactions involved have the same products, but the covering reaction needs fewer 
resources (less reactants and less inhibitors) than the other one. Enabling cover on the other hand is based on the enabling 
equivalence from [8] and only compares two reactions when both are enabled. This implies in particular, that if a nontrivial 
reaction en-covers another nontrivial one, they form a consistent pair and hence can be combined into a nontrivial reaction. 
Moreover, the en-covered reaction needs less resources and produces nothing the other reaction cannot produce as well. 
Our investigations have led to a map of the landscape of nontrivial reactions over a given background set S . Each relation 
has been shown to be a partial order on Rac(S), the nontrivial reactions over S , that could be extended to a lattice by 
appropriate notions of meet and join, and adding top or bottom elements. Here having a concept of trivial reactions and 
universal elements has turned out to be convenient. The lattices show how r{a,b} the (nontrivial) reaction defined by a 
consistent set {a, b} can be identified as both the greatest lower bound for a and b with respect to ≥e and the least upper 
bound for a and b with respect to �e . With respect to the cover relation however, r{a,b} is in general incomparable with a
and b (see Corollary 4.8).

Recall that in [8], it has been shown that functional equivalence and enabling equivalence are incomparable relations. 
Our results shed some additional light on the nature of their difference. It has been demonstrated how the enabling cover 
relation fills the gap between the cover relation and the exact cover relation. Furthermore, as discussed above and expressed 
in Theorem 3.9, the difference between {a, b} ∼ {a} (‘a covers b’) and {a, b} ≈ {a} (‘a en-covers b’) comes to light only in 
those states that do not enable both a and b. More precisely, by Theorem 7.5, {a, b} ∼ {a} and {a, b} ≈ {a} both hold if and 
only if a and b have the same enabling conditions (Ra = Rb and Ia = Ib), and in addition Pa ⊇ Pb holds. Thus, one could 
say that in case of the same enabling conditions of reactions a and b, functional equivalence of {a, b} and a is a special case 
of (implies) enabling equivalence of {a, b} and a.

The cover relation was introduced in [12] to determine the redundancy of reactions in reaction systems. In [9] this is 
taken further. There, it is investigated how reaction systems can be reduced to functional equivalent reaction systems that 
are minimal with respect to the number of resources per reaction. In [11] on the other hand, the relevance of entities is 
investigated. For this the concept of a reduced reaction system is introduced in which all reactions add something new 
to the results produced by other reactions in the system and no reaction is (strictly) covered by another reaction. It is 
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proved that for each reaction system, there exists a functionally equivalent reduced reaction system. In the proof of this 
result, the set of reactions of the reaction system under consideration is first extended with all reactions that can be added 
without affecting the system’s result function. Next, all reactions that are not ‘maximal’ with respect to the cover relation 
are removed (cf. Corollary 4.5). In our future work, the partial orders studied in this paper could be useful to guide such 
processes of reducing or otherwise optimizing and modifying reaction systems by deleting or adding, splitting or combining 
reactions thus lowering or increasing the number of resources and/or the number of products. Clearly, deciding when and 
how to remove reactions that do not meet some optimization requirement, will depend on the goal, e.g. whether the aim 
is to obtain a new functionally equivalent or enabling equivalent set of reactions (or equivalent in a sense as discussed in 
the Introduction). Consistency and perhaps a dual relation (intersection consistency) may be interesting notions to further 
investigate in this context. Also, lifting the cover, exact cover and enabling cover relations from reactions to sets might prove 
useful.
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support from InterAPS (International Academic Partnerships in Sciences with Nicolaus Copernicus University) and also from 
LIACS, Leiden University, the Netherlands, and from the University of North Florida, USA.

References

[1] S. Azimi, B. Iancu, I. Petre, Reaction system models for the heat shock response, Fundam. Inform. 131 (2014) 1–14, https://doi .org /10 .3233 /FI -2014 -
1016.

[2] P. Bottoni, A. Labella, G. Rozenberg, Reaction systems with influence on environment, J. Membr. Comput. 1 (1) (2019) 3–19, https://doi .org /10 .1007 /
s41965 -018 -00005 -8.

[3] R. Brijder, A. Ehrenfeucht, M. Main, G. Rozenberg, A tour of reaction systems, Int. J. Found. Comput. Sci. 22 (2011) 1499–1517, https://doi .org /10 .1142 /
S0129054111008842.

[4] L. Corolli, C. Maj, F. Marini, D. Besozzi, G. Mauri, An excursion in reaction systems, Theor. Comput. Sci. 454 (2012) 95–108, https://doi .org /10 .1016 /j .tcs .
2012 .04 .003.

[5] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, second edition, Cambridge University Press, 2002, https://doi .org /10 .1017 /
CBO9780511809088.

[6] A. Dennunzio, E. Formenti, L. Manzoni, Reaction systems and extremal combinatorics properties, Theor. Comput. Sci. 598 (2015) 138–149, https://
doi .org /10 .1016 /j .tcs .2015 .06 .001.

[7] A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca, Ancestors, descendants, and gardens of Eden in reaction systems, Theor. Comput. Sci. 608 (2015) 
16–26, https://doi .org /10 .1016 /j .tcs .2015 .05 .046.

[8] A. Ehrenfeucht, J. Kleijn, M. Koutny, G. Rozenberg, Evolving reaction systems, Theor. Comput. Sci. 682 (2017) 79–99, https://doi .org /10 .1016 /j .tcs .2016 .
12 .031.

[9] A. Ehrenfeucht, J. Kleijn, M. Koutny, G. Rozenberg, Minimal reaction systems, in: Trans. Computational Systems Biology XIV, in: Lecture Notes in 
Computer Science, vol. 7625, 2012, pp. 102–122, https://doi .org /10 .1007 /978 -3 -642 -35524 -0 _5.

[10] A. Ehrenfeucht, J. Kleijn, M. Koutny, G. Rozenberg, Reaction systems: a natural computing approach to the functioning of living cells, in: A Computable 
Universe: Understanding and Exploring Nature as Computation, vol. 12, World Scientific, 2012, pp. 189–208, https://doi .org /10 .1142 /9789814374309 _
0010.

[11] A. Ehrenfeucht, J. Kleijn, M. Koutny, G. Rozenberg, Relevance of entities in reaction systems, in: Lecture Notes in Computer Science, vol. 7300, 2012, 
pp. 44–55, https://doi .org /10 .1007 /978 -3 -642 -31644 -9 _3.

[12] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundam. Inform. 75 (2007) 263–280.
[13] A. Ehrenfeucht, G. Rozenberg, Introducing time in reaction systems, Theor. Comput. Sci. 410 (2009) 310–322, https://doi .org /10 .1016 /j .tcs .2008 .09 .043.
[14] A. Ehrenfeucht, G. Rozenberg, Zoom structures and reaction systems yield exploration systems, Int. J. Found. Comput. Sci. 25 (3) (2014) 275–306, 

https://doi .org /10 .1142 /S0129054114500142.
[15] A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca, Complexity of the dynamics of reaction systems, Inf. Comput. 267 (2019) 96–109, https://doi .org /

10 .1016 /j .ic .2019 .03 .006.
[16] D. Genova, H.J. Hoogeboom, N. Jonoska, A graph isomorphism condition and equivalence of reaction systems, Theor. Comput. Sci. 701 (2017) 109–119, 

https://doi .org /10 .1016 /j .tcs .2017.05 .019.
[17] J. Kleijn, M. Koutny, Ł. Mikulski, Reaction systems and enabling equivalence, Fundam. Inform. 171 (2020) 261–277, https://doi .org /10 .3233 /FI -2020 -1882.
[18] J. Kleijn, M. Koutny, Ł. Mikulski, G. Rozenberg, Reaction systems, transition systems and equivalences, in: Lecture Notes in Computer Science, vol. 11011, 

2018, pp. 63–84, https://doi .org /10 .1007 /978 -3 -319 -98355 -4 _5.
[19] G. Pardini, R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini, Compositional semantics and behavioural equivalences for reaction systems with 

restriction, Theor. Comput. Sci. 551 (2014) 1–21, https://doi .org /10 .1016 /j .tcs .2014 .04 .010.
[20] A. Salomaa, Functions and sequences generated by reaction systems, Theor. Comput. Sci. 466 (2012) 87–96, https://doi .org /10 .1016 /j .tcs .2012 .07.022.
[21] A. Salomaa, On State Sequences Defined by Reaction Systems, Lecture Notes in Computer Science, vol. 7230, 2012, pp. 271–282, https://doi .org /10 .

1007 /978 -3 -642 -29485 -3 _17.
96

https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/j.tcs.2015.06.001
https://doi.org/10.1016/j.tcs.2015.06.001
https://doi.org/10.1016/j.tcs.2015.05.046
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1142/9789814374309_0010
https://doi.org/10.1142/9789814374309_0010
https://doi.org/10.1007/978-3-642-31644-9_3
http://refhub.elsevier.com/S0304-3975(20)30703-9/bib3A2D7564BAEE79182EBC7B65084AABD1s1
https://doi.org/10.1016/j.tcs.2008.09.043
https://doi.org/10.1142/S0129054114500142
https://doi.org/10.1016/j.ic.2019.03.006
https://doi.org/10.1016/j.ic.2019.03.006
https://doi.org/10.1016/j.tcs.2017.05.019
https://doi.org/10.3233/FI-2020-1882
https://doi.org/10.1007/978-3-319-98355-4_5
https://doi.org/10.1016/j.tcs.2014.04.010
https://doi.org/10.1016/j.tcs.2012.07.022
https://doi.org/10.1007/978-3-642-29485-3_17
https://doi.org/10.1007/978-3-642-29485-3_17

	Comparing reactions in reaction systems
	1 Introduction
	2 Preliminaries
	2.1 Partial orders and lattices
	2.2 Reactions and reaction systems

	3 Equivalence and consistency of sets of reactions
	4 The cover relation
	5 A lattice of reactions
	6 The exact cover relation
	7 Cover, exact cover, and enabling cover
	8 Discussion
	Declaration of competing interest
	Acknowledgements
	References


