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Abstract
Fu and Kane have discovered that a topological insulator with induced s-wave superconductivity
(gap Δ0, Fermi velocity vF, Fermi energy μ) supports chiral Majorana modes propagating on the
surface along the edge with a magnetic insulator. We show that the direction of motion of the
Majorana fermions can be inverted by the counterflow of supercurrent, when the Cooper pair
momentum along the boundary exceeds Δ2

0/μvF. The chirality inversion is signaled by a doubling
of the thermal conductance of a channel parallel to the supercurrent. Moreover, the inverted edge
can transport a nonzero electrical current, carried by a Dirac mode that appears when the
Majorana mode switches chirality. The chirality inversion is a unique signature of Majorana
fermions in a spinful topological superconductor: it does not exist for spinless chiral p-wave
pairing.

1. Introduction

The chiral edge modes of the quantum Hall effect in a semiconductor have a superconducting analogue [1]:
a two-dimensional (2D) superconductor with broken time-reversal symmetry and broken spin-rotation
symmetry can enter a phase in which the gapped interior supports gapless edge excitations. This is called a
topological superconductor, because the number of edge modes is set by a topological invariant [2–4]. Each
edge mode contributes a quantized unit of thermal conductance, producing the thermal quantum Hall
effect [5]. The edge modes are referred to as Majorana modes, since the quasiparticle excitations at the
Fermi level are their own antiparticle—being equal-weight superpositions of electrons and holes.

Chiral edge modes have not yet been conclusively observed in a superconductor [6, 7], due in part to the
complexity of heat transport measurements at low temperatures. In this work we propose an electrical
signature of a chiral edge mode, triggered by the chirality inversion when a supercurrent flows along the
boundary.

Our study was motivated by the recent experimental observation of the Doppler effect from a superflow
in a topological superconductor [8]. The 2D electron gas of massless Dirac fermions on the surface of the
topological insulator Bi2Te3 is proximitized by the superconductor NbSe2, so that a gap Δ0 opens up at the
Fermi level μ. An in-plane magnetic field B induces a screening supercurrent over a London penetration
depth λL, which boosts the Cooper pair momentum by an amount K � eBλL, in-plane and perpendicular
to B. The Doppler effect [9, 10] shifts the quasiparticle energy by δE = vFK, closing the gap when K exceeds
K∗ = Δ0/vF [11–13].

The ingredient we add to the system of reference [8] is the confinement produced by a magnetic
insulator (EuS) with magnetization perpendicular to the surface layer (see figure 1). This is the Fu–Kane
proposal [14] for chiral Majorana modes. Our key finding is that the superflow inverts the chirality of a
Majorana mode moving in the opposite direction once K exceeds Kc = K∗Δ0/μ—so well before the gap
closing transition for Δ0 � μ. This chirality inversion can be detected in a transport experiment, both in
thermal and in electrical conduction.

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic of the Fu–Kane heterostructure [14], a topological insulator with induced s-wave superconductivity (gap
Δ0, Fermi velocity vF, Fermi energy μ). The surface electrons are confined to a channel (width W) by a pair of magnetic
insulators with perpendicular magnetization M. Counterpropagating Majorana edge modes are indicated by red arrows. The blue
arrows indicate the superflow (Cooper pair momentum K) induced by an in-plane magnetic field B. The Doppler effect boosts
the velocity of the Majorana mode on the left edge, while the right edge mode slows down and inverts its direction of motion
when K > Δ2

0/μvF. At that chirality inversion a Dirac mode appears on the right edge, moving oppositely to the superflow.

2. Chirality inversion

We base our analysis on the 2D Dirac–Bogoliubov–de Gennes Hamiltonian of a topological insulator
surface (Fermi energy μ = vFkF, � ≡ 1) with induced s-wave superconductivity at Cooper pair momentum
K ,

H = (vFk · σ − μσ0) τz + (vFK · σ + Mσz) τ0 +Δ0σ0τx. (1)

The vectors k, σ, K have only x and y components, in the plane of the surface. The magnetization M points
in the z-direction. The σ and τ Pauli matrices act, respectively, on spin and electron–hole degrees of
freedom [15].

We confine the electrons to a strip of width W parallel to the y-axis, by setting M = 0 for |x| < W/2 and
M →+∞ for |x| > W/2. Integrating

− ivFσxτz∂xψ = −Mσzτ0ψ ⇒ vF∂xψ = −Mσyτzψ (2)

from x = ±W/2 to ±∞, and demanding a decaying wave function, we obtain the boundary condition

ψ(x, y) = ±σyτzψ(x, y) at x = ±W/2. (3)

The spinor structure of the wave function at the boundaries is therefore a superposition of

|u1〉 =
(

i
1

)
⊗

(
1
0

)
, |u2〉 =

(
−i
1

)
⊗

(
0
1

)
(4)

at x = −W/2 and a superposition of τ x|u1〉, τ x|u2〉 at x = W/2.
We seek the wave function profile ψ(x, y) = eikyyψ(x) at energy E and wave vector ky parallel to the

boundary. The superflow momentum K = (0, K) is oriented along the boundary. Integration of the
Schrödinger equation Hψ = Eψ gives ψ′(x) = Ωψ(x) ⇒ ψ(W/2) = eWΩψ(−W/2) with

Ω = i(E/vF)σxτz + i(μ/vF)σxτ0 + Kσzτz

+ kyσzτ0 + (Δ0/vF)σxτy. (5)

The boundary condition (3) dictates that ψ(−W/2) is a superposition of the states |u1〉, |u2〉, while
ψ(W/2) is orthogonal to these two states. This gives the determinantal equation

det Ξ = 0, Ξnm = 〈un|eWΩ|um〉, (6)

from which we determine the spectrum E(ky). In the limit W →∞ of uncoupled edges we find near ky = 0
the Majorana edge mode dispersion [16]

E± = ±vFky
Δ2

0 + v2
FK2 ± vFKμ

Δ2
0 ∓ vFKμ+ μ2

→ vFky(K/kF ±Δ2
0/μ

2) for μ � Δ0. (7)

2
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Figure 2. Dispersion relation of the edge modes in the non-inverted regime (K < Kc) and in the inverted regime (K > Kc). The
solid curves are calculated numerically from equation (6) for channel width W = 100vF/μ. The dashed lines are the large-μ,
large-W asymptotes (7). The colored dots in the inverted regime indicate the charge-neutral Majorana mode (at ky = 0) and the
electron-like and hole-like Dirac modes (at ky = ±kD).

The ± sign distinguishes the modes on opposite edges. These are Majorana modes, because they are
nondegenerate and transform into themselves when charge conjugation maps E �→ −E and ky �→ −ky.

The group velocity of an edge mode equals dE/dky, and hence we conclude from equation (7) that a
chirality inversion appears with increasing K, such that for K > Kc both Majorana edge modes propagate in
the same direction. This is illustrated in figure 2. The critical Kc equals

Kc =
2Δ2

0/vF√
4Δ2

0 + μ2 + μ
→ Δ2

0

vFμ
for μ � Δ0. (8)

Since the gap in the bulk spectrum does not close until K = K∗ = Δ0/vF the bulk remains gapped in the
inverted regime—only the edge modes propagate at the Fermi energy (E = 0).

For K > Kc the inverted Majorana mode at ky = 0 coexists with two counterpropagating modes at

± kD = ±
√

1 + kF/K
√

K2 + KkF − (Δ0/vF)2. (9)

Check that kD = 0 for K = Kc. At larger K the Dirac mode momentum kD rises quickly to a value of order
kF.

The Dirac fermions have charge expectation value ±〈Q〉 = ±e〈τ z〉. Near the transition we find [16]

〈Q〉 = e(Δ0/μ)
√

(K − Kc)/kF, K � Kc. (10)

As shown in figure 3, the square-root singularity at K = Kc crosses over into an approximately linear
increase for larger K, up to Qmax =

2
3 e +O(Δ0/μ) at K = K∗.

We also show in figure 3 that the Dirac mode is approximately spin-polarized, with expectation value
〈σy〉 = ±(1 −Δ0/6μ) for μ � Δ0 and K well above Kc. So the Dirac modes differ from the Majorana
modes by their nonzero charge and spin expectation value, and there is one more difference: the decay
length λ of the edge modes into the bulk is smaller for the Dirac modes (λD � vF/

√
μΔ0) than it is for the

Majorana modes (λM = vF/Δ0, the superconducting coherence length).

3. No chirality inversion in a p-wave superconductor

The Doppler effect of a supercurrent flowing along the boundary of a spinless chiral p-wave superconductor
has been studied previously [17, 18]—without producing the chirality inversion we find for the Fu–Kane
superconductor. To understand why, we have repeated our calculations for the Hamiltonian

Hp−wave =

(
(k + K)2/2m − μ (Δ0/kF)(kx + iky)
(Δ0/kF)(kx − iky) μ− (k − K)2/2m

)
(11)

of a 2D superconductor with a spinless chiral p-wave pair potential. Gapless edge modes coexist with a
gapped bulk for μ = k2

F/2m > 0 and K < K∗ = Δ0/vF. The normal-state block may contain higher even
powers of k, for the low-energy properties we only need to retain the quadratic term.

As before, we take a channel of width W along the y-axis, parallel to the superflow momentum
K = (0, K). For large W we find the edge mode dispersion [19]

E = (vFky/kF)(K ±Δ0/vF), (12)

3
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Figure 3. Top panel: charge and spin expectation value of the Dirac fermions at E = 0 in the inverted regime. The solid curves
are calculated [16] in the limit W →∞. The lower panel shows a close-up of the charge for K close to Kc, the asymptote (10) is
the dashed curve. The electron-like and hole-like Dirac fermions (red and blue dots in figure 2) have opposite signs of 〈Q〉 and
〈σy〉.

Figure 4. Top view of the proximitized topological insulator (S) of figure 1, with additional normal metal contacts (N1, N2) to
measure the transport of heat (left panel) and the transport of charge (right panel) through a constriction of width W and length
L, confined by magnetic insulators (M). Both the magnetic insulator and the normal-metal electrodes will have to make contact
with the topological insulator–superconductor interface. This will likely require that the superconductor is etched away locally.

to first order in ky and K. We see that there is no velocity inversion of the edge modes at any K < K∗ for
which the bulk remains gapped. Comparison with the dispersion (7) in the Fu–Kane superconductor shows
that it is the Δ0 versus Δ2

0 dependence that forms the obstruction to Kc < K∗ in a chiral p-wave
superconductor.

4. Transport signatures

The chirality inversion of the edge modes in the Fu–Kane superconductor can be observed in both thermal
and electrical conduction. The two transport geometries are shown in figure 4.

The thermal conductance Gthermal at temperature T0 is given by the transmission matrix t (from contact
N1 to contact N2),

Gthermal = G0 Tr t†t, G0 =
1

6
(π2k2

B/h)T0. (13)

The conductance quantum G0 has 1/2 the value for normal electrons because of the Majorana nature of the
carriers.

The electrical circuit is a three-terminal configuration, with a grounded superconductor in addition to
the metal contacts N1, N2. The conductance Gelectric = I2/V1, in the zero-temperature, zero-voltage limit, is
given by [20]

Gelectric = (e2/h) Tr (t†eetee − t†hethe) =
e2

2h
Tr τzt†τzt, (14)

where tee and the are submatrices of t for transmission of an electron as an electron and as a hole,
respectively.

4
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Figure 5. Results for the thermal and electrical conductance, obtained by the numerical simulation [21] of a tight-binding
model of the Fu–Kane superconductor (μ = 12Δ0, W = L = 1200vF/μ). In panel (a) the chemical potential μN in the
normal-metal contacts is equal to the value μ in the superconducting region, while panel (b) is for the case μN � μ. The
transition starts at a superflow momentum K that is larger than the value Kc = 0.08vF/Δ0 from equation (8), because of the
finite lattice spacing (kFa0 = 0.2). The data points in panel (b) give the analytical result (15), with kD from the simulation.

For K > Kc there are two right-moving edge modes and two left-moving edge modes at the Fermi
energy, while for K < Kc there is only a single left-mover and a single right-mover. The thermal
conductance is therefore doubled when K becomes larger than Kc. For K < Kc the counterpropagating
Majorana edge modes carry no electrical charge, while for K > Kc the two co-propagating modes on the
same edge form a Dirac mode that can carry charge—but only in the direction opposite to the superflow.

To test these expectations we have carried out a numerical simulation of a tight-binding Hamiltonian
[21]. We compared two models for the normal metal contact, with and without a large potential step at the
normal-superconductor (NS) interface. For both models we assumed that the length L of the
superconducting region is small compared to the mean free path for disorder scattering, so that any
backscattering happens at the NS interfaces. Results are shown in figure 5.

The thermal conductance makes the transition from a completely flat plateau at G0 for K < Kc to a
modulated plateau at 2G0 for larger K. Because of the appearance of counterpropagating modes on one of
the edges the conductance is sensitive to backscattering for K > Kc, as is evident by the Fabry–Perot-type
oscillations at the onset of the step (when the longitudinal momentum is small). After the onset the plateau
is quite flat and close to the quantized value of 2G0.

The electrical conductance shows a striking asymmetry in K, it remains close to zero for K > Kc and
only switches on for K < −Kc. This asymmetry under exchange of N1 and N2 is not a violation of
reciprocity, since it appears in a three-terminal configuration. The conductance rises to e2/h in a step-like
manner or more slowly, depending on whether or not there is a potential step at the interface.

The reason that the electrical conductance is sensitive to the details of the NS interface, while the
thermal conductance is not, is that the heat current from contact N1 to contact N2 is conserved while the
charge current is not. (Charge can be drained into the grounded superconducting terminal, but the gapped
superconductor cannot absorb heat.)

In the absence of a potential step the simulation shows a conductance plateau at Gelectric ≈ e2/h,
indicating that a Dirac fermion at kD ≈ kF approaching the NS interface transfers a charge
e—notwithstanding its charge expectation value 〈Q〉 < e. We explain this by noting that for μN = μ the
longitudinal momentum is approximately conserved across the interface, coupling to states at −kF is
suppressed, and since the only outgoing states near kF in the normal region are electrons, the bare charge e
is transferred.

In the presence of a large potential step the longitudinal momentum is not conserved, it is boosted
to +kF for the electron component and to −kF for the hole component of the Dirac mode. A mode
matching calculation in the limit μN/μ→∞ (see appendix E) gives

Gelectric =
e2

h

k2
D

(K + μ/vF)2
=

e2

h

(
1 − (Δ0/vF)2

K(K + μ/vF)

)
, (15)

in excellent agreement with the simulation.
Equation (15) can be interpreted in terms of an effective transferred charge, Gelectric = (e∗)2/h with

e∗ = ekD/(K + kF), but e∗ is very different from 〈Q〉: while the charge expectation value 〈Q〉 increases
approximately linearly from 0 to 2

3 e as K increases from Kc to K∗ (see figure 3), the effective transferred

5
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charge e∗ increases much more rapidly from 0 all the way to e. We note that in a different charge transfer
problem [22], in a Weyl superconductor, the identification of e∗ and 〈Q〉 did hold.

5. Conclusion

In summary, we have reported on a manifestation of the Doppler effect from a supercurrent in a spinful
topological superconductor: a supercurrent flowing along the magnetic boundary of a Fu–Kane
superconductor can reverse the chirality of the Majorana edge mode, without closing the bulk gap. The
chirality inversion is accompanied by the appearance of a Dirac mode that propagates counter to the
superflow, such that the net number of right-movers minus left-movers is unchanged.

The effect is absent in a spinless chiral p-wave superconductor, which is remarkable because the
low-energy effective Hamiltonian in the bulk of the Fu–Kane superconductor has px + ipy-wave pairing
symmetry [14, 23]. We have traced the origin of the difference to the linear versus quadratic dependence of
the Majorana edge mode velocity on the bulk gap. It is the quadratic dependence that allows the superflow
to restructure the edge modes without affecting the bulk spectrum.

The chirality inversion produces a fully electrical signature of the edge currents: charge can be
transported upstream relative to the superflow, but not downstream—because a Majorana mode transports
no charge while a Dirac mode does. Such a distinctive effect should help the conclusive observation of chiral
Majorana fermions in a topological superconductor.
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Appendix A. Calculation of the dispersion relation

The determinantal equation (6), with the 4 × 4 matrix Ω given by equation (5), is suitable for a numerical
calculation of the dispersion relation E(ky) for finite W. Analytical expressions can be obtained in the limit
W →∞ of uncoupled edges. In this appendix and the next one we set vF to unity, for ease of notation.

The elements of the transfer matrix eWΩ have an exponential dependence ∝eWξ± and ∝e−Wξ± on W,
with

ξ± =

√
Δ2

0 − E2 − μ2 + k2
y + K2 ± 2

√
Δ2

0 (K2 − μ2) + (kyK − Eμ)2. (A1)

The sign ambiguity in the square roots is resolved by taking the square root with a positive real part (branch
cut along the negative real axis). The edge modes in the limit W →∞ are obtained by setting e−Wξ± → 0 in
the transfer matrix. The determinantal equation (6) then reduces to

Δ2
0(K2 − μ2)(E2 − k2

y − K2 + μ2) + (Δ2
0 − ξ−ξ+)

(
Δ2

0(K2 − μ2) + 2(kyK − Eμ)2
)
= 0. (A2)

We eliminate the square roots in the product ξ−ξ+ by rearranging the equation as ξ−ξ+ = . . . and then
squaring both sides, resulting in

(
Δ2

0 − (E − K)2 + (ky − μ)2
) (

Δ2
0 − (E + K)2 + (ky + μ)2

)
= Δ4

0

(
1 +

(K2 − μ2)(E2 − k2
y − K2 + μ2)

Δ2
0(K2 − μ2) + 2(kyK − Eμ)2

)2

.

(A3)
Equation (A3) has eight solutions for E, the two physical solutions are the dispersions E±(ky) that cross

zero at ky = 0. The full expressions are a bit lengthy and not recorded here. The linear dispersion near
ky = 0 does have a compact expression, given by equation (7) in the main text. Equation (8) for Kc is the
value of K at which the slope of E−(ky) vanishes. To find the momenta ky = ±kD of the Dirac modes for
K > Kc we solve equation (A3) for ky at E = 0, resulting in equation (9).

6
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Appendix B. Calculation of the charge and spin of the Dirac mode

The charge expectation value 〈Q〉 = e〈τ z〉 can be obtained from the dispersion relation via the derivative
〈Q〉 = −e∂E/∂μ. It vanishes for the Majorana fermions at ky = 0, but it is nonzero for the Dirac fermions
at ky = ±kD, with E(kD) = 0. We can compute this directly from the determinantal equation (A3), by

substituting E �→ E(μ), differentiating with respect to μ, solving for E
′
(μ), and finally setting E(μ) �→ 0,

ky �→ kD.
We thus arrive at the Dirac fermion charge

〈Q〉 = e

√
K

√
K(K + μ) −Δ2

0

(
2K(K + μ) −Δ2

0

)
√

K + μ
[
Δ2

0(μ− K) + 2K2(K + μ)
] . (B1)

This is the black curve plotted in the top panel of figure 3. Expansion near K = Kc gives for μ � Δ0 the
square-root result (10) in the main text. The charge increases monotonically with increasing K, reaching its
maximal value

Qmax = e

√
μ

Δ0 + μ

Δ0 + 2μ

Δ0 + 3μ
(B2)

at K = K∗ = Δ0.
In a similar way we can calculate the spin expectation value 〈σy〉 = ∂E/∂K of the Dirac fermions, with

the result

〈σy〉 =

√
K(K + μ) −Δ2

0

(
2K2(K + μ) +Δ2

0μ
)

√
K(K + μ)

[
Δ2

0(μ− K) + 2K2(K + μ)
] , (B3)

see the blue curve in figure 3. The behavior for K � Kc is again a square root increase,
〈σy〉 ≈ (

√
μ/Δ0)

√
K − Kc, rising rapidly to a value

〈σy〉max =

√
μ

Δ0 + μ

2Δ0 + 3μ

Δ0 + 3μ
→ 1 − Δ0

6μ
for μ � Δ0, (B4)

close to unity.
The signs of spin and charge are such that 〈Q〉 < 0 and 〈σy〉 > 0 for the Dirac mode at ky = kD. The

mode at ky = −kD has the opposite signs.

Appendix C. Doppler-boosted edge modes in a chiral p-wave superconductor

The chiral p-wave Hamiltonian has the form

Hp−wave =

(
H0 Δ̂

Δ̂† −H∗
0

)
, (C1a)

H0 =
1

2m
(k2

x + k2
y) − μ, (C1b)

Δ̂ = k−1
F {Δ(r), kx + iky}, (C1c)

with k = −i∂/∂r and {a, b} = 1
2 (ab + ba) the symmetrization operator.

The superflow momentum K enters in the pair potential via Δ(r) = Δ0e2iK ·r . We remove it by a gauge
transformation,

Hp−wave �→ U†Hp−waveU , U =

(
eiK·r 0

0 e−iK·r

)
. (C2)

In view of the identity
e−iK·r{eiK·r , ∂x + i∂y}e−iK·r = ∂x + i∂y, (C3)

the transformed Hamiltonian (11) contains the Doppler shifted momentum only in the diagonal elements,
not in the off-diagonal elements.

In terms of the Pauli matrices τα acting on the electron–hole degree of freedom, we have

7
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Hp−wave =
k2

2m
τz − μτz +

K

m
kyτ0 +

Δ0

kF
(kxτx − kyτy), (C4)

to first order in K = (0, K). We introduce a boundary at x = 0 and seek the velocity of an edge mode in the
y-direction. The velocity operator at ky = 0 is

v̂edge = lim
ky→0

∂

∂ky
Hp−wave =

K

m
τ0 −

Δ0

kF
τy. (C5)

The edge mode wave function at E = 0, ky = 0 solves

1

2m
ψ′′(x) + μψ(x) − Δ0

kF
τyψ

′(x) = 0, (C6)

for x > 0, with boundary condition ψ(0) = 0. A normalizable solution exists for μ > 0, it is an eigenstate of
τ y with eigenvalue −1. The expectation value vedge of the velocity follows directly,

vedge = 〈ψ|v̂edge|ψ〉 = K/m +Δ0/kF. (C7)

At the opposite edge the solution ψ is an eigenstate of τ y with eigenvalue +1, resulting in a velocity
vedge = K/m −Δ0/kF. The corresponding edge mode dispersion is given by equation (12).

Appendix D. Details of the tight-binding simulation

For the numerical calculations we model the Fu–Kane superconductor by a tight-binding Hamiltonian on a
2D square lattice (lattice constant a0),

H =
vF

a0

∑
α=x,y

sin(a0kα + a0Kα)σατz

+ Mσzτ0 − μσ0τz +Δ0σ0τx

+
M0vF

a0

∑
α=x,y

[1 − cos(a0kα + a0Kα)]σzτ0. (D1)

In the limit a0 → 0 the continuum Hamiltonian (1) is recovered. The term ∝ M0 is introduced to avoid
spurious Dirac points at the edge of the Brillouin zone (fermion doubling).

We consider a channel geometry of width W along the y-axis, with mass M = 0 for |x| � W/2 and
infinite mass M →∞ for |x| > W/2. It is efficient if we can replace the infinite-mass term by a lattice
termination at |x| = W/2, so that we only have to consider the lattice points inside the channel. This is
allowed if the lattice termination enforces the boundary condition (3). We can set M0 = −1 to achieve that
goal.

To see this, consider the matrix elements for hopping in the ±x-direction,

Hnx±1,nx = ± vF

2ia0
e±ia0Kxσxτz −

M0vF

2a0
e±ia0Kxσzτ0. (D2)

To represent the boundary condition (3) by a lattice termination at the right edge, we need to ensure that
Hnx−1,nxψ = 0 at x = W/2 + a0 when ψ = +σyτ zψ. Similarly, for x = −W/2 we need Hnx+1,nxψ = 0 at
x = −W/2 − a0 when ψ = −σyτ zψ. One readily checks that both conditions are realized if M0 = −1.

In figures 6 and 7 we show that we recover the analytical results for the edge mode dispersion and for
the expectation value of the charge and spin of the Dirac fermions. To achieve this accurate agreement the
tight-binding model needs to be close to the continuum limit. For that purpose we took a small lattice
constant (kFa0 = 0.02), which is computationally feasible in an effectively 1D simulation. The transport
calculations are fully 2D and we were forced to take a ten times larger lattice constant to keep the problem
tractable. This is why the numerical value of Kc in figure 5 differs substantially from the analytical result in
the continuum limit.

In figure 8 we check our calculations for M →∞ by taking a finite M = 2μ. Comparison with figure 6
shows an excellent correspondence. We also checked that for large M the value μI of the chemical potential
in the magnetic insulator becomes irrelevant. When M becomes comparable to μ, the ratio μI/μ of
chemical potential in I and S does matter: the velocity of the edge modes depends on that ratio, see figure 9.
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Figure 6. Energy spectrum of the superconducting channel, calculated numerically from the tight-binding Hamiltonian (D1)
(μ = 7.5Δ0, W = 100vF/μ, K = 2

3Δ0/vF, a0 = 0.02vF/μ). The red dashed lines are the large-μ, large-W asymptotes (7) of the
Majorana edge mode dispersion. The red and blue dots indicate the Dirac fermion mode at ky = ±kD, the green dot is the
Majorana fermion at ky = 0.

Figure 7. Expectation value of the charge and the spin of the Dirac fermions in the inverted regime, as a function of the
superflow momentum K. The data points result from the tight-binding simulation (same parameters as in figure 6), the solid
curves are the analytical results (B1) and (B3) in the limit W →∞.

For the transport calculations we take a finite length L of the superconducting segment (S), and attach
semi-infinite normal metal leads (N ) at the two ends (see figure 10). We set Δ0 = 0 in N, no coupling of
electrons and holes (the value of K then becomes irrelevant and may be set to zero),

Hlead =
vF

a0

∑
α=x,y

σατz sin a0kα − μσ0τz

+
M0vF

a0

∑
α=x,y

(1 − cos a0kα)σzτ0. (D3)

We again set M0 = −1 to implement the infinite-mass boundary condition by a lattice termination at
x = ±W/2.

Equation (D3) is the model without a potential step at the NS interface (panel (a) in figure 5). If the
chemical potential μN in the normal metal leads is much larger than the value μ in the superconducting
region, only modes with a large longitudinal momentum ky are transmitted across the NS interface. We
cannot directly take the large-μN limit in the Hamiltonian (D3), because of the finite band width. Instead,
we achieve the same goal of suppressing transverse momenta by cutting the transverse hoppings at μN = 0,

Hlead(large potential step) =
vF

a0
σyτz sin a0ky

+
M0vF

a0
(1 − cos a0ky)σzτ0. (D4)

This produces the data in panel (b) of figure 5.
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Figure 8. Same as figure 6, but now for the case that the infinite-M boundary condition is replaced by the confinement by a strip
of magnetic insulator (width 0.1W, magnetization M = 2μ, μI = μ).

Figure 9. Effect on the edge mode velocity of a difference between the chemical potential μI in the magnetic insulator and the
chemical potential μ in the superconductor. For all three data sets M = 2μ.

Figure 10. Two-dimensional square lattice on which the tight-binding model is defined. The Hamiltonian (D1) is applied to the
superconducting segment of length L (yellow). In the semi-infinite leads (grey) the Hamiltonian is given by equations (D3) and
(D4), respectively, in the models with and without a potential step at the NS interfaces.

Appendix E. Derivation of equation (15)

E.1. Calculation of the transferred charge
We seek to compute the charge e∗ transferred across the NS interface at y = 0 by a Dirac fermion at
ky = ±kD. We assume a large potential step at the interface, such that the chemical potential μN in the
normal region y < 0 is much larger than the value μ = vFkF in the superconducting region y > 0. The

10
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Hamiltonian in S is

H = vF(kxσx + kyσy)τz + vFKσyτ0 − μσ0τz

+ Mσzτ0 +Δ0σ0τx

≡ H0 + vFkyσyτz. (E1)

For later use we have separated out the ky-independent part H0 = limky→0 H.
The potential step boosts the momentum component ky perpendicular to the interface, without

affecting the parallel component kx, so in N only modes are excited with |ky| � |kx|. These are eigenstates of
σyτ z with eigenvalue −1, moving away from the interface in the −y direction. Continuity of the wave
function Ψ at the interface then requires that limy→0Ψ ≡ Ψ0 satisfies

σyτzΨ0 = −Ψ0 ⇔ PΨ0 = Ψ0, (E2)

with projection operator

P =
1

2
(1 − σyτz). (E3)

The eigenvalue equation HΨ = 0 at E = 0 implies that

0 = lim
y↓0

PHΨ = PH0PΨ0 + lim
y↓0

PvFkyσyτzΨ

= (K + kF)P ĵPΨ0 − iP v̂Ψ′
0, (E4)

with the definitions ĵ = vFσyτ0, v̂ = vFσyτz , and Ψ′
0 = limy↓0 ∂Ψ/∂y. The derivative is not continuous at

the NS interface, hence the specification that the limit y ↓ 0 should be taken from above. Also note that
PΨ0 = Ψ0 but PΨ′

0 �= Ψ′
0.

We define the y-dependent inner product of two arbitrary states,

〈Ψ1|Ψ2〉y =

∫
dx Ψ∗

1(x, y)Ψ2(x, y). (E5)

With respect to this inner product the operator H0 is self-conjugate, 〈Ψ1|H0Ψ2〉y = 〈H0Ψ1|Ψ2〉y, but the
operator ky = −i∂/∂y is not (an integration over y would be needed for that). Still, if Ψ is an eigenstate of
H at eigenvalue E, we have kyv̂Ψ = (E − H0)Ψ, so kyv̂ inherits the self-conjugate property from H0,
〈Ψ|kyv̂Ψ〉y = 〈kyv̂Ψ|Ψ〉y.

We will use this identity in the two forms

〈Ψ|v̂|Ψ′〉y = −〈Ψ′|v̂|Ψ〉y , 〈Ψ′|v̂|Ψ′〉y = −〈Ψ|v̂|Ψ′′〉y , (E6)

where Ψ′ = ∂Ψ/∂y and Ψ′′ = ∂2Ψ/∂y2. (The second equality holds because H does not depend on y, so if
HΨ = EΨ then also HΨ′ = EΨ′.)

One implication of equation (E6) is that the particle current 〈Ψ|v̂|Ψ〉y is y-independent, as it should be,

d

dy
〈Ψ|v̂|Ψ〉y = 〈Ψ′|v̂|Ψ〉y + 〈Ψ|v̂|Ψ′〉y = 0. (E7)

A more unexpected implication is that also the expectation value 〈Ψ|v̂|Ψ′〉y is y-independent,

d

dy
〈Ψ|v̂|Ψ′〉y = 〈Ψ′|v̂|Ψ′〉y + 〈Ψ|v̂|Ψ′′〉y = 0. (E8)

We will make essential use of these two properties in just a moment.
The charge current Icharge through the NS interface at y = 0,

Icharge = e〈Ψ|̂j|Ψ〉0 = e〈Ψ|P ĵP|Ψ〉0, (E9)

can be rewritten by substitution of equation (E4),

Icharge =
ie

K + kF
〈Ψ|P v̂|Ψ′〉0 =

ie

K + kF
〈Ψ|v̂|Ψ′〉0. (E10)

The renormalized charge e∗ transferred through the NS interface by a Dirac fermion is the ratio of the
charge current and the particle current Iparticle = 〈Ψ|v̂|Ψ〉0,
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e∗ =
ie

K + kF

〈Ψ|v̂|Ψ′〉0

〈Ψ|v̂|Ψ〉0
=

ie

K + kF

〈Ψ|v̂|Ψ′〉y

〈Ψ|v̂|Ψ〉y
. (E11)

In the second equality we used equations (E7) and (E8).
We can evaluate the ratio of y-dependent expectation values at large y, far from the interface, where

evanescent waves have decayed to zero and Ψ contains only the propagating Dirac mode
ΨD ∝ e±ikDy —under the assumption that there is no backscattering of quasiparticles at the interface. The
ratio then reduces to ±ikD, resulting in a transferred charge

± e∗ = ± ekD

K + kF
. (E12)

The sign of the transferred charge is set by the sign of the charge expectation value 〈Q〉 of the Dirac mode,
but the magnitude is different.

Equation (E12) gives the charge of an outgoing mode in N (moving away from the NS interface), when
it is matched to an incoming Dirac mode in S (moving towards the NS interface). The entire calculation
carries over if the direction of motion is inverted, so when an incoming mode in N is matched to an
outgoing Dirac mode in S, the incoming mode has the same charge ±e∗.

E.2. Calculation of the electrical conductance
The transferred charge determines the conductance Gelectric = I2/V1 that gives the electrical current I2 into
the normal contact N2 in response to a voltage V1 applied to contact N1 (see figure 10). This is a
three-terminal circuit, the third terminal is the grounded superconductor S connecting N1 and N2,
separated by a distance L. We assume that both contacts have a chemical potential μN � μ.

In the absence of backscattering the transmission matrix t from N1 to N2 is a rank-two matrix of the
form

t = eikDL|Ψ+
2 〉〈Ψ+

1 |+ e−ikDL|Ψ−
2 〉〈Ψ−

1 |. (E13)

The incoming mode |Ψ±
1 〉 in contact N1 is matched in S to a Dirac mode at ky = ±kD. The Dirac mode

propagates to contact N2, picking up a phase e±ikDL, and is then matched to an outgoing mode |Ψ±
2 〉. The

matching condition gives a charge ±e∗ to Ψ±
n ,

〈Ψ±
n |τz|Ψ±

n 〉 = ±e∗. (E14)

The modes |Ψ+
n 〉 and |Ψ−

n 〉 not only carry opposite charge, they are each others particle–hole conjugate,

|Ψ+
n 〉 = σyτy|Ψ−

n 〉∗, (E15)

as they are matched to Dirac modes that are related by particle–hole conjugation. We will use an
orthogonality consequence of this property:

〈Ψ+
n |τz|Ψ−

n 〉 = −〈Ψ+
n |σyτyτzσyτy|Ψ−

n 〉 = −〈Ψ−
n |τz|Ψ+

n 〉∗

= −〈Ψ+
n |τz|Ψ−

n 〉 ⇒ 〈Ψ+
n |τz|Ψ−

n 〉 = 0. (E16)

So while current conservation by itself requires that |Ψ+
n 〉 is orthogonal to |Ψ−

n 〉, the additional constraint of
particle–hole symmetry also gives the orthogonality of |Ψ+

n 〉 and τz|Ψ−
n 〉.

We now have all the pieces in place to calculate the conductance, given in terms of the transmission
matrix by

Gelectric =
e2

2h
Tr τzt†τzt. (E17)

Substitution of equation (E13) and use of the orthogonality (E16) gives

Gelectric =
e2

2h

∑
s=±

〈Ψs
2|τz|Ψs

2〉〈Ψs
1|τz|Ψs

1〉 =
(e∗)2

h
, (E18)

where in the second equality we used equation (E14). Substitution of equation (E12) then produces
equation (15) in the main text.
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