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Urban green infrastructure, especially trees, are widely regarded
as one of the most effective ways to reduce urban temperatures
in heatwaves and alleviate the adverse impacts of extreme heat
events on human health and well-being. Nevertheless, urban
planners and decision-makers are still lacking methods and
tools to spatially evaluate the cooling effects of urban green
spaces and exploit them to assess greening strategies at the
urban agglomeration scale. This article introduces a novel
spatially explicit approach to simulate urban greening
scenarios by increasing the tree canopy cover in the existing
urban fabric and evaluating their heat mitigation potential.
The latter is achieved by applying the InVEST urban cooling
model to the synthetic land use/land cover maps generated
for the greening scenarios. A case study in the urban
agglomeration of Lausanne, Switzerland, illustrates the
development of tree canopy scenarios following distinct spatial
distribution strategies. The spatial pattern of the tree canopy
strongly influences the human exposure to the highest
temperatures, and small increases in the abundance of tree
canopy cover with the appropriate spatial configuration can
have major impacts on human health and well-being. The
proposed approach supports urban planning and the design
of nature-based solutions to enhance climate resilience.
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1. Introduction
Urbanization is a global phenomenon that increasingly concentrates the world’s population in urban areas,
with the latter expected to grow in both the numberof dwellers and spatial extent over the next decades [1–3].
As a major force of landscape change, urbanization is characterized by the conversion of natural to artificial
surfaces, which alters the energy and water exchanges as well as the movement of air. Such changes often
result in the urban heat island (UHI) effect, a phenomenon by which urban temperatures are warmer than
its rural surroundings [4–9]. The negative impacts of UHI have been widely documented and include
increased energy and water consumption [10–12], reduced workplace productivity [13,14] and
aggravation of health risks [15–17]. As urban areas grow and global temperatures rise, the UHI effect is
expected to become more intense [18,19], which makes urban heat mitigation a major priority for urban
planning and policy-making [20].

Increasing urban green space, especially the urban tree canopy, has been one of the most widely
advocated strategies of urban heat mitigation. Nevertheless, the impacts of the urban tree canopy on air
temperature show a complex spatial behaviour that remains poorly understood [9,21,22]. While the
evidence of the cooling effects of urban green areas has been extensively reported [21–27], the relationship
between their size and their cooling capacity is nonlinear [28–31], and little is known about how the
overall spatial configuration of urban green spaces affects the heat mitigation at the urban agglomeration
scale [32–36]. Therefore, the way in which cities can plan and optimize their green infrastructure to reduce
heat stress is not yet sufficiently understood, largely because of the lack of fine-grained approaches to
evaluate the cooling effects of the spatial pattern of the tree canopy at the urban agglomeration scale.

With the aimof addressing the above shortcomings, the presentwork introduces a novel spatially explicit
method to evaluate the heat mitigation potential of altering the abundance and spatial configuration of the
urban tree canopy cover in a case study of the urban agglomeration of Lausanne, Switzerland. The proposed
method consists of two major parts. First, synthetic scenarios are generated by increasing the tree canopy
cover in candidate locations where the existing urban fabric permits it. Then, the spatial distribution of air
temperature of each synthetic scenario is estimated with the InVEST urban cooling model, which
simulates urban heat mitigation based on three biophysical processes, namely shade, evapotranspiration
and albedo. Such a model has been calibrated and validated in the same study area in previous work [37].
Finally, the simulated temperature map is coupled with a gridded population census in order to evaluate
the human exposure to urban heat in the scenario. By applying such a procedure in the urban
agglomeration of Lausanne, Switzerland, this study aims to map the heat mitigation potential that can be
achieved starting from the existing urban fabric. With the aim of quantifying the effects of the abundance
and spatial configuration of the tree canopy cover on urban heat mitigation, a set of synthetic scenarios are
generated by increasing different proportions of tree canopy cover in distinct spatial configurations.
Although other studies have applied spatially explicit models of heat mitigation to evaluate future
urbanization scenarios [38–40], the key novelty of this article is that scenarios are not defined to reflect
specific planning strategies, e.g. business as usual, intensification, greening and the like, but rather to
meticulously explore the effects of the spatial pattern of the tree canopy on urban heat mitigation.

2. Material and methods
2.1. Study area
Lausanne is the fourth largest Swiss urban agglomeration with 420 757 inhabitants as of January 2019
[41]. The agglomeration is located at the Swiss Plateau and on the shore of the Lake Léman, and is
characterized by a continental temperate climate with mean annual temperatures of 10:9�C and mean
annual precipitation of 100mm, with a dominating vegetation of mixed broadleaf forest. The spatial
extent of the study has been selected following the recent application of the InVEST urban cooling
model to Lausanne by Bosch et al. [37], and covers an area of 112.46 km2.

In order to evaluate the human exposure to UHI, the population data for the study area has been
extracted from the population and households statistics (STATPOP) [42] provided at a 100m resolution
by the Swiss Federal Statistical Office (SFSO) with the Python library swisslandstats-geopy [43].

2.2. Simulation with the InVEST urban cooling model
The spatial distribution of air temperatures is simulated with the InVEST urban cooling model (version
3.8.0) [44], which is based on the heat mitigation provided by shade, evapotranspiration and albedo. The



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202174
3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 D

ec
em

be
r 

20
21

 

main inputs are a land use/land cover (LULC) raster map, a reference evapotranspiration raster and a
biophysical table containing model information of each LULC class of the map. The LULC maps have
been obtained by rasterizing the vector geometries of the official cadastral survey of the Canton of
Vaud [45] as of August 2019 to a 10m resolution. Such a dataset distinguishes 25 LULC classes which
are relevant to the urban, rural and wild landscapes encountered in Switzerland. The reference
evapotranspiration pixel values are estimated with the Hargreaves equation [46] based on the daily
minimum, average and maximum air temperature values of the 1 km gridded inventory of the Federal
Office of Meteorology and Climatology (MeteoSwiss) [47]. The biophysical table used in this study is
shown in electronic supplementary material, table S1. A more thorough description of the model and
the data inputs can be found in Bosch et al. [37].

The parameters of the model are set based on its calibration to the same study area in previous work
[37], which reproduces the air temperature measurements of 11 monitoring stations (see electronic
supplementary material, figure S1) with a coefficient of adjustment (R2) of 0.90 and a mean absolute
error of 0:96�C. Finally, the temperature values observed at these stations are used to set the values of
the rural reference temperature (Tref ) and UHI magnitude (UHImax) parameters. More precisely, Tref is
set as the air temperature measurement at 21.00—the moment of maximal UHI intensity in
Switzerland [48]—of the station showing the lowest temperature value, and UHImax is set as the
difference between the 21.00 temperature measurement of the station showing the highest temperature
value and Tref. With the above definitions, a reference day for the simulations has been selected from
the 2018–2019 period as the day showing the maximum UHI magnitude, i.e. UHImax, while ensuring
that Tref > 20. Such a date corresponds to 27 July 2018, with Tref ¼ 20:60�C and UHImax ¼ 7:48�C.

2.3. Refining LULC classes based on tree cover and building density
A procedure to redefine the LULC classes from the cadastral survey has been designed to distinguish the
LULC classes depending on their proportional cover of both trees and buildings. The reclassification is
achieved by combining the 10m raster LULC map with two 1m binary raster masks, one for the tree
canopy raster and another for the buildings. The 1m binary tree canopy mask has been derived from
the SWISSIMAGE orthomosaic [49], by means of the Python library DetecTree [50], which implements
the methods proposed by Yang et al. [51]. The estimated classification accuracy of the tree canopy
classification is 91.75%. On the other hand, the 1m binary building mask has been obtained by
rasterizing the buildings of the vector cadastral survey [45].

The reclassification procedure consists of three steps. Firstly, each 10m pixel is coupled with the tree
canopy and building masks in order to respectively compute its proportion of tree and building cover.
Secondly, the set of 10m pixels of each LULC class are grouped into a user-defined set of bins to form
two histograms, one based on their proportion of tree cover and the other analogously for the building
cover. Lastly, the two histograms are joined so that each LULC class is further refined into a set of classes.
For example, if two bins were used for both the tree and building cover, the ‘sidewalk’ LULC code might
be further refined into ‘sidewalk with low tree/low building cover’, ‘sidewalk with low tree/high
building cover’, ‘sidewalk with high tree/low building cover’ and ‘sidewalk with high tree/high
building cover’.

In the present work, four equally spaced bins (i.e. distinguishing 0–25%, 25–50%, 50–75% and
75–100% intervals) have been used to reclassify each LULC class according to both the tree and
building cover. Following the advice given by the directorate of resources and natural heritage in the
Canton of Vaud (DGE-DIRNA), the threshold over which a pixel is considered to have a high tree
canopy cover has been set to 75%, which corresponds to placing trees of a spheric crown with a 5m
radius spaced 10m from one another so that they form a continuous canopy. Finally, in order to
adapt the biophysical table of the InVEST urban cooling model to the reclassified LULC classes, the
shade coefficients are computed as the midpoint of the bin interval of each level of tree cover (i.e.
0.125, 0.375, 0.625 and 0.875), whereas the albedo coefficients have been linearly interpolated based on
the level of building cover (see electronic supplementary material, table S1).

2.4. Generation of urban greening scenarios
Starting from the refined LULC map, a set of urban greening scenarios are generated by altering the
LULC classes of certain candidate pixels in a way that corresponds to reasonable transformations that
could occur in urban areas. More precisely, pixels whose base LULC class corresponds to ‘building’,
‘road, path’, ‘sidewalk’, ‘traffic island’, ‘other impervious’ and ‘garden’ are changed to the LULC code



Table 1. Selected landscape metrics. A more thorough description can be found in the documentation of the software
FRAGSTATS v4 [53].

category metric name description

composition percentage of

landscape (PLAND)

percentage of landscape, in terms of area, occupied by pixels with

high tree canopy cover

configuration mean patch area

(AREA_MN)

average size (in hectares) of the patches formed by pixels with high

tree canopy cover

mean shape index

(SHAPE_MN)

average shape index of the patches formed by pixels with high tree

canopy cover

edge density (ED) sum of the lengths of all edge segments between pixels with high

tree canopy cover and other pixels, per area unit (in m ha−1)
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that has the same base class but with the highest tree cover, e.g. pixels of a post-refinement class ‘sidewalk
with low tree/low building cover’ are be changed to ‘sidewalk with high tree/low building cover’. In
order to ensure that such an increase of the tree canopy cover is performed only where the existing
urban fabric permits it, pixels might only be transformed when two conditions are met. First, the
proportion of building cover in the candidate pixels must be under 25%, i.e. there is 75% of the pixel
area which could be occupied by a tree crown. Secondly, pixels of the ‘road, path’ class might only be
transformed when they are adjacent to a pixel of a different class, which prevents increasing the tree
canopy cover in pixels that are in the middle of a road (e.g. a highway).

After mapping the candidate pixels where the tree canopy cover can be increased, scenarios are
generated based on two key attributes: the extent of tree canopy conversion (expressed as a
proportion of the total number of candidate pixels), and the selection of pixels to be converted. A set
of scenarios is generated by transforming 12.5, 25, 37.5, 50, 62.5, 75 and 87.5% of the candidate pixels,
respectively. For each of these canopy areas, three distinct selection approaches are used. The first
consists in randomly sampling from the candidate pixels until the desired proportion of changed
pixels is matched. In the second and third approaches, the candidate pixels are sampled according to
the number of pixels with high tree canopy cover (i.e. greater than 75%) found in their Moore
neighbourhood (i.e. the eight adjacent pixels). In the second approach, pixels with higher number of
high tree canopy cover neighbours are transformed first, which intends to spatially cluster pixels of
high tree canopy cover. The third approach intends to spatially scatter pixels of high tree canopy
cover by prioritizing pixels with lower number of high tree canopy neighbours. Given that the three
sampling approaches are stochastic, for each scenario configuration, i.e. each pair of proportion of
transformed candidate pixels and sampling approach, the corresponding temperature maps will be
computed by averaging a number of simulation runs. After observing little variability among the
simulation results, the number of runs for each configuration has been set to 10. Lastly, the set of
scenarios is completed with a configuration where 100% of the candidate pixels are transformed,
which is independent of the sampling approach or scenario run since there exists a single
deterministic way to transform all the candidate pixels. The final number of simulated scenarios is
211, i.e. 10 scenario runs for three different sampling approaches and seven proportions of
transformed candidate pixels, plus a last scenario where all the pixels are transformed.

For each scenario, the spatial pattern of the tree canopy is quantified by means of a set of spatial
metrics from landscape ecology [52,53], which are computed for the pixels whose post-refinement
LULC class has a tree canopy cover over 75%. As explained above, adjacent pixels with a tree
canopy cover over 75% can be considered as forming a continuous canopy. Based on similar studies
that explore the relationship between the spatial pattern of tree canopy and UHIs [36,54,55], four
spatial metrics have been chosen to quantify both the composition and configuration of the tree
canopy, which are listed in table 1. The proportion of landscape (PLAND) of pixels with high tree
canopy cover serves to quantify the composition aspects, while the configuration is quantified by
means of the mean patch size (MPS), edge density (ED) and the mean shape index (MSI) of patches
of high tree canopy cover. The four metrics have been computed with the Python library
PyLandStats [56].
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3. Results
3.1. Proportion of transformed pixels by their original LULC class
The relationship between the number of transformed candidate pixels by their original LULC class and
the overall proportion of transformed candidate pixels is shown in figure 1. Changing 25, 50, 75 and
100% of the candidate pixels corresponds to a total number of pixels changed of 118 880, 237 760,
356 640 and 475 520, which account for a total area of 1188.8, 2377.6, 3566.4 and 4755.2 ha,
respectively. In the last case, i.e. increasing the tree canopy in all the possible pixels, 61.50% of the
pixels correspond to the ‘garden’ LULC class, followed by ‘road, path’, ‘building’, ‘other impervious’,
(18.01, 10.81 and 7.69%, respectively). Finally, the LULC classes of ‘sidewalk’ and ‘traffic island’
constitute only 1.67 and 0.3% of the pixels where the tree canopy can be increased. The differences
when considering the sampling approaches separately are small relative to the total number of
transformed candidate pixels. The largest differences between sampling approaches can be noted in
the number of transformed pixels that originally belong to the ‘garden’ class. When transforming 25,
50 and 75% of the candidate pixels, clustering, respectively, transforms (on average among the
simulation runs) 0.90, 0.38 and 0.12% more garden pixels than random sampling, and 1.28, 0.76 and
0.43% more garden pixels than the scattering approach (figure 2).

3.2. Simulated LULC, temperature and heat mitigation maps
The LULC, temperature and heat mitigation maps for the scenarios generated by transforming 25, 50, 75
and 100% of the candidate pixels are shown in figure 3. When changing 25, 50, 75 and 100% of the
candidate pixels, the maximum temperature T for the reference date, i.e. 26:05�C, is progressively
reduced to 25:77, 25:30, 24:82 and 24:49�C, respectively, while the magnitude of maximum heat
mitigation (T− Tobs) increases from 0:49, 1:17, 1:81 and 2:22�C, respectively. The largest heat
mitigation magnitudes occur in the most urbanized parts, which are located along the main
transportation axes. The relationship between the proportion of candidate pixels transformed and the
simulated distribution of air temperature can be approximated as a linear relationship with a negative
slope (see electronic supplementary material, figures S2 and S3 for more details about this relationship).

3.3. Spatial patterns of tree canopy cover
The relationships between the landscape metrics of each scenario run and the corresponding simulated
average temperature T (over all the pixels) are displayed in figure 4. The proportion of landscape
(PLAND) occupied by pixels with high tree canopy cover range from 17.26 to 53.37%. As a
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composition metric, PLAND is directly related to the proportion of transformed candidate pixels, and the
extreme values of the PLAND range correspond to transforming 0 and 100% of the candidate pixels
respectively. The relationship between PLAND and the average simulated temperature of each
scenario T shows a sharp monotonic decrease. However, for the same PLAND values, clustering
the transformed pixels to other pixels with high tree canopy cover consistently leads to higher T
than scattering or randomly sampling—the latter approaches show almost indistinguishable PLAND
and T relationship.

Regarding the configuration metrics, the values of the mean patch area (AREA_MN) show that the
clustering and random sampling approaches lead to larger patches of high tree canopy cover than the
scattering approach. When transforming 12.5 and 25% of the candidate pixels, clustering them to
other pixels of high tree canopy cover increases AREA_MN from 0.14 to 0.54 ha respectively (on
average over the simulation runs). For 37.5% of transformed candidate pixels in the clustering
approach, AREA_MN shows a sudden decline to 0.20 ha, followed by a monotonic increase that
reaches 1.52 ha when all the candidate pixels are transformed. Such a discernable kink in the
computed AREA_MN reveals characteristics of the existing urban fabric, and describes the point after
which all the candidate pixels that are adjacent to other pixels of high tree canopy have been
transformed and hence new pixels have to be allocated as part of new (and smaller) patches. The
same kink is even more notable for the mean shape index (SHAPE_MN), yet the computed values
show a very irregular pattern across the different scenario configurations, and it is the only metric
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where differences can be noted among scenario runs with the same configuration. The only consistency is
that the scattering approach tends to lower SHAPE_MN values than randomly sampling the transformed
pixels, which is probably due to the larger abundance of simple single-pixel patches in the former
approach. Finally, the clustering approach results in lower edge density (ED) values than in the
scattering and random sampling approaches, which show a very similar trend. The observed pattern
is consistent with the notion that growing existing patches by clustering the new pixels to them
accounts for less total edge length than scattering the same amount of new pixels in a leapfrog
manner. In the three approaches, the ED increases monotonically at first until an apex is reached
when the proportion of transformed pixels is between 50% and 60%, and then declines monotonically.

The average simulated temperature T is overall negatively correlated with AREA_MN, which
suggests that for the same amount of high tree canopy pixels, large patches provide lower heat
mitigation. On the other hand, configurations with the same proportion of high tree canopy pixels
show lower T for larger values of ED, which suggests that edge effects between artificial patches and
patches of high tree canopy contribute to greater heat mitigation. Nonetheless, as higher proportions
of candidate pixels are transformed and the locations of the remaining candidate pixels force the
overall ED to decrease, the simulated average temperatures continue to decline. This highlights how
the cooling effects of the abundance of tree canopy overshadow those of the spatial configuration,
which is consistent with many related studies [36,55,57–59].
3.4. Effects on human exposure
The relationship between human exposure to air temperatures higher than 21, 22, 23, 24, 25 and 26�C
and the proportion of pixels transformed to their respective high tree canopy cover class is shown in
figure 5. The number of dwellers exposed to temperatures higher than 21�C does not show a
significant decrease (even when converting all the candidate pixels), whereas for temperatures higher
than 22�C, it diminishes from 269 254 to 268 601, 267 683, 266 518 and 264 125 when the proportion of
transformed pixels is 25, 50, 75 and 100%, respectively, which represents a relative share of 97.25,
97.02, 96.69 96.27 and 95.41% of the population of the study area. Such a decline progressively
becomes more notable as temperatures increase, e.g. the share of the population exposed to
temperatures over 24�C declines from an initial 78.4% to 72.39, 59.57, 37.53 and 11.52% when
transforming 25, 50, 75 and 100% of the candidate pixels respectively. Finally, the share of dwellers
exposed to temperatures over 25�C, which is initially 47.91%, is diminished to 24.98 and 5.74% when
transforming 25 and 50% of the pixels, respectively, and becomes 0 after that, whereas the 2508
dwellers originally exposed to temperatures over 26�C do no longer meet such temperatures after
transforming 25% of the candidate pixels.

The way in which the transformed pixels are sampled has significant effects on the human exposure
to high temperatures (figure 6). Overall, scattering the transformed pixels to avoid forming a continuous
tree canopy appears as the most effective approach to reduce the human exposure to the highest
temperatures, followed by random sampling. When transforming 25 and 50% of the candidate pixels
with the scattering approach, the number of dwellers exposed to temperatures over 25�C decreases
from 124 073 to 65 108 and 4498 respectively. Such a reduction is larger than its random sampling
counterpart by 3125 and 8223 dwellers, respectively, and larger than its clustering approach
counterpart by 9359 and 21 388 dwellers, respectively (figure 6).
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4. Discussion
4.1. Validity and applicability of the proposed approach
The scenarios simulated in this study map locations where the tree canopy cover in the urban
agglomeration of Lausanne can be increased, and suggests that such changes can result in urban
night-time temperatures that are up to 2�C lower. The results indicate that given the same proportion
of tree canopy cover, a scattered configuration might lead to more effective urban heat mitigation than
a clustered one, which is in line with previous studies in humid climates [54,55,60–63]. Nevertheless,
the results suggest that the effect of the spatial configuration (measured by the metrics AREA_MN,
SHAPE_MN and ED) is secondary when compared with the effect of the composition (measured by
the PLAND metric). Overall, the effect of the spatial configuration of trees on its urban heat
mitigation depends on how it affects the shading and evapotranspiration processes. Such a
relationship is known to be strongly mediated by the tree species, background climatic and
environmental conditions as well as the spatial scale [36,54,55,62,64–67].

The spatial effects observed in the results are due to the InVEST model equations representing air
mixing and the effect of parks. In order to ascertain these effects, the InVEST urban cooling model
must be further validated with experiments at the neighbourhood scale to ensure that it provides an
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appropriate city-scale depiction of how the urban heat mitigation mechanisms operate at finer scales. In
fact, the InVEST urban cooling model presents limitations regarding the simplified and homogeneous
way in which the air is mixed, as well as the cooling effects of large green spaces [37,44]. As a result,
the relationship between the proportion of tree canopy cover and the magnitude of the urban heat
mitigation reported in this work is practically linear, and the temperature differences between
spatially clustering or scattering the new tree canopy cover are limited. Nonetheless, in complex
terrains such as the Lausanne agglomeration, models with uniform weighting of space show
considerable deviations from the observed spatial patterns of air temperature [47,68]. Moreover, the
cooling effects of large green spaces have been found to be non-proportional to their area and shape
complexity [69–71]. Improving how these nonlinear components are represented in the InVEST urban
cooling model could enhance not only its validity, but also its value to urban planning by identifying
thresholds and regime changes in the cooling efficiency of additional tree planting. Another major
limitation of the InVEST urban cooling model is that it only considers the shade cast by trees, hence
overlooking the shade cast by buildings, which also has significant cooling effects [72–77]. Therefore,
in order to improve the ability of the model to accurately represent physical processes associated with
the heat mitigation, the model should be extended to include a more detailed representation of the
three-dimensional features of the urban canyon.

Despite the limitations noted above, a major advantage of the proposed approach is that it can be
used to evaluate urban heat mitigation of synthetic scenarios. The simulations presented in this article
focus on spatially exploring the effects of an increase of the tree canopy cover, yet there is room for
much more experimentation of this kind. On the one hand, the generic sampling approaches explored
above can be extended to consider ad hoc characteristics such as the spatial distribution of the
population, and design optimization procedures with specific goals. For instance, the candidate pixels
can be selected with the aim of minimizing the exposure of the most vulnerable populations to critical
heat thresholds. More broadly, the approach can be used as part of a decision support system to
explore the trade-offs between ecosystem services provided by trees, perform weighted optimizations
and map priority planting locations [78,79]. On the other hand, in line with recent studies [80–82], the
approach could be applied to examine the impact of distinct urbanization scenarios such as
densification and urban sprawl on air temperature and human exposure to extreme heat, under
current conditions as well as future climate estimates, e.g. by changing the Tref or UHImax parameters.
Similarly, the InVEST urban cooling model might be coupled with models of LULC change such as
cellular automata in order to assess not only which scenarios are most desirable in terms of urban
heat mitigation, but also which planning strategies might lead to them [83–85].

4.2. Implications for urban planning in Lausanne
The spatio-temporal patterns of LULC change observed during the last 40 years in the Lausanne
agglomeration have been characterized by infilling development and a progressive coalescence of
artificial surfaces in its inner ring [86]. Such an infilling trend urges for careful evaluation of the
beneficial ecosystem services provided by urban green spaces, which should be balanced against the
adverse consequences of urban sprawl [34,35].

The approach proposed in this study maps locations in the current urban fabric where the tree canopy
cover can be increased. While part of this urban greening might occur in impervious surfaces (e.g. in
sidewalks, next to roads and in other impervious surfaces), most of the candidate locations currently
correspond to urban green space (i.e. the ‘garden’ LULC class). Therefore, the potential heat
mitigation suggested by the results of the study is not attainable in a scenario of severe infill
development. Additionally, densification strategies should consider that newly created urban green
space might result in less provision of ecosystem services than remnant natural patches [33,87,88].
Finally, infilling might exacerbate the unevenness of the accessibility to green areas by depriving
dwellers of the most dense parts in city core from their few remaining urban green spaces. Spatial
heterogeneity of this kind, which is encountered in many socioeconomic and environmental aspects of
contemporary cities, is often hard to represent with aggregate indicators and highlights the
importance of spatially explicit models to urban planning and decision making.

The explicit representation of space is also crucial when considering the impacts of urban green space
on human exposure to extreme heat. Although the simulated scenarios suggest that the impact of the
spatial pattern of tree canopy on the air temperature is practically linear, the implications on human
exposure to critical temperatures exhibit important thresholds. For example, by increasing the tree
canopy cover of 25% of the candidate pixels, the number of dwellers exposed to night-time
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temperatures over 25�C can be reduced from 124 073 to 74 466, which, respectively, represents 45.08 and
27.06% of the total population in the study area. Furthermore, the results suggest by selecting such pixels
to prioritize a spatial scattering of the tree canopy cover, such a population can be reduced by an
additional 3125 or 6234 dwellers when, respectively, compared with random sampling such pixels or
clustering them to the existing tree canopy cover. In Switzerland, the excess mortality associated to
the heat wave of 2003 occurred disproportionately to urban and sub-urban residents of its largest
urban agglomerations [89]. Furthermore, the association between temperature and mortality in
extreme heat events in the largest Swiss urban agglomerations are exponential [90], which indicates
that reducing temperatures by even fractions of a degree can have a dramatic impact on death rates.
/journal/rsos
R.Soc.Open

Sci.8:202174
5. Conclusion
The scenarios simulated in this study represent a new way of spatially exploring the heat mitigation
potential provided by modifications of the urban fabric, and allow evaluating the cooling effects of
both the abundance and spatial configuration of the tree canopy cover. The results map locations
where the existing tree canopy cover of the urban agglomeration of Lausanne can be increased, and
show an urban cooling potential for urban night-time temperatures of more than 2�C. Additionally,
the simulations suggest that the spatial configuration in which the tree canopy is increased influences
its heat mitigation effects. The configuration effects become more significant when considering the
impacts on the urban population, and small increases in the tree canopy can result in important
reductions in the number of dwellers exposed to the highest temperatures. Overall, the presented
approach provides a novel way to explore how the urban tree canopy can be exploited to reduce heat
stress. Future studies can extend the analyses by assessing the provision of other ecosystem services in
the various tree canopy strategies presented here.
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