
https://helda.helsinki.fi

Strain Diversity and Spatial Distribution Are Linked to Epidemic

Dynamics in Host Populations*

Eck, Jenalle L.

2022-01-01

Eck , J L , Barrès , B , Soubeyrand , S , Siren , J , Numminen , E & Laine , A-L 2022 , ' Strain

Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations* ' ,

American Naturalist , vol. 199 , no. 1 , pp. 59-74 . https://doi.org/10.1086/717179

http://hdl.handle.net/10138/338508

https://doi.org/10.1086/717179

cc_by_nc

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



vol . 1 99 , no . 1 the amer ican natural i st january 2022
Focused Topic

Strain Diversity and Spatial Distribution Are Linked

to Epidemic Dynamics in Host Populations*
Jenalle L. Eck,1,2,† Benoit Barrès,1,‡ Samuel Soubeyrand,3 Jukka Sirén,4,§ Elina Numminen,1,║

and Anna-Liisa Laine1,2

1. Organismal and Evolutionary Biology Research Program, University of Helsinki, 00790 Helsinki, Finland; 2. Department of
Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland; 3. INRAE, BioSP, 84914 Avignon,
France; 4. Department of Computer Science, Helsinki Institute for Information Technology, Aalto University, 02150 Espoo, Finland

Submitted February 11, 2020; Accepted November 20, 2020; Electronically published November 23, 2021

Online enhancements: supplemental PDF, R code. Dryad data: https://doi.org/10.5061/dryad.rjdfn2z94.
abstract: The inherently variable nature of epidemics renders
predictions of when and where infection is expected to occur chal-
lenging. Differences in pathogen strain composition, diversity, fit-
ness, and spatial distribution are generally ignored in epidemiolog-
ical modeling and are rarely studied in natural populations, yet they
may be important drivers of epidemic trajectories. To examine how
these factors are linked to epidemics in natural host populations, we
collected epidemiological and genetic data from 15 populations of
the powdery mildew fungus, Podosphaera plantaginis, on Plantago
lanceolata in the Åland Islands, Finland. In each population, we
tracked spatiotemporal disease progression throughout one epidemic
season and coupled our survey of infection with intensive field sam-
pling of the pathogen. We found that strain composition varied
greatly among populations in the landscape. Within populations,
strain composition was driven by the sequence of strain activity:
early-active strains reached higher abundances, leading to consis-
tent strain compositions over time. Co-occurring strains also varied
in their contribution to the growth of the local epidemic, and these fit-
ness inequalities were linked to epidemic dynamics: a higher propor-
tion of hosts became infected in populations containing strains that
were more similar in fitness. Epidemic trajectories in the populations
were also linked to strain diversity and spatial dynamics: higher infec-
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tion rates occurred in populations containing higher strain diversity,
while spatially clustered epidemics experienced lower infection rates.
Together, our results suggest that spatial and/or temporal variation
in the strain composition, diversity, and fitness of pathogen populations
are important factors generating variation in epidemiological trajec-
tories among infected host populations.

Keywords: pathogen diversity, strain composition, plant disease,
disease epidemic, Plantago lanceolata, powdery mildew.
Introduction

Predicting the trajectory of disease progression is a cen-
tral goal of epidemiology (Rivers and Scarpino 2018). Such
predictions are important given the negative effects of dis-
ease on human and wildlife health (Gulland 1995; Yach
et al. 2006), food security (Gregory et al. 2009; Chakraborty
and Newton 2011; Leung and Bates 2013), and biodiversity
and ecosystem services in ecological communities (Daszak
et al. 2000; Boyd et al. 2013). However, accurate predictions
of disease dynamics are challenging because epidemics
arise from ecological and evolutionary processes occurring
between hosts, pathogens, and the environment across mul-
tiple scales of biological organization (Penczykowski et al.
2015; Parratt et al. 2016). Within pathogen species, pop-
ulation dynamics can vary across a landscape because of
factors such as the availability of hosts through space and
time (Burdon et al. 1995; Sapoukhina et al. 2009), the ge-
netic resistance of hosts against pathogens (Burdon and
Jarosz 1991; DiLeone and Mundt 1994; Alexander et al.
1996; Thrall and Burdon 2000; Laine 2004; Ostfeld and
Keesing 2012; Susi and Laine 2015) and environmental
conditions (Laine 2007). Furthermore, it is well established
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that epidemics can have very different trajectories even
when host densities, genetic diversities, and environmental
conditions are similar, such as in agricultural crops (Thrall
and Jarosz 1994; Shaw 2006). This suggests that the compo-
sition of pathogen populations could play a key role in how
epidemics unfold (Susi et al. 2015; Zhang et al. 2019). Yet
for many pathogen species remarkably little is understood
of how the diversity, fitness, or distribution of strains within
pathogen populations varies through space or time (Carlsson-
Granér 1997; Frank 1997; Orum et al. 1997; Carlsson-Granér
and Thrall 2002; Barrett et al. 2008; Tack and Laine 2014b;
Nagy et al. 2019) and influences epidemic dynamics (Ericson
et al. 1999; Archie et al. 2009). As molecular identification
tools advance the study of pathogens and other parasites
(Giraud et al. 2008; Scholz et al. 2016; Truong et al. 2017),
studies that compare pathogen population dynamics at mul-
tiple spatial and biological scales will allow us to better un-
derstand why epidemics vary.
The strain composition and diversity of pathogen popu-

lations are hypothesized to vary among populations in a
landscape and within populations during an epidemic sea-
son, but studies at these spatiotemporal scales are rare (Bay-
man and Cotty 1991; Orum et al. 1997; Palmer et al. 2001;
Barrett et al. 2008). Primary disease foci establish in pop-
ulations by immigrating from existing populations or by
surviving from the previous epidemic season in situ. Thus, var-
iation in strain composition among pathogen populations
is determined in part by differential abilities among strains
to persist in the local environmental conditions within pop-
ulations and in part by strain assembly processes from the
regional genetic pool (akin to the processes governing spe-
cies assembly in ecological communities; Chase 2005; Chase
and Myers 2011; Shipley et al. 2012; Krasnov et al. 2015).
Strain assembly and off-season survival are affected by a
number of niche-based and stochastic factors, such as path-
ogen dispersal ability (Shaw 1995; Tack and Laine 2014b),
filtering by local environmental conditions and host resis-
tance (Marçais and Desprez-Loustau 2014), local demo-
graphic stochasticity (Gibson et al. 2004), and connectivity
in the landscape (Jousimo et al. 2014; Tack et al. 2014). In
some pathogen species this variability, along with the gen-
eration of novel strains within populations via sexual re-
production, can lead to very different strain composition
and infection dynamics among populations or to meta-
population dynamics where colonization and extinction of
populations is common in the landscape (Burdon et al.
1995; Thrall andBurdon 2003).Once pathogen populations
are established, their composition may diversify over the
course of an epidemic through a variety of processes. These
include the arrival of novel strains from other populations
(Hiremath et al. 2008; Biek andReal 2010), differential viru-
lence or host specificity among strains leading to differential
fitness(Ichielevich-Austeretal.1985;Cotty1989;Daviesand
Donachie 1996; Barrett et al. 2009; Wang et al. 2011), and
variation in the timing of life history traits among strains
(Woodhams et al. 2008; Vaumourin and Laine 2018;
Numminen et al. 2019). Selectionpressure that results in ad-
aptation to localhostdefensesandabiotic conditions (Gupta
and Maiden 2001; Thrall and Burdon 2003; Laine 2005),
spatial variation among host populations in their resistance
structure and environmental conditions (Ebert et al. 1998;
Thompson 2005; Laine et al. 2011; Jousimo et al. 2014;
Höckerstedt et al. 2018), and proximity to other pathogen
populations that may act as sources of new strains that col-
onize midepidemic (Susi et al. 2015; Bousset et al. 2018)
could all influence further divergence in strain composition
among populations. Altogether, variation in strain compo-
sition and diversity among and within pathogen popula-
tions arises from multiple processes occurring across re-
gional and local scales (Penczykowski et al. 2015).
Pathogen populations can also be shaped by the biotic in-

teractions among strains and hosts that determine strain
abundance and fitness, and such variation in strain fitness
within pathogen populations could affect epidemic dy-
namics in host populations. For example, priority effects,
in which the relative timing or sequence of strain activity
causes early-arriving strains to gain a competitive advan-
tage over or to facilitate late-arriving strains (via changes
in host susceptibility), could shape strain relative abun-
dance (Johnson et al. 2015; Meester et al. 2016). Strain fit-
ness could also be linked to strain abundance at certain
spatial and temporal scales (as more fit strains reproduce
moreabundantly), but competitionamongstrains andother
environmental factors, such as host susceptibility, compli-
cate this relationship (Kirchner and Roy 2002; Zhan and
McDonald 2013). Variation in the relative fitness of co-
occurring strains within populations has been observed in
several pathogen species (Kaltz and Shykoff 2002; Laine
2008) and could affect the composition and outcome of
local epidemics (Zhang et al. 2019). For example, variation
in strain relative fitness may influence strain coexistence
(Cobey and Lipsitch 2013) or rates of epidemic growth
(Osnas et al. 2015). Understanding why some strains be-
come abundant while others remain rare in populations,
what determines strain relative fitness, and how variation
in fitness among co-occurring strains affects epidemics
are all of critical importance for predicting and responding
to disease (Khanna et al. 2008).
Variation in the rate and magnitude of infections among

and within host populations could also be explained in part
by variation in strain diversity or the spatial distribution
of infections (Twizeyimana et al. 2009; Tollenaere et al.
2012). Because pathogen strains typically exhibit some de-
gree of specialization on host genotypes (Thompson and
Burdon 1992; Salvaudon et al. 2008; Barrett andHeil 2012),
the presence of many pathogen strains in diverse pathogen
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populations could facilitate the infection of a broad range
of host genotypes, leading to a higher proportion of hosts
becoming infected. Within populations, strain diversity is
also hypothesized to influence the rate of epidemic growth:
more diverse pathogen populations are expected to have
faster epidemic growth rates than less diverse populations
(McDonald and Linde 2002). Finally, the spatial distribu-
tion of infections within populations can be highly variable,
depending on pathogen dispersal ability and host distribu-
tions, and could also determine the rate of progression of
epidemics (Mundt and Leonard 1985). For example, the
growth rate of spatially clustered epidemics is highly limited
by pathogen dispersal distances, as demonstrated by the
early limitations on epidemic growth for initial disease foci
establishing in new sites (McCartney and Fitt 1998). In-
sights into the drivers of epidemic trajectories can come
from linking measured disease outcomes to spatial and/
or temporal variation in pathogen strain diversity and dis-
tribution among and/or within populations.
In this study we examine how pathogen strain composi-

tion, diversity, fitness, and the spatial distribution of in-
fections change over space and/or time and are linked to
epidemic dynamics in 15 host populations in a wild plant-
pathogen system. Specifically, we test the following. First,
does strain composition vary among pathogen populations
or within populations over time? Second, is strain abun-
dance determined by the sequence of strain activity or by
strain fitness? Third, do co-occurring strains vary in fitness,
and are fitness inequalities linked to epidemic dynamics?
Fourth, are pathogen strain diversity or the spatial distribu-
tion of infections linked to epidemic dynamics? To address
these questions, we combine epidemiological surveys of fun-
gal disease progression in 15 natural populations of a wild
plant species with intensive genetic sampling of the patho-
gen populations. With this study we aim to illustrate how
knowledge of spatial and/or temporal variation in pathogen
strain composition, diversity, and fitness can help predict
the dynamics of epidemics in host populations.
Methods

Study Populations and Species

We studied epidemic dynamics in 15 populations of the pe-
rennial herb Plantago lanceolata L. (Plantaginaceae) infected
by the fungal pathogen Podosphaera plantaginis (Castagne)
U. Braun and S. Takam. in the Åland Islands (6070805300N,
1974701800E), Finland. The populations are part of a larger
network of14,000 populations of P. lanceolata spread across
theÅland archipelago that have beenmonitored for their size
and location since the early 1990s (Hanski 1999). Plantago
lanceolata, or ribwort plantain, is native to Åland and much
of Eurasia and occurs mainly in small meadows and dis-
turbed areas inÅland. It ismonoecious and self-incompatible
and can reproduce sexually via seeds or asexually via clonally
produced side rosettes (Sagar and Harper 1964). In Åland,
P. lanceolata flowering and seed production occurs from
June to August. The wind-dispersed pollen and seeds fall
primarily near the maternal plant (Bos 1992).
Podosphaera plantaginis, a powdery mildew fungus (or-

der Erysiphales), is an obligate pathogen of living foliar
tissue. Fungal hyphae grow on the leaf surface and pro-
duce localized infections that inhibit plant growth and re-
production (Bushnell 2002) and may lead to mortality in
the presence of other stressors, such as drought (Laine
2004; Susi and Laine 2015). Asexual reproduction occurs
cyclically throughout a growing season, and infection is
transmitted via wind-dispersed spores (conidia; Ovaskainen
and Laine 2006). Resting structures (chasmothecia) that
enable the pathogen to overwinter and initiate new infec-
tions in the next growing season (Tack and Laine 2014a)
are produced via haploid selfing or outcrossing between
strains (Tollenaere and Laine 2013). Infection on individ-
ual hosts can be cleared if infected leaves are dropped as a
result of natural senescence or drought before pathogen
reproduction occurs.
Infection of P. lanceolata by P. plantaginis has been stud-

ied in Åland since 2001 (Laine and Hanski 2006). In Åland,
P. plantaginis persists as ametapopulation through frequent
colonization and extinction events, infecting ~1%–20% of
the P. lanceolata populations in a given year (Jousimo et al.
2014). For this study we selected 15 P. lanceolata popula-
tions that had been infected for at least three consecutive
years before the study (Jousimo et al. 2014). Distances be-
tween pairs of study populations range from ~1 to 40 km.
The interaction between P. lanceolata and P. plantaginis
in Åland is characterized by high levels of diversity in resis-
tance within and among populations of the host (Laine
2004, 2007), coupled with high levels of pathogen genetic di-
versity among populations (Tack et al. 2014). Infection is
mediated by a high degree of specificity through a genotype
(host)#genotype (pathogen) interaction (Laine 2007). Co-
infection, in whichmore than one pathogen genotype con-
tributes to a local infection, occurs commonly in this sys-
tem (Tack et al. 2014; Susi et al. 2015).
Epidemiological Surveys and Pathogen Sampling

In each of the 15 study populations, P. plantaginis infection
on P. lanceolatawas surveyed periodically (every 1–2weeks)
throughout the 2014 epidemic season, from early July to late
August, when signs of infection are visible to the eye (fig. S1;
table S1; figs. S1–S3, tables S1–S9 are available online). Dur-
ing the first epidemiological survey in each population, up
to 30 infected focal individuals were located and tagged by
visually scanning plants for signs of the pathogen. Focal
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individuals were located at least 3 m apart, and their loca-
tions were recorded by GPS. The infection severity of each
focal individual was scored categorically on a scale of 0–3
(1p one leaf lightly infected; 2p several leaves lightly in-
fected; 3 p one leaf heavily infected or many leaves in-
fected; 0p loss of infection). In a 1.5-m-radius circle sur-
rounding each focal individual, we also visually estimated
the following field measurements: (1) the percentage of
cover by area of P. lanceolata, (2) the percentage of the P.
lanceolata individuals showing signs of severe drought
stress (i.e., brown, wilted leaves), and (3) the percentage of
the non-drought-stressed P. lanceolata individuals show-
ing signs of infection by P. plantaginis (the infection is
not visible under drought stress). During each subsequent
survey of each population, the survival and infection sever-
ity of each focal individual and the corresponding circle-
level variables were remeasured. In populations containing
!30 focal individuals, new focal individuals (and corre-
sponding circles) could be established from new infections.
Between four and eight surveys were completed per study
population (table S1). From the field measurements, we
calculated aik, the total number of P. lanceolata individuals
in circle (i) during survey (k), by assuming that 1% cover by
area (corresponding to field measurement 1 in the list
above) equals 10 individuals (Penczykowski et al. 2018).
We then calculated bik, the number of drought-stressed in-
dividuals in circle (i) during survey (k), as aik times the pro-
portion of drought-stressed individuals (corresponding to
field measurement 2 in the list above); aik minus bik yielded
cik, the number of potential host individuals in circle (i)
during survey (k). We then calculated fik, the number of in-
fected individuals in circle (i) during survey (k), as cik times
the proportion of non-drought-stressed individuals show-
ing signs of infection (corresponding to field measurement
3 in the list above). To examine infection rates at the pop-
ulation level, we then calculated the infection rate among
at-risk individuals (i.e., those within 1.5 m of an infected
focal individual and thus in close proximity to an existing
infection center), gkp, in each survey (k) of each population
(p), as the sum of the number of infected individuals in the
circles in the population ( fkp) divided by the sumof the num-
ber of potential host individuals in the circles in the popula-
tion (ckp). Our decision to sample the progression of infec-
tion by visually locating infected individuals was based on
the previous finding that infection within host populations
is highly aggregated (Ovaskainen and Laine 2006); hence,
surveying the entire host population would not be time ef-
fective, while using a standardized sampling schemewould
likely miss most infections.
During each survey of each population, infection data

were also collected on a random sample of 50 P. lanceolata
per population (only 25 individuals were sampled during
the final survey of each population). Each individual was vi-
sually inspected for powderymildew infection andwas con-
sidered infected if at least one leaf showed signs of infection.
Overall host infection rates, hkp, were then calculated for
each survey (k) of each population (p) as the proportion
of infected individuals in this sample. Because a new ran-
dom sample of individuals was selected during each survey
of a population, this provides an additional, independent
measure of infection rates in each host population over time
(that is independent of the design of the focal individual
and circle-level measurements).
Pathogen samples were collected from focal individuals

in each study population during the survey when the indi-
vidual’s infection score reached 3 (to allow collection of one
infected leafwithoutdisturbing the growth of the epidemic).
If the infection score of a focal individual never reached 3, a
sample was collected from it during the final survey of the
population. Some focal individuals that had been sampled
in an earlier survey were also resampled during the final
survey (the second sample was collected from a different
leaf than the first sample and thus represents a new infec-
tion). During the final survey in each population, samples
were also collected from up to four additional infected in-
dividuals within each circle. Each infected leaf sample was
placed in a paper envelope and stored temporarily in a cold,
dry room to ensure rapid drying. Samples were then trans-
ported to the University of Helsinki (Helsinki, Finland)
and stored at 2207C until DNA extraction.
Pathogen Strain Identification

To prepare samples for DNA extraction and genotyping, a
small piece of infected tissue was cut from each sample,
soaked in liquid nitrogen, and grinded. DNA was extrac-
ted from the samples using the E.Z.N.A. plant DNA kit
(Omega Bio-tek, Norcross, GA) at the Institute of Biotech-
nology (Helsinki, Finland) following the manufacturer’s
instructions. To genotype the samples, we used a panel
of 19 single-nucleotide polymorphism (SNP) markers de-
veloped for P. plantaginis (Tollenaere et al. 2012) to assign
multilocus genotypes (hereafter referred to as “strains”) to
each sample (for additional details, see the supplemental
PDF, available online). Genotyping was performed at the
Finnish Institute for Molecular Medicine (Helsinki, Fin-
land) using the Sequenom MassARRAY iPLEX platform.
Unique strains were identified by variation at any SNP site.
Coinfected pathogen samples (i.e., those comprised of two
or more strains) were identified by the presence of heterozy-
gosity at any SNP site (Susi et al. 2015). Coinfections were re-
solved to two parent strains using a computer algorithm (for
details, see the supplemental PDF). The algorithm also iden-
tified some strains that occurred only in coinfections (i.e., that
were not sampled singly), yielding a total of 106 strains for
analysis. Tomost accurately represent the abundance of each
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strain, coinfected samples are included as one count of each
of the two parent strains in all analyses.
Statistical Methods

Does the Strain Composition of Pathogen Populations Vary
over Space and Time? We tested whether pathogen strain
composition (i.e., the identity and abundance of strains)
is dissimilar among contemporaneous populations and
within populations over time. For this test we compared
initial pathogen composition (the set of samples collected
on or before July 25, 2014, corresponding roughly to the
first half of the study period) with final pathogen compo-
sition (the full set of samples collected during the study
period).We simultaneously tested (1) whether strain com-
position is dissimilar over time within populations (be-
tween the initial and final composition of each popula-
tion), (2) whether strain composition is dissimilar among
contemporaneous initial populations, and (3) whether strain
composition is dissimilar among contemporaneous final
populations. We used a generalized Monte Carlo plug-in
test with calibration (GMCPIC; Soubeyrand et al. 2017; for
details, see the supplemental PDF) to test the equality of
the vectors of probabilities of twomultinomial draws (in this
case, the composition of the two populations), using the
StrainRanking package (Soubeyrand et al. 2014) in the R
statistical environment (R Development Core Team 2019).
We also calculated several strain diversity metrics for each
survey of each population: strain rarefied richness (which
was correlated with richness; fig. S2), Shannon diversity
(H0), and Pielou’s evenness (J0). Finally, we calculated dis-
similarity in final strain composition for all pairwise com-
binations of populations via ordination-based procedures
(Bray-Curtis dissimilarity and Jaccard index) using the vegan
package (Oskanen et al. 2017) in the R statistical environ-
ment. Because ordination-based metrics produced the
same qualitative results as the GMCPIC test (table S2),
we focus here on GMCPIC.

Is Strain Abundance Predicted by the Sequence of Activity
or by Strain Fitness? We used a linear mixed effects model
to test whether the abundance of the strains in our study
populations is explained by the sequence of strain activity
or by strain fitness. In this model we explained the log-
transformed abundance of each strain in each population
it occurs in at the end of the epidemic (i.e., the number of
times a strainwas sampled in apopulationduring the course
of the epidemic) as a function of (1) the numbered day at
which the strainwasfirst sampled in thepopulation (relative
to the first survey of the population) and (2) the relative fit-
ness estimateof the strain (estimated as described in thepar-
agraph below). Population was included as a random effect
in this model. For the (few) strains that occur in more than
one population, each occurrence of the strain was included
separately in the model. All linear (and generalized linear)
mixed effects models in our study were performed using
the lme4 package (Bates et al. 2015) in conjunction with
the lmerTest package (Kuznetsova et al. 2017) in the R sta-
tistical environment.

Do Co-occurring Strains Vary in Fitness, and Are Fitness
Inequalities Linked to Epidemic Dynamics? We estimated
the fitness of each strain (i.e., the relative contribution of
each strain to the local epidemic), then tested whether fit-
ness varied among strains at two spatial scales. Strain fit-
ness was estimated by linking the spatiotemporal data on
strain occurrence (i.e., in which circles a strain was sampled
and during which surveys) with the epidemiological time
series data on changes in the number of infected hosts in
the circles (using the StrainRanking package in the R statis-
tical environment; for full details, see the supplemental
PDF). Namely, local epidemic growth (Zi) in a given circle
(i; i.e., the change in the number of infected hosts in the cir-
cle between surveys relative to the time elapsed) was equated
to the sum (over strains s) of the products of the strain
fitnesses (zs) and the local strain proportions (pi, s) plus a cen-
tered Gaussian noise (εi):

Zi p
XS

ip1

zspi,s 1 εi: ð1Þ

Strain fitnesses were estimated from the coefficients of this
equation, yielding a fitness estimate for each strain in each
population it occurred in (representing strain fitness over
the duration of the epidemic). We then tested whether
pairwise combinations of strains varied in fitness at two
spatial scales: (1) within each population (i.e., among co-
occurring strains only) and (2) among all 15 populations
simultaneously (i.e., among all strains detected in the study)
using the StrainRanking package. More precisely, for any
pair of strains x and y, we tested the null hypothesis zx p
zy using a permutation approach, in which the strain pro-
portion vectors are randomly and uniformly reallocated to
any sampling circle. To account for themultiplicity of tests,
we assessed whether the proportion of rejected tests for
each population is larger than 5%.
We then calculated strain fitness inequality in each of

the study populations as the proportion of pairwise strain
combinations that differed significantly in fitness relative
to the total number of strain combinations in the popula-
tion. To test whether the proportion of strain fitness in-
equality in the pathogen populations predictedmaximum
infection rates in the associated epidemics, we then used
two generalized linear models to model (1) the maximum
overall infection rates in the host populations and (2) the
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maximum infection rates among at-risk individuals in the
host populations.

Is Pathogen Strain Diversity or the Spatial Distribution of
Infections Linked to Epidemic Dynamics? We used a series
of generalized linear mixed effects models to explore
whether (a) strain richness, diversity, or evenness and
(b) the spatial distribution of infections within pathogen
populations (i.e., the amount of infection clustering)
explain infection rates in host populations. To quantify
the spatial distribution of infections within each epidemic
and capture variation in the degree of infection clustering
among populations and within populations over time, we
first constructed infection connectivity matrices for each
population at each time point. The connectivity matrix, M,
was constructed according to the circle-level infection
and spatial data, and its (i, j)th entry is defined by

Mij p
ni

ntot

e2adij : ð2Þ

In equation (2), ni denotes the number of infected plants in-
side circle i, ntot is the total number of infected plants in all the
circles, and dij is the distance inmeters between circles i and j.
FollowingPenczykowski et al. 2018,we assume that the prob-
ability of pathogen dispersal from circle i to circle j declines
exponentially with distance between the circles, according
to an average dispersal distance (1/a; we set a p 0:5 m).
We then calculated the amount of infection clustering dur-
ing the epidemic for each population at each time point as
the first eigenvalue of the connectivity matrix. The first ei-
genvalue characterizes the size of the largest cluster of in-
fected individuals. Its values range from maxi(ni=ntot) in a
minimally clustered case (if the distances dij are very high
so that the exponential terms in eq. [2] are close to zero) to
1 with maximal clustering (if the distances dij are very small
so that the exponential terms in eq. [2] are close to one).
Within-population infection spatial clustering was

then used as a fixed explanatory variable in models ex-
plaining host infection rates in the populations. We fit-
ted three generalized logistic models, using three differ-
ent metrics of strain diversity, as additional explanatory
variables: (1) log-transformed richness, (2) Shannon di-
versity (H0), and (3) Pielou’s evenness (J0). Population was
included as a random effect in each model. First, we mod-
eled the overall infection rates in the host populations, then
built three additional models examining infection rates
among at-risk individuals. These models were fitted us-
ing a beta-binomial distribution (to account for overdis-
persion) with the brms package (Bürkner 2017), and model
fits were compared with leave-one-out cross-validation us-
ing the loo package (Vehtari et al. 2017) in the R statistical
environment. Finally, we built a series of six generalized lin-
ear regression models examining the effect of the three
strain diversitymetrics on themaximum infection rates ex-
perienced overall and among at-risk individuals in each
host population (for details, see the supplemental PDF).
Data used in this study have been deposited in the Dryad
Digital Repository (https://doi.org/10.5061/dryad.rjdfn2z94;
Eck et al. 2021).
Results

Does the Strain Composition of Pathogen Populations
Vary over Space and Time?

Pathogen strain richness, diversity, and evenness were
variable among the 15 populations and over time within
the populations (fig. 1A–1C; table 1; a map of the pop-
ulations is displayed in fig. 2A). In total, 106 strains were
identified in the populations. Strain richness ranged from
only a single strain in three of 15 populations (20%) to
18 strains in the most strain-rich population (mean p
7:9355:61 strains; fig. 1A; table 1). We found that patho-
gen strain composition at the end of the epidemic was dis-
similar among all pairwise combinations of the 15 study
populations (fig. 2B, 2C; table S3). Only 7.5% of the strains
(eight of 106 strains) were found in more than one popu-
lation (seven of these eight strains were found in only two
populations, while the remaining strain was found in five
populations). We also found that initial pathogen strain
composition in the early weeks of the epidemics was dis-
similar amongmost pairwise combinations of the 15 study
populations (in 81 of 105 combinations; for some combi-
nations, similarity in strain composition could not be ruled
out because of small sample sizes during the early epidemic;
fig 2C; table S3). In contrast, initial and final strain composi-
tion were similar within each of the 15 populations over time
(figs. 2C, S3; table S3).
Is Strain Abundance Predicted by the Sequence
of Activity or by Strain Fitness?

We found that the abundance of pathogen strains within
populations is predicted by an advantage to early-active
strains rather than by strain fitness. Strains that were ac-
tive earlier in an epidemic became more abundant by the
end of the epidemic than later-active strains (fig. 3A, 3C;
table S4; F p 70:44, P ! :001, n p 109 strain occur-
rences). Abundance was variable among strains, with a
few common strains and many rare strains (including sev-
eral single-occurrence strains; fig. 3D). The timing of activ-
ity was also variable among strains: some were causing se-
vere infections from the beginning of an epidemic, with
others doing so only during the final survey (fig. 3A). In
contrast, strain fitness was not a predictor of strain abundance
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Figure 1: Pathogen strain diversity and epidemic dynamics among and within populations. In each of the 15 study populations, changes in
pathogen strain richness (A), diversity (H0; B), and evenness (J 0; C) as well as changes in overall infection proportion (D), infection propor-
tion among at-risk hosts (E), the number of infected hosts (F), and the number of infection centers (i.e., infection circles; G) are shown over
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in the populations (fig. 3B; table S4; F p 0:394, P p :532,
n p 109 strain occurrences).
Do Co-occurring Strains Vary in Fitness, and Are Fitness
Inequalities Linked to Epidemic Dynamics?

We found that strain fitness varied among and within
pathogen populations and that the level of fitness varia-
tion among strains within populations is linked to epidemic
dynamics. Co-occurring strains varied in fitness in nine of
12 pathogen populations containing more than one strain
(table 1). In populations where strains varied in fitness, levels
of fitness inequality ranged from ~1% to 33% of the strain
combinations varying in fitness (the overall level of fitness in-
equality among all strains in all populations was ~7%; ta-
ble 1). Variation in strain fitness occurred more regularly
in some populations (up to a maximum rate of ~1 in 3 com-
binations differing in fitness) than was common at the land-
scape scale (where ~1 in 14 combinations vary; table 1).
Meanwhile, maximum overall host infection rates in the
study populations ranged from 4% in the least infected pop-
ulation to 60% in the most infected population, while max-
imum infection rates among at-risk individuals ranged from
23% to 87% (fig. 1D–1G). We found that the proportion of
fitness inequality among strains within the populations
predicts maximum infection rates in the populations: popu-
lations with higher strain fitness inequality had lower maxi-
mum infection rates among at-risk individuals (fig. 4D; ta-
ble S5; z p 27:62, P ! :01, n p 12 populations).
Is Pathogen Strain Diversity or the Spatial Distribution
of Infections Linked to Epidemic Dynamics?

We found that pathogen strain diversity and the spatial
clustering of infections had strong, but opposite, relation-
ships with infection rates in host populations. In general,
metrics of strain diversity were positively linked to host in-
fection rates (fig. 4A, 4C; tables S5–S8). Infection rates were
higher (fig. 4A; tables S7, S8; posterior probabilities p
1:00, n p 89 surveys) and reached higher maxima (fig. 4C;
tables S5, S6; richness: z p 2:92, P ! :01; diversity [H0]:
z p 3:69, P ! :001; n p 15 populations) in populations
containing higher strain richness and diversity (H0). Models
utilizing strain richness were best fitted to the data, but dif-
ferences in fit were small (table S9). Strain evenness (J0) was
also positively linked to infection rates in the populations
(tables S7, S8; posterior probabilitiesp 0.99, n p 89 sur-
veys) but only predicted maximum infection rates among
at-risk individuals (tables S5, S6). In contrast, the spatial
clustering of infections was negatively linked to host infec-
tion rates: more spatially clustered epidemics had lower
host infection rates than more spatially dispersed epidemics
(fig. 4B; tables S7, S8; posterior probabilities p 0.99–1.00,
n p 89 surveys). In general, strain diversity metrics and the
Table 1: Strain richness, diversity, evenness, and fitness inequality among populations
Population

Strain
richness
Strain
richness
(rarified)
Strain
diversity
(H0)
Strain
evenness

( J0)
Strains
compared
(fitness)
Strain
combinations

compared (fitness)
Strain
combinations

varying in fitness
Strain fitness
inequality

(proportion)
294
 16
 3.59
 1.41
 .51
 14
 91
 18
 .198

475
 1
 1
 0
 NA
 NA
 NA
 NA
 NA

490
 10
 4.88
 1.85
 .80
 10
 45
 11
 .244

595
 1
 1
 0
 NA
 NA
 NA
 NA
 NA

845
 3
 2.53
 .76
 .69
 3
 3
 1
 .333

1,047
 17
 4.90
 1.97
 .69
 15
 105
 9
 .086

3,177
 8
 5.62
 1.84
 .89
 8
 28
 0
 0

3,301
 7
 3.25
 1.16
 .60
 6
 15
 0
 0

3,351
 10
 4.37
 1.64
 .71
 10
 45
 2
 .044

3,631
 7
 3.95
 1.34
 .69
 7
 21
 4
 .191

4,541
 1
 1
 0
 NA
 NA
 NA
 NA
 NA

8,575
 9
 4.13
 1.59
 .73
 9
 36
 3
 .083

9,021
 5
 4.12
 1.51
 .94
 5
 10
 1
 .1

9,029
 6
 2.26
 .63
 .35
 5
 10
 0
 0

9,066
 18
 5.36
 2.16
 .75
 17
 136
 1
 .007

All
 106
 NA
 3.79
 .81
 99
 4,851
 346
 .071
Note: Strain richness, diversity, evenness, and fitness inequality in each of the 15 study populations at the end of the epidemics are compared. Metrics are
cumulative, capturing strain accumulation through each epidemic’s duration. Three populations contained only one strain, precluding calculation of some
diversity- and fitness-related metrics. The number of strains compared for fitness differences is less than strain richness in some populations because of scarce
data on some strains. The strain fitness inequality proportion is calculated as the number of strain combinations that vary in fitness divided by the number of
strain combinations compared.
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spatial clustering of infections were more tightly linked to
infection rates among at-risk individuals than in the host
populations overall (tables S5–S8), though similar patterns
emerged in both groups.
Discussion

The composition, diversity, and fitness of strains within
pathogen populations are variable over space and time,
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of the 15 study populations is represented by a bar on the x-axis, with strain abundance on the y-axis. Strains are differentiated by color
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with potentially important consequences for epidemic
trajectories in host populations, but studies at these scales
are scarce (Bayman and Cotty 1991; Orum et al. 1997;
Palmer et al. 2001; Barrett et al. 2008).We found that strain
composition varied widely among 15 natural host-
pathogen populations in a landscape but remained consis-
tent within these populations over the course of their epi-
demics. Strain composition within populations was driven
by a strong advantage to early-active strains, which reached
higher abundances than their late-active counterparts. The
fitness of strains within the pathogen populations also var-
ied considerably, and more variability in strain fitness within
populations was linked to lower maximum host infection
rates during epidemics. Epidemic trajectories in the host pop-
ulations were also linked to pathogen strain diversity and
to the spatial distribution of infections with the epidemic:
higher infection rates occurred in populations containing
higher strain diversity, while spatially clustered epidemics
had lower infection rates. Together, our results suggest that
spatial and/or temporal variation in the strain composition,
diversity, and fitness of pathogen populations are impor-
tant factors generating variation in epidemiological trajec-
tories among and within infected host populations.
Variation in strain composition among pathogen popu-

lations or within populations over time and the factors that
influence such variation are important if composition is linked
to epidemic outcomes in host populations. Differences in
composition among pathogen populations, such as those we
found in our study populations, are characteristic of many
pathogen species, and there is ample evidence that such dif-
ferentiation is generated through coevolutionary interac-
tions with host populations and results in local adaptation
(Greischar and Koskella 2007; Hoeksema and Forde 2008).
Dissimilarity in strain composition among pathogen pop-
ulations is expected as a result of strain assembly processes
from the regional landscape and differential survival of strains
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in their local environmental conditions (Krasnov et al. 2015).
In line with previous findings in this pathosystem, more
than 90% of the 106 strains we identified were unique to
one population: the Podosphaera plantaginis pathogen meta-
population in Åland supports considerable strain diversity
in each epidemic season, and the majority of strains are
found in a single locality (Numminen et al. 2019). Spatial var-
iation in strain composition may be explained to some degree
by the life history features of P. plantaginis: at the end of
each epidemic, unique strains are generated through out-
crossing and persist to the next epidemic season in resting
spores (Laine et al. 2019). At the onset of the next epidemic
season, the new strains are released locally, and during the
growing season, infection spreads among hosts via wind-
dispersed spores that typically disperse only a few centi-
meters (Ovaskainen and Laine 2006; Tack et al. 2013).
In addition to dispersal limitation, heterogeneity in host resis-
tance and environmental conditions in the landscape are
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expected to generate variation in pathogen composition
among populations by filtering arriving pathogen strains
(Krasnov et al. 2015). Genotype-specific responses to host
variation and environmental heterogeneity will further pro-
mote differentiation of pathogen populations across land-
scapes (Thompson 2005).
Although the composition of the pathogen populations

diversified over the course of the epidemic season, pathogen
strain composition did not significantly change within the
study populations over time. This is likely explained by the
strong effect of the sequence of strain activity on strain abun-
dance that we see in our data: strains that were active earlier
in an epidemic became more abundant by the end of the
epidemic than later-active strains. Consequently, popula-
tions containing considerable strain diversity were often
composed of a few abundant, early-active strains and many
rare, late-active strains. An advantage of early arrival is a
well-established fact in community ecology (Fukami 2015)
and could potentially result from a priority effect in which
early-active strains competitively exclude later-active strains.
The timing and sequence of activity, in conjunction with
strain-specific responses to host genotype, are receiving in-
creasing support in disease biology as important determi-
nants of pathogen community structure (Halliday et al. 2017,
2020; Clay et al. 2018).
We found that fitness varied widely among co-occurring

pathogen strains in many populations, and this fitness var-
iation was linked to epidemic outcomes. Interestingly, strain
fitness did not predict strain abundance within the popula-
tions. As strain fitness is estimated from the epidemiolog-
ical data (and some strains are found only in a few locali-
ties within the host populations), fitness may not be a good
predictor of strains’ ability to cope with the full range of
host genetic and environmental variation that these pop-
ulations support (Laine 2008). Indeed, strain-specific re-
sponses to host resistance and abiotic conditions have been
broadly reported for pathogens (Salvaudon et al. 2008;
Wolinska and King 2009) and could cause strain abun-
dance at the population level to become unlinked from fit-
ness at smaller spatial scales (e.g., if a strain is highly in-
fective only on a relatively uncommon host genotype). As a
consequence, the relative fitness of strains will change ac-
cording to local conditions, and this context dependency
is considered a powerful mechanism maintaining variation
within pathogen populations (Thomas and Blanford 2003;
Mitchell et al. 2005; Fels and Kaltz 2006; Laine 2007). For
example, environmental factors, such as drought, may af-
fect pathogen population dynamics by reducing the avail-
ability of host tissue. Variation in the fitness of strains within
pathogen populations is also a potentially important, but
understudied, factor affecting epidemic dynamics. Patho-
gen populations composed of strains that were more sim-
ilar in fitness also had higher maximum infection rates,
suggesting that functional or trait-based diversity may also
determine whether pathogen populations can overcome
local conditions (Aguilar-Trigueros et al. 2014).
Variation in pathogen strain diversity and the spatial

distribution of infections were also linked to epidemic out-
comes in the populations. More diverse pathogen popu-
lations had more severe epidemics (i.e., higher host infec-
tion rates in general and higher maximum infection rates),
consistent with the idea that diverse strain assemblages
might allow pathogen populations to overcome a higher
proportion of host defenses (Garrett and Mundt 1999;
Thrall and Burdon 2000; Susi et al. 2015). When strains
occurred in more even abundances within populations,
this was positively correlated with maximum host infec-
tion rate, suggesting that strain dominance leads to less sta-
ble patterns of epidemic growth, which could result from
competition among strains or increased virulence in di-
verse pathogen populations (Koskella et al. 2006). The level
of relatedness within pathogen populations could also be
expected to influence infection rates in host populations,
as more closely related strain assemblages may infect a nar-
rower range of host genotypes in interactions governed by
specificity (e.g., in gene-for-gene resistance). Finally, epi-
demics are expected to progress depending on the spatial
distribution of several factors, including the distribution of
infected and uninfected individuals, host resistance, and
strain fitness and diversity (Frank 1997; Carlsson-Granér
and Thrall 2002; Penczykowski et al. 2015; Bousset et al.
2018). In addition to the influence of space on variation in
strain composition among the populations at the regional
scale, the spatial distribution of infections within popula-
tionsalso influencedepidemicdynamics,withmorespatially
clustered epidemics experiencing lower infection rates than
more spatially dispersed epidemics. This is consistent with
theoretical expectations that spatially clustered epidemics
are more limited by pathogen dispersal distances, slowing
epidemic growth relative to spatially dispersed epidemics
(McCartneyandFitt1998).Alongwithinfluencingepidemic
dynamics, the amount of spatial clustering could also have
longer-term effects on strain composition in pathogen pop-
ulations, as a highernumberofpathogenstrains in closeprox-
imity should lead to increased opportunity for pathogen
populations to diversify via sexual recombination (Laine
et al. 2019). Pathogen strain diversity and the spatial distri-
bution of infections are both important factors influenc-
ing infection rates and the trajectory of epidemics in host
populations.
Altogether, we show that spatial and/or temporal var-

iation in the composition, diversity, and fitness of strains
within pathogen populations are generally important in
determining epidemic trajectories. Such variation is an es-
sential feature of epidemics and of biological populations
in general, and important eco-evolutionary insights can be
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gained by linking genotypic, phenotypic, and environmen-
tal variation in one population with realized outcomes in
interacting populations across scales of biological organi-
zation (Lowe et al. 2017). In general, populations containing
greater genetic or phenotypic diversity are expected to expe-
rience weaker density-dependent regulation and thus could
reach larger population sizes (Johnson et al. 2016). In host-
pathogen systems, the genetic, demographic, and trait com-
position of pathogen populations should also influence their
coevolutionary dynamics, affecting their ability to over-
come host resistance and adapt to local host genotypes
or environmental conditions (McDonald and Linde 2002;
Croll and McDonald 2017). In addition, disease is an im-
portant general factor shaping the abundance, diversity,
and distribution of host populations (Scott 1988; Vreden-
burg et al. 2010). Our ability to predict and respond to
epidemics, as well as to understand how pathogens and
disease shape biological systems, will benefit from deeper
knowledge about the factors that influence pathogen com-
position, diversity, and fitness in space and time.
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