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Abstract 

Although genetic risk scores have been used to predict hypertension, their utility in 

the clinical setting remains uncertain. Our study comprised N=218 792 FinnGen 

participants (mean age 58 years, 56% women) and N=22 624 well phenotyped 

FINRISK participants (mean age 50 years, 53% women). We used public genome-

wide association data to compute polygenic risk scores (PRSs) for systolic and 

diastolic blood pressure (BP). Using time-to-event analysis, we then assessed (1) 

the association of BP PRSs with hypertension and cardiovascular disease (CVD) in 

FinnGen and (2) the improvement in model discrimination when combining BP PRSs 

with the validated 4- and 10-year clinical risk scores for hypertension and CVD in 

FINRISK. In FinnGen, compared with having a 20 to 80 percentile range PRS, a 

PRS in the highest 2.5% conferred 2.3-fold (95% CI, 2.2–2.4) risk of hypertension 

and 10.6 years (95% CI, 9.9–11.4) earlier hypertension onset. In subgroup analyses, 

this risk was only 1.6-fold (95% CI, 1.5–1.7) for late-onset hypertension (age ≥55 

years) but 2.8-fold (95% CI, 2.6–2.9) for early-onset hypertension (age <55 years). 

Elevated systolic BP PRS also conferred 1.3-fold (95% CI, 1.2–1.4) risk of CVD and 

2.3 years (95% CI, 1.6–3.1) earlier onset. In FINRISK, systolic and diastolic BP 

PRSs improved clinical risk prediction of hypertension (but not CVD), increasing the 

C statistics by 0.7% (95% CI, 0.3–1.1). We demonstrate that genetic information 

improves hypertension risk prediction. BP PRSs together with traditional risk factors 

could improve prediction of hypertension and particularly early-onset hypertension, 

which confers substantial CVD risk. 

 

Keywords: association, blood pressure, genetics, cardiovascular diseases, 

genetics, hypertension, risk factors.



Introduction 

 

Hypertension affects over a billion1 people worldwide and is a central risk factor for 

cardiovascular disease (CVD), the leading cause of death globally.2 To prevent CVD 

and its complications, a clinician must be able to accurately assess a patient’s risk for 

developing hypertension. Although lifestyle factors predict hypertension, such 

behavioral factors are variably subject to measurement and control. By contrast, 

germline genetic factors are fixed and are known to contribute an identifiable as well as 

important additive risk. We and others have shown that earlier hypertension onset in 

parents is strongly associated with hypertension in offspring,3 and twin studies estimate 

the heritability of hypertension at 50% to 60%.4 Although parental hypertension is 

included in the Framingham hypertension risk score,5 the sensitivity of self-reported 

parental hypertension is only 68%,6 making it an unreliable proxy for genetic information 

in the clinical setting. 

 

Several studies have successfully used genetic information in isolation to predict 

hypertension onset by constructing genetic risk scores (GRSs) from genetic variants 

associated with blood pressure (BP).7–13 A GRS for hypertension aggregates the 

statistically significant single-nucleotide polymorphisms (SNPs) from genome-wide 

association studies (GWAS) into a single predictor. This GRS then has a stronger 

association with hypertension than any single SNP. However, attempts to improve the 

predictions of existing clinical risk scores for hypertension with BP GRSs have been 

unsuccessful.9–11 One likely reason is low statistical power: in previous studies the 

number of SNPs used for the GRS ranged from 4 to 32, which represent <0.01% of the 

average number of >1 million SNP associations reported per GWAS. However, novel 
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polygenic risk scores (PRS) combine the effect sizes of millions of SNPs regardless of 

statistical significance and have recently been used to improve existing clinical risk 

estimates of common diseases such as type 2 diabetes and breast cancer.14 

 

Successful integration of genetic information into clinical risk prediction of hypertension 

is long overdue. We aimed to quantify the predictive ability of novel BP PRSs in 

hypertension, including early-onset hypertension, and demonstrate that they improve a 

clinical risk score of hypertension in the general population. Similarly, we quantified the 

predictive ability of BP PRSs in CVD. 

 

Methods 

 

Study Sample 

 

Because of the sensitive nature of the data collected for this study, requests to access 

the data set from qualified researchers trained in human subject confidentiality protocols 

may be submitted through the Finnish Biobanks’ FinnBB portal (https://finbb.fi/) for 

FinnGen and at https://www.thl.fi/biobank/researchers for FINRISK. 

 

The latest data freeze of the Finnish FinnGen study (Data Freeze 5, spring 2020) 

includes 218 792 genotyped participants (56% women, mean age 58 years) with 

samples collected from biobanks and prospective epidemiological surveys.14 Because 

every Finnish permanent resident is linked to national hospital discharge (from 1968), 

cause of death (from 1969), and medical expense reimbursement registries (from 

https://paperpile.com/c/TZPpCH/Q75O


1987), follow-up is possible for all major clinical end points, including hypertension and 

CVD. 

 

First, we used data from all FinnGen participants to assess the independent predictive 

value of BP PRSs in hypertension and CVD. Then, we used a well-phenotyped subset 

of FinnGen, the prospective epidemiological FINRISK surveys (N=22 624; years 1997, 

2002, 2007, and 2012), to assess the predictive value of BP PRSs relative to clinical 

risk scores of hypertension and CVD. Baseline data in FINRISK include anthropometric 

and BP measurements, blood samples, and self-reported questionnaires, and the 

methodology has been previously described in detail.15 In every analysis, we excluded 

individuals with missing values in any variables or prevalent diseases. In analyses using 

the clinical risk score for CVD, we additionally excluded individuals under 40 years old 

(see Clinical Risk Scores). For individuals present in more than one FINRISK study, we 

included data entries with the longest follow-ups. 

 

The Coordinating Ethical Committee of the Hospital District of Helsinki and Uusimaa 

approved both FinnGen and FINRISK study protocols. All participants gave informed 

written consent. BP measurement methods are described in the Data Supplement. 

 

Disease End Points 

 

We studied the incidence of 4 diseases: hypertension, coronary heart disease (CHD), 

stroke, and CVD (defined as CHD or stroke), whose diagnoses were based on the 

International Classification of Diseases (ICD) 8, ICD-9, and ICD-10 (see Data 

Supplement). 



 

We excluded individuals with prevalent disease events, defined as those diagnosed 

before the baseline examination. In FINRISK analyses, we combined baseline data and 

registry data to define prevalent hypertension as: systolic BP (SBP) ≥140 mm Hg OR 

diastolic BP (DBP) ≥90 mm Hg OR antihypertensive medication use within the last 7 

days OR registry-based hypertension. In FinnGen analyses, we reasoned that the 

baseline examination date was at birth because all covariates (sex and genetic 

information) stay unchanged over the lifetime follow-up of an individual. 

 

In all survival analyses, we censored individuals at death or at the end of follow-up on 

December 31, 2018. We had the following number of incident cases and total 

individuals (cases/total) available for each end point in FinnGen: 55 917/218 754 for 

hypertension, 29 350/218 792 for CVD, 21 012/218 792 for CHD, and 11 734/212 866 

for stroke. The corresponding numbers in FINRISK were as follows: 725/9906 for 

hypertension, 1647/12 889 for CVD, 1136/13 098 for CHD, and 746/13 355 for stroke. 

For subgroup analyses in FinnGen, we divided hypertension into early-onset 

hypertension (age <55 years; 27 361 cases) and late-onset hypertension (age ≥55 

years; 28 556 cases). 

 

Genotyping and Imputation 

 

We genotyped FinnGen samples with Illumina and Affymetrix arrays and generated 

genotype calls with zCall or GenCall (for Illumina) and AxiomGT1 (for Affymetrix) at the 

Institute for Molecular Medicine Finland (FIMM). We performed quality control 

exclusions sample-wise: ambiguous gender, missingness >5%, heterozygosity >4 SD, 



or non-European ancestry; and variant-wise: missingness >2%, Hardy-Weinberg 

equilibrium P<1×10—6, minor allele count <3 (for zCall) or <10 (for GenCall). After 

quality control, we first prephased the samples with Eagle 2.3.5 and then imputed 

genotypes with Beagle 4.1 (version 08Jun17.d8b, protocol described elsewhere16) using 

a Finnish population-specific SISu17 v3 reference panel. Finally, to account for 

population structure in downstream analyses, we performed genetic principal 

component analysis (PCA) using a pruned set of SNPs of unrelated individuals. 

Detailed documentation of genotyping, imputation, and principal component analysis is 

available online.18 

 

Polygenic Risk Scores 

 

We computed PRSs for SBP and DBP using the PRS-CS19 pipeline with default 

parameters. PRS-CS computes SNP effect sizes by high-dimensional Bayesian 

regression using GWAS summary statistics and a linkage disequilibrium reference 

panel. We used publicly available20 GWAS summary statistics from the UK Biobank21 

based on 340,000 individuals (independent from FinnGen) and a European linkage 

disequilibrium reference panel with 1.1 million variants derived from samples of the 

1000 Genomes Project.22 The SBP and DBP PRSs were based on 1 098 015 genetic 

variants common in the linkage disequilibrium reference panel and FinnGen. 

 

To compare our PRSs with previous studies, we also computed GRSs for SBP and 

DBP based on the variants and weights provided in the article by Evangelou et al.23 We 

excluded variants not found in FinnGen (37) and variants with ambiguous allele pairs 

C/G or A/T (126), using 723 out of the original 886 variants for the GRS. Choosing 
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proxies for ambiguous variants was not feasible due to inconsistent strand alignments 

between FinnGen and the GRS variants. 

 

Clinical Risk Scores 

 

For hypertension, we extracted the 4-year predicted clinical risk from Cox proportional 

hazards models fitted in FINRISK. As predictors, we included the clinical risk factors of 

the previously validated24 Framingham 4-year risk score5 for near-term incidence of 

hypertension: age, sex, SBP, DBP, body mass index, and current smoking, as well as 

diabetes. We made the following modifications to the original Framingham score: we 

included diabetes because it was not considered in the original Framingham score due 

to the low number of participants with diabetes,5 and we did not include parental 

hypertension as a covariate because it was not available in FINRISK. 

 

For atherosclerotic CVD, we evaluated the 10-year clinical risk in FINRISK with the 

pooled cohort equations according to guidelines of the American College of 

Cardiology/American Heart Association,25 using age, sex, total cholesterol, high-density 

lipoprotein cholesterol, SBP, antihypertensive medication, diabetes, and current 

smoking as predictors. We then used the 10-year atherosclerotic CVD risk for CVD, 

CHD, and stroke. Because the American College of Cardiology/American Heart 

Association risk score was derived in a cohort aged 40 to 79, we excluded individuals 

under 40 years old for these analyses. While a Finnish risk score for CVD also exists, its 

training sample includes FINRISK cohorts 2002 and 2007, making it unsuitable for our 

study due to the risk of overfitting. 

 

https://paperpile.com/c/TZPpCH/8N3Z
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Statistical Analyses 

 

In FinnGen, we used Cox proportional hazards models (R package survival26 and 

survminer27) with age as the time scale to measure the association between BP PRSs 

and disease end points. We categorized every PRS into 5 bins based on percentiles 

(<2.5, 2.5—20, 20—80, 80—97.5, and >97.5) and used the largest 20% to 80% bin as 

the reference. We adjusted all Cox models by sex, collection year, genotyping batch, 

and the first 10 genetic principal components. Due to the large sample sizes of >200 

000, we validated the proportional hazards assumptions by visually inspecting log-

minus-log plots.28 In addition to Cox models, we estimated the differences in age at 

disease onset between PRS categories by restricted mean survival time models 

(RMST; R package survRM229). To assess collinearity between the SBP PRS and the 

DBP PRS, we computed their Pearson correlation. 

 

In FINRISK, to quantify the added value of BP PRSs in clinical risk prediction, we first 

calculated the 4-year clinical risk for hypertension and the 10-year clinical risk for CVD 

using Cox models with age as the time scale. We then added continuous BP PRSs in 

the models as independent predictors and recalculated the clinical risks. For 

hypertension, we added BP PRSs (SBP, DBP, or both SBP and DBP), while for CVD, 

we added the SBP PRS. Finally, we compared the risk predictions of the models with 

and without PRSs for each disease end point (hypertension, CVD, CHD, and stroke) 

using Harrell C statistics30 (R package compareC31) and the 2-category Net 

Reclassification Improvement32 (R package PredictABEL33) with risk categories <7.5% 

and ≥7.5%. We checked proportional hazards assumptions by visually inspecting scaled 

Schoenfeld residuals34 (R function ggcoxzph in survminer27). We investigated model 

https://paperpile.com/c/TZPpCH/6ltY
https://paperpile.com/c/TZPpCH/HDvM


calibration with calibration plots and the Hosmer-Lemeshow goodness-of-fit test35 

(methodology by Cook and Ridker36). We adjusted each Cox model by cohort year, 

genotyping batch, and the first 4 genetic principal components. 

 

To compare our BP PRSs with BP GRSs of Evangelou et al,23 we performed the 

following calculations in FINRISK: difference in SBP between the upper and lower 

deciles of the SBP risk scores, Pearson correlations between the PRSs and the GRSs, 

as well as the difference in C-statistics between a clinical risk prediction model using 

GRSs and one using both GRSs and PRSs. 

 

We used R 3.6.3 (R Core Team 2020) for all computations and considered a 2-sided 

P<0.05 statistically significant. 

 

Results 

 

BP PRSs and Hypertension Risk 

 

In FinnGen, there were 218 754 individuals (mean age 58 years, 56% women) and 55 

917 cases of hypertension. An increasing BP PRSs was associated with a higher 

hypertension incidence (Figure 1). The hazard ratios (HRs; 95% CI) per 1 SD increase 

in PRSs were 1.42 (1.41—1.43) for SBP and 1.41 (1.40—1.42) for DBP. For the top 

2.5% SBP and DBP PRS categories, the HRs for hypertension were 2.19 and 2.26, 

respectively (Table 1). In these categories, hypertension was diagnosed 10.6 and 10.5 

years earlier than in the 20% to 80% category (Figure 2). Similarly, for the bottom 2.5% 

PRS categories, the HRs for hypertension were 0.47 and 0.57, and hypertension was 



diagnosed 8.6 and 6.7 years later than in the 20% to 80% category. P-values were 

<1×10—32 for all estimates. The Pearson correlation between the SBP and DBP PRSs 

was 0.62 (0.61—0.63). 

 

Early-onset hypertension showed stronger associations to SBP and DBP PRSs than 

late-onset hypertension (Table 1). For early-onset hypertension, the HRs (95% CI) per 

1 SD increase in PRSs were 1.54 (1.53—1.56) for SBP and 1.58 (1.56—1.60) for DBP, 

whereas for late-onset hypertension they were 1.31 (1.29—1.32) for SBP and 1.26 

(1.25—1.28) for DBP. P-values were <1×10—292 for all estimates. 

 

In FINRISK, there were 9906 individuals (mean age 46 years, 60% women) and 725 

cases of hypertension. After including BP PRSs in the clinical risk prediction model for 

hypertension, the C statistics (%) increased from 79.7 with SBP and DBP PRSs: by 0.5 

(0.01—0.9; P=0.016) with SBP PRS and by 0.6 (0.3—1.0; P=8×10—4) with DBP PRS 

(Table 2). Including both SBP and DBP PRSs in the clinical risk prediction model gave 

the largest increase in the C statistics (%): 0.7 (0.3—1.1; P=0.0017). The 2-category net 

reclassification improvement was not statistically significant for any BP PRS. 

 

SBP PRS and Cardiovascular Risk 

 

Higher SBP PRS was associated with a higher incidence of all 3 CVD end points (CVD, 

CHD, and stroke; Figure 3). The HR (95% CI) per 1 SD increase in SBP PRS was 1.13 

(1.12—1.15) in CVD, 1.15 (1.13—1.17) in CHD, and 1.11 (1.09—1.13) in stroke. For the 

top 2.5% SBP PRS category, HRs (for CVD, CHD, and stroke) were 1.30, 1.33, and 

1.29 (Table 3), and disease onset occurred 2.3, 2.0, and 1.4 years earlier compared 



with the average 20% to 80% SBP PRS category (Figure S1 in the Data Supplement). 

Similarly, for the bottom 2.5% SBP PRS category, HRs were 0.74, 0.69, and 0.79, and 

disease onset occurred 2.4, 2.4, and 1.1 years later compared with the average 20% to 

80% SBP PRS category. P values ranged from 4×10—95 to 6×10—4, with stroke having 

the weakest estimates. 

 

After including SBP PRS in the clinical risk prediction models, the C statistics did not 

change in any of the CVD end points. The 2-category NRI was not statistically 

significant, either (Table S1). Calibration plots for Cox models containing both clinical 

risk scores and PRSs indicated good calibration (Figure S2). 

 

BP PRS Versus GRS 

 

The sex-adjusted difference in SBP between the top and bottom deciles was 14.1 mm 

Hg (95% CI, 13.0—15.2) for the SBP PRS and 10.6 mm Hg (95% CI, 9.5—11.7) for the 

SBP GRS. The Pearson correlation between the PRSs and GRSs was 0.46 (0.44—

0.47) for SBP and 0.41 (0.39—0.42) for DBP. After including BP PRSs in addition to BP 

GRSs into a clinical risk prediction model for hypertension, the C statistic increased by 

0.4% (0.1—0.6; P=0.0020). 

 

Discussion 

 

We demonstrated that BP PRSs predict hypertension and improve the Framingham 

model for near-term incidence of hypertension. The predictive ability of BP PRSs was 

particularly strong for early-onset hypertension. The SBP PRS independently predicted 



CVD but failed to improve the American College of Cardiology/American Heart 

Association clinical risk prediction model. 

 

Previous research has shown that early-onset hypertension is associated with 

increased risk of cardiovascular death and target organ damage compared with late-

onset hypertension.3,37 While the heritability of hypertension is well established,38 only 

early-onset hypertension in parents has been reliably shown to associate with 

hypertension in offspring,3 suggesting a more robust genetic component in early-onset 

than in late-onset hypertension. In our study, a 1 SD increase of SBP and DBP PRSs 

resulted in 54% and 58% greater risks of early-onset hypertension, respectively. For 

late-onset hypertension, the corresponding risk increases were only 31% and 26%. 

Furthermore, individuals in the top 2.5% of the SBP PRS were diagnosed with 

hypertension on average 19 years earlier than individuals in the bottom 2.5%, which has 

been shown to translate to ≈2-fold greater risk of CVD and death.39 Therefore, our study 

supports the prominent role of genetics in early-onset hypertension and suggests that 

high-risk individuals could benefit from detailed collection of parental hypertension 

history, early genotyping, and more intensive treatment interventions. 

 

Previous investigations of BP PRSs have not detected improvements in clinical risk 

prediction of hypertension.9–11 In this study, we used the office-based risk score5 from 

the Framingham Heart Study as the clinical risk score of hypertension. We showed that 

including both SBP and DBP PRSs in the risk prediction model increased the C 

statistics by 0.7 percentage points from 79.7 % to 80.4 % (P=0.0017; Table 2), which 

demonstrates the added value of PRSs. Furthermore, individuals in the top and bottom 

2.5% of the PRSs had 2-fold higher and lower risks of hypertension as compared with 



those in the middle quantile. Our results underline the potential of PRSs as a 

complementary tool alongside traditional clinical risk factors for hypertension prediction. 

While the utility of PRSs for an average patient in the clinical setting is still debatable, 

we have taken an essential first step in providing a baseline improvement to clinical risk 

prediction of hypertension using germline DNA. 

 

While our study focused on the prediction of hypertension, we also assessed the 

predictive value of the SBP PRS in CVD. SBP PRS was independently associated with 

a higher incidence of CVD, CHD, and stroke, but did not improve the discriminative 

value of the existing CVD risk score in any of the end points. Considering that studies 

on combining CHD PRSs to clinical risk factors have demonstrated varying evidence of 

utility,14,40,41 it is no surprise that a PRSs for one CVD risk factor, hypertension, had 

limited value in CVD risk prediction. Although a BP PRS did not seem to improve CVD 

risk prediction, subsequent studies should examine the potential of multitrait PRSs for 

CVD risk prediction in large cohorts. 

 

Several GWASs8,23,42-46 of BP have been conducted over the past 20 years and many 

studies7-13,23 have used these GWASs to combine the genome-wide significant SNPs 

into a GRS. Most notably, Evangelou et al23 conducted the largest BP GWAS meta-

analysis to date with 760,000 individuals and used the significant 886 SNPs to construct 

SBP and DBP GRSs. The SBP difference between the top and bottom SBP GRS 

deciles in their study sample was 12.9 mm Hg.23 In FINRISK, using modified BP GRSs 

with 723 available SNPs, the difference was 10.6 mm Hg. Meanwhile, the difference in 

SBP between the top and bottom SBP PRS deciles in FINRISK was 14.1 mm Hg, 

representing 9% and 33% increases compared with the GRSs, respectively. 



Furthermore, the model discrimination increased significantly even when PRSs were 

included in a model with GRSs and traditional clinical risk factors. Indeed, PRSs have 

consistently performed better than their GRS counterparts.47 While our SBP PRS was 

based on a GWAS of 340 000 individuals, it used 1.1 million SNPs instead of 886 

SNPs. Therefore, our study underlines the value of using the latest methodology for 

constructing genome-wide PRSs for BP, to better capture common variation for this 

highly polygenic trait. 

 

Although our study has several strengths, such as a study sample of over 200 000 

individuals, a validated registry-based follow-up since 1969, and a novel Bayesian PRS, 

it also has limitations. First, as we did not have parental history of hypertension 

available in FINRISK, it could not be included in the clinical risk equation when 

quantifying the added value of BP PRSs. However, in the clinical setting, parental 

history of hypertension is always self-reported by the patient. Despite improvements in 

hypertension awareness, 20% to 50% of individuals with hypertension are themselves 

unaware of it even in high-income countries.48 Second, we used GWAS results from 

only 340 000 individuals (UK Biobank), instead of the large meta-analysis23 based on 

760 000 individuals (UK Biobank and International Consortium for Blood Pressure7). We 

did this to avoid overfitting because some FINRISK cohorts are part of the International 

Consortium for Blood Pressure consortium. Third, since both our study and the BP 

GWAS that we used for the PRSs comprised individuals of European ancestry, the 

results may not be generalizable to individuals of other ancestries. Fourth, around 

36%14 of FinnGen participants are recruited from hospital biobanks or disease-based 

cohorts, which may lead to overestimation of absolute, but not relative, disease risk. 

Fifth, while including both SBP and DBP PRSs in the Cox models can cause concern 



for collinearity, correlation coefficients <0.7 between predictor variables do not distort 

model performance to a great extent.49 Finally, a registry-based diagnosis of 

hypertension often underestimates true prevalence and could create bias in the case-

control definitions. 

 

Perspectives 

 

We showed that novel BP PRSs predict hypertension better than previous GRSs and, 

for the first time, improve office-based risk estimates of hypertension. With a one-time 

cost that is already comparable to common laboratory tests,50 a patient could be 

genotyped and have their lifetime genetic risk for hypertension determined with BP 

PRSs. This information could be used either together with traditional risk factors to 

improve clinical risk prediction or independently to estimate the lifetime risk of 

hypertension. While traditional risk factors vary and often worsen over time, BP PRSs 

could be used even when traditional risk factors are not measurable. Future research 

should further develop PRS methodology and quantify the effect of PRS-based genetic 

risk counseling on health behavior and prevention of hypertension. 
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Novelty and Significance 

 

What Is New? 

• Although genetic risk scores have been used to predict hypertension, their 

utility in the clinical setting remains uncertain. 

• We studied the association of polygenic risk scores for blood pressure with 

incident hypertension in >200,000 individuals. 

What Is Relevant? 

• Compared to having a 20 to 80 percentile range PRS, a PRS in the highest 

2.5% conferred 2.3-fold risk of hypertension. 

• SBP and DBP PRSs improved clinical risk prediction of hypertension, 

increasing the C statistics by 0.7% 

Summary 

Our findings demonstrate that combining genetic information with traditional risk 

factors improves the accuracy of hypertension risk assessment. Furthermore, 

individual genetic makeup is particularly strongly linked to hypertension that is 

diagnosed before midlife. 

 



Figure 1. Cumulative risk of hypertension by polygenic risk score categories in FinnGen. The survival curves are from Cox 

proportional hazards models. There were 218 754 individuals with 55 917 cases of hypertension. We adjusted the models for sex, 

collection year, genotyping batch, and the first 10 genetic principal components. DBP indicates diastolic blood pressure; and SBP, 

systolic blood pressure. 

 

Figure 2. Difference in age of hypertension onset estimates across blood pressure polygenic risk score categories in FinnGen. 

There were 218 754 individuals with 55 917 cases of hypertension. The estimates are restricted mean survival times for age at 

onset, and the error bars represent their 95% confidence intervals. DBP indicates diastolic blood pressure; and SBP, systolic blood 

pressure. 

 

Figure 3. Cumulative risk of cardiovascular disease by systolic blood pressure PRS category in FinnGen. The survival curves are 

from Cox proportional hazards models. There were 218 792 individuals with 29 350 cases of CVD, 218 792 individuals with 21 012 

cases of CHD, and 212 884 individuals with 11 734 cases of stroke. We adjusted the models for sex, collection year, genotyping 

batch, and the first 10 genetic principal components.



Table 1. HR of Hypertension Onset Between BP PRS Categories in Adjusted Cox Models (FinnGen). 

 Hypertension Early-onset hypertension Late-onset hypertension 

PRS HR (95% CI) P value Cases/controls HR (95% CI) P value Cases/controls HR (95% CI) P value Cases/controls 

SBP   55 917/162 837   27 361/191 393   28 556/190 198 

<2.5% 0.44 
(0.41—0.47) 

9×10-107 725/4744 0.39 
(0.35—0.44) 

2×10-52 269/5200 0.47 
(0.43—0.52) 

8×10-57 456/5013 

2.5-20% 0.64 
(0.62—0.65) 

5×10-255 6 911/31 367 0.55 
(0.52—0.57) 

3×10-177 2 603/35 675 0.70 
(0.68—0.73) 

3×10-94 4308/33 970 

20-80% 1 (reference) … 33 176/98 078 1 (reference) … 15 658/115 596 1 (reference) … 17 518/113 736 

80-97.5% 1.54 
(1.51—1.58) 

<1×10-300 12 846/25 437 1.70 
(1.66—1.75) 

<1×10-300 7348/30 935 1.37 
(1.33—1.41) 

2×10-91 5498/32 785 

>97.5% 2.19 
(2.10—2.29) 

1×10-281 2259/3211 2.62 
(2.48—2.77) 

3×10-271 1483/3987 1.68 
(1.57—1.81) 

3×10-45 776/4694 

DBP   55 917/162 837   27 361/191 393   28 556/190 198 

<2.5% 0.49 
(0.46—0.53) 

4×10-88 822/4645 0.37 
(0.33—0.42) 

3×10-55 256/5211 0.57 
(0.53—0.63) 

7×10-38 566/4901 

2.5-20% 0.67 
(0.65—0.69) 

2×10-203 7315/30 968 0.56 
(0.54—0.59) 

7×10-162 2675/35 608 0.75 
(0.73—0.78) 

2×10-64 4640/33 643 

20-80% 1 (reference) … 32 873/98 375 1 (reference) … 15 527/115 721 1 (reference) … 17 346/113 902 

80-97.5% 1.55 
(1.52—1.58) 

<1×10-300 12 662/25 624 1.73 
(1.68—1.78) 

<1×10-300 7351/30 935 1.35 
(1.31—1.39) 

5×10-80 5311/32 975 

>97.5% 2.26 
(2.17—2.36) 

<1×10-300 2245/3225 2.78 
(2.64—2.93) 

<1×10-300 1552/3918 1.60 
(1.48—1.73) 

3×10-33 693 /4777 

 



We defined early-onset and late-onset hypertension as age of onset <55 years and ≥55 years, respectively. We adjusted the Cox 

proportional hazards models for sex, collection year, genotyping batch, and the first 10 genetic principal components. DBP 

indicates diastolic blood pressure; HR, hazard ratio; PRS, polygenic risk score; and SBP, systolic blood pressure.



Table 2. Changes in C-index (%) and NRI (%) Assessed After Including Blood 

Pressure PRSs in the Clinical Risk Prediction Model (C=79.7) for Hypertension 

Onset (FINRISK) 

 C-index (clinical risk factors + PRS) NRI (cutoff at 7.5%) 

PRS C Change* (95% CI) P value NRI (95% CI) P value 

SBP 80.2 0.5 (0.1 to 0.9) 0.024 -0.2 (-2.0 to 1.6) 0.79 

DBP 80.3 0.6 (0.3 to 1.0) 8×10-4  0.2 (-1.4 to 1.9) 0.79 

SBP and DBP 80.4 0.7 (0.3 to 1.1) 0.0017 -0.4 (-2.2 to 1.4) 0.66 

 

There were 9906 individuals with 725 incident cases of hypertension. We included 

each blood pressure PRS as an independent covariate in a Cox model containing 

the following clinical risk factors for hypertension: age, sex, SBP, DBP, BMI, 

diabetes, and current smoking. We also included SBP PRS and DBP PRS together 

(SBP and DBP). BMI indicates body mass index; C-index, Harrell concordance 

index; DBP, diastolic blood pressure; NRI, net reclassification improvement; PRS, 

polygenic risk score; and SBP, systolic blood pressure. *Percentage point change in 

the C-index after we included the blood pressure PRSs in the clinical risk prediction 

model for hypertension.



Table 3. HR for Cardiovascular End Points Between Systolic Blood Pressure PRS 

Categories in Adjusted Cox Models (FinnGen). 

End point HR (95% CI) P value Cases/controls 

CVD   29 350 / 189 442 

<2.5% 0.74 (0.68—0.80) 4×10-13 579 / 4891 

2.5%—20% 0.84 (0.81—0.87) 2×10-24 4474 / 33 815 

20%—80% 1 (reference) - 17 605 / 113 669 

80%—97.5% 1.16 (1.13—1.20) 3×10-23 5780 / 32 509 

>97.5% 1.30 (1.22—1.39) 1×10-14 912 / 4558 

CHD   21 012 / 197 780 

<2.5% 0.69 (0.62—0.76) 5×10-13 381 / 5089 

2.5%—20% 0.84 (0.80—0.87) 3×10-19 3130 / 35 159 

20%—80% 1 (reference) - 12 572 / 118 702 

80%—97.5% 1.20 (1.15—1.24) 1×10-23 4253 / 34 036 

>97.5% 1.33 (1.23—1.44) 5×10-13 676 / 4794 

Stroke   11 734 / 201 132 

<2.5% 0.79 (0.70—0.90) 4×10-4 246 / 5 095 

2.5%—20% 0.86 (0.82—0.91) 3×10-8 1834 / 35 480 

20%—80% 1 (reference) - 7061 / 120 602 

80%—97.5% 1.11 (1.06—1.17) 2×10-5 2228 / 35 010 

>97.5% 1.29 (1.16—1.44) 2×10-6 365 / 4945 

 

We adjusted the Cox models for sex, collection year, genotyping batch, and the first 

10 genetic principal components. CHD indicates coronary heart disease; CVD, 

cardiovascular disease (CHD or stroke); HR, hazard ratio; and PRS, polygenic risk 

score (for systolic blood pressure). 


