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Abstract

Visual data exploration (VDE) allows the human to get insight into the data
via interaction with visual depictions of that data. Despite the state-of-the-art
visualization design models and evaluation methods proposed to support VDE,
the community still lacks an understanding of interaction design in visualization
and how users extract insight through interacting with the data. This research
aims to address these two challenges.

For interaction design, a literature review reveals that a lack of actionability
hinders the application of existing visualization design methods. To address
this challenge, this research proposes an approach abstracting data to entities
and designing entity-based interactions to achieve the higher-level interaction
goals. Three case studies, i.e., interacting with information facets to support fluid
exploratory search, interacting with drug-target relations for insight discovery and
sharing, and supporting insight externalization through references to visualization
components, demonstrate the applicability of this approach in practice. The three
cases detail how the approach could address the design requirements derived
from related work to fulfill the various task goals following the nested model of
visualization design and the resulting designs’ transferability to other datasets.
Reflecting on the case studies, we provide design guidelines to help improve the
entity-based interaction design.
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To understand the insight generation process of VDE, we present two user studies
asking users to explore a visualization tool and externalize insights by inputting
notes. We logged user interactions and characterized collected insights for cor-
relation and prediction analysis. Correlation analysis of the first study showed
that exploration actions tended to relate to unexpected insights; the drill-down
interaction pattern could lead to insights with higher domain values. Besides
asking users to input notes as insights, the second study enabled users to refer to
relevant entities (visualization components and prior notes) to assist their narra-
tion. Results showed evidence that entity references provided better predictions
than interactions on insight characteristics (category, overview versus detail, and
using prior knowledge). We discuss study limitations and results’ implications on
knowledge-assisted visualization, such as supporting insight recommendations.

As future work, structuring user notes by entities could make the insight machine-
readable to stimulate mixed-initiative exploration, e.g., machines help to collect
evidence to validate the insight. Creating a platform that supports uncertainty-
aware insight and insight provenance across tools could facilitate practical analysis
which usually involves multiple analysis tools.

Computing Reviews (2012) Categories and Subject
Descriptors:

Human-centered computing → Interaction design → Interaction design
process and methods
Human-centered computing → Visualization → Empirical studies in
visualization

General Terms:
information visualization, interaction, visualization exploration, insight

Additional Key Words and Phrases:
interaction design, entity, insight-based evaluation
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Roosa Sillanpää, for helping with my contract; and translator, Marina Kurtén,
for proofreading this dissertation.

My gratitude also goes to my pre-examiners, Professor Alex Endert and Pro-
fessor Paolo Buono, for your acknowledgment of the work and valuable suggestions
to help improve the dissertation. My gratitude extends to my opponent, Professor
T.J. Jankun-Kelly, for your time and energy to inspire a critical rethinking of

v



vi
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Chapter 1

Introduction

With the advent of the world wide web, smartphones, and all kinds of sensors,
our everyday lives yield a considerable amount of data including online surfing
records, activity tracking data, etc. According to the sources, as of 2020, humans
created 2.5 Quintillion bytes of data daily (= 2.5 billion Gigabytes per day).1

Without extracting useful information and knowledge from the raw data, the
value of the collected data is not fulfilled [23].

To help derive knowledge from data, various visualization and automation
techniques are developed, as can be seen in the rapid growth of artificial intelligence
(AI) and data science. As an interface for people to access data, visualization
plays a critical role in enhancing humans’ analytical capability and helping people
make sense of data [24]. Numerous visualization design books and tools published
in recent years [122] speak to this point.

Conventionally, even in the visualization community, researchers have a linear
view of the relations between humans and automation from low automation/high
human operation to full automation/zero human operation. However, Shneider-
man [136] rewrote the concept by proposing a two-dimensional chart relating
human control and computer automation with the ultimate goal of creating AI
with both high human control and high automation, i.e., human-centered AI,
which is leading the evolution of AI and human-computer interaction (HCI) to a
bright future. As an example, self-driving cars accommodate high automation;
meanwhile, high human control is also needed to ensure that passengers can travel
along preferred routes, such as the fastest route or the route with better scenery,
and reach the desired destinations. From the human-centered view, visualiza-

1https://techjury.net/blog/how-much-data-is-created-every-day
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2 1 Introduction

Figure 1.1: Overview of the RQs and published articles of this dissertation
concerning the visualization process.

tion is and will always be indispensable to support users in comprehending and
manipulating the automation and data to acquire insights.

1.1 Research Questions (RQs) and Motivations

As supported by many researchers (e.g., [29,163]), “the purpose of visualization is
insight, not pictures [19].” To support visualization insight, we can not overlook
the aspect of visual data exploration (VDE). It is through interacting with the
visual representation, the human-computer discourse, that insights are derived.

However, the visualization community lacks an understanding of VDE and
how users generate insights through interacting with the visualization [34]. This
research aims to support interaction in visualization by proposing an interaction
design approach and understand the user insight generation process through
empirical studies. Specifically, this research explores the following two RQs, which
have been broken down into five sub-RQs and studied through four research
publications (Articles I–IV). Figure 1.1 provides an overview of the RQs and
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Figure 1.2: The nested model for visualization design by Munzner [102].

articles in relation to a typical visualization process (simplified based on Chen et
al. [23]).

RQ1: How could we design interaction to support VDE? VDE denotes the
process of getting insight into the data via interaction with visual depictions of
that data [78]. To design VDE, Munzner [102,103] proposed a nested model for
visualization design and validation, which has been widely adopted and successfully
guided the design of many visualization tools (e.g., [53, 70]). The model consists
of four nested layers (Figure 1.2). To design a visualization, one characterizes the
domain problems, abstracts the domain-specific data and problems into generic
descriptions, designs visual encodings and interaction techniques, and implements
the algorithms to realize the design. The process is always iterative and involves
rapid prototyping. Moreover, Meyer et al. [99] extended the nested model by
proposing a nested blocks and guidelines model where blocks capture design
decisions in each layer and guidelines relate decisions within or between layers. A
research paper could contribute new blocks and/or new guidelines.

From data and task abstraction to visual encoding and interaction technique
design, principles are well established on how to assign visual encodings to various
types of data to facilitate human perception (e.g., [67, 94]). However, research on
designing interaction from abstracted data and problems is less developed [34,146].
Although the well-known information-seeking mantra [135], “overview first, zoom
and filter, then details on demand,” works well in many cases (e.g., [36]), when the
data get huge, and the domain situation and task characterization become complex,
interactions need to be carefully devised to accomplish the task goals [131].

Researchers suggested adopting methods from HCI and social science to design
interaction, which emphasizes the in-situ design collaboration between users and
designers (e.g., [55, 72]). However, there is a lack of an anchor point to ground
the design thinking and communication. To address this limitation, this research
proposes to abstract data to entities for interaction design.



4 1 Introduction

Entities are widely used in text analysis to represent any real-world objects and
concepts. People naturally perceive things as entities and create mental models
by relating entities to understand external information [9, 111]. Thus entity-
based design thinking tends to be user-centric and could provide actionability in
interaction design by using the aforementioned models and frameworks. Following
the nested visualization design model (Figure 1.2), this research demonstrates the
applicability of the entity-based interaction design approach in practical cases.

RQ2: How do users discover insights through interacting with the visualiza-
tion? With discovering insight as a primary purpose of VDE, understanding the
user insight generation process becomes critical in visualization design. The tradi-
tional task-based evaluation limits in understanding users’ open-ended exploration
beyond task time and error, such as evaluating how well a visualization supports
insight [110]. To assess the ability of VDE in supporting insight, Saraiya et
al. [129] proposed an insight-based evaluation, which measures the characteristics
of insights users derive from exploring the visualization tools, such as breadth
versus depth and domain values.

However, without looking into the insight generation process, results can
be limited in informing the visualization design. Mayr et al. [97] compared
the evaluations on task performance (time and error), insight characteristics,
and problem-solving strategies. Evaluating problem-solving strategies involved
analyzing think-aloud data, interaction logs, and viewing behaviors. They found
that compared with the other two methods, analyzing problem-solving strategies
shed more light on how to improve the visualization.

Insight results from user interaction with the visualization tools. To explore
how VDE supports insight, this research takes a holistic approach, investigating
the user insight generation process by linking interaction types/patterns to in-
sight characteristics, and provides implications on designing knowledge-assisted
visualization.

1.2 Research Methods

RQ1 has three sub-RQs which were explored through three case studies (Figure
1.1). First, to answer RQ1, this research proposes to abstract data to entities and
design entity-based interaction to support user task goals. Three design case stud-
ies, i.e., interacting with information facets, interacting with data from multiple
sources, and entity-based insight externalization, demonstrate the applicability
of this approach. Each case presents design requirements (DRs) derived from
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prior work to fulfill the task goals, how the entity-based interaction design could
address the DRs, and the resulting designs’ transferability to other types of data
in responding to the statement by researchers that the goal of visualization design
is “transferability, not reproducibility” [60,134].

RQ2 was studied in two phases through two sub-RQs (Figure 1.1). To answer
RQ2.1, we conducted a lab study with a domain-specific visualization depicting
drug-target relations by asking domain experts to freely explore the visualization
and generate insights by writing notes. Besides logging user interactions and
insights, we extracted interaction patterns, characterized insights, and analyzed
the correlations between interaction types/patterns and insight characteristics.

Building on the promising results from RQ2.1, we raised RQ2.2. We studied
a generic visualization—CO2 Explorer—through crowdsourcing to answer RQ2.2.
Besides note taking, the CO2 Explorer enables users to cite relevant entities
(visualization components and prior notes) to assist their narration. We then
used interactions and entity references to predict insight characteristics through
advanced machine learning models; to explain prediction performance, we calcu-
lated feature importance on individual cases and performed a similar correlation
analysis as we did in the first study.

1.3 Contribution

The contribution of this dissertation is three-fold:

• We provide an in-depth analysis of VDE through reviewing related literature,
looking into the holistic process from interaction to visualization insight, and
raise open research questions that require research attention from multiple
perspectives (Chapter 2).

• We propose an entity-based interaction design approach to provide an anchor
point and actionability in interaction design thinking, and demonstrate the
applicability of this approach through three case studies (Chapter 3).

• To understand the holistic insight generation process, we present results from
two user studies that linked interactions and insight characteristics and provide
implications on knowledge-assisted visualization (Chapter 4).
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1.4 Outline

The remainder of this dissertation is organized as follows: Chapter 2 reviews
related work on VDE, interaction design and analysis, and visualization insight,
and discusses open research challenges and how this research contributes to the
community. Chapter 3 exemplifies the entity-based interaction design through
existing work and three case studies and concludes with design guidelines to
answer RQ1. Chapter 4 presents two user studies to explore RQ2 and provides
design implications to support visualization insight. Chapter 5 concludes this
dissertation by answering the two RQs and discussing the limitations and future
directions of this research.



Chapter 2

Background

Researchers studied exploratory data analysis in practice through interviewing
professional data analysts (e.g. [2, 6, 75, 157]). They provided several common
suggestions to help improve visualization tools, which include integrating tools
to support the existing analysis ecosystem [2, 6, 157], such as combining visual
interactions with command-line tools [2,6], integrating data from multiple sources
[2, 75,157], using automation to save time for repetitive tasks [2, 157], recording
and exporting analysis provenance [2, 6, 75,157], and supporting insight [2, 6, 75,
157], such as insight automation [2] and insight export [6, 157]. This chapter
analyzes these aspects in research by first characterizing VDE in the scope of
data analysis (Section 2.1) and then reviewing related publications on interaction
design and analysis as well as on visualization insight (Sections 2.2-2.4). Section
2.5 summarizes open research questions and positions this research in the relevant
fields.

2.1 Characterizing VDE

Tukey [147] introduced the concept of exploratory data analysis back in 1977 to
differentiate exploratory analysis from confirmatory analysis. Exploratory analysis
supports hypothesis formulation, whereas confirmatory analysis helps to test the
hypothesis. Battle and Heer [7] defined exploratory visual analysis1 as a subset of

1VDE [78] has been studied under various terminologies including visualization exploration [73]
and exploratory visual analysis [7]. From a user-centered perspective, all of these terms convey a
concept of getting insight into the data via interaction with visual depictions of that data. Thus
we treat these terms as equal when reviewing related literature.

7



8 2 Background

exploratory data analysis to emphasize the use of visualization in assisting users
to explore the data as opposed to automatic data analysis. As discussed at the
beginning of Chapter 1, we need both types of analysis, combining the strengths
of humans and machines to create a synergistic way forward. This is where the
term visual analytics [79] comes from.

Keim [78] considered the involvement of humans critical in the data explo-
ration process with their creativity, knowledge, etc. in getting insight into the
data, though a different view exists that most data processes can be automated
in the “big data” era [24]. For instance, researchers proposed techniques to auto-
matically generate insights from data/visualizations (e.g., [31,140,152]). However,
automation can only generate insights about the data while losing the context of
the domain [77, 128]. Karer et al. [77] criticized the data-centric view on analysis
and argued to involve various levels of contexts to acquire domain-related insight.
Sacha et al. [128] asserted that the process of collecting versatile evidence to
generate knowledge could not be automated.

To make the role of users concrete, through literature review, Battle and
Heer [7] characterized exploration in visual analysis as often involving browsing
and search, and alternating between open-ended and focused exploration and
between top-down and bottom-up exploration. Focused (top-down) exploration
contrasts the popular view that exploration is opportunistic and does not have
a clear goal [2]. When VDE is guided by a focused goal, the findings are not
necessarily relevant to the goal but can open new analysis directions [128]. Sacha
et al. [128] identified three inter-linked human cognitive processes during visual
analysis, namely exploration / verification / knowledge generation loops. Linked
to the verification loop, “the exploration loop is steered to reveal findings that
verify or falsify the hypothesis.” Keim [78] and Battle and Heer [7] also identified
verifying hypotheses as a common task in VDE. These views blurred the boundary
between exploratory and confirmatory analysis with visualization.

However, both types of analysis are necessary to get insight into the data
[128,148]. Insights generated from VDE should be considered as hypotheses that
need to be validated [77,128]. Alspaugh et al. [2] interviewed data analysts about
the reasons behind not practicing exploratory analysis in their daily work and
received answers on avoiding spurious findings or multiple comparisons resulting
from exploration. With the multiple comparisons problem, Zgraggen et al. [164]
found over 60% of the findings from visual exploration were false. Thus exploratory
findings of the data are preliminary, “requiring confirmation with an independent
data source” [83,147,164].
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Existing visualizations widely support exploration but provide limited support
for confirmatory analysis [30, 83]. To tackle this issue, studies tried to nudge
users toward confirmatory analysis by eliciting user expectations about the data
before users view the data [30,83], which present an opportunity for users to reach
a balanced analysis on the exploratory-confirmatory spectrum to make diverse,
sound discoveries [83, 164].

Activities of browsing and search are another characteristic of VDE [7]. Chen
et al. [23] argued that a visualization process is a search process, but not like
the traditional query search interfaces. With VDE, users usually search in a
high-dimensional space for insights. Another view on VDE as a hypothesis
generation process [78] focuses more on the exploration results, whereas this view
emphasizes the process itself. As search is common in VDE, Green et al. [54]
proposed search by example/pattern to support intuitive and fluid exploration
and suggested, “search by example should be part of any visual analytics interface
involving analysis or reasoning tasks for large amounts of information.”

2.2 Interaction Design for VDE

To guide the design of effective and efficient visualization, researchers proposed
various design methods including the well-known nested model for visualization
design and evaluation [102] (Figure 1.2) and the nine-stage framework for design
study [134]. Based on the nested model, McKenna et al. [98] proposed a design
activity framework to provide actionable guidance on the design process, and
Meyer et al. [99] proposed a nested blocks and guidelines model to help capture
design decisions and the rationale behind. Chen and Ebert [22] proposed using
entity graphs to capture design problems, causes, and solutions and expose causal
relations of the design workflow to support the recording, sharing, and reproduc-
tion of design knowledge. To support collaborative design among visualization
designers, developers, and domain experts, approaches are proposed based on
practices [8, 59, 151].

However, despite the efforts on building visualization design disciplines, the
community still lacks an understanding of interaction or interaction design in
visualization [34]. The reason may be that the aforementioned mainstream
design approaches are task-oriented, rather than user-oriented [34,86]. Dimara
and Perin [34] attempted to address this issue by characterizing interaction in
visualization through literature review. They suggested that interaction design
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for visualization needs to 1) consider “broader spectra of user profiling” and 2)
enrich interactions to flexibly support diverse data-related intents.

To practice user profiling, visualization researchers borrowed methodologies
from HCI (e.g., user-centered design [72]) and social science (e.g., action research
[60]). Green et al. [55] discussed applying participatory design and activity theory
for visualization design emphasizing an in-situ design collaboration between
users and designers through an iterative design process. In this way, designers
could gain a holistic understanding of users and their situations including their
domain knowledge, problems, individual and group environment. From the
human cognition perspective, Liu and Stasko [90] identified a user-centered design
process as a convergence of mental models of users and designers, with external
visualization as an integral part of the human cognitive system and interaction as
the focus to understand reasoning using visualization.

The other concern raised by Dimara and Perinn [34], interaction flexibility
within the visualization, intends to address the gulf of execution—the gap between
user intention and the interaction possibilities of the tool [109]. To assist user
intent, we need to know what the possible interactions with visualization tools
are. Interactions are usually characterized at multiple levels of granularity [34]. A
popular characterization is tasks, sub-tasks, actions, and events by Gotz and Zhou
[50]. They identified the importance of actions, as actions, indicating distinctive
user intents, are generic (different from tasks and sub-tasks) and semantically
meaningful (different from events, such as mouse clicks). Action taxonomies based
on user intent could support a wide range of tasks (e.g., [34, 48, 50,90]).

ElTayeby and Dou [41] suggested an extra level between sub-tasks and actions
as patterns composed of multiple actions to support analysis reuse. Sedig and
Parsons [113,131] proposed an interaction design space with 32 action patterns
and 10 adjustable properties of visual representation to support complex cognitive
activities, e.g., analytical reasoning and knowledge discovery. They defined inter-
activity as the quality of interaction and provided interactivity characterization to
support the design and evaluation of interaction in human-centered visualization
tools [132, 133]. Case studies demonstrated how the concepts could be applied in
practice [5, 114].

To improve the effectiveness and intuitiveness of interaction, Pike et al. [116]
raised several interaction challenges in visual analysis including ubiquitous, embod-
ied interaction, capturing higher-level thought processes, supporting collaboration,
and others. Similarly, Lee et al. [86] suggested interaction in visualization to go
beyond mouse and keyboard to support freedom of expression and collaboration.
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Though frameworks and methodologies are proposed / borrowed from other
research fields to stimulate interaction design in visualization, a lack of actionability
hinders the application. To provide an anchor point for the interaction design
thinking using the aforementioned frameworks and methods, this research proposes
to abstract data to entities for interaction design, building upon the existing
visualization design model [102]. Chapter 3 demonstrates that the entity-based
interaction could flexibly support various task goals through existing work and
case studies, and the resulting design could be transferred to other types of data
through the abstraction.

2.3 Analysis of User Interactions

Interaction is critical in complex cognitive tasks, including analytical reasoning,
decision making, etc. Researchers provided comprehensive surveys on the analysis
of interaction data (e.g., [41, 57, 159]). This section reviews interaction analy-
sis based on the four major analysis goals: provenance analysis, visualization
evaluation / behavioral analysis, reasoning & sensemaking, and prediction &
recommendation, and discusses the contribution of this research in relation to
existing work.

Provenance analysis. Provenance records the analysis history, such as interac-
tion logs and analytical thoughts, to support analysis reuse, result dissemination,
collaboration, etc. Through interviewing data analysts, Madanagopal et al. [95]
revealed that provenance data are critical to support practical analysis tasks.
However, existing visualization tools provide poor support for provenance [95].
Ragan et al. [119] and Xu et al. [159] provided comprehensive surveys on various
types of provenance data and their purposes and analysis techniques, whereas
Hall et al. [58] specifically reviewed the work of insight provenance and provided
guidelines on supporting such provenance.

Visualizing provenance features automatically capturing interaction and vi-
sualization states, which are then displayed as timelines (e.g., [92,166]) or trees
(e.g., [12, 16, 17, 52, 107, 138, 142]), as well as manual creation of analysis trails
(e.g., [40, 74, 96]). For instance, KnowledgePearls visualizes automatically cap-
tured interaction and visualization states in trees and support flexible search
techniques, such as weighing multiple search terms and query by example, to
retrieve analysis states [142]; ExPlates enables users to spatialize visualization
workflows by creating data or visualization plates and connecting the plates in
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terms of the data flow. To capture users’ thought processes during VDE requires
externalization, which we will elaborate on in Section 2.4.

Building a community standard to transfer provenance among diverse anal-
ysis tools is beneficial as analysts seldom complete an analysis within a single
tool [46, 116, 159]. As a step forward, Cutler et al. [32] built a web-based li-
brary—Trrack—to be integrated into visualization systems for provenance track-
ing and management. The library would be more powerful in history management
if it could incorporate the conceptual model of interaction history proposed by
Nancel and Cockburn [104].

Researchers also suggested supporting hierarchical provenance data from low-
level interactions to high-level tasks [13, 119,158] to guide/prompt users through
the analysis tasks [13]. Although higher-level tasks and user intents are difficult
to capture automatically, research exists aiming to categorize actions using topic
modeling [26] and segment interaction logs into higher-level activities [161].

Visualization evaluation / behavioral analysis. To support fraudulent behavior
detection, Nguyen et al. [105, 106] proposed two visual analytics approaches
enabling analysts to explore hierarchical user profiles including overview-, group-,
and individual-level user activities. To support analysis of user strategies and the
cognitive processes of using visualizations, Blascheck et al. [10, 11] proposed two
visual analytics systems integrating interaction, eye tracking, and think-aloud data.
Automatic pattern detection and search-by-pattern interactions are supported
for analysis. Liu et al. [91] visualized web clickstream data in multiple levels
of granularity (patterns and sequences) for analysis. Additionally, researchers
also proposed other novel interaction metrics (e.g., [47]) and analysis methods
(e.g., [56, 121]) to support visualization evaluation.

Reasoning & Sensemaking. Research shows that interaction logs could help
users recover their own as well as others’ reasoning processes [38, 89]. SensePath
depicts web browsing actions in a timeline coupled with video recordings for
analysts to understand the user sensemaking process [108]. Dou et al. [39]
proposed a framework of capturing user interaction and thought processes to
construct one’s reasoning process and introduced three criteria to disambiguate
the meaning behind interactions. Several systems support the user reasoning and
sensemaking process by visualizing interaction histories and enabling users to
create a knowledge graph to externalize their discoveries [107,138,139]. Moreover,
Pohl et al. [117] analyzed theories from psychology and HCI to help explain the
exploratory reasoning process of visual analytics systems.
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Prediction & Recommendation. Interaction could be used to predict the
next actions [100,112,144], personality traits [15], and user tasks [49]. Semantic
interaction implies that systems could learn from user interactions and make
adaptations [42]. ForceSPIRE infers a set of relevant entities based on user
interaction and co-creates with users a spacialization of a collection of documents
for sensemaking [43,44]. Through modeling user interaction, visualization could
recommend relevant resources including external articles [167], appropriate visu-
alizations [49, 137], and next actions [33, 144] to assist VDE. For instance, Zhou
et al. [167] proposed a model to contextualize visualization by surfacing relevant
articles based on interaction history; Dabek and Caban [33] proposed an approach
building a set of rules from user interactions to guide new users along the analytic
process.

As the primary goal of VDE is to support insight, this research explores
the relations between interactions and insights, relating to the analysis purposes
of visualization evaluation and prediction & recommendation. The work most
relevant to ours is the one by Guo et al. [56], which correlated types of interactions
to three types of insights, i.e., facts, hypotheses, and generalizations. In difference
from Guo et al. [56], we provide an in-depth analysis of insights by quantifying
one insight from multiple perspectives following Saraiya et al. [129], such as
its domain value and breadth versus depth, and correlating the characteristics
with interaction types/patterns. Further, we use interactions to predict insight
characteristics and provide implications on knowledge-assisted visualization based
on user interaction.

2.4 Visualization Insight

The cognitive science community defined an insight as an “Aha!” moment, a
sudden breakthrough that evokes a unique neural activity pattern [14,21], whereas
the visualization community assigned a broader meaning to insight indicating
an advance in knowledge [21]. The two types of insight support one another in
VDE [21]. To be concrete, Karer et al. [77] defined visualization insight as “a step
forward in the interpretation and analysis in the form of a change of the user’s
knowledge or understanding”, which could be further distinguished as insight into
the visualization/data/domain.

Other than providing an explicit definition, several researchers attempted to
characterize insight. Through interviewing professional visualization users, Law
et al. [85] characterized insight as actionable, collaboratively-refined, unexpected,
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confirmatory, spontaneous, trustworthy, and interconnecting, which are similar to
Chang et al. [21] and North’s [110] discoveries. Others characterized insight in
a bottom-up way (e.g., [56, 129]). Based on the collected think-aloud data from
users interacting with visualizations, Saraiya et al. [129] quantified insights by
domain value, directed versus unexpected, breadth versus depth, correctness, etc.
Our studies adopt this characterization, which measures an insight from multiple
perspectives based on practice.

Existing visualization tools provide limited support for insight, such as insight
automation and insight export [2, 6, 75, 157]. Through reviewing existing work
on insight automation, Law et al. [84] characterized 12 types of insight and
four purposes of insight automation. Auto-insight can generate comprehensive
discoveries about the data and does not have biases that could result from humans’
limited attention and belief systems. However, automated insights are usually
simple data facts, such as outliers and trends, not aligning with the concept of
insights being deep and complex [84]. Also, insight about the data needs to be
interpreted in the problem domain to provide actionability, which is difficult to
automate [77, 128]. Click2Annotate enables users to semi-automate insight by
selecting templates of common types of insight [27]. In this case, users have more
flexibility to involve their domain knowledge in the annotation.

Related work also supports manual creation of insight in two main approaches:
1) providing users with a canvas to externalize insight as node-link diagrams
matching their mental models (e.g., [88, 107, 138]), and 2) enabling users to input
texts as insight and attach visualizations (e.g., [69, 96,149,156]) or data sources
(e.g., [155, 165]) as insight provenance, or vice versa, enabling users to embed
texts in visualizations as insight/annotations (e.g., [123]). Other interaction
modalities have also been explored for insight externalization, such as digital pen
and touch [80,124,125].

To enhance the manual creation of insight, Pike et al. [116] challenged research
on the machine-readable externalization of user thinking process rather than
being just narratives so that new mixed-initiative systems are possible, e.g., the
machine could help to reason and collect evidence to validate or falsify user
insight. Data-aware annotation is a simple form of machine-readable insight
in which annotations could be applied to different views of the same data [68],
such as the features of scented insight browsing and faceted insight retrieval in
Click2Annotate. We propose to extract entities from insight narratives / attached
visualizations to structure insight and support entity-aware annotations. In this
way, visualization could support bi-directional exploration: visualization with
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scented entities could promote exploration of relevant insight, and extracted
entities from insight could be added to the visualization for exploration.

2.5 Summary and Open Questions

VDE complements automatic data analysis by incorporating human knowledge
for insight discovery. The basic feature of VDE involves browsing and search;
visualization should seamlessly and intuitively incorporate search functionalities
to support VDE, such as search by example/pattern. During VDE, users also
alternate between open-ended and focused exploration and between top-down
and bottom-up exploration. Most existing visualizations support open-ended ex-
ploration, whereas more support on focused and top-down exploration is required.

Interaction design is a weak spot in visualization research. Researchers
borrowed methods from other fields, such as HCI and social science, and proposed
user-centered frameworks for visualization design [55,60,72]. However, a lack of
actionability inhibits their application. Besides, interaction beyond traditional
desktop settings, such as multi-modal and multi-user interactions, needs further
research.

Nonetheless, interaction plays a critical role in visualization. Interaction
reflects the user reasoning/sensemaking process and could support visualization
evaluation. Learning from user interaction, systems could make predictions and
adaptations to assist VDE, which has been studied under the term semantic
interaction. As the primary goal of VDE is to discover insight, the analysis of
interaction needs to be combined with the resulting insight to provide a holistic
understanding of VDE.

Besides VDE, visualization needs to support provenance and insight in practice.
Provenance data include user interactions, eye movement, thinking processes,
etc. Most studies are confined to the analysis of interaction data. Building a
community standard to support the transfer of provenance and insight across
platforms could facilitate analysis with various tools. Automatic ways to elicit
user thought processes, such as inferring higher-level activities from low-level
interaction data, could empower machines to guide users through VDE, which
needs further investigation.

Regarding insight, while auto-insight could discover data-related insight with-
out inherent human bias, isolated from domain knowledge, insight loses the
context to provide actionability and in-depth knowledge. On the other hand,
manual externalization of insight narratives is challenged by recording insight in
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a machine-readable manner so that machines can support reasoning in a mixed-
initiative manner. Moreover, with the multiple comparisons problem, discovered
insights need to be further validated through VDE/automation, which is not well
studied in related work.

Within one dissertation, it is difficult to address all of the above challenges.
This research focuses on 1) proposing an interaction design approach for visualiza-
tion to provide actionability, an anchor point in interaction design thinking (RQ1),
and 2) linking interaction to the resulting insight to understand how users gener-
ate insights through interactions and provide implications on knowledge-assisted
visualization (RQ2).



Chapter 3

Entity-Based Design for VDE

As discussed in Chapter 2, to provide actionability in interaction design, this
chapter introduces the approach abstracting data into entities and devising entity-
based interactions. Entities are widely used in text analysis [1] and information
retrieval [82] to represent any real-world objects and concepts to facilitate VDE.
Tools like Jigsaw [141] and Analyst’s Workspace [4] extract named entities from
documents and represent the entity and document relations using various visu-
alization techniques to support analysis and annotation. Exploration Wall [81]
and the topic-relevance map [115] visualize entities, such as keywords and topics,
along with search results to help users comprehend the search space and direct
search.

According to the entity-relationship model from the database field, an entity
denotes a “thing” that can be distinctively identified, such as a person and an
event, whereas a relationship is an association among entities [25]. Therefore, we
can use entities to represent information in various domains. For instance, Ojha et
al. [111] suggest handling open data through entities to create domain-independent
and user-centric visualizations. Their entity-centric representation of open data
is domain-independent as they modeled types of entities individually to be used
in different domains and is user-centric as people intuitively perceive things as
entities and categorize entities by their similarities and differences.

Focusing on the interactivity of entities, Klouche et al. [82] proposed a design
template of entity-based information exploration: an entity can yield other
relevant entities to support information discovery; entities can be organized to
assist sensemaking; entities can be saved and shared to support collaboration. This
framework implies the flexibility of entity-based interactions and their applicability

17
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to various data types. For instance, PivotPaths visualizes entity relations in layered
node-link diagrams and supports pivot actions to trigger the re-organization of the
entity layouts for information discovery and sensemaking [37]. Their entity-based
interaction can be applied to various datasets, such as movie collections and
YouTube videos [37]. Andolina et al. [3] and Bier et al. [9] utilized entities to
support collaboration. Individual entities [3] or customized entity views [9] can
be shared among collaborators to support group sensemaking.

In the remainder of this chapter, Sections 3.1-3.3 present three case studies
elaborating how we apply the entity-based interaction design approach in practical
visualization design projects to answer RQ1.1-1.3. Each case presents design
requirements (DRs) in order to fulfill the various VDE goals and discusses the
transferability of the resulting entity-based interactions to other types of data.
As stated by Hayes [60] and Sedlmair et al. [134], the goal of visualization design
is “transferability, not reproducibility.” Section 3.4 concludes this chapter by
answering the RQs and providing guidelines to improve the devised entity-based
interactions.

3.1 Case 1: Interacting with Information Facets

Search is an essential activity we perform on a daily basis. Research shows
that facets are necessary in search to help users navigate the information space,
especially when user needs are not well formulated [126,154]. Information facets,
which are orthogonal sets of categories [65], can be considered classes of entities [18],
e.g., the people facet consists of individual people entities. Faceted search provides
facets to assist search results browsing from multiple perspectives besides the
traditional query search. This case study demonstrates the interaction design of
a faceted search interface and the result’s transferability to other contexts based
on the data abstraction to entities and facets (Article I).

Starting with visualizing emails, we extracted the important factors, such
as timestamps, people, and keywords, to represent the information space of a
collection of emails. Entities of timestamps represent linear facets, whereas entities
of people and keywords denote categorical facets. The two types of facets are
coordinated in the visualization with the linear facet displaying the distribution
of items and the categorical facets summarizing a set of items (Figure 3.1). The
interaction design fulfills the two DRs derived from prior work to address the
limitations of existing tools in supporting fluid exploratory search.
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Figure 3.1: The faceted search interface visualizes the selected items (a), a linear
facet where each dot represents a data item (b), categorical facets of, e.g., people
and keywords (b), and a query field to filter facets and items (c). A categorical
entity, “stephanie.miller”, is under focus such that the linear facet shows the
distribution of relevant items through blue lines. In the case of emails, left-side
lines indicate sender relations, and right-side lines denote co-recipient relations.
The entity, “stephanie.miller”, is dragged on to a linear facet bar (filter-swipe)
such that items in the intersection of the two facet values are selected indicated
by dark purple dots and a white background color (a) and the categorical facet
displays relevant entities to the selected items.

DR1.1: Provide contextual information for faceted exploration. Contextual
information can avoid users getting lost in the search experience. Visualizing facets
per se provides context about the information space. Further, coordinated views
are often used to support exploration of facet relations (e.g., [35,160]). To provide
a more systematic view on exploration within context, we identified time- and
space-related contexts. A time-related context positions the user in the exploration
process. We used the color encodings of the item dots to indicate that the items
were, are, or have not been selected by the user. A space-related context informs
users about the current search space. Facet exploration through coordinated
views falls into this category. Similarly, we achieved this through devising the
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interaction between the linear and the categorical facets. Mousing over the linear
facet bars triggers the categorical facets to dynamically summarizing the items in
the bars; mousing over the categorical entities shows the distribution of relevant
items in the linear facet (Figure 3.1).

DR1.2: Use facets to support rapid transitions between search criteria. As user
queries are often tentative, user interaction needs to allow easy query transitions
with low cognitive load to provide a fluid search experience. Query preview can
support tentative queries. However, most tools are limited to preview the number
or sample of items related to a facet value (e.g., [65,130]); more advanced preview
techniques could be devised to address this requirement. To support rapid query
transitions, the tool features using categorical entities to select items without
filtering the item space, i.e., keeping the current search context. One way is
to select items by clicking on a categorical entity. The other way is to use a
filter-swipe technique by dragging a categorical entity over a linear facet bar; as a
result, the items in the intersection of the two facet values will be selected and
the categorical facet will show entities relating to those items (Figure 3.1). Figure
3.2 captures the design rationale through the blocks of data/task abstraction and
interaction techniques. A video demonstration of the entity-based interactions is
available at https://youtu.be/v0tUAxPjqfg.

The abstraction of data into facets and entities allows us to transfer the
design to other exploration contexts, such as tweets, which also contain linear
and categorical facets. To demonstrate the transferability of the design, Article
I presents use cases of the design with two other datasets, which are tweets
for serendipitous discovery and patient genetic mutation profiles for age-related
oncogene co-occurrence recognition (Table 3.1).

3.2 Case 2: Interacting with Data from
Multiple Sources

In many real-world situations, such as biology [150] and clinical research [143],
relevant data are dispersed in various sources, hindering hypothesis formulation,
decision-making, etc. Data integration can make the value of data explode [101]
and is identified as necessary for practical data analysis, as mentioned at the
beginning of Chapter 2. Visualization is required to integrate data from multiple
sources and facilitate analysis (e.g., [10,11,51,87]). For instance, Domino integrates
heterogeneous and high-dimensional datasets by creating and linking various data
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Figure 3.2: The data/task abstraction and interaction technique blocks of the
faceted search interface design.

Table 3.1: Transferability: Three use cases of visualizing information facets.

Case Linear facet Categorical facet

Email finding Time Sender, co-recipient,
and keyword

Serendipitous tweet discovery Time Username, keyword
Recognition of age-related
oncogene co-occurrences

Age Mutated gene

blocks [51]; StratomeX visualizes datasets in columns and connects columns using
ribbons to show relations [87].

In this case study, we devised MediSyn, which integrates drug-target relations
from multiple sources. The drug-target relations here mean that various tumor
types with certain mutations could be resistant or responsive to certain drugs.
The multi-source drug-target data have similar structures and can share the same
coordinate space in representation to expose data uncertainties. The visualization
adopts a matrix-based view to expose missing data, which depicts mutations
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Figure 3.3: The MediSyn interface. Users can select entities of interest from the
list (A) and explore relations to other entities in the matrix-based view (B). In
the view, columns represent mutations, upper rows are tumor types, and lower
rows show drugs. Table cells depict entity relations from various sources in bars
where hues indicate drug effects and lengths of the bars denote evidence levels.
Users can click on a bar to view its description (C). Entity labels in bold indicate
the existence of relevant notes. Through a context menu on hovering, users can
choose to explore its entity relations by selecting it and view its relevant notes on
the right side (D).

in columns, drugs in lower rows, and tumor types in upper rows (Figure 3.3).
Table cells show the drug-target relations from multiple sources to help identify
data consistencies and display evidence levels of the relations to indicate data
credibility, such as clinical studies and case reports. The goal of the interaction
design is to support biologists to generate and share insight about the data, which
are broken down into the two DRs.

DR2.1: Enable exploration from multiple perspectives to facilitate insight.
The more ways users can explore the data (by changing the forms or perspectives),
the more insights they will generate [116]. A similar statement from Sacha et
al. [128] is that enabling users to look at data from different perspectives is “the
best way to support knowledge generation,” which provides “the possibility to
collect versatile evidence and increases the level of trust in findings.”

DR2.2: Support the bi-directional exploration of insight and visualization.
Data visualization could promote the exploration of relevant insight; meanwhile,
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inspired by the insight, users could explore the relevant data view. Data-aware
insight mentioned in Section 2.4 in a simple way to address this requirement.

Through an iterative design process, this case demonstrates how we applied the
entity-based interaction design to fulfill the two requirements. In the initial design
iteration, we focused on designing VDE of mutations without using entity-based
design thinking, as the domain expert we collaborated with commented that
they were interested in drug activities toward certain mutations in the datasets.
Article II presents the design decisions of MediSyn. To explore the data, users
can interact with the mutations by selecting mutations of interest, highlighting
their relations to drugs, sorting relevant drugs based on clicked mutations, and
retrieving the details of a drug-mutation relation. See a video demonstration of
the interactions at https://youtu.be/Bg_YvhBs1sg.

In the second iteration, we redesigned the interactions by abstracting drugs,
mutations, and tumor types to entities. This abstraction enables us to generalize
the interaction on mutations to drugs and tumor types so that users can explore
the data from multiple perspectives, centering not only on mutations but also
on drugs and tumor types (DR2.1). For example, initially, users can click on
a mutation to reorganize the rows to view the most relevant drugs; after we
generalize the connect action to drugs, users can also explore drug-mutation
relations by clicking on a drug to sort columns and view related mutations.

To support the collaboration and communication among biologists, MediSyn
allows users to share their insights as notes. We designed an entity-based insight-
sharing module, which supports the bi-directional exploration of entities and
insights by automatically extracting entities from user notes, such as mutations
and drug names (DR2.2). To entice insight exploration, visual cues are provided
in the view on entities mentioned in the notes; users can choose to view its
relevant notes through a context menu on hovering (Figure 3.3 (B)). Meanwhile,
to support entity exploration, MediSyn enables users to select mentioned entities
from the notes to explore the entity relations from multiple data sources in the
view (Figure 3.3 (D)). To help rationalize insights, MediSyn automatically records
user interactions that lead to insights as provenance; it visualizes interaction steps
by drawing the resulting views of the interactions linearly when users open the
provenance view of an insight.

Figure 3.4 depicts the entity-based interactions to explore drug-target relations.
Figure 1 and Section 4.2 of Article III illustrate the resulting MediSyn system and
detail the interaction redesign. A video demonstrates the resulting interactions at
https://youtu.be/9NjXvJlqamQ.
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Figure 3.4: The data/task abstraction and interaction technique blocks of MediSyn
visualizing multi-source drug-target data.

The resulting visualization and interaction can be transferred to other contexts,
such as university rankings by subjects from multiple sources. In this case,
the entities of universities, subjects, and countries can replace the entities of
mutations, drugs, and tumor types in the visualization, respectively. Table cells
depict universities’ subject rankings from multiple sources, such as the academic
ranking of world universities and the Times higher education world university
rankings. Users can select, for instance, a country to explore its universities and
subjects, connect relevant entities in the view through highlighting, elaborate on
the detailed information of a table cell, explore, e.g., a subject and its relevant
entities by selecting it from the view, and share insights on entities of interest by
posting notes.

3.3 Case 3: Entity-Based Insight Externalization

With a primary goal of supporting insight, visualization needs to consider insight
externalization as an integral part of VDE. Externalizing visualization insight often
requires users to link their narrative to the relevant visualization (e.g, [69,149,156]).
However, during VDE, an analyst usually works on multiple tasks at the same
time in a “chaotic or spontaneous” nature [128], whereas a derived insight could
be relevant to part of the visualized data. Allowing users to refer to visualization
components, such as a line in the line chart, in their insight as provenance rather
than the entire view could make the externalization more relevant and focused.
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Figure 3.5: The CO2 Explorer (A) with an insight component (BC). Users can
select a year to explore that year’s global CO2 emissions on the map and select
countries to explore their CO2 emissions over the years in the line chart (A). The
insight component enables users to compose an insight through inputting notes
and referring to six types of entities (C) as well as explore others’ insights (B).

With this purpose in mind, this case supports insight externalization by enabling
users to cite relevant visualization components to their narratives (DR3.1). To
achieve this, in contrast to the previous cases in which we considered only nouns
as entities, such as emails, keywords, and drugs, this case abstracts visualization
components into entities (Article IV). We identified three types of entities in
a visualization: individual-level entities denote basic visual elements, such as
individual lines in a line chart; a group-level entity depicts a group of visual
elements from one or more dimensions, such as a group of bars in a bar chart and
lines in a line chart; and a chart-level entity represents various charts, such as a
bar chart and a line chart. If a user discovers a trend regarding a line in the line
chart, the user can cite the specific line in the note and describe the finding.

We implemented this concept in an existing CO2 Explorer which shows the
global CO2 emission values of a selected year in a choropleth map and the selected
countries’ CO2 emissions over the years in a line chart (Figure 3.5). Chart-level
entities are choropleth maps of various years and line charts, group-level entities
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Figure 3.6: The data/task abstraction and interaction technique blocks using
entity references for insight externalization.

Table 3.2: Generalizability of the entity references for insight externalization.

Entity types CO2 Explorer MediSyn

Chart-level A choropleth map,
a line chart

An entire resulting view

Group-level A line / a vertical reference
line in a line chart

A table cell with multiple
bars, a column / a row of the
matrix

Individual-level A map point A bar in a table cell,
a publication source

include lines and vertical reference lines in the line charts, and individual-level
entities are map points (Table 3.2). Additionally, users can refer to public notes
as the sixth entity type of the CO2 Explorer to assist their narratives, which
creates a unified mental model in referring to visualizations and notes.

Similar to DR2.2 of Case 2, the CO2 Explorer supports scented insight browsing
[27] by attaching the number of related insights to the country and year entities
as blue bars in the visualization (Figure 3.5). Users can click on the bars next to
the entities to view their related insights. See the video demonstrating the insight
externalization feature of the CO2 Explorer at https://youtu.be/WX7NmGjBK2s.
Figure 3.6 illustrates the abstraction and interaction blocks of this design.

A crowdsourced study asking users to freely explore the data and externalize
insights through writing notes and citing relevant entities (Chapter 4) revealed
that group and individual-level entities were more frequently used than chart-level
entities in insight externalization.
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We can generalize entity references to other visualizations, such as MediSyn
of Case 2. A chart-level entity includes the entire resulting visualization, a group-
level entity could be a table cell with multiple bars and a column or a row of the
matrix, and an individual-level entity denotes a bar in a table cell or a publication
source (Table 3.2). Biologists can refer to relevant entities in their notes to help
clarify their discoveries.

Compared with logging interaction steps as insight provenance, attaching a
customized view might also suffice based on the three considerations. First, the
analysis of the interaction steps might not be necessary (too complex) to a simple
generic visualization. Second, Ragan et al.’s [120] experiment with text analysis
revealed that a final view with analysis visual cues without individual analysis
steps could also significantly improve the memory of the analysis process. Third,
the automatic method catches all critical/trivial steps, which could be inefficient
in communicating analysis rationale. More studies are required to explore the
benefits and drawbacks of both methods.

3.4 Discussion and Conclusion

In summary, the three cases support five types of entity-based interactions based
on Yi et al.’s [162] interaction taxonomy. Table 3.3 exemplifies the interactions
and their implementations across the cases. The externalize and share interactions
are added to indicate user intent of externalizing and exploring insights. We could
say that entity-based interaction is flexible in design to support various user intent;
the resulting design is inherently user-centric as people naturally perceive things
as entities and relate entities to create mental models to understand external
information [9, 111]. The following answers RQ1.1-1.3 through the three case
studies and proposes design guidelines (DGs) to help improve the entity-based
interaction design.

RQ1.1: How to support VDE of information facets through entity-based
interactions? We considered information facets as classes of entities and devised
flexible interactions between linear and categorical facets to enable user retrieval
of items of interest. The interface addresses the two requirements derived from
prior work to support fluid exploratory search. First, it enables exploration within
time- and space-related contexts (DR1.1). Time-related context puts users in
the exploration process by visualizing items that were, are, or have not been
selected in different color encodings; space-related context is realized through
the interactive coordination between the linear and categorical facets. Second, it
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Table 3.3: The seven types of interactions and their example instantiations across
the three cases.

Interaction Instantiations

Select Click on a categorical entity to select related data items (Case 1).
Filter-swipe to select items (Case 1).
Select an entity of interest from the list to explore entity relations
in the visualization (Case 2).

Filter Drag & drop an entity as a query to filter the item space (Case 1).
Connect Mouse-over a categorical entity to highlight relevant items in the

linear facet (Case 1).
Mouse-over an entity to highlight its relevant entities (Case 2).

Elaborate Mouse-over/click on an entity relation to view its details (Case 2).
Explore Select an entity from the visualization/note to explore entity

relations (Case 2).
Externalize Cite entities (individual-, group-, and chart-level visual compo-

nents and prior notes) to assist insight narratives (Case 3).
Share Click on the visual cue attached to an entity to explore relevant

notes (Cases 2 & 3).

allows users to select items through categorical facets while keeping the current
search space to support rapid transitions between search criteria (DR1.2). The
resulting design has been transferred from emails to tweets and genetic mutation
records to demonstrate the generalizability of the entity-based interactions.

To improve the design, we can organize the linear facet to support semantic
zoomings, such as organizing by weeks and months, so that patterns could be
discovered on various scales of grouped items. This elicits DG1: group entities
hierarchically for operation.

RQ1.2: How to design interaction with drug-target data using entity-based
thinking? Through abstracting drugs, mutations, and tumor types into entities,
Case 2 demonstrated how we generalized interactions devised on one type of
data (mutations) to other types of data (drugs and tumor types) to increase the
perspectives in exploration to support insight discovery (DR2.1). To support the
bi-directional exploration of insight and data (DR2.2), we extracted entities of
drugs, mutations, and tumor types mentioned in the insights. Users can select the
extracted entities from the insight to explore entity relations in the visualization;
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meanwhile, visual cues are provided on the entities in the visualization to promote
the exploration of relevant insights. A university rankings case demonstrated how
the resulting interactions could be transferred to datasets with similar structures.

To improve the design, DG1 could be applied to the visualization. Several
domain experts from the MediSyn user study suggested that the drugs could be
classified based on their similarities so that experts can explore groups of drugs
to discover patterns (Article III). Similarly, mutations could be grouped by genes
and tumor types classified by tissues to support interaction in a group manner.

DG2: Display possible operations next to the entity for clarity. MediSyn
shows possible entity operations in a context menu on hovering, which can be
inconvenient according to the user feedback. Like in PivotPaths, we suggest
explicitly laying out the operation buttons next to the operating entities. For
instance, MediSyn could show action buttons for selecting the entity � and
exploring related notes � beside the entity label to give the user a clear view
about possible actions on an entity.

DG3: Provide entity relation preview. Query preview is a favored feature
in search to help improve search effectiveness [118]. The same goes for entity
exploration, as a VDE process resembles a search process. For instance, MediSyn
could preview the number of entities related to each entity so that users can select
entities for exploration more effectively.

RQ1.3: How could entity-based interactions support insight externalization?
To support insight externalization, we enabled users to cite visualization com-
ponents to assist their narratives by abstracting visualization components and
insights to entities and devising entity references (DR3.1). We identified individual-
, group-, and chart-level visual entities for reference and devised scented insight
browsing through providing visual cues on entities to promote insight exploration.
The concept of entity references could be applied to other visualizations, such as
MediSyn, to support insight externalization. To further improve the design, we
could enable users to select groups of visual elements using, e.g., legends [66] for
reference (DG1).

DG4: Distinguish the interaction for VDE from the interaction for entity
references. Referring to entities for insight externalization could interfere with
VDE sometimes. For example, with the CO2 Explorer, clicking on a country
on the map to cite a map point conflicts with selecting the country to explore
in the line chart. Special concerns need to be taken to harmonize the various
interactions, such as using different gestures and single/double clicks for different
purposes in the same interaction space.
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DG5: Construct the result view during insight externalization. During entity
references, the representation of the referred entities in the sticky note is text-
based, describing the referred data of countries, years, and corresponding emission
values. After the user publishes the note, a resulting view is constructed based on
the referred data. From visual to text and back to visual again increases cognitive
loads. A better alternative is to construct the result view directly on the sticky
note replacing the text description.



Chapter 4

Evaluating VDE in Supporting
Insight

To investigate RQ2, we conducted two user studies exploring the relations between
various interaction types/patterns and insight characteristics (Figure 4.1). Study
1 is a lab study of MediSyn with 14 domain experts (Article III); Study 2 involves
a crowdsourced study of the CO2 Explorer with 158 online workers (Article IV).
During the studies, users freely explored the data using the visualizations and
wrote notes on their discoveries about the data; we collected user interaction
logs and characterized notes (insights) for analysis. In the remainder of this
chapter, Section 4.1 explains the study design rationale. Section 4.2 compares
the similarities and differences of the two studies, whereas Section 4.3 reports
findings. Finally, Section 4.4 discusses study limitations and implications.

4.1 Study Design Rationale

The traditional task-based evaluation that measures task time and error could not
evaluate how well visualization supports insight. To measure visualization’s ability
in supporting open-end discoveries, Saraiya et al. [129] proposed an insight-based
method that measures the characteristics of user insights. Based on empirical
studies, they characterized insights by direct versus unexpected, breadth versus
depth, correctness, domain value, etc. However, measuring visualization insight
alone provides limited support in improving visualization; looking into the holistic
exploration process, involving interaction logs and user thought processes, could
provide better implications about visualization design [97].
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Crowdsourced study

Data collection

29 interaction patterns

828 notes

55 interaction types

158 participants

Note assessment
category, overview versus 
detail, prior knowledge, 
correctness, etc.

Freely explore the data and 
externalize insights by writing notes 
and citing relevant entities.

Lab study

Data collection

7 interaction patterns

59 notes

5 interaction types

14 domain experts

Note assessment
directed versus unexpected, 
breadth versus depth, domain 
value, and correctness

Input tasks, freely explore the data 
with the tasks in mind, and write notes 
on your discoveries about the data.

6 types of entity 
references

29 interaction patterns

828 notes

55 interaction types

158 participants

Note assessment
category, overview versus 
detail, prior knowledge, 
correctness, etc.

Figure 4.1: Two studies investigating how users derive insights through VDE.

Interaction reflects user intent and contains information on user reason-
ing/sensemaking processes, which is directly related to generated insights. Guo
et al. [56] logged user interactions and insights during VDE and analyzed the
correlations between interaction types and insight categories. They found that
filtering actions hindered the generation of facts, whereas exploration actions
promoted it. We took a similar approach in these two studies. In contrast to Guo
et al.’s insight categorization as facts, hypotheses, and generalizations, we mea-
sured an insight from multiple perspectives following Saraiya et al.’s [129] method.
Study 1 analyzed the correlations between interaction types/patterns and insight
characteristics to answer RQ2.1; Study 2 used interaction types/patterns and
entity references (Section 3.3) to predict insight characteristics through advanced
machine learning models to answer RQ2.2.

4.2 Study Comparisons

This section compares and contrasts the two studies from the three aspects to
reflect on the evaluation method: prototype design, evaluation task, and data
analysis.
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4.2.1 Prototype Design: Domain-Specific versus Generic
Visualization and Insight Provenance

Study 1 involved domain experts deriving insights from a domain-specific visual-
ization, MediSyn, which limited the number of target users we can evaluate to
gain insightful results. Meanwhile, study results showed that levels of domain
knowledge played a critical role in VDE. So with Study 2, we evaluated a generic
visualization (CO2 Explorer), which alleviates the effects of prior knowledge on
VDE and allows us to conduct a crowdsourced study with more participants of
diverse backgrounds.

In both studies, participants had access to a fixed set of public notes collected
from pilot studies. To support insight provenance, MediSyn automatically records
interaction steps that lead to insights, whereas the CO2 Explorer enables users to
manually cite entities to attach a result view, as explained in Sections 3.2 and 3.3,
respectively. As a result, MediSyn supports five types of interactions based on the
categorization by Yi et al. [162], which are select, connect, elaborate, explore, and
share (Figure 3.4); the CO2 Explorer supports 55 types of interactions (recognized
as the action and its operating entity, such as select a year) and six types of entity
references (Section 3.3).

4.2.2 Evaluation Task: With/Without Inputting a Task

We studied the two visualizations with open-ended tasks by asking users to freely
explore the data and write at least five notes on their discoveries about the data.
Each note should mention at least one entity name with MediSyn, such as a drug
name, or refer to at least one type of entity with the CO2 Explorer.

To assess the exploratory feature of visualizations, in Study 1, we evaluated
whether users’ discoveries went beyond their initial tasks (unexpectedness of
insights). To achieve this, we asked users to take an extra step in the task by
first inputting a task and then exploring the data with their task in mind. If they
switched to another task, they needed to open the task window to input the new
task. We then evaluated the relations between the discoveries and tasks to rate
the unexpectedness of insights.

However, this setting had some limitations that resulted in the collected
insights being mostly categorized as direct rather than unexpected. Several
participants tried to stick with the inputted task during data exploration, whereas
some others inputted a new task inspired by the exploration. Also, to keep the
simplicity of the evaluation, Study 2 omitted this step and did not evaluate the
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unexpectedness of insights. An appropriate method to measure the exploratory
feature of visualization in supporting serendipitous discoveries remains an open
question here, e.g., a post-task interview by Thudt et al. [145] could potentially
help evaluate users’ serendipitous discoveries qualitatively.

4.2.3 Data Analysis: Interaction Patterns, Insight
Characteristics, and Analysis Methods

During the two studies, we logged user interactions with timestamps and recorded
user-inputted notes. To analyze interactions in relation to insight characteris-
tics, we extracted interaction patterns from the collected interaction trails. An
interaction pattern denotes a sequence of interactions that frequently appear
in interaction trails. In Study 1, we extracted patterns manually (Section 5.4
of Article III), which resulted in seven patterns; in Study 2, we used a more
systematic way to extract patterns automatically (Section 5.3.1 of Article IV)
and collected 29 patterns.

After removing unqualified notes, such as interface suggestions, and low-quality
notes, we collected 59 notes for Study 1 and 828 notes for Study 2. Referring
to Saraiya et al.’s [129] insight characterization, Study 1 assessed four insight
characteristics: directness versus unexpectedness, breadth versus depth, domain
value, and correctness. All were rated on 5-point Likert scales, such as from 1
= direct to 5 = unexpected. Study 2 evaluated notes on the category, overview
versus detail, using prior knowledge, correctness, the relation between notes and
referred charts, and the number of entities mentioned. Notes were categorized in
a bottom-up manner as statements, comparisons, and groupings. The assessment
of the number of entities mentioned was tailored to our entity-based insight
externalization technique, which counted the numbers of countries, years, and
values mentioned in notes. The overview versus detail matched the breadth versus
depth characterization in Study 1, except that we evaluated it on a 3-point Likert
scale (0 = overview, 1 = overview + detail, and 2 = detail). The remaining three
characteristics (using prior knowledge, correctness, and the relation between notes
and referred charts) were evaluated on binary scales (e.g., 0 = no prior knowledge
and 1 = with prior knowledge) to keep the assessment simple. The assessment of
using prior knowledge was inspired by Study 1, as we discovered that the use of
domain knowledge could affect VDE and the quality of generated insight.

Detailed grading criteria on each characteristic is critical to ensure objective
and consistent ratings between the evaluators. Two evaluators assessed a subset
of the notes independently and then had their grading consistency checked;
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evaluators kept revising the grading criteria until they reached a strong grading
consistency based on the statistical assessment.

To explore the relations between interactions and insights, Study 1 used
correlation analysis to link the number of various interaction types/patterns to
insight characteristics, whereas Study 2 went one step further: Study 2 leveraged
machine learning models to predict insight characteristics using interactions
and entity references. The predictors of interactions were 35 interaction types
after removing from the total 55 interaction types the ones we considered not
contributing to the prediction. The predictors of entity references included the six
types of references the CO2 Explorer supports and the number of unique countries
and years referred to which were extracted from the referred entities. To help
explain the prediction performance, we analyzed the participant-wise correlations
as we did in Study 1 and used the SHapley Additive exPlanations (SHAP)
approach [93] which measures each predictor’s contribution to the prediction
outcome on individual cases.

4.3 Study Findings

RQ2.1: What are the correlations between interactions and insight characteris-
tics? Study 1 analyzed the correlations of five action types (Figure 3.4) and six
interaction patterns (omitting one pattern with insufficient data) to the three
characteristics of insights without the characteristic of correctness, as most insights
we collected were correct. Results provided evidence that exploration actions led
to unexpected insights and the drill-down pattern related to insights with higher
domain values. Study 2 explored the correlations of three groups of interactions
(data/note exploration and edit actions) to the insight characteristics of category,
overview versus detail, and using prior knowledge. Regarding the three insight
categories of statements, comparisons, and groupings, results showed that state-
ments tended to have fewer data exploration actions, whereas groupings appeared
to relate to more data/note exploration actions. Detailed insights seemed to have
more mouse-overs in the chart area; using prior knowledge tended to positively
relate to note exploration actions.

RQ2.2: To which extent could we characterize insight through interactions
/ entity references? Table 4.1 presents the results of using interactions and
entity references to characterize insights. Compared with interaction types, entity
references increased the accuracy of insight characterization. Interaction patterns
did not produce promising results for the characterization. The reason may be that
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Table 4.1: Comparison of characterizing insights by interaction types and entity
references. Results were measured by Kappa values on a scale of poor, slight, fair,
moderate, substantial, and almost perfect.

Category Overview vs. detail Prior knowledge

Interaction types fair slight fair
Entity references moderate fair fair

what insight is to be discovered during VDE is uncertain, whereas, during entity
references, the discovery is made certain. Subsection 4.4.1 discusses possibilities
to improve insight characterization using interactions.

To understand the prediction results using entity references, SHAP feature
importance and correlation analysis revealed that the comparison and detailed
types of insights tended to reference more vertical reference lines in the line charts,
whereas groupings appeared to reference more entire charts. Meanwhile, state-
ments seemed to refer to fewer countries, whereas the comparison and grouping
types of insights tended to cite more countries, consistent with the correlations
between note categories and the assessment of the number of mentioned countries
in notes.

A qualitative analysis of insight in Study 1, comparing the insights of two
groups of participants with high and low domain values, revealed that insights with
high domain values tended to involve domain knowledge, relate to less exploration
of public notes, and progress from broad to in-depth discoveries. However, Study
2 with a generic visualization shows that insights involving prior knowledge were
inclined to relate to more note exploration actions and, consequently, more note
references.

4.4 Discussion and Implications

This section discusses improving insight characterization using interactions and
study implications on knowledge-assisted visualization.

4.4.1 Interaction & Insight

To improve insight characterization using interactions, we need to recognize
which interactions contribute to the specific insight. The two studies collected
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interactions from the start till the note editing action as provenance for correlation
and prediction analysis, which potentially involved irrelevant steps in the insight
characterization. The need grows when users conduct long exploration sessions,
which is not rare in practice.

However, this is a challenging task. User analysis could involve multiple tasks
at the same time [128]; an interaction could contribute to one or more insights.
Even interactions that do not result in explicit insights may have implications on
user understanding of the data [164].

We present some directions for thought. A technique of segmenting interactions
to higher-level activities by Yan et al. [161], which considers the goal and intent
of the interaction and the data attributes, may help insight characterization.
Interaction segments that involve the entities referred to in the insight may be
more relevant to the insight than those that do not. Further, involving interaction
paces in the analysis, i.e., leveraging the time dimension of interaction [7,47], may
improve the interaction segmentation. Besides, the level of details of interaction
data could impact the prediction results. For instance, select a year and select
the year 1990 indicate different levels of interaction details. Battle and Heer [7]
found that revisitation of states signaled significant analysis states. More detailed
interaction data could be evaluated in Study 2.

4.4.2 Knowledge-Assisted Visualization

Knowledge-assisted visualization aims to share expert knowledge among users to
support VDE [23]. Federico et al. [45] proposed a conceptual model of knowledge-
assisted visual analytics where systems could utilize users’ implicit/explicit knowl-
edge externalization, such as parameter settings and note taking, to support
visual analysis.

This research implies that automatic insight characterization based on user
interactions and entity references could support VDE through guidance and insight
recommendation. Learning about the interaction patterns that lead to insight,
systems could guide users through the VDE to help discover more insights [33].
For instance, Study 1 showed that the drill-down pattern could lead to insight with
high domain values; systems could guide users through this pattern to discover
insights.

The type of insight could be called interaction-aware insights. Compared
to data-aware annotations, with interaction-aware insights, systems are aware
of the interaction states that lead to insight. As mentioned earlier, capturing
interaction automatically records all trivial/non-trivial steps. Interactions that
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directly relate to insight generation, such as parameter tuning for model building
and settings for data filtering, can take more weight in user guidance. Also, hybrid
methods involving user intervention to identify significant steps for reasoning and
sensemaking could be studied.

On the other hand, systems could recommend insights based on user interaction
and operating entities. For instance, assume that elaboration actions lead to deep
insight; when a user frequently elaborates on certain entities, the system could
suggest in-depth insights referring to these entities inferred by the interactions.
Leveraging data mining and machine learning techniques, systems could construct
recommendation models with complex interaction patterns.

Moreover, machine-readable note-taking as discussed in Section 2.4, such as
using note templates and natural language processing, could further enhance VDE.
Constructing notes as entities and entity relations is not only intuitive for users
to annotate but also convenient for machines to interpret. For instance, MediSyn
provides data-aware annotations by extracting entities from notes and supports
the bi-directional exploration of entities and notes, as explained in Section 3.2.
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Discussion

This chapter answers the two RQs we proposed in Chapter 1, discusses limitations
and future work of this research, and concludes this dissertation.

5.1 Answers to RQs

RQ1: How could we design interaction to support VDE? To facilitate actionability
of interaction design in visualization, this research proposes to abstract data into
entities and design entity operations to realize higher-level interaction goals.
Following the nested model of visualization design, Chapter 3 demonstrated the
entity-based interaction design in practice through three case studies. The cases
detailed how this approach could address the various DRs derived from prior
work to support various task goals and the resulting design’s transferability to
other datasets.

The first case depicted the interaction design of information facets to support
fluid exploratory search. Visual cues on the items and the interactive coordination
of facets provide time- and space-related contexts (DR1.1); the interaction of
selecting items through entities of interest without filtering the item space supports
rapid transitions between search criteria (DR1.2). The resulting design could
be transferred from emails to other similar datasets, such as tweets and patient
oncogene profiles. The second case illustrated the generalizability of the entity-
based interaction design from one type of data (mutations) to other types of
data (drugs and tumor types) to support exploration from multiple perspectives
to assist insight discovery (DR2.1), detailed the use of entities to bridge the
bi-directional exploration of insight and data (DR2.2), and also discussed the
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transferability of the design to the university rankings dataset. The third case
exemplified the interaction of citing relevant entities (visualization components
and prior notes) for insight externalization (DR3.1) in a CO2 Explorer with
choropleth maps and line charts. The abstraction of visualization components
into three levels of entities enables the technique of entity references to be applied
to all types of visualizations to support insight externalization.

To improve the entity-based interactions resulting from the case studies, we
provided five guidelines: 1) grouping entities hierarchically for operation, 2)
displaying possible operations next to the entity for clarity, 3) providing entity
relation preview, 4) distinguishing the interaction for VDE from the interaction for
entity references, and 5) constructing the result view during insight externalization.

RQ2: How do users discover insights through interacting with the visualiza-
tion? Study results of MediSyn provided evidence that exploration actions led
to unexpected insights; the drill-down pattern related to insights with higher
domain values. The study of the CO2 Explorer collected insight categories of
statements, comparisons, and groupings and revealed that simple statements,
mostly mentioned one country entity, tended to relate to fewer data exploration
actions, whereas groupings, mostly discussed more than two country entities,
appeared to have more data/note exploration actions and referred to more charts.
The comparison and detailed types of insights tended to reference more vertical
reference lines in the line charts; meanwhile, detailed notes appeared to have more
mouse-overs in the chart area.

A qualitative analysis of insight generation indicated that participants who
derived insights with high domain values tended to explore others’ notes less
and advance from broad to in-depth discoveries using their domain knowledge.
However, with a generic visualization, Study 2 found that using prior knowledge
in insights tended to relate to more note exploration actions and more note
references.

5.2 Limitations

We discuss limitations in the evaluation of the entity-based interaction and the
generalizability of the user study.
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5.2.1 Evaluation of the Interaction Design

The case studies lack an evaluation with baseline systems to inform the merits
and demerits of the entity-based interaction. The challenge lies in the design of a
baseline system. Keeping the same visual design, the evaluating systems could be
1) entity-based interaction on one type of entity versus entity-based interaction
generalized to all types of entities in the visualization, or 2) with/without a type
of entity-based action. In the former case, the choice of the entity type could
induce bias in evaluation results, whereas the latter is concerned with the task
that needs to motivate users to use the specific action. For instance, to evaluate
the scented insight browsing of the CO2 Explorer in supporting insight, we can
use the same visualization without the functionality as the baseline. In this case,
how the task would motivate users to explore public insights would be a central
issue. Special consideration needs to be paid to a fair comparison.

5.2.2 Generalizability of the User Study

The evaluation method could be generalized to study other visualizations to
validate the results. Although the bottom-up insight categories and extracted
interaction patterns could be specific to a certain type of visualization, the ways
to characterize insights and to extract interaction patterns are general. Entity
references could also be generalized, as discussed in the case study. Due to
the controlled experiment settings, study results could be biased considering the
following aspects: 1) the training program before the actual experiment introduced
the features of the visualization in a certain order, which could influence the way
users interact with the visualization as noted by Wesslen et al. [153]; 2) the tasks
required users to mention or reference at least one entity, which could induce bias
in the collected insights; and 3) users could access a fixed set of public notes in
both studies, which could inspire, but could also hinder user thinking and the
diversity of the resulted insights despite the open-ended task settings.

5.3 Future Directions

Apart from the future work hinted at in Section 4.4 as study implications, we
present two directions building on current research. To further support insight,
visualization could structure insight by entities and record uncertainty-aware
insight and insight provenance across platforms.
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5.3.1 Structuring Insight by Entities

As mentioned earlier, entities are widely used in text analysis and information
retrieval. Borrowing the knowledge from text analysis, we can structure insight
by entities instead of simple narratives so that novel mixed-initiative systems are
possible [76]. For instance, systems could generate a graph/matrix of co-occurring
entities in insights to expose over-explored/under-explored relations. This research
extracted simple entities, including drugs, tumor types, and mutations in MediSyn,
and countries and years in the CO2 Explorer, to support insight exploration; more
complex structures among entities could be built to further support reasoning,
e.g., drawing relations between nouns and verbs.

Leveraging the knowledge from information retrieval, systems with entity-based
insight could retrieve evidence from external sources to support insight validation,
which can potentially alleviate the multiple comparisons problem mentioned in
Chapter 2 and expand/direct information exploration (e.g., [20, 28, 155, 167]).
For instance, CAVA enables users to expand their datasets using a broad set of
attributes crawled from external knowledge graphs [20]. If the crawling is aware
of user interactions and insights, the system could then provide more focused
assistance addressing user needs.

5.3.2 Supporting Insight and Insight Provenance

Developing a platform that records insight and insight provenance enables data
exploration across analytic tools, which would be helpful in practice [2, 6, 75, 157].
Moreover, uncertainty always accompanies analysis, passed on from the data
source to the model and then to the visualization, but is often overlooked in the
actual analysis [71]. Quantifying and visualizing uncertainty along the analytic
provenance can support users to calibrate their trust and make informed decisions
[127].

5.4 Conclusion

A review of related work on VDE revealed that, among other findings, a lack of
actionability in interaction design hinders the application of the proposed visual-
ization design models and frameworks; the community lacks an understanding
of the user insight generation process during VDE. This research attempted to
address these two challenges by proposing an interaction design approach and
conducting two user studies to explore user insight generation.
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To provide an anchor point in interaction design thinking, this research
proposed abstracting data to entities and designing entity-based interaction.
Three case studies demonstrated the applicability of this approach in addressing
the various DRs derived from related work to fulfill the various task goals, i.e., fluid
exploratory search, insight generation and sharing, and insight externalization
through entity (visualization components and prior notes) references. Three cases
also illustrated the transferability of the resulting interaction design to other
datasets with similar structures. Reflecting on the case studies, we proposed five
guidelines to help improve the entity-based interactions.

To understand the user insight generation process, we presented two user
studies asking users to freely explore the visualization and write notes on their
discoveries about the data. Through correlating the types/patterns of user
interactions with the characteristics of their generated insights, the first study
indicated the potential of using interactions to characterize insights. However,
the second study of the CO2 Explorer showed that entity references were better
at characterizing insights than interactions. Recognizing significant interaction
states that contribute to the insight could potentially improve their insight
prediction. Study results imply the potential of building novel knowledge-assisted
visualizations that automatically characterize insights to provide exploration
guidance and insight recommendations.

As future work, research could build on current results to support uncertainty-
aware insight and insight provenance across platforms. Visualization tools could
also structure insight by entities to support novel mixed-initiative systems, such
as systems that could analyze insights and retrieve external resources to support
VDE.
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[160] Mehmet Adil Yalçin, Niklas Elmqvist, and Benjamin B. Bederson. Keshif:
Rapid and expressive tabular data exploration for novices. IEEE Transac-
tions on Visualization and Computer Graphics, 24(8):2339–2352, 2018.

[161] Jing Nathan Yan, Ziwei Gu, and Jeffrey M. Rzeszotarski. Tessera: Dis-
cretizing data analysis workflows on a task level. In the CHI Conference on
Human Factors in Computing Systems, pages 20:1–20:15. ACM, 2021.

[162] Ji Soo Yi, Youn ah Kang, John T. Stasko, and Julie A. Jacko. Toward a
deeper understanding of the role of interaction in information visualization.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1224–
1231, 2007.

[163] Ji Soo Yi, Youn-ah Kang, John T. Stasko, and Julie A. Jacko. Understanding
and characterizing insights: How do people gain insights using information
visualization? In the Workshop on Beyond Time and Errors on Novel
Evaluation Methods for Visualization. ACM, 2008.



References 63

[164] Emanuel Zgraggen, Zheguang Zhao, Robert C. Zeleznik, and Tim Kraska.
Investigating the effect of the multiple comparisons problem in visual analy-
sis. In the CHI Conference on Human Factors in Computing Systems, pages
1–12. ACM, 2018.

[165] Jian Zhao, Michael Glueck, Simon Breslav, Fanny Chevalier, and Azam
Khan. Annotation graphs: A graph-based visualization for meta-analysis of
data based on user-authored annotations. IEEE Transactions on Visualiza-
tion and Computer Graphics, 23(1):261–270, 2017.

[166] Jian Zhao, Michael Glueck, Petra Isenberg, Fanny Chevalier, and Azam
Khan. Supporting handoff in asynchronous collaborative sensemaking
using knowledge-transfer graphs. IEEE Transactions on Visualization and
Computer Graphics, 24(1):340–350, 2018.

[167] Zhilan Zhou, Ximing Wen, Yue Wang, and David Gotz. Modeling and
leveraging analytic focus during exploratory visual analysis. In the CHI
Conference on Human Factors in Computing Systems, pages 21:1–21:15.
ACM, 2021.



64 References


	Abstract
	Acknowledgements
	Contents
	List of Publications
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Entity-Based Design for VDE
	Chapter 4: Evaluating VDE in Supporting Insight
	Chapter 5: Discussion
	References



