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Abstract1

The spatial arrangement of habitat patches in a metapopulation, and the dispersal connections2

among them, influence metapopulation persistence. Metapopulation persistence emerges from3

a dynamic process, namely the serial extinctions and recolonizations of local habitat patches,4

while measures of persistence are typically based solely on structural properties of the spatial5

network (e.g., spatial distance between sites). Persistence estimators based on static properties6

may be unable to capture the dynamic nature of persistence. Understanding the shape of the7

distribution of extinction times is a central goal in population ecology. Here, we examine8

the goodness of fit of the power law to patch persistence time distributions using data on a9

foundational metapopulation system – the Glanville fritillary butterfly in the Åland islands.10

Further, we address the relationship between structural measures of metapopulation persistence11

(i.e., metapopulation capacity) and our temporal distributional fits to patch persistence times12

based on a power law. Patch persistence time distributions were well fit by a power law for the13

majority of semi-independent networks. Power law fits to persistence time distributions were14

related to metapopulation capacity, linking structural and temporal measures of metapopulation15

persistence. Several environmental variables and measures of network topology were correlated16

with both measures of metapopulation persistence, though correlations tended to be stronger for17

the structural measure of metapopulation persistence (i.e., metapopulation capacity). Together,18

our findings suggest that persistence time distributions are useful dynamic properties of metapopulations,19

and provide evidence of a relationship between metapopulation structure and metapopulation20

dynamics.21
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Introduction22

Habitat fragmentation reduces patch size leading to smaller local populations that are at greater23

risk of stochastic extinction. Dispersal between fragmented suitable habitat patches is therefore24

essential to maintain the network of small populations i.e., the metapopulation (Hanski, 1999;25

Hanski and Gilpin, 1991). A body of theory has been developed to describe threshold conditions26

for metapopulation persistence (Keymer et al., 2000), the influence of dispersal on metapopulation27

dynamics (Doebeli, 1995; Holland and Hastings, 2008; Vuilleumier et al., 2010), and the dependence28

of persistence on the spatial distribution of habitat patches (Ovaskainen and Hanski, 2003).29

Metapopulation persistence estimators attempt to quantify the threshold after which colonization30

and dispersal are unable to maintain patch occupancy, leading to metapopulation collapse.31

The initial development of metapopulation theory drew heavily on the Levin’s model, which32

tracks species occurrences among patches regardless of spatial location or size of habitat patches33

(Levins, 1969). Building on this, Hanski (1994) developed a spatially-explicit metapopulation34

model which incorporated variation in habitat patch size and explicitly considered the role35

of space. Through this work, the development of a persistence measure called metapopulation36

capacity was developed (Hanski and Ovaskainen, 2000; Ovaskainen and Hanski, 2001).37

. We use metapopulation capacity to measure metapopulation persistence based on the spatial38

distribution of habitat patches and dispersal links between them (Hanski and Ovaskainen, 2000;39

Ovaskainen and Hanski, 2001). This information is contained within the landscape matrix40

(M), which describes the putative dispersal links between all habitat patches (Hanski, 1999;41

Ovaskainen and Hanski, 2001). While the landscape matrix is often constructed in the absence42

of a dynamic model, the original formulation of metapopulation capacity (λ) was based on43

a metapopulation model (Hanski and Ovaskainen, 2000). Previous work has suggested that44

metapopulation capacity (λ) is associated with equilibrium patch occupancy when habitat patches45

are of good quality and are aggregated in space (Hanski and Ovaskainen, 2000; Visconti and46

Elkin, 2009), suggesting a role for both environmental quality and spatial network structure47

on metapopulation capacity (Hanski et al., 2017). Conservation and management decisions have48
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been informed by metapopulation capacity (Hanski, 2011; Hanski and Thomas, 1994; McCullough,49

1996), as it is used to estimate long term metapopulation persistence (Hanski and Ovaskainen,50

2000). Similar eigenvalue-decompositions have been used to estimate a) epidemic thresholds in51

social contact networks (Saha et al., 2015), b) nestedness in bipartite networks (Staniczenko et al.,52

2013), c) the basic reproductive number (R0) of infectious disease given infection time series53

(Diekmann et al., 2010), and d) early warning signals of spatial population collapse (Chen et al.,54

2019).55

. Previous efforts to link metapopulation persistence measures derived from the spatial distribution56

of patches to the resulting dynamics have largely focused on metapopulation persistence in an57

absolute sense, quantifying the number of times in model simulations the metapopulation goes58

extinct (Kleinhans and Jonsson, 2011). Other efforts have defined persistence using measures59

related to extinction-colonization ratios or mean species occupancy (i.e., fraction of patches where60

the species is found). These measures often define metapopulation persistence as either the61

probability that the entire metapopulation goes extinct, or the mean species occupancy over62

some time window (Johst et al., 2002; Molofsky and Ferdy, 2005). The first is a coarse measure,63

and is difficult to empirically test, given the need for a metapopulation extinction event, which64

tend to be rare and not easily replicated. The second measure may fail to capture rescue effects65

or transient patch occupancy followed by local extinction, that may serve as an early warning66

signal of metapopulation collapse (but see Holmes et al. (2020)). Ideally, a measure of persistence67

at the metapopulation scale would incorporate information on each habitat patch explicitly, both68

in terms of mean and variation in climatic conditions. For instance, Increasing climatic variability69

may drive metapopulation dynamics near extinction thresholds, even those as established as the70

Glanville fritillary metapopulation in the Åland islands (van Bergen et al., 2020).71

. In population ecology, a body of theory related to the distribution of extinction times for72

single populations has been developed (Drake, 2006, 2014). That is, without immigration or73

emigration, what does the distribution of extinction times look like for a set of populations?74

A common observation is that this distribution has a heavy tail, where most populations go75
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extinct in a relatively short time, but few populations exist for far longer (Drake, 2014). In76

the context of metapopulations, the distributional fit to patch extinction times – which are77

equivalent to persistence times – may provide information on the metapopulation as a whole while78

directly incorporating patch level dynamics (Bertuzzo et al., 2011). This approach requires either79

simulated or empirical data on patch persistence times to generate the persistence estimate. That80

is, estimating the distribution of persistence times for each patch in the network could provide81

insight into the presence of long-persisting nodes, and those which go extinct but recolonize82

quickly. One such distributional fit proposed recently is the power law (Bertuzzo et al., 2011),83

where some quantity x is drawn from a probability distribution p(x) ∝ x−α. The interpretation84

of α then becomes important, as this scaling parameter starts to address the heavy-tailed nature85

of the distribution of empirical values of x. Power law relationships are commonly found in86

natural systems, such as the bivariate scaling of the number of species with increasing geographic87

area (the species-area relationship; Martín and Goldenfeld (2006)). Power law relationships88

in frequency distributions, as examined here, are equally common in ecological studies of the89

distribution of species body sizes (Morse et al., 1985), abundance estimates (Keitt and Stanley,90

1998), and vegetation patch size (Kéfi et al., 2007), as reviewed in White et al. (2008).91

. Here, the parameter α estimates the shape of the long tail of persistence times, with smaller92

α values corresponding to heavier tails. This means that large α values correspond to more93

extreme decay rates in persistence times (x), with very few long persistent patches, indicative of94

high extinction and rapid recolonization of habitat patches. That is, the probability density of95

persistence times (x) are proportional to x−α. As such, there are two clear possible relationships96

between metapopulation capacity (λ) and persistence time distributions (α). First, a positive97

relationship may emerge between persistence time distributional fits (α) and metapopulation98

capacity (λ) if long-term persistent habitat patches drive metapopulation persistence. These99

long-term persistent patches would lead to a heavier-tailed distribution of persistence times,100

reducing the α value. On the other hand, metapopulations are characterized by rapid extinction101

and re-colonization dynamics, and these dynamics may be indicative of a persistent metapopulation.102

Thus, a second possibility is that we may expect a negative relationship between metapopulation103
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capacity (λ) and persistence time fits (α). This would suggest that short-lived, but quickly104

recolonized habitat patches, are a signature of a persistent metapopulation.105

. Apart from implications to metapopulation persistence, the α parameter may also be useful106

in differentiating different types of metapopulations (as identified in Harrison and Taylor (1997)).107

This is because the balance between ephemeral and persistant habitat patches can inform metapopulation108

structure. For instance, mainland-island metapopulations would be expected to have a smaller α109

value, driven by the long-persisting source patches, while classic metapopulations would have110

larger α values due to the common extinction and colonization events reducing the probability111

of long-persisting patches. Finally, understanding the differences in power law relationships for112

unconnected populations (Drake, 2006, 2014) – corresponding to non-equilibrium metapopulations113

as defined in Harrison and Taylor (1997) – and connected metapopulations can provide insight114

into the role of dispersal and rescue effects on persistence.115

. How well do structural (metapopulation capacity) or temporal (persistence time distributions)116

measures of metapopulation persistence describe metapopulation dynamics, given that they both117

putatively quantify metapopulation persistence? A common assumption of many metapopulation118

studies is that structural properties of the metapopulation (e.g., metapopulation capacity) capture119

dynamic processes (Hanski and Ovaskainen, 2000). That is, a positive relationship between120

structural (metapopulation capacity) and temporal (persistence time distributional fit) measures121

of metapopulation persistence should exist. Further, the relationships between environmental122

and topological aspects of the metapopulation should correlate well with both measures of123

metapopulation persistence, though perhaps with different strength. We would expect that124

measures of spatial network topology (e.g., connectance) should strongly correlate with metapopulation125

capacity (λ), as the both measures are based on the same data (i.e., the landscape matrix M).126

However, factors influencing distributional fits to persistence times should correspond more to127

local environmental conditions and resource availability, as measures of metapopulation persistence128

that are based on local dynamics are likely to be more sensitive to local environmental conditions129

than measures based on metapopulation structure alone.130
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. Here, we examine the relationship between structural (metapopulation capacity) and temporal131

(persistence time distributions) measures of metapopulation persistence, providing a link between132

the geographic distribution of habitat patches and the resulting temporal metapopulation dynamics.133

Further, we explore power law scaling relationships in patch persistence times, providing evidence134

that interconnected populations have similarly heavy-tailed persistence (or extinction) time distributions135

compared to isolated replicated populations (Drake, 2014). Using a long-term sampling effort of136

Melitaea cinxia populations distributed across meadow habitats in the Åland islands sampled over137

20 years, we demonstrate a positive relationship our measures of metapopulation persistence for138

a set of 88 semi-independent spatial networks (also referred to as network components). Further, we139

investigate how environmental and topological aspects of the spatial network are related to both140

measures of metapopulation persistence. Environmental characteristics, such as mean resource141

availability and grazing pressure, were largely unrelated to either measure of metapopulation142

persistence, while topological properties – such as modularity and the number of patches in the143

network – were strongly correlated to both measures of metapopulation persistence. Together,144

this provides a link between structural and temporal measures of metapopulation persistence,145

and demonstrates clear relationships between aspects of the landscape matrix and the resulting146

measures of metapopulation persistence, either measured using putative dispersal connections,147

or through a power law scaling relationship in patch persistence times.148

Methods149

Glanville fritillary metapopulation data150

In the Åland islands, a set of approximately 4500 habitat patches have been monitored since 1993.151

Here, we use data from the Fall surveys of the Glanville fritillary butterfly (Melitaea cinxia) nests152

sampled annually between 1993 and 2016 (Ojanen et al., 2013). Each habitat patch was occupied153

by at least one of two host plant species – either Plantago lanceolata or Veronica spicata – which154

serves as a food and oviposition resource for M. cinxia. Habitat patches exist in a mosaic of155

inhospitable habitat, and links between habitat patches represent potential dispersal pathways.156
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We examined a subset of 2249 habitat patches which contained sufficient data, leading to the157

creation of 88 semi-independent networks (SINs). Each SIN has been identified to be a cluster of158

patches where most of the dispersal dynamics are assumed to take place within the SIN (Hanski159

et al., 2017). This allows for a certain degree of replication of metapopulations in a natural setting.160

. Each of these 88 SINs is treated as a metapopulation, and represent a wide range of metapopulation161

structures. The number of habitat patches in the SINs ranges from 2 to 147, and patch sizes162

ranged from 0.001 to 10.2 hectares. Patch size within SINs tends to be quite variable, with163

coefficient of variation (mean divided by standard deviation) varying between 0.03 and 0.34.164

This range of metapopulation structures provides both challenge and opportunity to examine165

the relationship between metapopulation capacity and persistence time distributions.166

. R code and data to reproduce the analyses is provided at167

https://doi.org/10.6084/m9.figshare.12576038.168

Metapopulation capacity: the structural persistence measure169

Metapopulation capacity estimates the ability of a metapopulation to support long-term persistence170

of a given species (Hanski and Ovaskainen, 2000) based on the distances among habitat patches171

in the spatial network. Specifically, metapopulation capacity (λ) is the dominant eigenvalue172

of the landscape matrix M, which is a square matrix describing dispersal connections among173

habitat patches. Concretely, the diagonal elements of the landscape matrix M are zero, and174

off-diagonal elements estimate dispersal probabilities between two habitat patches i and j that175

are some distance dij away from one another. The landscape matrix M is estimated for each SIN,176

assuming that an exponential decay function as the basis for dispersal (Equation 1), based on177

previous research in this system (Hanski et al., 2017).178

M = Ax+γ
i e−ϵdij Aψ

j (1)
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. In the original formulation, entries of the landscape matrix (M) were defined by including179

patch area (Ai and Aj) as a surrogate measure of carrying capacity. However, non-linear relationships180

and density-dependent dispersal probabilities may influence the relationship between patch area181

and population size (and subsequent dispersal probabilities). To address this, we formulate the182

M matrix with the inclusion of patch area, assuming that immigration (γ), extinction (x), and183

emigration (ψ) are functions of patch area and collectively balance (i.e., x + γ = ψ = 0.25;184

Hanski et al. (2017)). We examine the influence of excluding patch area in the calculation of the185

M matrix in the Supplemental Materials.186

Persistence time distributions: the temporal persistence measure187

We examine power law scaling relationships in persistence time distributions obtained for each188

semi-independent network (SIN). For a given SIN, we calculated persistence times for each patch189

over the course of the study period (1993-2016). Persistence was defined as any consecutive190

period that a given patch was occupied, taking values between 1 to 24. While previous studies191

have developed approaches to address the potential left and right censoring of the time series192

data (i.e., patches may persist for longer than 24 years. Due to the extremely dynamic nature of193

the SINs examined – mean patch persistence time across SINs ranged from 1 to 4.8 – we do not194

attempt to extrapolate to unsampled periods. No patch was occupied for every sampling period,195

and only 4 out of the 2249 habitat patches in the 88 SINs examined persisted for 23 years.196

. Because of the dynamic nature of these metapopulations, patches could contribute multiple197

persistence times to the distribution. This means that patches that go extinct and are recolonized198

contribute more data to the distribution. However, it is the persistent patches that drive the199

heavy tail of the persistence time distribution, as well as the corresponding value of α. This α is200

estimated using maximum likelihood, following the equation201

α̂ = 1 + n
[ n

∑
i=1

log
( xi

xmin − 0.5

)]−1

(2)
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. Here, we use the hatted symbol (α̂) to denote α as estimated from data. The parameter xmin202

is the lower bound of persistence times x where the power law can be fit to the data. Each203

SIN has a fit xmin and α value. In the Supplemental Materials, we explore the distribution204

and relationship between xmin and α values fit for each SIN. Power law distributions were fit205

using the poweRlaw package in R, following the bootstraping procedure to account for parameter206

uncertainty (Gillespie, 2015). Further, goodness of fit to the power law distribution was determined207

via bootstrapping following Clauset et al. (2009).208

Relating metapopulation persistence measures209

We related metapopulation capacity (λ) to the power law fit parameter (α) characterizing the tail210

of the persistence time distribution for each SIN using a Spearman’s rank correlation to account211

for a potentially non-linear relationship. Larger values of metapopulation capacity are indicative212

of a greater chance of species persistence in the metapopulation. Larger values of persistence213

time fits (α) correspond to a faster decay in persistence times, and an increased number of214

short-lived but quickly recolonized patches. Assuming that consistently colonized patches are a215

sign of network-level persistence, a negative relationship between metapopulation capacity (λ)216

and persistence time fits (α) is expected. However, if we interpret the rapid recolonization and217

extinction of patches as a signature of a dynamic, but persistent, metapopulation, a positive218

relationship may emerge.219

Correlates of metapopulation persistence measures220

Numerous environmental covariates may influence habitat patch quality, which affects subsequent221

colonization and extinction dynamics (Fleishman et al., 2002; Thomas, 1994). Given that metapopulation222

capacity does not directly incorporate information on variation in patch quality, but that the223

persistence time distributional fit does likely reflect patch quality, we would expect that environmental224

conditions would most strongly correlate with the persistence time distributional fits (α).225
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. Patch area was estimated during sampling, with the median patch area being approximately226

0.6 ha, and the majority of habitat patches smaller than 2 ha. The two common host plants of M.227

cinxia are Plantago lanceolata and Veronica spicata. We quantified resource availability as the sum228

of abundance of these two host plants based on an ordinal scale between 0 and 3 for each species,229

with larger values corresponding to a greater plant abundance (Ojanen et al., 2013). Previously,230

the summed abundance of these two host plants has been predictive of colonization, extinction,231

and occupancy in the Åland islands (Dallas et al., 2019). For each SIN, we calculated the mean232

resource abundance and the variance in resource abundance. Grazing pressure was estimated233

as the estimated fraction of the habitat patch subjected to grazing based on observations of234

damaged plants. Plantago lanceolata, which serves as the dominant host plant through much of235

the Åland island system, is infected by a powdery mildew pathogen (Podosphaera plantaginis;236

Tollenaere et al. (2014)), which reduces plant resource quality and subsequent overwintering237

survival and emergence of larvae in the spring (van Nouhuys and Laine, 2008). Mildew infection238

was estimated as the mean fraction of patches within each SIN where the mildew pathogen was239

present across each sampling period.240

. Aspects of the structure of each SIN may be related to metapopulation persistence. These241

include the number of habitat patches in the SIN, as well as several measures of spatial network242

structure. For instance, the tendency of patches to cluster into small groups, forming smaller243

communities in which dispersal is expected to be stronger, is likely related to spatial network244

persistence (Fletcher Jr et al., 2013). To quantify this, we used a series of measures which245

capture different aspects of community formation. All measures were performed on the weighted246

landscape matrix M for each SIN, where weights were the dispersal probabilities generated from247

the negative exponential dispersal kernel described above.248

. First, we estimated modularity of the network by first identifying clusters within each SIN249

using the random walk approach of Pons and Latapy (2005), and then quantifying the tendency250

of these identified communities to result in a modular network, estimated using the igraph R251

package (Csardi and Nepusz, 2006). Second, we calculated the hub score of the landscape matrix252
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M (Kleinberg, 1999), which is nearly identical to calculation as metapopulation capacity, and is253

the dominant eigenvalue corresponding to the principal eigenvector of M × t(M) (the landscape254

matrix M multiplied by its transpose). Lastly, we measured a weighted form of transitivity –255

also referred to as the ’clustering coefficient’ – which quantifies the degree of spatial aggregation256

in habitat patches within a given SIN (Barrat et al., 2007). All of these measures attempt to257

address the distribution of patches in each SIN with respect to their estimated dispersal links258

estimated in Equation 1. Consequently, it is important to note that estimates of network structure259

described above will be sensitive to the formation of the landscape matrix (M). Given that only260

metapopulation capacity (λ) uses information contained in the landscape matrix (M), we would261

expect metapopulation capacity to be more strongly related to these aspects of dispersal network262

structure than persistence time distributional fits.263

Results264

Some SINs (n = 27) did not have enough data to compute distributional fits to the persistence265

times (α). For the SINs that did have enough data, the best fit values of xmin and α were quite266

variable (see Supplemental Material, Figures A2 - A4). The majority of α values were between267

2 and 3, supporting previous observations (Clauset et al., 2009). Based on bootstrap tests, there268

is evidence that the power law is the best fit distribution for 87% (n = 53 of the 61 SINs) of the269

persistence time distributions, based on a significance level of 0.05 following the procedure of270

Clauset et al. (2009). The p-value generated from this test can be used as a measure of plausibility271

of the fit between empirical data and power law fit. It is not a test of the goodness-of-fit of the272

power law directly, as p > 0.05 cannot be interpreted as support of the power law fit, while p <273

0.05 would suggest that the power law is not the best fit.274

. There was no apparent spatial pattern in power law fit parameter (α) to the persistence275

time distribution (Figure 1d) or metapopulation capacity (Figure 1b) of each SIN, though clear276

variation was observed in both fit persistence time distributions (α ∈ [1.86 - 5.04]) and metapopulation277

capacities (λ ∈ [0.003 - 1.56]). Further, there was no significant relationships observed between278
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either metapopulation persistence measure – metapopulation capacity (λ) or persistence time279

distributional fits (α) – to either mean patch persistence times or mean fraction of occupied280

patches (Figure 2). However, the two measures of metapopulation persistence were strongly281

related to one another (Figure 3), suggesting a clear link between the two measures of metapopulation282

persistence.283

Correlates of metapopulation persistence measures284

We then related a set of environmental (e.g., mean resource availability) and network (e.g.,285

number of habitat patches) to both persistence time distributions (α) and metapopulation capacities286

(λ) for each of the studied SINs. We hypothesized that variables not captured in the landscape287

matrix may be better described by persistence time distributions, while structural properties288

of the landscape matrix (M) may be more strongly related to metapopulation capacity. We289

found that environmental variables and measures of spatial network structure tended to be more290

strongly related to metapopulation capacity (Figure 4). The exception to this was the mean291

fraction of patches infected by a mildew pathogen, which was negatively related to persistence292

time distributional fits, while we failed to detect any relationship with metapopulation capacity293

(Figure 4). Together, we found strong relationships between the metapopulation capacity and294

both measures of dispersal network structure and local environmental covariates (Figure 4), but295

generally slightly weaker relationships for the distributional fits to patch persistence times.296

Discussion297

The majority of patch persistence time distributions were best fit by the power law, clarifying a298

link between extinction time distributions from population ecology – as well as other power law299

relationships (Marquet et al., 2005) – and patch-scale persistence time distributions of interconnected300

populations. Weak correlations between composite measures of each SIN (mean persistence time301

and mean occupancy) and metapopulation capacity belie the significant positive relationship302

between structural (metapopulation capacity) and temporal (persistence time distributional fit)303
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measures. This provides evidence for a clear relationship between the two measures of metapopulation304

persistence, despite the two measures using information on either static network topology (as305

estimated in the landscape matrix M) or temporal data on patch persistence times, effectively306

linking two approaches to the estimation of metapopulation persistence. Further, several environmental307

and network structural variables were correlated with both metapopulation persistence measures.308

However, we found little support for the hypothesis that persistence time distributional fits would309

be more closely related to aspects of patch quality which are not considered in the calculation of310

metapopulation capacity. This suggests that – at least in the Åland island system – persistence311

time distributions for each SIN are largely unrelated to habitat variables at the scale of the entire312

metapopulation. Taken together, this suggests a strong link between spatial network topology313

and the resulting dynamics, provides evidence for the use of persistence time distributions to314

understand metapopulation persistence, and extends theory related to heavy-tailed population315

extinction time distributions to understanding interconnected populations and metapopulations.316

. Patch persistence time distributions characterized by high values – corresponding to dynamic317

metapopulations where rapid colonization and extinction events shorten the tail of the persistence318

time distribution – were associated with high metapopulation capacity (α). This suggests that319

the existence of long-term persistent patches may not be a signature of overall metapopulation320

persistence. The opposite appears to be the case, where metapopulations composed of patches321

which rapidly become extinct and are rapidly recolonized tend to be the most structurally322

persistent (based on metapopulation capacity). This finding may be influenced by species traits323

such as dispersal ability and survival. However, a species which colonizes a set of habitat324

patches and persists in each patch is not a true metapopulation (Harrison and Taylor, 1997).325

However, the persistence time distribution may be useful outside of these true metapopulations,326

as understanding the distribution of extinction times is central to population ecology (Drake,327

2006, 2014). Further, the persistence time distribution may signal metapopulation "type" (as328

defined in Harrison and Taylor (1997)), as mainland-island metapopulations would have a longer329

tailed persistence time distribution relative to the classical metapopulation or patchy population.330
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. We failed to detect strong relationships between persistence time distributional fits and local-scale331

environmental variation in the Åland island metapopulation. The lack of relationship between332

persistence time distributional fits and patch quality variables might simply be a function of the333

inherent variation in persistence time distributions and the subsequent power law distributional334

fits. This is because habitat patch persistence may largely be a stochastic process, in which335

patches go extinct and are recolonized often. This, in turn, strongly influences the distribution336

of persistence times and resulting distributional fits. Despite the weak relationships between337

patch quality and persistence time distributions, we found strong relationships between network338

structure (e.g., modularity) and both measures of metapopulation persistence, suggesting a signal339

of the effect of landscape matrix structure on resulting metapopulation persistence. Lastly,340

metapopulation capacity was found to be positively related to local-scale habitat covariates341

(e.g., mean patch area), even when patch area was not used to quantify dispersal links in the342

metapopulation (Figure A8). These correlations could not be explained by the associations343

between patch area, resource abundance, and grazing pressure (Figure A9) alone (see Supplemental344

Materials for further discussion). Spatial autocorrelation in local environmental conditions which345

scale up to the network level might result in correlations between environmental covariates and346

metapopulation capacity as well. Examining other metapopulation systems may provide insight347

into the relative strength of relationships between environmental and topological covariates and348

measures of metapopulation persistence.349

. To date, metapopulation persistence in a dynamic sense has largely been determined through350

model simulations, which quantify metapopulation persistence as the fraction of simulations351

in which the metapopulation avoids extinction (Molofsky and Ferdy, 2005) or the mean time352

until metapopulation extinction (Johst et al., 2002). While models may be parameterized with353

observational data, there remains a disconnect between the theory of metapopulation persistence354

and metapopulation dynamics in natural systems (Moilanen, 2002). By quantifying metapopulation355

persistence using the distribution of persistence times, it is possible to characterize metapopulation356

persistence without the necessity of metapopulation extinction. However, the fit power law357

parameter (α) to the distribution of persistence times has some limitations. For instance, imperfect358
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detection could cause gaps that strongly influence the tail of the persistence time distribution (i.e.,359

those long persisting patches), which can alter the α parameter of the power law. Further, the360

habitat patches which go extinct and are recolonized differentially contribute to the distribution361

of persistence times, as they can contribute many small values, whereas persistent patches362

contribute fewer values. The ideal measure of metapopulation persistence would incorporate363

both information on the spatial arrangement of habitat patches and the persistence times of364

patches. Currently, the measures of metapopulation persistence examined here rely on either365

spatial patch arrangement (metapopulation capacity) or patch persistence times (power law fits).366

Future work should attempt to bridge this gap to capture a complete view of metapopulation367

persistence, as well as incorporating the role of self-connections of habitat patches (Zamborain-Mason368

et al., 2017). Lastly, it is noteworthy that these measures of metapopulation persistence may be369

independent of metapopulation stability in some situations. That is, the measures of metapopulation370

persistence used here may not capture the ability of the metapopulation to recover from a371

perturbation (Gilarranz et al., 2017) (but see Ovaskainen and Hanski (2002)) or targeted attack372

(Albert et al., 2000).373

. The relationship between spatial dispersal network structure and resulting metapopulation374

dynamics is not only of theoretical interest. Designing reserves capable of sustaining persistent375

populations is a high priority in conservation biology and management of endangered species376

(McCarthy et al., 2004; Nicholson and Ovaskainen, 2009). For the majority of these systems, the377

data necessary to calculate persistence time dsitributions are not available. Thus, the finding378

of a positive relationship between structural measures of metapopulation persistence and their379

temporal counterparts suggests that the use of spatial habitat patch arrangement in reserve380

design is justified as a means to enhance metapopulation persistence. Beyond reserve design,381

the arrangement of nodes in spatial networks in a fashion that maximizes persistence is of great382

importance to the design of many different types of networks (Ebel et al., 2002; Kamra et al., 2006;383

Rothenberg, 2001; Wu et al., 2017), including those related to transportation (e.g., highways),384

communication (e.g., telephone service centers), disease transmission, and sensor arrays (e.g., air385

quality towers). Providing demonstrations of the relationships between topological properties of386

17



networks and their corresponding dynamics will further aid the creation of persistent networks.387

Identifying these topological properties in ecological networks provides evidence for self-organization388

to promote persistence, providing insight into the structure and stability of ecological systems.389
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Figure legends522

Figure 1: Estimates of metapopulation persistence were based on either the structure of the

interaction network (a) or the distribution of patch persistence times (c), where measures

exclusively consider either landscape matrix structure or patch persistence times, respectively.

Estimates of metapopulation persistence are mapped onto the set of 88 semi-independent

networks in the Åland islands (b and d), illustrating the variation in metapopulation capacity

in b and the power law fit (α) to the persistence time distribution (d). Grey shaded polygons

correspond to networks where network statistics could not be calculated.

Figure 2: Relationships between metapopulation persistence measures – metapopulation capacity

(λ) and persistence time distributions (power law fits; α) – and the mean persistence time of

patches (a and b) and the mean fraction of occupied patches (c and d) for each semi-independent

network (SIN). Reported statistics correspond to Spearman’s partial rank correlation coefficient

and associated p-value.
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Figure 3: The relationship between metapopulation capacity (λ) and persistence time

distributions (power law fits; α) for each semi-independent network (SIN). Error bars represent

the estimated standard deviation in the α parameter, and point size is proportional to the p-value

of the goodness of fit test for the power law fit to the persistence time distribution. Reported

statistics correspond to Spearman’s rank correlation coefficient and associated p-value.

Figure 4: Spearman’s correlation coefficients between network (in blue) and environmental (in

green) covariates, and both measures of metapopulation persistence ((metapopulation capacity

λ and persistence time distribution fits α). The grey line corresponds to an equally strong

correlation with both measures of metapopulation persistence. The majority of covariates are

close to this line, signaling a similar relationship between each covariate and the two persistence

measures.
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538

Properties of semi-independent networks539

The semi-independent networks (SINs) examined in this manuscript were made up of a wide540

range of habitat patches in terms of overall number of patches per SIN (Figure A1) and area of541

each patch (Figure A6). We view this as an overall strength, as this likely increases the chances542

that our findings are robust to other metapopulation systems.543
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Figure A1: The distribution of the number of habitat patches for each semi-independent network

(SIN) in the Åland islands system.
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Power law fits to patch persistence times544

Best fit power law distributions to the empirical data different greatly in their best fit parameterizations545

of xmin – corresponding to the lower threshold persistence time in the power law fit (Figure A2)–546

and α – corresponding to the scaling or shape parameter of the power law (Figure A3). Further,547

the standard deviation in the best fit parameter for each semi-independent network tended to be548

fairly large as xmin and α became larger (Figure A4), demonstrating a clear relationship between549

the two fit parameters. Finally, the result of the best fit power laws to the persistence time550

distribution for a sample of the semi-independent networks demonstrates both the difficulty in551

fitting some distributions (e.g., SIN 107 in Figure A5) and the qualitative goodness of fit to other552

persistence time distributions (e.g., SIN 17,22,and 3 in Figure A5).553
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Figure A2: The distribution of xmin values for the set of semi-independent networks,

corresponding to the lower threshold for the power law fitting procedure, optimized using the

Kolmogorov-Smirnoff statistic.
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Power law fit parameter (α)
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Figure A3: The distribution of power law fit scaling parameter (α) for the set of semi-independent

networks. The majority of values fall between 2 and 3, as suggested in other empirical systems

(Clauset et al., 2009).
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Figure A4: The relationship between the power law fit xmin and scaling parameter (α). Points

are best fit values, and error bars correspond to standard deviations in parameter estimates.
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Figure A5: A set of nine of the patch persistence time distributions (bars) and power law fits

(black lines, values of power law α parameter in black), where each panel corresponds to a single

SIN (SIN identifier in color).
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Without considering patch area in the landscape matrix554

Patch area was included in quantification of links between habitat patches. This assumes that555

larger habitat patches are more strongly connected than smaller habitat patches. The putative556

mechanism underlying this is that larger habitat patches support larger populations, and dispersal557

is density-dependent, resulting in a larger number of emigrants from large habitat patches. Patch558

area was quite variable in the set of habitat patches and SINs examined (Figure A6), suggesting559

that patch area may play a large role in estimating entries of the landscape matrix M. Here,560

we quantify metapopulation capacity based on a landscape matrix (M) without the influence of561

patch area, finding strikingly similar results compared to when patch area was included (Figure562

A7 and A8).563
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Figure A6: The distribution of habitat patch areas (log+1 transformed) in the Åland islands.
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close to this line, signaling a similar relationship between each covariate and the two persistence

measures.
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Resource availability and grazing pressure564

Numerous relationships existed between environmental variables and metapopulation capacity,565

despite metapopulation capacity being based solely on the landscape matrix (M). Given this, why566

is metapopulation capacity often related to environmental variables? One potential reason is that567

collinearity among patch area and environmental variables allows environmental variation to be568

captured by metapopulation capacity. This can be observed in the relationship between patch569

area and resource availability (r = 0.30, p = 0.004), and in the subsequent relationship between570

resource availability and grazing pressure (r = -0.37, p = 0.0003; Figure A9). However, as noted571

in the main text, this explanation does not account for the fact that environmental correlations to572

metapopulation capacity (Figure A8) were maintained when patch area was removed from the573

estimation of the landscape matrix (M).574
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Figure A9: The relationship between mean resource availability – quantified as the mean of the

sum of V. spicata and P. lanceolata abundance values across the sampling period – and mean

grazing pressure over the same time period.
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