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Abstract

Motivation: Long-read RNA sequencing technologies are establishing themselves as the primary techniques to
detect novel isoforms, and many such analyses are dependent on read alignments. However, the error rate and
sequencing length of the reads create new challenges for accurately aligning them, particularly around small exons.

Results: We present an alignment method uLTRA for long RNA sequencing reads based on a novel two-pass
collinear chaining algorithm. We show that uLTRA produces higher accuracy over state-of-the-art aligners with sub-
stantially higher accuracy for small exons on simulated and synthetic data. On simulated data, uLTRA achieves an
accuracy of about 60% for exons of length 10 nucleotides or smaller and close to 90% accuracy for exons of length
between 11 and 20 nucleotides. On biological data where true read location is unknown, we show several examples
where uLTRA aligns to known and novel isoforms containing small exons that are not detected with other aligners.
While uLTRA obtains its accuracy using annotations, it can also be used as a wrapper around minimap2 to align
reads outside annotated regions.

Availabilityand implementation: uLTRA is available at https://github.com/ksahlin/ultra.

Contact: ksahlin@math.su.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The transcriptome has been identified as an important link between
DNA and phenotype and is therefore analyzed in various biological
and biomedical studies. For these analyses, RNA sequencing has
established itself as the primary experimental method. Some of the
most common transcriptome analyses using RNA sequencing data
include predicting and detecting isoforms and quantifying their
abundance in the sample. These analyses are fundamentally under-
pinned by the alignment of reads to genomes. As a transcriptomic
read can contain multiple exons, alignment algorithms are required
to handle split alignment of a read to multiple exonic regions of the
genome, referred to as a spliced alignment.

Spliced alignment is a challenging computational problem,
and a plethora of different alignment algorithms have been pro-
posed for splice alignment of short-read RNA-seq, with some of
the key algorithmic advances given in TopHat (Trapnell et al.,
2009), STAR (Dobin et al., 2013), HISAT (Kim et al., 2015),
GMAP (Wu et al., 2016) and HISAT2 (Kim et al., 2019). While
short-read RNA sequencing has shown unprecedented insights
into transcriptional complexities of various organisms, the read-
length makes it difficult to detect isoforms with complicated splic-
ing structure and limits quantification of isoform abundance
(Zhang et al., 2017).

Long-read transcriptome sequencing protocols such as Pacific
Biosciences (PacBio) Iso-Seq sequencing (Wang et al., 2016) and
Oxford Nanopore Technologies (ONT) cDNA and direct RNA
sequencing (Workman et al., 2019) are now establishing themselves
as the primary sequencing techniques to detect novel isoforms.
Long-read sequencing technologies can sequence transcripts from
end to end, providing the full isoform structure and therefore offer
accurate isoform detection and quantification. Such protocols have
opened up the possibility to investigate the isoform landscape for
genes with multiple gene copies (Sahlin et al., 2018) and complex
splicing patterns (Tseng et al., 2019), as well as to accurately de-
cipher alleles (Tilgner et al., 2014) and cell-specific (Gupta et al.,
2018) isoforms. However, the long-read technologies also offer new
algorithmic challenges because of the higher error rate and longer
sequencing length which makes most short-read alignment algo-
rithms unsuitable for long-read splice alignment (Kri�zanovi�c et al.,
2018). Therefore, long transcriptomic reads have, similarly to short
reads, prompted splice alignment algorithm development. Some
short-read aligners have been modified for long-read splice align-
ment (Dobin et al., 2013; Wu et al., 2016), while other aligners have
been designed for splice alignment of long reads (Boratyn et al.,
2019; Li, 2018; Liu et al., 2019; Mari�c et al., 2019). A recent
method also suggested improving long-read splice alignments using
ensemble prediction of splice sites (Parker et al., 2021). First,
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splice sites present in the sample are predicted using an ensemble of
reads aligned in the region. In the second step, reads are aligned
again using the predictions as a guide. There are also methods
for post-correction of long-read splice alignments using ensemble-
based predictions (Workman et al., 2019). However, methods
that use alignments from multiple reads to form consensus splice
site predictions may over-correct less abundant splice sites and
other rare events. Due to this limitation, it is desirable to have
an accurate aligner that individually considers the best alignment
for each read.

A particularly challenging task of long-read splice alignment is
alignment to small exons (<30nt). Firstly, because of their length,
small exons can be highly repetitive in the genome and be shorter
than the required seed match length of the aligner. Secondly, even
if the size is larger than the minimum seed match length, a small
exon is less likely to contain seed matches if there are errors pre-
sent. The inability to align a read to small exons may cause down-
stream analysis tools to predict and quantify erroneous isoforms.
In addition, we show in this study that splice aligners that use
junction-specific alignment penalties can create spurious junctions
by overfitting alignments to canonical splice sites such as GT-AG
junctions.

To alleviate these limitations, we have designed and implemented
a splice alignment algorithm uLTRA that aligns long-reads to a gen-
ome using an exon annotation. uLTRA uses a novel two-pass collin-
ear chaining algorithm. In the first pass, uLTRA, similarly to Li
(2013), uses maximal exact matches (MEMs) between reads and the
transcriptome as seeds. Due to their variable lengths, MEMs provide
more information on the relevance of the hit than fixed-length seeds
employed by many seed-and-extend methods (Dobin et al., 2013;
Kent, 2002; Li, 2018; Liu et al., 2019; Mari�c et al., 2019; Wu et al.,
2016). Candidate genes regions are then identified from the MEM
chaining solution. In the second pass, we design a novel chaining al-
gorithm that aims to form a tiling of exon segments onto the read.
This algorithm allows approximate sequence matches and incorpo-
rates approximate matches, overlap and gap costs into the formu-
lation. The second pass also includes exons of the identified
candidate gene region(s) without a MEM hit. This inclusion allows
alignment to very small exons, which is the primary string of
uLTRA, and differ from other two-pass alignment methods such as
deSALT (Liu et al., 2019) and Graphmap2 (Mari�c et al., 2019).
However, since uLTRA relies on annotations to perform align-
ments around annotated gene regions, the method is limited to
finding isoforms in annotated regions. Therefore, to make uLTRA
more broadly applicable, uLTRA also includes a setting where it
wraps around minimap2 (default). In this setting, uLTRA uses
minimap2’s primary alignments for reads aligned outside the
regions indexed by uLTRA and chooses the best alignment of the
two aligners for reads aligned in gene regions. This setting allows
uLTRA to use minimap2 to detect novel transcripts in unannotated
regions, and uLTRA’s accuracy in annotated gene regions.

We demonstrate using simulated datasets that uLTRA, both as a
stand-alone aligner and as a wrapper around minimap2, produces
much more accurate alignments than other aligners, particularly for
small exons. We also use a dataset with ONT sequencing of synthet-
ic SIRV transcripts (known isoforms) to demonstrate that uLTRA
aligns more reads to transcripts that are known to be in the sample.
Furthermore, we show on biological datasets from both PacBio and
ONT that uLTRA aligns more reads to annotated isoforms and has
alignments to more distinct isoform structures. Finally, we demon-
strate that uLTRA produces alignments to known and novel isoform
structures in the PacBio Alzheimer dataset that are not found by
other aligners. These isoform structures come from genes that have
been studied or linked to Alzheimer’s disease and motivate the utility
of our method for a range of downstream analysis tasks such as iso-
form prediction and detection, splice-site analysis, isoform quantifi-
cation and more. uLTRA is available at https://github.com/ksahlin/
ultra.

2 Materials and methods

2.1 uLTRA overview
uLTRA solves the algorithmic problem of chaining with overlaps to
find alignments. The method consists of three steps. An overview of
uLTRA is shown in Figure 1. We first construct subsequences of the
genome referred to as parts, flanks and segments (Fig. 1A; details in
Section 2.2). This step corresponds to the indexing step commonly
performed by aligners, where the data structures do not need to be
reconstructed for new sequencing datasets of the same organism.
Our indexing strategy is unique and tailored to the design of the
algorithm.

To align reads, uLTRA first finds maximal exact matches
(MEMs) between the reads and the parts and flanks using slaMEM
(Fernandes and Freitas, 2014) (Fig. 1B). Each read will have a set of
MEMs to the genome reference sequences (e.g. a set of chromo-
somes). Furthermore, we partition the instances within chromo-
somes if two consecutive MEMs on the chromosome are separated
by more than a parameter threshold provided to uLTRA. For each
instance, uLTRA finds a collinear chain of MEMs covering as much
of the read as possible (allowing overlaps of MEMs in the read). We
use Algorithm 1 in Mäkinen and Sahlin (2020) to find such optimal
chaining (see Step 2 in Section 2). The optimal solutions to the
instances produce candidate alignment sites.

In the third step, we design a dynamic programming formulation
that aims to chain together the combination of genomic segments
that best fits the read. Each solution to the MEM chaining is proc-
essed as follows. The MEMs in the chaining solution overlap distinct
segments on the genome (segments defined in Section 2; see Fig. 1B
for illustration). Each segment belongs to a set of at least one gene.
uLTRA aligns these segments together with all small exons (from the
same genes) using edlib (�So�si�c and �Siki�c, 2017). Each such alignment
produces a maximal approximate match (MAMs; defined in Section
2), and uLTRA uses all MAMs with alignment accuracy greater than
a threshold T as input for the next chaining problem. There can be
several MAMs of the same segment (or small exon) within a read. In
the chaining of MAMs, we roughly optimize the total weight of
MAMs covering the read while penalizing gaps and overlaps be-
tween MAMs. Here, weight is defined by the alignment accuracy
and the length of the match (see Step 3 in Section 2). The final set of
MAMs produced from the optimal solution(s) constitutes a final set
of segments on the genome (Fig. 1C). Finally, we align the final set
of segments to the read using parasail (Daily, 2016) (semi-global
mode), which produces the final alignment(s) and cigar strings to the
genome.

When uLTRA is used as a wrapper around minimap2, it runs
minimap2 and parses minimap2’s alignments to find primary align-
ments outside the regions indexed by uLTRA. These alignments are
not considered for alignment with uLTRA. uLTRA then proceeds to
align all remaining reads. In a final step, uLTRA compares the reads
that have been aligned with both aligners and selects the best align-
ment based on edit distance to the genome. The final output SAM-
file consists of the best alignments to uLTRA-indexed regions and
the alignments of minimap2 outside the regions indexed by uLTRA.

2.2 Step 1: indexing
A part is defined as the smallest genomic region fully covering a set
of overlapping exons (Fig. 1). By construction, parts are disjoint
regions of the genome. Flanks are constructed by taking regions of
size F nucleotides downstream and upstream of parts. If two parts
are separated with a distance of less than F nucleotides, then the
non-overlapping region between the two parts is chosen as a flank
region (Fig. 1). By construction, flanks are disjoint regions, both in
relation to each other and to parts. Finally, segments are constructed
from start and end coordinates of exons. Segments are constructed
for each part individually as follows. For a sorted array of exon start
and stop coordinates within a part, a segment is constructed for each
pair ðxi;xiþ1Þ of adjacent coordinates in the array if xiþ1 � xi � X
where X is a parameter to uLTRA (set to 25). If xiþ1 � xi < X,
uLTRA iteratively attempts to add segments in each direction until
success. That is, uLTRA attempts to add ðxi�k;xiþ1Þ and ðxi; xiþ1þkÞ
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for k ¼ 1;2; . . . ; until the first success in each direction. Finally,
there may be parts where y� x < X (see exon e7 in Fig. 1). Small
segments, exons or parts have a lower probability of containing a
MEM, and may therefore not have a MAM. We address this compli-
cation as follows. uLTRA stores all exons and segments smaller than
a threshold in a container that links gene ID to the small segments.
This data structure will be queried, and all small segments will be
included, whenever there are MEMs to segments linked to the same
gene ID.

2.3 Collinear chaining with MEMs
A Maximal Exact Match (MEM) ð½a::b�; ½c::d�Þ means that a genome
segment ½a::b� matches a read segment ½c::d�, and that such a match
cannot be extended in either direction. We use notation A½i�:x to de-
note the endpoints of MEMs for x 2 a;b; c;d. Let array A½1::n� con-
tain the MEMs. A chain S is a collinear subset of A, meaning that
S½i�:a < S½iþ 1�:a and S½i�:c < S½iþ 1�:c for 0 < i < n [i.e. satisfy-
ing the weak precedence (Mäkinen and Sahlin, 2020)]. Coverage(S)
is defined as the number of identities in an alignment induced by S,
i.e. the length of the anchor-restricted LCS (longest common subse-
quence) of reference and the read, where anchor now means a MEM
(Mäkinen and Sahlin, 2020): If there are no overlaps between
MEMs in chain S, Coverage(S) is the overall length of MEMs in S,
but if there are, the score is adjusted by adding only the minimum
length of the non-overlapping parts of the consecutive MEM inter-
vals (Mäkinen and Sahlin, 2020). Here, we look for chains that have
no overlaps in the genome, so for finding S that maximizes
Coverage(S), we use Algorithm 1 in Mäkinen and Sahlin (2020) that
runs in Oðn log nÞ time.

2.4 Collinear chaining with MAMs
We refer to an approximate match, as an alignment of a genome seg-
ment ½a::b� to a read segment ½c::d� with an accuracy higher than a
threshold (parameter to uLTRA). Here, accuracy is defined as the

number of matches divided by the length of the alignment. We find
approximate matches of the genome segment by aligning it in
semi-global mode to the read using edlib (�So�si�c and �Siki�c, 2017).
The length of the alignment is defined by the genome segment’s first
and last nucleotide coordinates. A Maximal Approximate Match
(MAM) ð½a::b�; ½c::d�Þ means that genome segment ½a::b� matches ap-
proximately read segment ½c::d� and that no other approximate
match has higher accuracy on the read. Intuitively, a MAM can be
seen as the semi-global alignment that has the highest accuracy
where the segment is forced to be fully aligned. Furthermore, we let
k 2 ½0; 1� be the penalty for each nucleotide that overlaps (on the
read) between two MAMs and d 2 ½0;1� the penalty for the distance
between two MAMs (on the read). Let array A½1; . . . ;N� contain the
MAMs where we use the following notation: A½i�:a;A½i�:b;A½i�:
c;A½i�:dA½i�:acc to denote the genome start, genome stop, read start,
read stop and accuracy of MAM i. Let S½1; . . . ;m� be a chain of the
MAMs in A under the weak precedence constraint (Mäkinen and
Sahlin, 2020). For two MAMs x, y in A, we introduce the following
functions. Let vðxÞ ¼ ðx:d � x:cÞ; oðx; yÞ ¼ maxf0; x:d � y:cg (the
overlap), and dðx; yÞ ¼ 0; y:c� x:d (the distance between MAMs)
on the read, then the score(S) of a MAM-chain is defined as

scoreðSÞ ¼
Xm

i¼1

ðvðS½i�Þ � oðS½i� 1�; S½i�ÞÞS½i�:acc

�koðS½i� 1�; S½i�Þ � ddðS½i� 1�; S½i�Þ;

where oðS½0�; S½1�Þ ¼ dðS½0�; S½1�Þ ¼ 0
We find the chain Smax ¼ maxchainsSscoreðSÞ. This formulation in-

tuitively selects the solution with the best coverage and accuracy,
while penalizing overlapping MAMs or MAMs that occur far apart.
This formulation is solved with a dynamic programming algorithm:
Sort array A½1; . . . ;N� by values A½i�:a. Let W½0; . . . ;N� be the target
array, where we wish to store for each W½i� the maximum score over
chains ending at MAM A½i�. To compute W½i�, one can consider
adding A½i� to chains ending at A½i0�; i0 < i with A½i0�:c < A½i�:c.

uLTRA method

Read 1

Reference

Exon
annotations

Segments

(Find MEMs against)

(Find MAMs against)

e1
e2

e3

e1

s2

e4
e5

e6

e7 e8
e9

s4

< T < T

Read 2

Read 1 MEMs

Read 2 MEMs

Read 1

Preparation

MEM chaining

Read 2

s5s1 s3 s6 s7 s8 s9

s2s1 s5 s6 s9 s2 s4 s5 s8 s9

e3 e4

e5

e5 e5

e7 e7

e7

e7 e8

e9

Step 1

Step 2

Step 3 MAM chaining

1 2 3 4 5

7

6

9 118 10 12

1
2 3 4

5
6

7

8 9 10 11 12

Reference

Fig. 1. Overview of the uLTRA alignment algorithm. (Step 1) Segments (in color labeled sX, X 2 ½1; 9�), parts (in color) and flanks (in grey) are stored and indexed for align-

ment. Small exons and segments below a threshold (indicated with <T in the figure) are not indexed for MAM chaining but stored for the MAM chaining. (Step 2) In the align-

ment step, MEMs in the reads to the parts and flanks are computed. Collinear chain(s) of MEMs covering as much of the read as possible are obtained for each read. Solutions

may contain MEMs from intronic regions as is the case for read 2 in the figure (MEM number 10). The solution in step 2 consists of MEMs that overlap segments and/or flanks

that are linked to gene IDs. (Step 3) All the segments and flanks assigned to the same gene IDs as the MEMs in the solution of step 2, including small exons and segments

excluded from the indexing, are retrieved and aligned to the read to form a set of MAMs. Collinear chains of MAMs are found by optimizing for coverage and alignment iden-

tity according to the dynamic programming formulation in Section 2.4. The segments that are part of the solution to the MAM chaining are illustrated with solid black border

in the figure, while the segments that are not part of the solution appear in gray. Some segments and exons might not align well with the read in this step, as is the case with e5

to read 2, and are illustrated by the broken alignment. The collinear chaining solution of MAMs is used to produce the final alignment of the read to the genome
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This increases the score by wði0; iÞ ¼ ðvðA½i�Þ � oðA½i0�;A½i�ÞÞA½i�:
acc� koðA½i0�;A½i�Þ � ddðA½i0�;A½i�Þ. After initializing W½0� ¼ 0, we
can set W½i� to the maximum over W½i0� þwði0; iÞ for 0 � i0 < i
with A½i0�:c < A½i�:c from left to right, and the maximum scoring
chain can be traced back starting from the maximum value in
W½1; ::;N�. Although this computation takes quadratic time, in prac-
tice the instances of segments are small enough to be solved quickly.
It is not known whether our formulation allowing weighted hits,
overlap and gap penalties can be solved in subquadratic time, al-
though recent breakthroughs have been made for chaining problems
allowing overlap and gap costs (Jain et al., 2021).

2.5 Wrapping around minimap2
uLTRA can be used as a wrapper around minimap2 to detect align-
ments outside annotated regions. In this mode, uLTRA first runs
minimap2. After reads have been aligned with minimap2, uLTRA
parses minimap2’s alignments to find reads with primary alignments
outside the regions indexed by uLTRA. A read with more than a
fraction of X nucleotides (parameter to uLTRA; X¼0.1 used here)
out of the total aligned nucleotides is considered genomic and not
realigned with uLTRA. We use an interval-tree data structure to
hold the indexed regions to find overlap of a read and indexed
regions. This permits an OðlogQÞ query time, where Q is the num-
ber of intervals on the chromosome to which the read is aligned. The
alignments that are classified as genomic are not aligned with
uLTRA. uLTRA then proceeds to align all remaining reads. Instead,
uLTRA will report minimap2’s primary alignments for these reads.
uLTRA then proceeds to align all reads not classified as genomic as
described. In a final step, uLTRA compares the reads that have been
aligned with both aligners and selects the best alignment based on
edit distance to the genome. The final output SAM-file consists of
the best alignments to uLTRA-indexed regions and minimap2’s
alignments of genomic reads. As most genomes have incomplete
exon annotations, the minimap2 wrapping-mode is the default set-
ting to uLTRA. In cases where the annotation is guaranteed to be
complete, such as for smaller organisms or controlled SIRV datasets,
uLTRA can be run as a stand-alone tool.

2.6 Implementation
2.6.1 Chaining of MEMs

In the implementation, the optimal solution instance is found
through backtracking. If several possible traceback paths lead to the
same optimal value for a given optimal value in the traceback vector,
uLTRA will always choose the closest MEM, i.e. the one with the
highest index j. This means that the MEM with the closest genomic
coordinate is chosen if several exist.

If several optimal chaining solutions are found, i.e. several posi-
tions in the vector traceback vector have the optimal value, uLTRA
will report all of the solutions by backtracking each instance (as
described above). This is not a rare case since there can be identical
or highly similar gene copies annotated on the genome that give the
same optimal value.

Since each read can have several chaining instances to solve,
uLTRA pre-calculates the theoretical maximum MEM coverage that
an instance can have, which is upper bounded by the sum of all the
regions covered by MEMs in the reads. uLTRA then solves the
chaining instances by highest upper bound on coverage. If at any
point the upper bound drops below a drop-off threshold (parameter
to uLTRA) the current best solution uLTRA skips to calculate the
rest of the instances. There is also a parameter to limit the number of
reported alignments.

2.6.2 Chaining of MAMs

MAMs are formed by aligning segments and exons with at least an
alignment identity of X% (default 60), and in case of exons between
5 and 8 nucleotides in length, an exact match is required. Exons of
4 bp or less are ignored because of the potential blowup in the num-
ber of matches across the read. Similarly to the MEM chaining, the
traceback will choose the MAM with the highest index j.

2.6.3 Alignment reporting

The exons that are included in an optimal solution of the MAM
chaining are concatenated into an augmented reference, and the read
is aligned to this reference using parasail (Daily, 2016) in semi-
global mode. The alignment score and cigar string are computed
from the alignment. Among all MAM instances for a read, the high-
est scoring one is selected as the primary alignment. If a read has
multiple best scoring alignments, the one with the shortest genomic
span of the alignment is reported, and if still a tie, an alignment
matching the annotated splice sites is preferred.

A read is assigned as unaligned if the alignment score is lower
than X �m � r, where r is the read length, m is the match score (set to
2 in parasail; see Supplementary Note SA for details) and X is a par-
ameter to uLTRA (set to 0.5). The default setting roughly corre-
sponds to classifying a read as unaligned if it has more than 25%
errors, or if a larger segment of the read is from a region that is not
included in the indexing.

2.6.4 Output

uLTRA outputs alignments in SAM-file format with genomic coor-
dinates as annotated by the transcript database. In addition, uLTRA
outputs a transcript annotation of the alignment following the defi-
nitions in Tardaguila et al. (2018) (described in results) in the SAM-
file in the optional field ‘CN’.

3 Results

3.1 Evaluation overview
We evaluated uLTRA against the two state-of-the-art transcriptomic
long-read aligners minimap2 and deSALT. We also attempted to
evaluate GraphMap2 but were unsuccessful in using the tool (see
Supplementary Note SA). Several additional alignment methods can
perform splice alignment of long transcriptomic reads such as
BBMAP (Bushnell, 2014), GMAP (Wu et al., 2016) STAR (Dobin
et al., 2013) and HISAT2 (Kim et al., 2019). A recent benchmarking
(Kri�zanovi�c et al., 2018) showed that GMAP performed the best
among the tools compared on long noisy reads from complex
genomes such as the human genome. Additional recent methods not
included in Kri�zanovi�c et al., (2018) include Graphmap2 (Mari�c
et al., 2019), minimap2 (Li, 2018), deSALT (Liu et al., 2019) and
Magic-BLAST (Boratyn et al., 2019). However, in (Liu et al. 2019),
the authors showed that deSALT, minimap2 outperformed GMAP
across a large range of datasets, while in Boratyn et al. (2019),
which compared performance on both short and long reads, mini-
map2 performed the best for long noisy reads. Therefore, we com-
pare uLTRA to the more recent and best performing aligners
minimap2 and deSALT. We run minimap2 and deSALT both with
and without annotations as the two aligners support such modes.
A tool that is run with annotations has ‘_GTF’ appended to its
name. We used parameters for minimap2 and deSALT for the Iso-
Seq and ONT datasets as recommended by the developers (Li,
2018). We also ran uLTRA both as a stand-alone tool (labeled
uLTRA) and as a wrapper around minimap2 (labeled
uLTRA_mm2). Details for how the aligners were run are found in
Supplementary Note SA.

We used three simulated, one synthetic and two biological
datasets from both ONT and PacBio Iso-Seq (Table 1) to evaluate
the alignment algorithms. We used simulated datasets with
known annotations to investigate the accuracy of spliced align-
ments as a whole, and of individual exons as a function of exon
size. We used the synthetic SIRV data to investigate how aligners
perform when aligning real sequencing reads to isoform structures
known to be in the sample. Finally, for the biological data where
we do not have the ground truth annotations we measured the
concordance in alignments between alignment methods. We also
demonstrate that relying on alignment concordance as a proxy for
alignment accuracy can be misleading due to similar alignment
biases between aligners. We also report runtime and memory
usage.
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3.2 Alignment accuracy
We used three in silico datasets to test the alignment accuracy in a
controlled setting (Table 1). First, we used 234 207 distinct cDNA
sequences downloaded from ENSEMBL (denoted ENS) without
introducing any simulated errors. We then simulated a dataset of
1 000 000 reads uniformly at random from the 234 207 ENSEMBL
sequences with a mean error rate of 8.6% (denoted SIM_ANN for
simulated annotated transcripts). Finally, to test the ability to align
to transcripts containing novel combinations of exons, we simulated
a dataset with the same error rate as SIM_ANN, which we call
SIM_NIC for simulated Novel-In-Catalog transcripts. This dataset
consists of reads from transcripts with novel exon combinations that
we generated from gencode annotations (release 34, including haplo-
type scaffold annotations). See Supplementary Note SB for details
on the simulations. Since we have the true exon annotation of each
read, we classify the read alignments as correct, inexact, exon differ-
ence, incorrect location and unaligned. In order for an alignment to
be classified as correct, no splice site in the alignment can have an
offset to the true splice site with more than 15 nucleotides, which is
more than the largest indel error we observed in our simulated data,
indicating an alignment error rather than a sequencing error. For
details of these classifications, see Supplementary Note SB.

For SIM_ANN, which contains simulated reads from annotated
transcripts, uLTRA and uLTRA_mm2 have the highest fraction of
correct alignments (93.6% and 94.0%) with a 3.2 percentage point
increase compared to the second-best performing tool deSALT_GTF
(Fig. 2A). uLTRA and uLTRA_mm2 also substantially reduce errors
classified as exon differences compared to the other aligners
(Fig. 2A). Furthermore, we observed that both uLTRA and
uLTRA_mm2 achieve considerably higher accuracy than other

aligners for small exons (Fig. 2B). For comparison, when minimap2
is run as a stand-alone tool, it has an accuracy of 87.9% (Fig. 2A),
which indicated that the majority of uLTRA’s alignments are pre-
ferred. We observed similar trends for the ENS dataset
(Supplementary Fig. S1).

As for the SIM_NIC, which contains only reads with novel com-
binations of exons, uLTRA’s and uLTRA_mm2’s accuracy is as high
as for the ENS and SIM_ANN datasets (Supplementary Fig. S2A).
However, on this dataset uLTRA has a 9.6 percentage point more
correctly aligned reads compared to the second-best performing
aligner deSALT_GTF (Supplementary Fig. S2A), and a 24.4 percent-
age point increase to minimap2. Our results show that the accuracy
is substantially lower for the other aligners across exons sizes on this
dataset (Supplementary Fig. S2B). The differences with SIM_NIC
compared to the other two simulated datasets is that the reads (i)
can be simulated from alternative haplotype sequences and novel
isoform structures, and (ii) that the datasets contain, on average, lon-
ger reads than the ENSEMBL annotation (Table 1).

We also compared results in a stringent setting when we did not
allow any offset between the true and aligned splice sites
(Supplementary Fig. S3). In this setting, uLTRA and uLTRA_mm2
have a more substantial accuracy improvement relative to the other
aligners. While uLTRA_mm2 only has a 3.7 percentage point in-
crease compared to the second-best performing tool deSALT_GTF
on the ENS dataset (Supplementary Fig. S3A), this gap significantly
increases when errors are present to 15.5 and 47.2 between
uLTRA_mm2 and deSALT_GTF for the SIM_ANN
(Supplementary Fig. S3B) and SIM_NIC (Supplementary Fig. S3C),
respectively.

Table 1. Datasets included in evaluationSIRV genome

Technology Dataset Nr reads Median read length Median error rate Genome Annotation

Simulated ENS 234 207 890 0.0% GRCh38.p12 Gencode v34b

Simulated SIM_ANN 1 000 000 864 8.6% GRCh38.p12 Gencode v34b

Simulated SIM_NIC 1 000 000 1272 8.6% GRCh38.p12 Gencode v34b

ONT SIRV 1 514 274 538 6.9% SIRV annotation C_170612a

ONT DROS 3 646 342 559 7.0%a BDGP6.28 Ensembl v100

Iso-Seq ALZ 4 277 293 2699 1.2%a GRCh38.p12 Gencode v34b

aMeasured from minimap2’s alignments. Due to biological sequence variations, the error rate may be lower than the number presented here.
bIncludes alternative haplotypes.

A B

Fig. 2. Alignment results on simulated data for the SIM_ANN dataset. (A) Percentage of reads in each respective category. (B) The fraction of correctly aligned exons (y-axis) as

a function of exon size (x-axis)

uLTRA 4647

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4643/6327681 by N
ational Library of H

ealth Sciences user on 07 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab540#supplementary-data


3.3 Splice site annotation performance on SIRV
While simulated data is good for comparisons due to the availability
of ground truth annotations, it does not fully capture the error pro-
files present in sequencing data. We used a subset of 59 isoforms
with distinct splice site positions from the ONT cDNA SIRV dataset
(Sahlin and Medvedev, 2021) to investigate alignment performance
around splice sites (for details see Supplementary Note SC). In this
dataset we have a complete isoform annotation and the sequenced
isoforms are known. We observed that uLTRA was able to align
more reads to the isoforms, particularly to one isoform that contains
an 8 nt long exon. deSALT and minimap2 did not align the large ma-
jority of reads that contained the exon (Supplementary Fig. S4E).
Overall, uLTRA’s alignments were more equally distributed
across the 59 isoforms, as is expected in the SIRV E0 mix (see
Supplementary Note SC). More details about the analysis and results
are described in Supplementary Note SC.

3.4 Biological data
We also used an Alzheimer brain Iso-Seq dataset (denoted ALZ) and
an ONT cDNA sequencing dataset from Drosophila (Sahlin and
Medvedev, 2021) (denoted DROS). Both datasets have been proc-
essed with respective bioinformatics pipelines to select only the reads
containing full-length transcripts (for details see Supplementary
Note SD).

We neither have the correct read annotations, nor are we guaran-
teed to have a complete gene annotation for the biological datasets,
which presents a challenge when evaluating accuracy. We took the
following approaches. We first compared the alignment algorithms
according to the alignment categories defined in Tardaguila et al.
(2018) (presented in the next section). Secondly, we looked at the
alignment concordance between methods. Here, we investigated
concordance with respect to both alignment location on the genome
and concordance based on the alignments around exons. Thirdly, we
provide several examples of uniquely detected isoforms by uLTRA
(and uLTRA_mm2), which demonstrate the caveats with alignment
concordance analysis without ground truth.

3.4.1 Alignment categories on biological data

We classified alignments using the categories defined in Tardaguila
et al. (2018). As in Tardaguila et al. (2018), we classify an alignment
of a read to the genome as a Full Splice Match (FSM), Incomplete
Splice Match (ISM), Novel In Catalog (NIC), Novel Not in Catalog
(NNC) or NO_SPLICE. An FSM alignment means that the combin-
ation of splice junctions in the read alignment has been observed and
annotated as an isoform. An ISM alignment means that the combin-
ation of splice junctions is in the annotation, but it is missing junc-
tions compared to the annotated models in either the 30 or 50 end. A
NIC alignment consists of junctions that all appear in the

annotation, but not together in a single isoform. An NNC alignment
means that the read aligns with at least one junction that is not in
the annotation, while NO_SPLICE are all alignments without splice
sites. These alignment categories are important for various down-
stream isoform detection methods such as SQANTI (Tardaguila
et al., 2018), TAMA (Kuo et al., 2020) or TALON (Wyman et al.,
2019). See Tardaguila et al. (2018) for details regarding these
definitions.

Overall, the aligners and their different modes produce a similar
distribution of the different alignment categories on both the DROS
(Fig. 3A) and ALZ (Fig. 3B) datasets. We observe that uLTRA,
uLTRA_mm2 and deSALT_GTF align more FSM reads than
deSALT, minimap2 and minimap2_GTF. In the ALZ dataset,
uLTRA has many unaligned reads due to a large fraction of reads
(17.6%) aligning outside uLTRA indexed regions. This highlights
the benefit of not being limited to alignments around gene regions
when aligning transcriptomic data even for well annotated genomes.
We observe that the other aligners, including uLTRA_mm2, have no
unaligned reads. Instead, they attribute a larger fraction of reads in
the category NO_SPLICE (Fig. 3B). It is known that a substantial
fraction of reads in long-read transcriptome sequencing data is com-
ing from so-called intra-priming reads (Tardaguila et al., 2018).
These reads are characterized by aligning without splice junctions to
an unannotated genome location that contains a poly-A stretch
downstream from their 30 end. While not fully characterized, these
reads are likely to be artifacts in the sequencing protocol and often
filtered out in downstream analysis (Tardaguila et al., 2018).

We further investigated concordance in alignments within the
different categories between uLTRA_mm2, deSALT_GTF and mini-
map2. They represent the best setting for each aligner, respectively,
based on our accuracy evaluation on simulated data (Fig. 2,
Supplementary Figs S1 and S2) and alignment consistency analysis
on the synthetic SIRV data (Supplementary Fig. S4).

3.4.2 Alignment concordance on biological data

We looked at alignment concordance both with respect to genomic
region (globally) and around exons (locally). A detailed description
is found in Supplementary Note SE. Overall, we observed that
90.3% and 98.6% of all aligned reads had globally concordant
alignments in DROS and ALZ, respectively (Supplementary Fig. S5).
This indicates that the mapping region is largely consistent between
aligners and that most of the variability occurs in alignments around
exons. We also report local alignment concordance for each cat-
egory, which was lower across each category (Supplementary Figs
S6 and S7).

We also looked in more depth at the concordance of unique iso-
forms detected in the data that had FSM predictions (Supplementary
Fig. S8). In total, 93.6% and 90.1% of the total unique isoforms
with FSM alignments were aligned to by all the three methods on

A B

Fig. 3. Number of reads annotated in different splicing categories for DROS (A) and ALZ (B)
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both datasets, for DROS and ALZ, respectively. Notably, we ob-

serve that uLTRA_mm2 had the most predicted isoforms which
were also predicted by one of the other two aligners. Specifically,

2.2% (DROS) and 4.3% (ALZ) of the isoforms was predicted by
both uLTRA_mm2 and deSALT_GTF, but not by minimap2.

Similarly, 1.6% (DROS) and 1.9% (ALZ) of the isoforms was pre-
dicted by both uLTRA_mm2 and minimap2, but not by
deSALT_GTF. This was substantially more than the shared pre-

dictions between deSALT_GTF and minimap2 that uLTRA_mm2
did not align to, which was only 0.1% and 0.4%, for DROS

and ALZ, respectively. While we have no ground truth, the con-
cordance may indicate that the robust performance that we

observed for uLTRA_mm2 on simulated and synthetic datasets
translates to biological datasets. However, we next looked at

some isoforms that were uniquely detected by uLTRA_mm2,
which highlight the limitations with concordance analysis without

ground truth.

3.4.3 uLTRA aligns to small exons not detected by other aligners

We further investigated some of the isoform structures uniquely

aligned to by uLTRA_mm2 and observed that in several cases,
uLTRA’s alignments were correct. We detected several instances in

the ALZ dataset where uLTRA_mm2 aligned to both known and
novel isoforms containing small exons that were not detected by
other aligners (Supplementary Figs S10–S14). Several of these

uniquely detected isoforms had high read support and came from
genes such as AP2, APBB, HNRNPM, DCTN2, PRNP, MICU1,

SEPTIN7 and APBB1, that have been studied in relation, or linked
directly, to Alzheimer’s disease (Bagyinszky et al., 2019; Calvo-

Rodriguez et al., 2020; Geuens et al., 2016; Tanahashi and Tabira,
1999; Tian et al., 2013; Wang et al., 2018) or other neurodegenera-

tive disorders (Boland et al., 2018; Charbonnier et al., 1997). For a
detailed description of the results and analysis, see Supplementary

Note SF.
In addition, we hypothesized that potential erroneous alignments

by uLTRA_mm2 were present in the small fraction of unique iso-
forms with FSM predictions predicted by both deSALT_GTF and

minimap2 that uLTRA did not align to (0.1% in DROS and 0.4% in
ALZ, Supplementary Fig. S8). We investigated all the eight cases in

the ALZ dataset that (i) has a read coverage over ten FSM reads and
(ii) where minimap2 and deSALT agreed on a unique FSM isoform

but uLTRA_mm2 did not. Strikingly, we found that in all cases but
one, uLTRA_mm2 had better alignments than minimap2 and

deSALT_GTF (Supplementary Figs S15–S17). However, we found a
case where uLTRA_mm2 clearly failed to produce an alignment
over a long intron (302 254nt on chr5, Supplementary Fig. S17).

Our manual inspection showed three types of sources of errors in
long-read splice alignment: (i) small exon misalignment

(Supplementary Fig. S15), (ii) over-fitting canonical splice site
(Supplementary Fig. S16) and (iii) alignment over long introns

(Supplementary Fig. S17). Our analysis highlights that alignment
concordance between aligners may not indicate correct alignment as

concordance can come from the same algorithmic decisions between
aligners such as customized alignment penalties for canonical
regions or inability to align to very short exons.

3.5 Runtime and memory usage
We used a 128 Gb memory node with 20 cores and tested the tools
using both 4 and 19 cores (leaving one core for the main process).
We measured user time (total time from start to finish) and peak
memory usage (highest memory usage across the program lifetime).
Runtimes using 4 cores are shown in Table 2 and 19 cores in
Supplementary Table S1. In general, we observe that deSALT and
minimap2 is faster than uLTRA but the relative runtime perform-
ance decreases with the size of the organism and the length of the
reads. For example, on the two largest datasets, SIM_NIC and ALZ,
deSALT is about 2 times and 1.6 times faster than uLTRA. A com-
putational bottleneck in uLTRA is the MEM finding using slaMEM.
slaMEM trades speed for memory footprint. On the DROS and
ALZ datasets, the MEM-finding step is accountable for 35% and
22% of the total uLTRA runtime when using 4 cores, and for over
60% when using 19 cores. As for the memory, minimap2 has the
smallest peak memory footprint on most datasets (Supplementary
Tables S2 and S3). However, overall, the tools use a comparable
amount of memory. uLTRA_mm2 use more memory with more
cores. For example, on the dataset with the largest peak memory
footprint in our experiments (ALZ), uLTRA_mm2 has a peak mem-
ory usage of 64 Gb using 4 cores and 102 Gb using 19 cores. uLTRA
in standalone mode uses slightly less memory than uLTRA. See
Supplementary Note SG for a detailed discussion of the runtime and
memory usage.

Note: Boldfaced values indicate shortest runtime.

4 Discussion

Splice alignment is an algorithmic problem central for the detection
and prediction and quantification of isoforms. We have presented a
novel splice alignment algorithm, and its implementation uLTRA.
uLTRA aligns long transcriptomic reads to a genome using an anno-
tation of coding regions. In addition, uLTRA can also run as a wrap-
per around minimap2. In this mode, it refines alignments around
gene regions. uLTRA outputs alignments in SAM-format, and classi-
fies the splice alignments according to the classification given in
Tardaguila et al. (2018) under an optional tag in the SAM-file. We
evaluated uLTRA on simulated, synthetic and biological data, and
our analysis highlights some of the challenges with splice alignment
and the current state-of-the-art approaches.

Using simulated data, we demonstrated uLTRA’s increased ac-
curacy over other aligners. Particularly, uLTRA outperformed other
state-of-the-art splice aligners when aligning reads to small exons.
We also observed that uLTRA had high accuracy on the SIM_NIC
dataset while the accuracy of other methods substantially decreased.
Furthermore, the accuracy was lower across exons sizes on this data-
set (Supplementary Fig. S2B). The differences with SIM_NIC com-
pared to the other two simulated datasets are that the reads (i) can
be simulated from alternative haplotype sequences and novel iso-
form structures, and (ii) that the dataset contains longer reads than
the ENSEMBL annotation (Table 1).

We used synthetic ONT data to investigate the performance of
alignment algorithms when aligning reads to known splice sites. Our

Table 2. Runtime of alignment using four cores

Dataset uLTRA uLTRA_mm2 minimap2 minimap2_GTF deSALT deSALT_GTF

ENS 52 min 1 h 11 min 43 min 45 min 18 min 17 min

SIM_ANN 2h 47 min 4h 00 min 2 h 42 min 2 h 48 min 1 h 20 min 1 h 23 min

SIM_NIC 3 h 21 min 6h 40 min 4 h 35 min 4 h 42 min 1 h 46 min 1 h 55 min

SIRV 35 min 50 min 13 min 13 min 6 min 7 min

ALZ 16 h 9 min 17h 32 min 9 h 4 min 9 h 47 min 10 h 16 min 10h 17 min

DROS 1 h 17 min 1h 37 min 18 min 25 min 23 min 23 min
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experiments demonstrate that uLTRA aligns a much higher percent-
age of reads to known isoforms in the data. This holds true when
running uLTRA as a wrapper around minimap2, indicating that
uLTRA’s alignments are preferred based on edit distance of the
alignments. Furthermore, uLTRA’s FSM alignments are distributed
across the 59 isoforms with distinct splice-sites without indication of
alignment bias toward specific isoforms as other aligners have
(Supplementary Fig. S4).

On biological data, we found that uLTRA_mm2 had the most
predicted isoforms which were also predicted by one of the other
aligners. While there is no ground truth for the biological datasets,
the high concordance indicates that the high accuracy we observed
for uLTRA_mm2 on simulated and synthetic datasets translates to
biological datasets. We also demonstrated several examples where
uLTRA aligns reads to the correct isoform structure while the other
aligners do not. We showed several examples where isoforms con-
taining small exons were misaligned (Supplementary Figs S10, S12
and S15), where employing junction-specific alignment penalties
may lead to concordant but erroneous alignments around junctions
(Supplementary Figs S11 and S16), and where alignment fails over
large introns (Supplementary Fig. S17). We observed cases where
homopolymer differences in reads may lead to subtle alignment dif-
ferences causing alignment to novel junctions (Supplementary Fig.
S13). In summary, the examples we provide on biological data dem-
onstrate that using simple concordance analysis between aligners to
measure accuracy can be misleading. Furthermore, the examples
(Supplementary Figs S10–S14) came from genes that have been
studied or linked to Alzheimer’s disease with many of them highly
abundant. As several of these isoforms may not be detected with
other alignment software, we demonstrated the utility of uLTRA
and highlighted the significance of further development of splice
alignment techniques.

We observed a large fraction of reads in the biological dataset
that came from genomic regions in Homo Sapiens and Drosophila,
which are two well-annotated genomes. The large majority of these
reads were aligned as NO_SPLICE (Fig. 3) and are likely to be intra-
priming artifacts produced by long-read protocols (Tardaguila et al.,
2018). In such cases, having an aligner that is not limited to aligning
to only gene regions is preferred. We observed that this is resolved
by using uLTRA as a wrapper around minimap2. Overall, our
experiments on simulated, synthetic and biological data indicated
that uLTRA_mm2 (i.e. uLTRA as a wrapper around minimap2) pro-
duced the most favorable alignments at the cost of a slightly higher
runtime on the biological sequencing datasets.

We noted that the computational bottleneck of uLTRA is the
MEM finding using slaMEM, particularly, it is accountable for over
60% of the total runtime when parallelizing over many cores. As
this is a modular step in the algorithm, we will continue to explore
faster alternatives to generate MEMs, or alternatively, to use other
seeding approaches such as minimizers (Roberts et al., 2004) or stro-
bemers (Sahlin, 2021). While the chaining coverage cannot be com-
puted exactly under those approaches, they may still be suitable as
seeding approaches for our algorithm.

5 Conclusion

We present a new splice alignment algorithm and its implementation
uLTRA. Our method models splice alignment as a two-pass collinear
chaining problem with a novel exon chaining formulation. Our ana-
lysis highlights some of the challenges with splice alignment and the
current state-of-the-art approaches. We show that uLTRA substan-
tially improves splice-alignment accuracy of long RNA-seq reads
using simulated, spike-in and biological datasets. On an Alzheimer
Brain Isoform Sequencing dataset from PacBio, we demonstrate sev-
eral examples where uLTRA aligns reads to previously annotated
and novel isoform structures that the other aligners did not detect.
This highlights the immediate utility that uLTRA has when profiling
a new transcriptome. Furthermore, uLTRA can be used both as a

stand-alone aligner and as a wrapper around minimap2 to handle

reads aligning to unannotated regions.
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