
TPLP 21 (6): 717–734, 2021. c© The Author(s), 2021. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068421000296

717

Harnessing Incremental Answer Set Solving for
Reasoning in Assumption-Based Argumentation∗

TUOMO LEHTONEN
University of Helsinki, Helsinki, Finland
(e-mail: tuomo.lehtonen@helsinki.fi)

JOHANNES P. WALLNER
Graz University of Technology, Graz, Austria

(e-mail: wallner@ist.tugraz.at)

MATTI JÄRVISALO
University of Helsinki, Helsinki, Finland
(e-mail: matti.jarvisalo@helsinki.fi)

revised 10 August 2021; accepted 22 August 2021

Abstract

Assumption-based argumentation (ABA) is a central structured argumentation formalism. As
shown recently, answer set programming (ASP) enables efficiently solving NP-hard reasoning
tasks of ABA in practice, in particular in the commonly studied logic programming fragment
of ABA. In this work, we harness recent advances in incremental ASP solving for developing
effective algorithms for reasoning tasks in the logic programming fragment of ABA that are
presumably hard for the second level of the polynomial hierarchy, including skeptical reasoning
under preferred semantics as well as preferential reasoning. In particular, we develop non-trivial
counterexample-guided abstraction refinement procedures based on incremental ASP solving for
these tasks. We also show empirically that the procedures are significantly more effective than
previously proposed algorithms for the tasks.

KEYWORDS: answer set programming, incremental answer set solving, assumption-based ar-
gumentation, structured argumentation, algorithms, experimental evaluation

1 Introduction

Argumentation, and in particular the study of computational models of argument, consti-

tutes a core research area in artificial intelligence, and knowledge representation and non-

monotonic reasoning in particular (Baroni et al . 2018). Computational models for struc-

tured argumentation, as opposed to abstract argumentation, make the internal structure

of arguments explicit, supporting the view that arguments are most often made explicit

∗ Work financially supported by Academy of Finland (grant 322869), University of Helsinki Doctoral
Programme in Computer Science DoCS, and the Austrian Science Fund (FWF): P30168-N31 and
I2854.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068421000296
https://orcid.org/0000-0001-6117-4854
mailto:tuomo.lehtonen@helsinki.fi
mailto:wallner@ist.tugraz.at
mailto:matti.jarvisalo@helsinki.fi
https://crossmark.crossref.org/dialog?doi=10.1017/S1471068421000296&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


718 T. Lehtonen et al.

through derivations from more basic structures, thereby having an intrinsic structure.

Various structured argumentation formalisms have been proposed, each with their own

features and applications (Čyras et al . 2018; Modgil and Prakken 2018; Besnard and

Hunter 2018; Garćıa and Simari 2018).

In this work we focus on the commonly studied logic programming fragment of

assumption-based argumentation (ABA) (Čyras et al . 2018) and its extension, ABA+,

equipped with preferences (Čyras and Toni 2016a). These central structured argumenta-

tion formalisms have found applications for example, in decision making in a multi-agent

context (Fan et al . 2014), game theory (Fan and Toni 2016), and in choosing treatment

recommendations based on clinical guidelines and preferential information given by pa-

tients (Čyras and Oliveira 2019). In addition to applications, the challenge of developing

efficient systems for ABA reasoning is also highlighted by the 2021 ICCMA argumenta-

tion system competition, which for the first time called for ABA reasoning systems for

several NP-hard problems.

Among the algorithmic approaches proposed for reasoning in ABA (Dung et al . 2006;

Gaertner and Toni 2007; Toni 2013; Craven et al . 2013; Craven and Toni 2016; Lehtonen

et al . 2017; 2021a), in terms of scalability arguably the currently most efficient practical

approach is based on encoding ABA reasoning tasks declaratively using answer set pro-

gramming (ASP) (Gelfond and Lifschitz 1988; Niemelä 1999), and invoking off-the-shelf

ASP solvers for the reasoning part (Lehtonen et al . 2021a; Caminada and Schulz 2017).

While this approach is noticeably more efficient than other competing ABA reasoning

systems on NP-complete variants of ABA reasoning, the approach was not directly ex-

tended to cover all beyond-NP variants of ABA reasoning, that is, reasoning tasks which

are presumably hard for the second-level of the polynomial hierarchy. In particular, skep-

tical acceptance in ABA under preferred semantics was treated resorting to the so-called

Asprin approach, although a direct treatment would be viable. Further, credulous rea-

soning in ABA+ under admissible and complete semantics was not covered.

Motivated by the success of ASP-based ABA reasoning, in this work we harness very

recent advances in incremental ASP solving (Kaminski et al . 2020; Gebser et al . 2011) for

developing counterexample-guided abstraction refinement (CEGAR) (Clarke et al . 2003;

2004) style algorithms for skeptical reasoning in ABA under preferred semantics, as well

as credulous reasoning in ABA+ under admissible and complete semantics. Compared

to the currently existing ABA reasoning systems supporting these tasks, in particular

the Asprin-based (Brewka et al . 2015) approach to reasoning in ABA under preferred

semantics (Lehtonen et al . 2021a), and the ABAplus system (Bao et al . 2017) for enu-

merating admissible and complete assumption sets in ABA+, our approach provides

significant performance improvements in practice and allows for directly reasoning about

credulous acceptance in ABA+. Our implementation is available at https://bitbucket.

org/coreo-group/aspforaba.

2 Assumption-based argumentation

We recall ABA (Bondarenko et al . 1997; Toni 2014; Čyras et al . 2018) and ABA+ (Čyras

and Toni 2016a;b; Bao et al . 2017; Čyras 2017) which extends ABA with preferences over

assumptions. We define ABA+ frameworks, as ABA+ is a generalization of ABA.

We focus on the commonly studied logic programming fragment of ABA and ABA+.

In particular, we assume a deductive system (L,R) with L a set of atoms and R a set

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://bitbucket.org/coreo-group/aspforaba
https://bitbucket.org/coreo-group/aspforaba
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 719

of inference rules over L with a rule r ∈ R having the form a0 ← a1, . . . , an with ai ∈ L.
To distinguish ABA atoms from atoms in ASP, we refer to the former as sentences. We

denote the head of rule r by head(r) = {a0} and the (possibly empty) body of r by

body(r) = {a1, . . . , an}.
An ABA+ framework is a tuple F = (L,R,A, ,≤) with (L,R) a deductive system, a

set of assumptions A ⊆ L, a function mapping assumptions A to sentences L, and a

preorder ≤ on A. The strict counterpart < of ≤ is defined as usual by a < b iff a ≤ b and

b �≤ a, for a, b ∈ A. An ABA framework, that is ABA+ without preferences, is an ABA+

framework with ≤ = ∅, denoted by (L,R,A, ). In this paper, we focus on so-called flat

ABA+ frameworks where assumptions cannot be derived, that is, do not occur in heads

of rules. We assume that each set in an ABA+ is finite.

There are two notions of derivations for ABA: tree-derivations and forward-derivations.

ABA+ is in general defined through tree-derivations. We briefly recall both notions. A

sentence s ∈ L is tree-derivable from a set of assumptions X ⊆ A and rules R ⊆ R,
denoted by X |=R s, if there is a finite tree with the root labeled by s, the leaves

labeled by elements of X, and for each internal node there is a rule r ∈ R such that

the node itself is labeled by head(r) and the set of labels of the children of this node

is body(r). For each rule r ∈ R there is a node labeled in this way. For brevity, R can

be left unspecified and be assumed to be some suitable subset of R. A sentence a ∈ L
is forward-derivable from a set X ⊆ A via rules R, denoted by X 	R a, if there is a

sequence of rules (r1, . . . , rn) such that head(rn) = a, for each rule ri we have ri ∈ R,
and each sentence in the body of ri is derived from rules earlier in the sequence or is in

X, that is, body(ri) ⊆ X ∪⋃
j<i head(rj). The deductive closure for an assumption set

X w.r.t. rules R is given by ThR(X) = {a | X 	R a}.
Definition 1

Let (L,R,A, ,≤) be an ABA+ framework, and A,B ⊆ A be two sets of assumptions.

A <-attacks B if

• A′ |=R b for some A′ ⊆ A, b ∈ B, and � ∃a′ ∈ A′ with a′ < b, or

• B′ |=R a for some a ∈ A and B′ ⊆ B s.t. ∃b′ ∈ B′ with b′ < a.

In words, set A attacks B if (i) from a subset A′ of A, one can tree-derive a contrary of

an assumption b ∈ B and no member in A′ is strictly less preferred than b, or (ii) from B,

via subset B′ one can tree-derive a contrary of an assumption a ∈ A and some member

of B′ is strictly less preferred than a. Attacks of type (i) are normal <-attacks and

those of type (ii) reverse <-attacks, with the intuition that the (non-preference based)

conflict in (i) succeeds and in case of (ii) is countered and reversed by the preference

relation. For brevity, we omit set notation when A <-attacks a singleton {b} (then we

say A <-attacks b).

Definition 2

Let F = (L,R,A, ,≤) be an ABA+ framework. An assumption set A ⊆ A is called

conflict-free if A does not <-attack itself. Set A defends assumption set B ⊆ A if for all

C ⊆ A that <-attack B it holds that A <-attacks C.

Definition 3

Let F = (L,R,A, ,≤) be an ABA+ framework. Further, let A ⊆ A be a conflict-free

set of assumptions in F . Set A is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


720 T. Lehtonen et al.

• <-admissible in F if A defends itself;

• <-complete in F if A is admissible in F and contains every assumption set defended

by A;

• <-preferred in F if A is <-admissible and there is no <-admissible set of assump-

tions B in F with A ⊂ B.

We use the term <-σ assumption set for an assumption set under a semantics σ ∈
{adm, com, prf }, that is, <-admissible, <-complete, and <-preferred assumption set,

respectively.

For ABA, we refer to the corresponding semantics without the preference relation <

(e.g. complete semantics instead of <-complete semantics). Attacks (∅-attacks) in ABA

frameworks simplify to attacks from A to B when A 	R b for b ∈ B.

Main reasoning tasks on ABA+ are the following.

Definition 4

Let F = (L,R,A, ,≤) be an ABA+ framework and <-σ a semantics. A sentence s ∈ L
is

• credulously accepted in F under <-σ if there is a <-σ assumption set A s.t.

s ∈ ThR(A); and

• skeptically accepted in F under <-σ if s ∈ ThR(A) for all <-σ assumption sets A.

The tasks for ABA are analogous (disregarding <).

Example 1

Let F be an ABA+ framework with A = {a, b, c}, b = x, c = y, a < c, and R = {(x ←
a), (y ← a)}. We have {a} normally <-attacks b and {c} reversely <-attacks a. The <-

admissible sets of F are ∅, {c}, and {b, c}, and the framework has the unique <-complete

set {b, c}.
We focus on computationally hard reasoning tasks in ABA and ABA+. Deciding skep-

tical acceptance under preferred semantics in ABA is ΠP
2 -complete (Dimopoulos et al .

2002). In ABA+, credulous acceptance under <-admissible semantics is ΣP
2 -complete,

and checking whether a set is <-admissible and <-complete is coNP-complete and coNP-

hard, respectively (Lehtonen et al . 2021a).

3 Algorithms

We present ASP-based CEGAR algorithms for beyond-NP reasoning tasks in ABA and

ABA+. The CEGAR-based algorithms follow the iterative schema of considering an NP-

abstraction of the solution space (containing spurious solutions), and drawing candidates

from this space. At each iteration, a candidate solution is obtained (if one remains) by

calling an ASP solver. If no further candidate solutions can be obtained, the search

terminates. If a candidate is obtained, one checks with another ASP solver call whether

the candidate is an actual solution. If it is, the search terminates. If not, a counterexample

is obtained, and the abstraction is refined (solution space is reduced) by ruling out from

further consideration at least the candidate solution.

We briefly recap basic ASP concepts. An answer set program π consists of rules r of

the form h← b1, . . . , bk,not bk+1, . . . , not bm, where h and each bi is an atom. A literal is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 721

an atom or a default negated (not ) atom. A rule is positive if k = m, a fact if m = 0, and

a constraint if there is no head h (then a shorthand for the same rule with a fresh atom

a in the head and default negated in the body). An atom bi has the form p(t1, . . . , tn)

with p a predicate and with each tj a constant or a variable. An answer set program,

a rule, and an atom, respectively, is ground if it is free of variables. For a non-ground

program, GP is the set of rules obtained by applying all possible substitutions from the

variables to the set of constants appearing in the program. An interpretation I, that is, a

subset of all the ground atoms, satisfies a positive rule r = h← b1, . . . , bk iff all positive

body elements b1, . . . , bk are in I implies that the head atom is in I. For a program π

consisting only of positive rules, let Cl(π) be the uniquely determined interpretation I

that satisfies all rules in π and no subset of I satisfies all rules in π. Interpretation I

is an answer set of a ground program π if I = Cl(πI) where πI = {(h ← b1, . . . , bk) |
(h← b1, . . . , bk,not bk+1, . . . ,not bm) ∈ π, {bk+1, . . . , bm} ∩ I = ∅}} is the reduct; and of

a non-ground program π if I is an answer set of GP of π. A program π is satisfiable iff

there is an answer set of π.

We make use of the following shorthands. Let I be an interpretation (set of ASP atoms),

p be some ASP predicate of arity one, and M = {l1, . . . , ln} a set of ASP literals. We

define p(I) = {p(x) | p(x) ∈ I}, and constr(M) = ← l1, . . . , ln. That is, p(I) is a

set of atoms p(x) which are contained in the interpretation, and constr(M) is an ASP

constraint containing M as its body. For reasons of convenience, if l is an ASP literal, we

also define the shorthand constr(l) = ← l (i.e. allowing M to be a set or a single literal).

In the following we refer to forward-derivations when talking about derivations. For

ABA, tree and forward-derivations are equivalent for the problems considered here (Dung

et al . 2006; 2010). While forward-derivations are not directly applicable for ABA+, for

our approach to <-admissible and <-complete semantics we employ previous results

(Lehtonen et al . 2021a) together with new ones (Section 3.2), which allow for avoiding

naive application of tree-derivations which would require explicitly constructing argu-

ments. We present one algorithm per semantics here with a brief note on how to ex-

tend to other reasoning tasks; full algorithms for other reasoning tasks can be found

online (Lehtonen et al . 2021b).

Algorithm 1 Skeptical acceptance under preferred

Require: ABA framework F = (L,R,A, ), s ∈ L
Ensure: return YES if s is skeptically accepted under preferred semantics in F , NO

otherwise

1: π := ABA(F ) ∪ πcom

2: while π ∪ {constr(supported(s))} is satisfiable do

3: Let I be the found answer set

4: π := π ∪ {constr(out(I))}
5: while π ∪ {constr(supported(s))} ∪ in(I) is satisfiable do

6: Let I be the found answer set

7: π := π ∪ {constr(out(I))}
8: if π ∪ in(I) is unsatisfiable then return NO

9: return YES

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


722 T. Lehtonen et al.

Listing 1. Module πcom

in(X) ← assumption(X), not out(X).
out(X) ← assumption(X), not in(X).
supported(X) ← assumption(X), in(X).
supported(X) ← head(R,X), triggered by in(R).
triggered by in(R) ← head(R, ), supported(X) : body(R,X).
← in(X), contrary(X,Y), supported(Y).
defeated(X) ← supported(Y), contrary(X,Y).
derived from undefeated(X) ← assumption(X), not defeated(X).
derived from undefeated(X) ← head(R,X), triggered by undefeated(R).
triggered by undefeated(R) ← head(R, ), derived from undefeated(X) : body(R,X).
attacked by undefeated(X) ← contrary(X,Y), derived from undefeated(Y).
← in(X), attacked by undefeated(X).
← out(X), not attacked by undefeated(X).

3.1 Skeptical acceptance under preferred semantics

We begin with skeptical reasoning under preferred semantics in ABA, which is a ΠP
2 -

complete problem. Following successful schemes for the same reasoning task on abstract

argumentation frameworks (AFs) (Cerutti et al . 2018), we present Algorithm 1 for decid-

ing skeptical acceptance of sentences in an ABA framework. We encode the given ABA

framework F = (L,R,A, ) as ASP: assign each rule a unique identifier (R = {r1, ..., rn})
and let

ABA(F ) ={assumption(a). | a ∈ A} ∪
{head(i, b). | ri ∈ R, b ∈ head(ri)} ∪
{body(i, b). | ri ∈ R, b ∈ body(ri)} ∪
{contrary(a, x). | x = a, a ∈ A}.

Listing 1 presents module πcom for finding complete assumption sets, including a possible

queried sentence (Lehtonen et al . 2021a). Now I is an answer set of ABA(F ) ∪ πcom iff

{a | in(a) ∈ I} is a complete assumption set of F , and one can derive the sentence x

from this complete assumption set iff supported(x) ∈ I. Further, out(I) contains the

assumptions of F that are not part of in(I).

Algorithm 1 decides skeptical acceptance under preferred semantics for ABA frame-

works by first generating a complete assumption set (one can also use admissible sets

instead of complete sets in this algorithm) within the framework that does not derive the

queried sentence s (Line 2). If there is no answer set found in the first application of the

while loop in Line 2, then all complete assumption sets of F derive s, and the algorithm

terminates. Otherwise, we add to the ASP encoding π the constraint ruling out the com-

plete set encoded in in(I) as a solution: we add constr(out(I)), which states that at least

one atom in out(I) must not be present in an answer set from now on (excluding in(I)

and its subsets). Subsequently, we iteratively generate proper supersets of a currently

found complete assumption set not deriving s (loop starting in Line 5). When this inner

loop terminates, we found a complete assumption set that is ⊆-maximal among all com-

plete assumption sets that do not derive s, and π currently contains the last constraint

ruling out this particular complete assumption set and its subsets. In Line 8, we check

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 723

with an ASP solver call whether π ∪ in(I) := π ∪ {in(a). | in(a) ∈ I} is satisfiable. If

it is, there is a complete assumption set that is a proper superset of the assumptions

encoded in in(I) and that derives s. In this case in(I) is not a preferred assumption set

and thus not a counterexample to s being skeptically accepted under preferred semantics,

so the algorithm proceeds to searching for a new candidate (Line 2). Importantly, π still

contains the constraints ruling out any subset of in(I). On the other hand, if in Line 8

the ASP solver reports unsatisfiability, in(I) represents a preferred assumption set not

deriving s, constituting a counterexample to s being skeptically accepted under preferred

semantics. To enumerate all preferred assumption sets, it suffices to omit the query and

Line 8, and collect each answer after exiting the inner loop.

The following proposition states the correctness of the approach; correctness follows

by the previous discussion on the details of the algorithm and the employed encodings.

Proposition 1

Algorithm 1 decides skeptical acceptance under preferred semantics for ABA frameworks,

that is, for a given ABA framework F = (L,R,A, ) and sentence s ∈ L, Algorithm 1

returns YES if s is skeptically accepted under preferred semantics in F , and NO otherwise.

3.2 ABA+properties

We move on to ABA+, in this section first giving an alternative characterization of

<-admissible and <-complete semantics to better suit our algorithmic setting, and then

showing complexity membership result for <-complete semantics. In contrast to ABA

(and AFs), credulous acceptance under <-admissible and <-complete semantics does

not coincide (Čyras 2017, Example 3.6). Further, <-attacks differ from (non-preference-

based) attacks, requiring more complex computation (Lehtonen et al . 2021a). We begin

with stating conditions for an assumption set to be <-admissible or <-complete, on which

we base our algorithms. Define for an assumption set A the set of assumptions U not

individually <-attacked by A by U = {a ∈ A | A does not <-attack a}.
Proposition 2

Given an ABA+ framework F , a conflict-free set of assumptions A in F , and the set of

assumptions U that A does not individually <-attack, it holds that

• A is <-admissible iff there is no set B ⊆ U such that A does not <-attack B and

B <-attacks A, and

• A is <-complete iff A is <-admissible and for all a ∈ A \ A it holds that a is

<-attacked by some B ⊆ U such that A does not <-attack B.

Proof

For the first item, assume that A is <-admissible. It follows that if a set B of assumptions

<-attacks A we have A <-attacks B (A defends itself due to admissibility). Thus, there

is no B s.t. B <-attacks A and A does not <-attack B. For the other direction, assume

that there is no B ⊆ U such that A does not <-attack B and B <-attacks A. Suppose

there is a set C of assumptions that <-attacks A. If C ∩ (A \ U) �= ∅ (C contains an

assumption outside U), then A <-attacks C (on a particular assumption, and, due to

subset monotonicity of <-attacks, also C). Consider the case that C ∩ (A\U) = ∅. Then
C ⊆ U (since U ⊆ A). If A does not <-attack C, then we arrive at a contradiction

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


724 T. Lehtonen et al.

(contradicts our assumption of the right hand side of the formal statement). Thus, A

<-attacks C. It follows that A defends itself against all C ⊆ A that <-attack A. Since A

is assumed to be conflict-free, it follows that A is <-admissible.

For the second item, assume that A is <-complete. Then A is <-admissible by defini-

tion. Let a ∈ A \ A. It follows from definition that A does not defend {a}. This implies

that there is a set B that <-attacks {a} and A does not <-attack B. Since A <-attacks

any set C with C ∩ U �= ∅, we have B ⊆ U . For the other direction, assume that A is

<-admissible, and for all a ∈ A \A there is a set B ⊆ U such that B <-attacks {a} and
A does not <-attack B. Suppose A is not <-complete: then there is a set C such that A

defends C and C �⊆ A. Let c ∈ C \ A, implying that c ∈ A \ A. Then, by assumption,

there is a B ⊆ U such that B <-attacks {c} and A does not <-attack B. This is a

contradiction to {c} being defended by A. Thus, A is <-complete.

The first item implies that we can focus on assumption sets among U for checking

defense. From the second item, it follows that given a <-complete assumption set A, for

every a ∈ U (and even for every a ∈ A) it holds that either a ∈ A, or U <-attacks a.

This fact can be used to prune candidates for <-complete assumption sets.

Complementing earlier results, we show a complexity membership result for credulous

acceptance under <-complete semantics. The proof uses Proposition 2 and an earlier re-

sult (Lehtonen et al . 2021a, Proposition 11): after guessing a set of assumptions, checking

<-admissibility amounts to verifying whether each <-attacker is <-attacked (in coNP),

and checking whether the set contains all defended sets amounts to checking for each

individual assumption outside A whether this assumption is not defended (each check in

NP).

Theorem 3

Credulous acceptance under <-complete semantics in ABA+ is in ΣP
2 .

Proof

Non-deterministically construct a set of assumptions A. Now check whether (i) the

queried sentence is derivable from A, (ii) A is <-admissible, and (iii) A is <-complete.

Checking (i) and conflict-freeness can be done in polynomial time. Construct U = {u ∈
A | A does not <-attack u}, which is doable in polynomial time (Lehtonen et al . 2021a,

Proposition 11, item 1). For checking further conditions of <-admissibility, check for each

set of assumptions B ⊆ U whether B <-attacks A without A <-attacking B. Checking

for two concrete sets of assumptions whether one <-attacks the other is doable in poly-

nomial time (Lehtonen et al . 2021a, Proposition 11, items 1 and 2). Thus, one can check

whether A defends itself via a check in coNP. For checking whether A is also <-complete,

check for each a ∈ A \A whether there is some set B ⊆ U such that B <-attacks a and

A does not <-attack B. This is in NP. These checks establish whether A is <-complete,

by Proposition 2, and whether the queried sentence is derivable from A, satisfying the

definition of credulous acceptance. Overall, this gives a non-deterministic polynomial

time algorithm that accesses an NP oracle, showing membership in ΣP
2 for credulous

acceptance under <-complete semantics.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 725

Algorithm 2 Credulous acceptance under <-admissible semantics

Require: ABA+ framework F = (L,R,A, ,≤)
Ensure: return YES if s is credulously accepted under <-admissible semantics in F ,

NO otherwise

1: πcand := ABA+(F ) ∪ πcf ∪ π+
undefeated ∪ {constr(not supported(s))}

2: πcheck := ABA+(F ) ∪ π+
defended ∪ π+

suspect−defeat

3: while πcand is satisfiable do

4: Let I be the found answer set

5: if πcheck ∪ undefeated(I) ∪ in(I) is unsatisfiable then return YES

6: πcand := πcand ∪ {constr(out(I) ∪ in(I))}
7: return NO

3.3 <-Admissible semantics

We proceed to algorithms for ABA+, starting with Algorithm 2 for deciding credulous

acceptance under <-admissible semantics in a given ABA+ framework F . This algorithm

can be straightforwardly extended to cover enumeration of all <-admissible sets. We

first give details of the algorithm, and subsequently explanations of the underlying ASP

encodings.

We represent a given ABA+framework F = (L,R,A, ,≤) in ASP as ABA+(F ) =

ABA(F )∪{preferred(x, y). | y ≤ x}∪π+
preferences . Listing 2 shows π

+
preferences . Algorithm 2

employs the ASP modules πcand = ABA+(F ) ∪ π+
cf ∪ {constr(not supported(s))} and

πcheck = ABA+(F )∪π+
defended ∪π+

suspect−defeat . The former, πcand , encodes the abstraction

(candidate search space) by considering conflict-free sets of assumptions that contain the

queried sentence s in in(I), for an answer set I of the encoding, and additionally computes

all singleton assumptions not <-attacked by in(I), in the ASP atoms undefeated(I).

In Line 5 of Algorithm 2 we check, based on Proposition 2, whether in(I) corresponds

to an <-admissible set in F : the ASP encoding is satisfiable iff there is a subset of

undefeated(I) that is not <-attacked by in(I) but that <-attacks in(I) (via either

normal or reverse <-attacks). If in(I) does correspond to an <-admissible set, this is a

witness to s being credulously accepted. Otherwise, we exclude this assumption set via

the constraint constr(out(I) ∪ in(I)).

Listing 2. Module π+
preferences

preferred(X,Z) ← preferred(X,Y), preferred(Y,Z).
less preferred(X,Y) ← preferred(Y,X), not preferred(X,Y).
no less preferred(X,Y) ← assumption(X), assumption(Y), not less preferred(X,Y).

Algorithm 2 is extended to cover enumeration of <-admissible assumption sets by

reporting all found <-admissible sets and not terminating until there are no more

candidates.

Listing 3. Module π+
cf

in(X) ← assumption(X), not out(X).
out(X) ← assumption(X), not in(X).
supported(X) ← assumption(X), in(X).
supported(X) ← head(R,X), triggered by in(R).
triggered by in(R) ← head(R, ), supported(X) : body(R,X).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


726 T. Lehtonen et al.

← in(X), contrary(X,Y), supported(Y).
pref supported(X,Y) ← no less preferred(X,Y), assumption(X), in(X).
pref supported(X,Y) ← head(R,X), pref triggered by in(R,Y).
pref triggered by in(R,Y) ←head(R, ), assumption(Y), pref supported(X,Y):

body(R,X).
normally defeated(Y) ← pref supported(X,Y), contrary(Y,X).
derivable from undefeated(Z,Z) ← assumption(Z), not normally defeated(Z).
derivable from undefeated(Y,Z) ← head(R,Y), triggered by undefeated(R,Z).
triggered by undefeated(R,Z) ← head(R, ), assumption(Z),

derivable from undefeated(Y,Z) : body(R,Y).
in attacked by normally undefeated(X,Z) ← in(X),contrary(X,Y),

derivable from undefeated(Y,Z).
reversely defeated(Z) ← less preferred(Z,X),

in attacked by normally undefeated(X,Z).
undefeated(X)←assumption(X), not normally defeated(X), not reversely defeated(X).

Listing 4. Partial module π+
defended

suspect(X) ← undefeated(X), not other(X).
other(X) ← undefeated(X), not suspect(X).
pref supported by suspects(X,Y) ← in(Y), no less preferred(X,Y), assumption(X),

suspect(X).
pref supported by suspects(X,Y) ← in(Y), head(R,X),

pref triggered by suspects (R,Y).
pref triggered by suspects(R,Y) ← in(Y), head(R, ),

pref supported by suspects (X,Y) : body(R,X).
in normally defeated by suspects ← in(Y), pref supported by suspects(X,Y),

contrary(Y,X).
supported by in(X) ← assumption(X), in(X).
supported by in(X) ← head(R,X), triggered by in(R).
triggered by in(R) ← head(R, ), supported by in(X) : body(R,X).
reach in(X,Y) ← triggered by in(R), head(R,Y), body(R,X).
reach in(X,Y) ← reach in(X,Z), reach in(Z,Y).
reach in(X,X) ← in(X).
in reversely defeated by suspects← suspect(Y), contrary(Y,X), supported by in(X),

in(Z), reach in(Z,X), less preferred(Z,Y).
← not in normally defeated by suspects, not in reversely defeated by suspects.

We present π+
cf in Listing 3, π+

defended in Listing 4 and π+
suspect−defeat in Listing 5.

The first six lines of Listing 3 encode conflict-freeness (note that conflict-freeness is

independent of preferences (Čyras and Toni 2016b)). In brief, in(I) encodes a guess of

an assumption set and supported(I) which sentences are derivable from this set. For

computing assumptions x that are individually <-attacked by the assumptions A encoded

by in(I), we make use of a result proven by (Lehtonen et al . 2021a, Lemma 8). Checking

whether A normally <-attacks an x can directly be encoded by forward-derivations: if

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 727

from the subset A′ ⊆ A which are not less preferred to x one can derive the contrary of

x, a normal <-attack from A to x exists. For the remaining assumptions, it holds that

A reversely <-attacks x if from {x} one can derive the contrary of an assumption a ∈ A

with x < a.

From in(I) and undefeated(I) obtained as facts from an earlier ASP call, the encod-

ings in Listings 4 and 5 determine whether in(I) defends itself against undefeated(I).

In Listing 4, we guess a subset of the undefeated assumptions (called suspects here) and

check whether this set <-attacks in(I) but is not <-attacked by in(I) (making in(I)

undefended and not <-admissible). Line 1 encodes the guess and normal <-attacks as

before. Reverse <-attacks from a set larger than one are more involved; the idea is taken

from Lehtonen et al. (2021a, proof of Proposition 11.2). We compute what is supported

by in(I). The set in(I) is reversely <-attacked by the suspect(I) set if one can tree-

derive from in(I) a contrary of an assumption x in the suspect(I) set, with the required

assumptions among in(I) having an assumption less preferred than x. To show that

there is such a derivation tree from a subset A of the assumptions corresponding to

in(I) that derives a contrary y of x, with one assumption a ∈ A being less preferred

than x, we check whether one can reach y from a via the derivation rules (implying

existence of such a tree). In Listing 5, normal and reverse <-attacks from in(I) to sus-

pect(I) are determined analogously to <-attacks from suspect(I) to in(I). The final

constraints of Listings 4 and 5 ensure that suspect(I) <-attacks in(I), but not vice

versa. If ABA+(F )∪π+
defended ∪π+

suspect−defeat is unsatisfiable, the assumption set encoded

in in(I) defends itself.

Listing 5. Module π+
suspect−defeat

supported by in(X,Y) ← suspect(Y), no less preferred(X,Y), assumption(X), in(X).
supported by in(X,Y) ← suspect(Y), head(R,X), triggered by in(R,Y).
triggered by in(R,Y) ← suspect(Y), head(R, ), assumption(Y), supported by in(X,Y)

: body(R,X).
suspect normally defeated by in ← supported by in(X,Y), contrary(Y,X).
supported by suspects(X) ← assumption(X), suspect(X).
supported by suspects(X) ← head(R,X), triggered by suspects(R).
triggered by suspects(R) ← head(R, ), supported by suspects(X) : body(R,X).
reach suspect(X,Y) ← triggered by suspects(R), head(R,Y), body(R,X).
reach suspect(X,Y) ← reach suspect(X,Z), reach suspect(Z,Y).
reach suspect(X,X) ← suspect(X).
suspect reversely defeated by in ← in(Y), contrary(Y,X), supported by suspects(X),

suspect(Z), reach suspect(Z,X), less preferred(Z,Y).
← suspect normally defeated by in.
← suspect reversely defeated by in.

The following proposition states the correctness of Algorithm 2 based on Proposition 2

and the previous discussion on the details of the algorithm and the employed encodings.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


728 T. Lehtonen et al.

Algorithm 3 Credulous acceptance under <-complete semantics

Require: ABA+ framework F = (L,R,A, ,≤), s ∈ L
Ensure: return YES if s is credulously accepted under <-complete semantics in F , NO

otherwise

1: πcand := ABA+(F ) ∪ πcf ∪ π+
undefeated ∪ π+

prune ∪ {constr(not supported(s))}
2: πcheck1 := ABA+(F ) ∪ π+

defended ∪ π+
suspect−defeat

3: πcheck2 := ABA+(F ) ∪ π+
com ∪ π+

suspect−defeat

4: while πcand is satisfiable do

5: Let I be the found answer set; flag := true

6: if πcheck1 ∪ undefeated(I) ∪ in(I) unsatisfiable then

7: for each u ∈ A such that undefeated(a) ∈ I do

8: if πcheck2 ∪ undefeated(I) ∪ {target(u)} ∪ in(I) is

unsatisfiable then flag := false; break

9: if flag = true then return YES

10: πcand := πcand ∪ {constr(out(I) ∪ in(I))}
11: return NO

Proposition 4

Algorithm 2 decides credulous acceptance under <-admissible semantics, that is, for a

given ABA framework F = (L,R,A, ) and s ∈ L, Algorithm 2 returns YES if s is

credulously accepted in F , and NO otherwise.

3.4 <-Complete semantics

For deciding credulous acceptance under <-complete semantics, we present Algo-

rithm 3. There are two key differences to Algorithm 2: the abstraction πcand is stronger

and verifying whether a candidate assumption set is <-complete is more involved. For

the former, in addition to the constraints posed in Algorithm 2, we add that if in(I)

corresponds to a conflict-free set of assumptions A and U is the set of all assumptions

which are not individually <-attacked by A, then for each a ∈ U it must hold that either

a ∈ A or a is <-attacked by U . By Proposition 2, this only rules out assumption sets that

are not <-complete. As we will see in the experiments, pruning the search space in this

manner can significantly speed up computation. For verifying whether a conflict-free set

of assumptions is <-complete, Algorithm 3 checks in Lines 7–9 for each a ∈ U whether

a is defended by A, in addition to verifying <-admissibility (Line 6).

Enumeration of <-complete assumption sets can be achieved by reporting all found

answers and not terminating until there are no candidates, and finding a <-complete as-

sumption set by omitting the query and reporting in(I) on Line 9.Enumeration also finds

the <-grounded assumption set, which is defined as the intersection of all <-complete

sets.

In module π+
prune (Listing 6) we compute <-attacks on singleton assumptions. We

consider singleton assumptions in U , and whether they are <-attacked by U . The final

constraint rules out exactly the condition mentioned after Proposition 2, namely that

there is an a ∈ A such that a /∈ in(I) and a is not <-attacked by U .

Via the encoding in Listing 7 together with Listing 5 we check whether, given a set in(I)

and an assumption target(I), in(I) defends target(I). More specifically the module is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 729

Listing 6. Module π+
prune

pref supported by undefeated(X,Y) ← no less preferred(X,Y), assumption(X),
undefeated(X).

pref supported by undefeated(X,Y)←head(R,X),pref triggered by undefeated(R,Y).
pref triggered by undefeated(R,Y) ←pref supported by undefeated(X,Y) :

body(R,X), assumption(Y), head(R, ).
undefeated normally defeated by undefeated(Y) ← undefeated(Y),

pref supported by undefeated(X,Y), contrary(Y,X).
undefeated reversely defeated by undefeated(Z) ← less preferred(Z,X),

undefeated(X), contrary(X,Y), derivable from undefeated(Y,Z).
← out(Y), undefeated(Y), not undefeated normally defeated by undefeated(Y), not

undefeated reversely defeated by undefeated(Y).

Listing 7. Module π+
com

suspect(X) ← assumption(X), not other(X).
other(X) ← assumption(X), not suspect(X).
pref supported by suspects(X) ← target(Y), no less preferred(X,Y), assumption(X),

suspect(X).
pref supported by suspects(X) ← head(R,X), pref triggered by suspects(R).
pref triggered by suspects(R) ← head(R, ), pref supported by suspects(X) :

body(R,X).
target normally attacked ← target(Y), pref supported by suspects(X),

contrary(Y,X).
derivable from target(X) ← target(X).
derivable from target(X) ← head(R,X), triggered by target(R).
triggered by target(R) ← head(R, ), derivable from target(X) : body(R,X).
suspect attacked by target(X) ← suspect(X), contrary(X,Y),

derivable from target(Y).
target reversely attacked ← target(Y),less preferred(Y,X),

suspect attacked by target(X).
← not target normally attacked, not target reversely attacked.

unsatisfiable if there is no set of assumptions, called suspects here, that attack target(I)

without in(I) attacking the suspect set. In other words, the encoding is unsatisfiable if the

target(I) is defended by in(I). We check if the target is normally or reversely <-attacked

via suspect(I). As before, in Listing 5 we compute normal and reverse <-attacks from

in(I) to the suspect(I) set.

The following proposition states the correctness of the approach.

Proposition 5

Algorithm 3 decides credulous acceptance under <-complete semantics, that is, for a

given ABA framework F = (L,R,A, ) and s ∈ L, Algorithm 3 returns YES if s is

credulously accepted under <-complete semantics in F , and NO otherwise.

4 Empirical evaluation

We implemented the ASP-based CEGAR algorithms using the incremental Python in-

terface of Clingo v5.4.0 (Gebser et al . 2016; Kaminski et al . 2020). The implementa-

tion is available at https://bitbucket.org/coreo-group/aspforaba. We empirically eval-

uate its performance, comparing it to current state-of-the-art approaches: the Asprin-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://bitbucket.org/coreo-group/aspforaba
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


730 T. Lehtonen et al.

based (Brewka et al . 2015) approach to skeptical acceptance under preferred seman-

tics (Lehtonen et al . 2021a) and the ABAplus system which supports computing as-

sumption sets in ABA+ under <-admissible and <-complete semantics (Bao et al . 2017).

A direct comparison with ABAplus is only applicable for frameworks which satisfy the

so-called WCP property (weak contraposition) due to restrictions in ABAplus.

For comparison with Asprin we use similar benchmarks as (Lehtonen et al . 2021a), with

|L| = 250, 500, 1000, 1500, . . . , 8000. For each |L|, we generated 20 frameworks with 15%

and 30% of the sentences assumptions each for a total of 680 frameworks. The number

of rules per head and body lengths, respectively, were randomly chosen from [1, 20]. For

comparison with ABAplus, we use the 120 frameworks first used by Lehtonen et al .

(2021a) that satisfy the WCP property, containing up to 30 sentences. The experiments

were run single-threaded on 2.6-GHz Intel Xeon E5-2670 processors using per-instance

600-second time and 16-GB memory limit.

Figure 1 (left) shows a per-instance runtime comparison of the Asprin-based approach

and our incremental ASP-based CEGAR algorithm for skeptical ABA reasoning under

preferred semantics. The CEGAR approach clearly outperforms Asprin. A comparison of

ABAplus and our CEGAR approach is shown in Table 1. The CEGAR approach domi-

nates ABAplus in performance on the task of assumption set enumeration (as supported

by ABAplus) under both <-admissible and <-complete semantics. We conclude that the

CEGAR algorithms based on incremental ASP outperform the current state of the art

on all of the three reasoning tasks.

Runtimes for Asprin are in its enumeration mode rather than query mode as Asprin is

consistently faster on this task using enumeration, as shown in Figure 2 (left). Conversely,

Figure 2 (right) shows that using our CEGAR approach, most instances are solved faster

via direct skeptical reasoning compared to assumption set enumeration; there is only a

handful of instances on which enumeration is faster.

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

CPU time (s) for CEGAR skept

C
PU

 ti
m

e 
(s

) f
or

 a
sp

rin
 e

nu
m

Assumptions
15%
30%

CPU time (s) for stronger

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

C
PU

 ti
m

e 
(s

) f
or

 w
ea

ke
r

Assumptions
15%
30%

Fig. 1. Left: Runtime comparison of Asprin (enumeration) and incremental ASP on skeptical
preferred. Right: Runtime comparison of the incremental ASP approach using the weaker and

stronger abstraction for finding an assumption set under <-complete semantics.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 731

Table 1. Runtime comparison. Cumulative runtimes are over solved instances
Running times (s)

Problem Approach #timeouts mean median cumulative

ABA+ <-adm CEGAR 0 0.114 0.040 14
enumeration ABAplus 9 15.442 0.560 1714

ABA+ <-com CEGAR 0 0.096 0.040 12
enumeration ABAplus 9 14.240 0.550 1581

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

CPU time (s) for asprin skept

C
PU

 ti
m

e 
(s

) f
or

 a
sp

rin
 e

nu
m

Assumptions
15%
30%

CPU time (s) for CEGAR skept

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

C
PU

 ti
m

e 
(s

) f
or

 C
EG

AR
 e

nu
m

Assumptions
15%
30%

Fig. 2. Runtime comparisons under preferred semantics. Left: Asprin enumeration vs skeptical
reasoning. Right: CEGAR enumeration vs skeptical reasoning.

For more insights into our CEGAR approach to ABA+, we generated larger instances

with 50-500 sentences. For each |L|, we generated 30 instances with 15% and 30% as-

sumptions each taking as preferences random permutations of the assumptions, with

assumption ai set to be preferred to aj for i < j in the permutation with probabilities

5%, 15% or 40% (10 instances for each probability). On these instances the stronger

abstraction for <-complete semantics yields significant runtime improvements over the

weaker abstraction, enabling scaling up to 500 sentences (Figure 1 right). The runtime

improvements are at least in part due to the fact that the stronger abstraction results in

considerably fewer iterations (essentially number of candidates found). Using the weaker

abstraction the algorithm takes on average 1148 iterations, compared to 12 when using

the stronger abstraction. Figure 3 (left) shows the iterations taken to solve each instance.

Further, the runtimes of the CEGAR approach using the stronger abstraction under

<-complete semantics are similar between the task of finding an assumption set without

a query and credulous reasoning on both unsatisfiable and satisfiable instances; Figure 3

(right) shows the overall runtime results for credulous reasoning under <-complete se-

mantics. We also observe that with a larger number of sentences being assumptions (30%

vs 15%) instances tend to become harder to solve for all the considered problems.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


732 T. Lehtonen et al.

0 2000 4000 6000 8000 10000

0
20

00
40

00
60

00
80

00
10

00
0

Number of iterations for stronger

N
um

be
r o

f i
te

ra
tio

ns
 fo

r w
ea

ke
r

Assumptions
15%
30%

CPU time (s) for stronger

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

C
PU

 ti
m

e 
(s

) f
or

 w
ea

ke
r

Assumptions
15%
30%

Fig. 3. Comparisons for <-complete semantics using the CEGAR approach. Left: Comparison
of iterations needed using the weaker and stronger abstraction for finding a <-complete

assumption set. Right: Runtime comparison between the weaker and stronger abstraction for
answering credulous acceptance.

5 Conclusions

We developed an approach to beyond-NP reasoning in ABA frameworks based on re-

cent advances in incremental answer set solving. In particular, we detailed ASP-based

CEGAR procedures for skeptical acceptance under preferred semantics in ABA and cred-

ulous reasoning under <-admissible and <-complete semantics in ABA+, and assumption

set enumeration for all of these. Our implementation of the approach empirically outper-

forms previous algorithmic solutions to these reasoning tasks. We developed a stricter

abstraction for <-complete semantics, speeding up solving in practice, and obtained com-

plexity upper bounds for credulous reasoning in ABA+ under <-complete semantics. A

promising direction for further work is to extend the CEGAR approach considered in this

work to other beyond-NP reasoning problems in ABA, such as reasoning over general

(i.e. possibly non-flat) ABA frameworks.

Competing interests: The authors declare none.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/

S1471068421000296.

References

Bao, Z., Čyras, K. and Toni, F. 2017. ABAplus: Attack reversal in abstract and structured
argumentation with preferences. In Proc. PRIMA. LNCS, vol. 10621. Springer, 420–437.

Baroni, P., Gabbay, D., Giacomin, M. and van der Torre, L., Eds. 2018. Handbook of
Formal Argumentation. College Publications.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

http://dx.doi.org/10.1017/S1471068421000296
http://dx.doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


Incremental ASP Solving for ABA 733

Besnard, P. and Hunter, A. 2018. A review of argumentation based on deductive arguments.
In Handbook of Formal Argumentation. College Publications, Chapter 9, 437–484.

Bondarenko, A., Dung, P. M., Kowalski, R. A. and Toni, F. 1997. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93, 63–101.

Brewka, G., Delgrande, J. P., Romero, J. and Schaub, T. 2015. asprin: Customizing
answer set preferences without a headache. In Proc. AAAI. AAAI Press, 1467–1474.

Caminada, M. and Schulz, C. 2017. On the equivalence between assumption-based argumen-
tation and logic programming. Journal of Artificial Intelligence Research 60, 779–825.

Cerutti, F.,Gaggl, S. A.,Thimm, M.,andWallner, J. P. 2018. Foundations of implementa-
tions for formal argumentation. In Handbook of Formal Argumentation. College Publications,
Chapter 15, 688–767.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. 2003. Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50, 5, 752–794.

Clarke, E. M., Gupta, A. and Strichman, O. 2004. SAT-based counterexample-guided
abstraction refinement. IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems 23, 7, 1113–1123.

Craven, R. and Toni, F. 2016. Argument graphs and assumption-based argumentation. Arti-
ficial Intelligence 233, 1–59.

Craven, R., Toni, F. andWilliams, M. 2013. Graph-based dispute derivations in assumption-
based argumentation. In TAFA 2013 Revised Selected Papers. LNCS, vol. 8306. Springer,
46–62.

Čyras, K. 2017. ABA+: Assumption-based argumentation with preferences. Ph.D. thesis,
Imperial College London, UK.

Čyras, K., Fan, X., Schulz, C. and Toni, F. 2018. Assumption-based argumentation: Dis-
putes, explanations, preferences. In Handbook of Formal Argumentation. College Publications,
Chapter 7, 365–408.

Čyras, K. and Oliveira, T. 2019. Resolving conflicts in clinical guidelines using argumenta-
tion. In Proc. AAMAS. IFAAMAS, 1731–1739.

Čyras, K. and Toni, F. 2016a. ABA+: Assumption-based argumentation with preferences. In
Proc. KR. AAAI Press, 553–556.

Čyras, K. and Toni, F. 2016b. Properties of ABA+ for non-monotonic reasoning. In
Proc. NMR. 25–34.

Dimopoulos, Y., Nebel, B. and Toni, F. 2002. On the computational complexity of
assumption-based argumentation for default reasoning. Artificial Intelligence 141, 1/2, 57–
78.

Dung, P. M., Kowalski, R. A. and Toni, F. 2006. Dialectic proof procedures for assumption-
based, admissible argumentation. Artificial Intelligence 170, 2, 114–159.

Dung, P. M., Toni, F. and Mancarella, P. 2010. Some design guidelines for practical
argumentation systems. In Proc. COMMA. FAIA, vol. 216. IOS Press, 183–194.

Fan, X. and Toni, F. 2016. On the interplay between games, argumentation and dialogues. In
Proc. AAMAS. ACM, 260–268.

Fan, X., Toni, F., Mocanu, A. and Williams, M. 2014. Dialogical two-agent decision making
with assumption-based argumentation. In Proc. AAMAS. IFAAMAS/ACM, 533–540.

Gaertner, D. and Toni, F. 2007. CaSAPI: A system for credulous and sceptical argumenta-
tion. In Proc. NMR. 80–95.

Garćıa, A. J. and Simari, G. R. 2018. Argumentation based on logic programming. In Hand-
book of Formal Argumentation. College Publications, Chapter 8, 409–435.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko,

P. 2016. Theory solving made easy with Clingo 5. In Technical Communications of ICLP.
OASICS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2:1–2:15.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core


734 T. Lehtonen et al.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T. and Schneider,

M. T. 2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2,
107–124.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proc. ICLP/SLP. MIT Press, 1070–1080.

Kaminski, R., Romero, J., Schaub, T. and Wanko, P. 2020. How to build your own ASP-
based system?! CoRR abs/2008.06692.

Lehtonen, T., Wallner, J. P. and Järvisalo, M. 2017. From structured to abstract ar-
gumentation: Assumption-based acceptance via AF reasoning. In Proc. ECSQARU. LNCS,
vol. 10369. Springer, 57–68.

Lehtonen, T., Wallner, J. P. and Järvisalo, M. 2021a. Declarative algorithms and com-
plexity results for assumption-based argumentation. Journal of Artificial Intelligence Re-
search 71, 265–318.

Lehtonen, T., Wallner, J. P. and Järvisalo, M. 2021b. Harnessing incremental answer set
solving for reasoning in assumption-based argumentation. CoRR abs/2108.04192.

Modgil, S. and Prakken, H. 2018. Abstract rule-based argumentation. In Handbook of Formal
Argumentation. College Publications, Chapter 6, 287–364.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–273.

Toni, F. 2013. A generalised framework for dispute derivations in assumption-based argumen-
tation. Artificial Intelligence 195, 1–43.

Toni, F. 2014. A tutorial on assumption-based argumentation. Argument & Computation 5, 1,
89–117.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000296
Downloaded from https://www.cambridge.org/core. The National Library of Finland, on 04 Jan 2022 at 11:57:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000296
https://www.cambridge.org/core

	Introduction
	Assumption-based argumentation
	Algorithms
	Skeptical acceptance under preferred semantics
	ABA+properties
	<-Admissible semantics
	<-Complete semantics

	Empirical evaluation
	Conclusions
	References

