
Performance Models of Data Parallel DAG
Workflows for Large Scale Data Analytics

Juwei Shi
STCA

Microsoft Cooperation
juwei.shi@microsoft.com

Jiaheng Lu
Department of Computer Science

University of Helsinki
jiaheng.lu@helsinki.fi

Abstract—
Directed Acyclic Graph (DAG) workflows are widely used for

large-scale data analytics in cluster-based distributed computing
systems. Building an accurate performance model for a DAG on
data-parallel frameworks (e.g., MapReduce) is critical to imple-
ment autonomic self-management big data systems. An accurate
performance model is challenging because the allocation of pre-
emptable system resources among parallel jobs may dynamically
vary during execution. This resource allocation variation during
execution makes it difficult to accurately estimate the execution
time. In this paper, we tackle this challenge by proposing a
new cost model, called Bottleneck Oriented Estimation (BOE), to
estimate the allocation of preemptable resources by identifying
the bottleneck to accurately predict task execution time. For a
DAG workflow, we propose a state-based approach to iteratively
use the resource allocation property among stages to estimate the
overall execution plan. Extensive experiments were performed to
validate these cost models with HiBench and TPC-H workloads.
The BOE model outperforms the state-of-the-art models by a
factor of five for task execution time estimation.

I. INTRODUCTION

There is a trend towards automatic configuring and man-
aging thousands of database nodes to enable the self-
management feature for big data systems. The big data ana-
lytics jobs are often represented by Directed Acyclic Graph
(DAG) workflows [1], [2], [20], [26], [27], [41]. A DAG
of computational stages are built for parallel execution. For
example, (1) Hive Query Language (HQL) is translated to the
execution plan of MapReduce [10] jobs to be run in parallel,
(2) the Spark [41] program and machine learning workloads
are transformed to a DAG workflow for execution [2], [27],
and (3) the Tez [1] framework allows for a complex DAG of
tasks for processing data. Performance model and optimization
for DAG workflows is critical to implement self-management
big data systems.

The performance of DAGs are widely studied in the liter-
ature [16], [25], [26], [28], [33]. While these works expose
various aspects of the performance behavior of DAGs, a
step forward is required to build a cost model that esti-
mates DAG execution time for parallel jobs. Cost models
are the fundamental building blocks for system management
and optimization, for example, (1) job self-tuning [16], [31],
(2) capacity planning on the cloud [17], and (3) progress
estimation [28]. However, existing cost models are limited
to single jobs [16], [23], [31], and it is still a challenge to

CPU

5 6

state(3)

3 4

m3(2)

m3(2)

m2(2)

m3(2)

m3(2)

m2(2)

m2(2) m2(2)

r3(4) r3(4)

r2(4)

r2(4)
Workflow

State

bottleneck

m2(2)

m2(2)

m2(2)

m2(2)

Net None Net

j1

j2

j3

j4

Net

1 2

m1(2)

m1(2)

r1(2)

r1(2)

m1(2)

m1(2)

CPU

Execution

plan

CPU

7

m4(2)

m4(2)

m4(2)

24s 20s27s

Fig. 1. The task execution plan of a DAG with four jobs. mi(k) denotes that
a map task of job i requires k task slots (i.e., maximum number of Map or
Reduce tasks can run simultaneously) for execution.

build cost models for a DAG workflow of parallel jobs (i.e.,
many real computing workloads) on cluster-based distributed
computing such as MapReduce, Spark, and Tez.

For data parallel computing frameworks, a precise yet useful
cost model often measures the job execution time (i.e., beyond
simple cost like I/O) [16], [31]. The main challenge in build-
ing an execution time based cost model for a DAG workflow
is the inherent complexity of system resource allocation for
heterogeneous tasks in each stage. This allocation may vary
among computational stages. This is caused by two main
factors that may vary among different stages: (1) the degree
of parallelism (i.e., the number of simultaneously running
tasks in the cluster) for parallel jobs, and (2) system resource
bottleneck. Given the cluster computing resource, the degree
of parallelism is determined by the resource requirement
(i.e., CPU cores and memory) of running jobs. The resource
requirement of tasks may be changed from one stage to the
next due to computation stage changes, which may lead to
the change of the degree of parallelism for each job. Then,
the bottleneck resource may be changed from one stage to the
next stage. It finally leads to the variation of the allocation
for preemptable system resource and task execution time
accordingly.

We use a DAG of web site analytics [8] in MapReduce
to illustrate the above challenge. As shown in Figure 1, The
DAG has four jobs to process the event log of page views to
report the metrics. Job 1 pre-aggregates the duration of each
visit to generate records that contain the page, visiting IP and
duration on the page. Job 2 counts the number of views for
each page (i.e., Word Count like job). Job 3 sorts the pages
by the duration of each visit (i.e., Sort like job). Finally, job
4 generates a report for the pages of min, median and max
duration on each page. The DAG workflow is divided into 7

stages (states) 1 based on the start and end of Map/Reduce
stages. The task execution plan shows why the execution time
estimation is challenging because of the parallel execution of
job 2 and 3. In the 3rd state, the map task time for job 2
is 27 seconds, bounded by CPU. In the 4th state, the system
bottleneck becomes network I/O due to the shuffle operation
for job 3. The map task time for job 2 is reduced from 27
seconds to 24 seconds because its CPU resource allocation is
increased. In the 5th state, there are only two map tasks in the
cluster. The map task time for job 2 is further reduced from
24 seconds to 20 seconds due to the released CPU resources
from job 3. In summary, the execution time of map tasks of
job 2 varies between the 3rd and 5th state due to the variation
of system bottlenecks (i.e., CPU-bound, network-bound and
none). It indicates that the execution time of the same task
may vary from one stage to the other due to the variation of
system resource allocation. Unfortunately, the previous cost
models such as Starfish [16] and MRTuner [31] are not able
to capture the variation of resource allocation among stages
because the degree of parallelism is assumed to be unchanged
for a single job.

In this paper, we study the cost models for a DAG work-
flow on data parallel frameworks (i.e., MapReduce). We use
MapReduce programming paradigm because it is a well-
known framework in distributed computing, and the result is
easy to be extended to other cluster-based distributed systems
such as Spark and Tez, of which the key mechanisms for
execution model, task distribution and fault-tolerance are sim-
ilar. A starting point of our study is a thorough understanding
of the system behavior for parallel jobs, by using a set of
benchmarks. We have two findings to build cost models:

(1) The task execution time variation is caused by the
change of system resource bottleneck among computation
stages. The cost model for parallel jobs should be able to han-
dle bottleneck resource estimation. (2) For each computation
stage, the resource allocation for each running job is steady.
This property can be used to estimate the DAG execution plan
break-down in an iterative manner.

We propose the Bottleneck Oriented Estimation (BOE)
model to estimate the execution time at the task level. The
model estimates the bottleneck resource and its allocation
among tasks by predicting the cost of each type of tuple
level operations (i.e., read, transfer, compute and write). The
pipelined and blocked operations are modeled separately.
The effective time of the identified bottleneck resource is
derived as the execution time for the pipelined operations. The
BOE model identifies the bottleneck resource and accurately
estimates the task execution time variation (e.g., 27s, 24s and
20s for task m2 among the stages in Figure 1).

Next, we use a state-based approach to integrate the task-
level BOE model in holistic estimation for the execution plan
of a DAG workflow. For each stage of a DAG workflow,
we estimate the degree of parallelism for each job using the

1In this paper, the terms stage and state, DAG and workflow, are used
interchangeably.

properties of schedulers and estimate the task-level execution
time for each job through the BOE model. Then, we iteratively
estimate the task execution plans for parallel jobs on each
stage. The workflow level execution time (e.g., the DAG
execution time from stage 1 to stage 7 in Figure 1) is estimated
by this state-based iterative approach.

The key contributions of this paper are as follows.

• We study a set of workloads to thoroughly understand the
system behavior for typical parallel DAG jobs. Our key
insight includes (1) the key reason for task time variation
during DAG execution is because of the change of the
underlying resource bottlenecks, and (2) the resource allo-
cation for parallel tasks is steady during each computation
stage. This insight guides the design of the cost model.

• We propose a BOE model to estimate task-level execution
time for parallel jobs. To the best of our knowledge, this
is the first general cost model that addresses the problem
of preemptable resources allocation for parallel jobs.

• We use a state-based approach to integrate the BOE
model for a holistic execution plan estimation of a DAG
workflow. This framework makes use of the property
that the resource bottleneck is steady during a stage, and
iteratively estimates the execution plan for parallel tasks
from one stage to the next stage.

• We conduct extensive experiments with hybrid analytics
benchmarks (HiBench) and query benchmarks (TPC-H)
to validate the cost models. The result shows that the
BOE model can correctly identify resource bottlenecks.
As a comparison, the BOE model outperforms existing
MapReduce models including Starfish and MRTuner by a
factor of five for task-level estimation. For the state-based
approach, the average prediction error is under 3% when
predicting the execution time of 51 hybrid analytics and
query DAG workflows.

The rest of the paper is organized as follows. We provide the
background and problem description in Section II. We propose
the task-level execution model in Section III. In Section IV,
we present the holistic cost model for a DAG workflow. The
evaluation results are presented in Section V. We present the
related work in Section VI and conclude in Section VII.

II. BACKGROUND AND PROBLEMS

A. MapReduce

MapReduce is a data-parallel computing framework to ex-
ecute user-defined map and reduce functions in parallel. A
MapReduce job is divided into three stages: map, shuffle and
reduce. Each stage has parallel tasks for execution.

Map: The map stage reads input tuples to execute the
user-defined map function, and writes the results (e.g., (k1,
v1), (k1, v2)) to the local disk for a shuffle. In the case
when the intermediate map output cannot fit into the memory,
the framework uses external merge & sort for generating the
map output. Users can choose to compress map output to trade
CPU overhead for disk and network I/O reduction.

j1

j2

j3

j4

j5

j6 j7

Fig. 2. Example of a DAG Workflow

Shuffle: The shuffle stage is responsible for copying the
intermediate map output to the reduce side. The task may read
data from the OS buffer caches during the shuffle stage when
the intermediate data is just written by the previous stage.
To reserve memory for the user-defined reduce function, the
reduce input is materialized on the disk before each tuple is
sent to the reduce function for processing.

Reduce: The reduce stage processes the value list for each
key (e.g., (k1, List(V1, V2))), and writes the output to
HDFS. By default, there are three replicas configured for the
reduce output.

B. Resource Management and Job Scheduling

The job scheduler is responsible for assigning tasks based
on the availability of system resources on nodes. To sepa-
rate the task scheduling and resource management, Apache
YARN [35] uses a resource manager to monitor and allocate
resources for multiple jobs. The resource manager provides
multi-dimensional fairness (e.g., Dominant Resource Fairness,
DRF [14]).

In this paper, we follow the scheduling model in YARN for
parallel tasks. For both single job and parallel job cases, the
tasks in a computation stage are scheduled based on DRF.

C. DAG Workflow

Directed Acyclic Graph (DAG) based execution is popular
for modern data analytics workloads. For example, (1) the
physical execution plan for HiveQL is a DAG of MapReduce
jobs [34]; (2) SystemML [3], [15] compiles DML (Declarative
Machine learning Language) to a DAG of hybrid MapReduce
jobs and control programs; (3) Spark [41] transforms the user-
defined analytic program to a DAG workflow for parallel
execution.

In this paper, we define the DAG workflow as follows.
Definition 1: A DAG workflow is composed of a set of

jobs connected through a DAG relationship GF (J,E), where
J is the set of jobs that compose the workflow, and the arc
(jm, jn) ∈ E indicates that the start of jn depends on the
completion of jm.

Figure 2 presents an example of such a DAG workflow
composed of 7 MapReduce jobs: (1) A job in the workflow is
started if and only if all its parent jobs finish (e.g., j6 has to
wait for the completion of both j3 and j5), and (2) multiple
jobs from the DAG can run simultaneously (e.g., j2, j3, and
j5 run in parallel).

D. Problem Definition

We formulate the problem of cost estimation for a DAG
workflow as follows:

Read

Bulk

synchronization

Input Tuple 2
Input Tuple 3
Input Tuple 4

……

Input Tuple 1 (T1)

Output Tuple 4
Output Tuple 3

……

Sub-stage 1 Sub-stage 2 Sub-stage N…...

A Task

Transfer

Compute

Write

tσ

Output Tuple 2
Output Tuple 1(O1)

T1T2 T3 T4

T1T2 T3 T4

T1T2 T3 T4

O1O2O3 O4

Bounded by

bottleneck resources

Fig. 3. The Task Execution Model

Problem 1: Given a DAG workflow G(J,E) with job profile
J and topology dependency E, the objective is to estimate
the execution time t(G,D,P,C) of G against data D with
parameter sets P and cluster resources C.

III. TASK-LEVEL MODEL

In this section, we present a cost model, Bottleneck Oriented
Estimation (BOE), for task-level execution time estimation.

A. BOE Model

1) Task Execution Model: We first model the fundamental
behavior for task execution on data parallel computing frame-
works. As shown in Figure 3, we break down a task into
multiple sub-stages. For each sub-stage, the task is executed
in a pipelined fashion from one tuple to the next tuple, which
consists of a subset of operations including reading, transfer-
ring, computing, and writing. There is bulk synchronization
at the end of each sub-stage which blocks all the tuples to
be processed by the next sub-stage. The task execution model
is general for data parallel computing frameworks that follow
the functional programming model (e.g., MapReduce, Spark,
and Tez).

This execution model distinguishes pipelined and blocked
processing in the tuple level, which formalizes task-level exe-
cution plans to predict the allocation of preemptable resources
for parallel tasks.

2) Resource Usage Model: Given the above task execution
model, we use the resource usage model in [13] to make a
uniformity assumption for resource usage behavior. For each
sub-stage, since the subset of read, transfer, compute and write
operations is executed in the pipeline from one tuple to the
next tuple, the usage of preemptable resources is uniform
during a sub-stage. We assume that disk and network are
preemptable. CPU is preemptable when there is no free CPU
core (e.g, the number of simultaneously running tasks is larger
than that of CPU cores). Memory is not preemptable because
it is managed by JVM.

This resource usage model follows the execution model to
distinguish pipelined and blocked processing in the tuple level
and provides the hint to estimate resource utilization (i.e.,
effective time) for a bottleneck resource.

3) Bottleneck Oriented Estimation: Given the task execu-
tion model in Figure 3, we estimate the execution time tσ for
a sub-stage of a task as follows,

tσ = Λ(tread, ttransfer, tcompute, twrite) (1)

where Λ(·) estimates the non-overlapped time among tX to
process tuples in the pipeline, and tX is the actual execution

100 MB/s

(50% utilized)
500 MB/s

(10% utilized)

T1T2 T3 T4 Compute

50 MB/s

T1T2 T3 T4
Network

Transfer

Disk

Read
Task

1=∆

Bottleneck

Operation

(a) System Resource Usage with a Task

Network

Transfer

Disk

Read

100 MB/s

(100% utilized)

500 MB/s

(20% utilized)

T1T2 T3 T4 Compute

5*50=250 MB/s

T1T2 T3 T4

Task

Task

Task

Task

Task

5=∆

Bottleneck

Operation

(b) System Resource Usage with 5 Parallel Tasks
Fig. 4. Example of BOE Model

time of the operation X. Note that for specific sub-stages in
MapReduce, we have a subset of operations according to the
implementation. For example, there is only a disk write for
map output sub-stage.

According to the resource usage model, the resources are
uniform over the pipelined execution of tuples. Since the
processing time for each tuple is very short, we omit the
processing time for the first tuple and last tuple. Then, we
have

tread = ttransfer = tcompute = twrite (2)

That is,

tσ = max{tread, ttransfer, tcompute, twrite} (3)

We assume that the resource throughput for X is θX. The
resource usage for X is µ(∆) when X is fully utilized by tasks
with ∆ parallelism. Thus we have

tX =
D

pX · µ(∆) · θX
(4)

where pX · µX(∆) is the actual resource usage for X when it
is not a bottleneck. D is the size of data to process.

For the bottleneck resource X, we have pX = 1 and tX =
D

µ(∆)·θX . Otherwise, 0 ≤ pX < 1, and we have tX < D
µ(∆)·θX .

If there is at least one bottleneck resource, we have

tσ = max{ B

µread(∆) · θread
,

B

µtransfer(∆) · θtransfer
,

B

µcompute(∆) · θcompute
,

s ·B
µwrite(∆) · θwrite

} (5)

where B is the size of input for the task.

Example of the BOE Model: Figure 4 shows how the BOE
model estimates task execution time. Suppose that there are 10
million records (with 100 bytes for each) to be processed on a
node. For a task with one sub-stage, there are three pipelined
operations including reading, network transferring and com-
puting. The aggregated read throughput is 500 MB/s on the
node. The network throughput on that node is 100 MB/s.
For the task, the compute throughput using a CPU core is
50 MB/s.

Map Reduce

Map Reduce

3 4 5 6 7 9

tstage(3)

Workflow

State

j2

Map Reduce
j1

j4

1 2

Map Reduce

8

j3

Fig. 5. Workflow State Transition

In Figure 4 (a), there is a task run on the node. Ac-
cording to the BOE model, the execution time of the
task is tσ = max{ 10000 MB

500 MB/s ,
10000 MB
100 MB/s ,

10000 MB
50 MB/s } =

max{20s, 100s, 200s} = 200s. The disk utilization is 20
200 =

10%, and the network utilization is 100
200 = 50%. The task is

bounded by a CPU core’s processing bandwidth.
In Figure 4 (b), the degree of parallelism for tasks is

increased to 5 on the same node. We assume that there are
more than 5 cores on the node. The disk read throughput
for each task is µread(5) · θread = 1

5 · 500 MB/s =
100 MB/s when the disk read resource is fully utilized.
The network throughout for each task is µtransfer(5) ·
θtransfer = 1

5 · 100 MB/s = 20 MB/s. Accord-
ing to the BOE model, the execution time of the sub-
stage is tσ = max{ 10000 MB

100 MB/s ,
10000 MB
20 MB/s ,

10000 MB
50 MB/s } =

max{100s, 500s, 200s} = 500s. This means that the disk
utilization is 100

500 = 20%, and the network utilization is 500
500 =

100%. That is, we have pdisk = 20% and ptransfer = 100%.
This is consistent with the resource throughput for disk read
and network transfer (i.e., 20 MB/s

100 MB/s = 20%). The tasks are
bounded by network bandwidth.

The example shows how the BOE model estimates the
execution time for each task by identifying the bottleneck
resources. The resource allocation is estimated with respect
to the degree of parallelism.

IV. WORKFLOW LEVEL MODEL

In this section, we present the workflow level model to
estimate the holistic execution plan of a DAG workflow.

A. The State-based Approach

The resource allocation for each job is steady during a stage
that is divided by the map/reduce stages. We make use of this
property to break down a DAG workflow into multiple stages
and propose a state-based approach for a DAG workflow level
estimation.

1) State division for a DAG workflow: We define the state
(i.e., stage) s (s = 1, 2, · · · , S) for a DAG workflow based
the map or reduce stage transition of its jobs. As shown in
Figure 5, the workflow state is transited from 3 to 4 when job
j3 is transformed from the map stage to the reduce stage.
During the execution of a stage for a DAG workflow, the
degree of parallelism ∆i for the running job i will not change.
Consequently, the allocation of shared bottleneck resources
(i.e., disk, HDFS, and/or network) is fixed for each running
job during a stage of a DAG workflow. This property provides

the foundation to estimate the allocation of shared resources
among running jobs of a DAG workflow.

Algorithm 1 State-based Cost Estimation for a DAG
workflow
1: tdag ← 0
2: s← 0
3: while G is not empty do
4: Add new jobs to job queue Q from G
5: job end flag=0
6: while job end flag = 0 do
7: Estimate ∆i for each job i ∈ Q
8: for each job i ∈ Q do
9: Estimate ttask(i, s) using BOE model

10: Estimate the stage time tstage(i, s)

11: tstage(s) = tstage(k, s) =
Ns
min
i=1
{tstage(i, s)}

12: for each job i ∈ Q do
13: update the progress for job i
14: if job k in reduce stage then
15: job end flag=1
16: Q.remove(k)
17: else
18: update job k to the reduce stage
19: tdag = tdag + tstage(s)
20: s = s+ 1

21: Return tdag

2) Cost Estimation for a DAG workflow: Algorithm 1
presents the algorithm of the state-based approach to iteratively
estimate the execution time for a DAG workflow. Given a
DAG workflow, we estimate the state transition sequence
1 → 2 · · · → S by iteratively estimating the duration for
each workflow stage. For each iteration, we estimate the stage
duration as follows: (1) estimate the degree of parallelism ∆i

for each running job i; (2) identify the bottleneck resource
and task execution time for each running job using the BOE
model; (3) estimate the rest of the execution time of the
current stage for all the running jobs; (4) find the job with
minimum stage duration time; (5) update the progress for other
running jobs. Therefore, given a DAG workflow G, input data
D, cluster resources C, and historical profile P , we estimate
the execution time for the DAG workflow by estimating the

duration of stages: tdag =
S∑
s=1

tstage(s).

As the example shown in Figure 5, when job j1 completes
(i.e., the DAG workflow enters the stage 3), we estimate the
degree of parallelism ∆3, ∆4, and ∆5, for j2, j3, and j4,
respectively. Next, we estimate the task execution time for
each job, and estimate the state duration time tstage(3), and
update the state and progress for each running job. Finally, we
enter the state 4.

V. EVALUATION

In this section, we conduct a set of experiments to evaluate
the proposed cost models using a variety of representative
DAG workflows. First, we evaluate the effectiveness of the
BOE model in comparison with existing models including
Starfish [16] and MRTuner [31], for both single job and
multiple jobs. Second, we evaluate the state-based approach
for the execution plan estimation of DAG workflows. Finally,
we evaluate the latency overhead for the estimation, which val-
idates the cost model application scenarios like DAG workflow
auto-tuning.

A. Experimental Setup

The Hadoop clusters are deployed on identical hardware,
with a total of eleven servers. Each node has 6 physical CPU
cores at 2.4 GHz, 2 disk drives at 7.2k RPM with 500 GB
each, and 32 GB of physical memory. Nodes are connected
using a 1 Gbps Ethernet switch.

TABLE I
OVERVIEW OF WORKLOADS FOR EVALUATION

C R Bottleneck

Micro Single-Job

Word Count (WC) Y 3 CPU
TeraSort (TSC) Y 1 CPU
TeraSort (TS) N 1 CPU, Disk
TeraSort (TS3R) N 3 CPU, Network

Micro Multi-Jobs WC+TS N 3, 1 CPU
WC+TS3R N 3, 3 CPU, Network

Hybrid WC+TPC-H(Q1-Q22) Y 3 Hybrid
TS+TPC-H(Q1-Q22) Y 3 Hybrid
WC+KMeans Y 3 Hybrid
WC+PageRank Y 3 Hybrid
TS+KMeans Y 3 Hybrid
TS+PageRank Y 3 Hybrid

We define a set of representative workloads for the experi-
mental evaluation. As shown in Table I, we use Word Count
and TeraSort for micro-benchmarks. We use PageRank for
graph analysis and Kmeans for machine learning, both from
HiBench [19]. The query workload is selected from TPC-H2.
C represents the compression is enabled or not. R denotes
the number of replicas. The hybrid workload means to run
two jobs/queries in parallel. For WC and TS, we use 100 GB
input. We use the huge data set for Kmeans and PageRank
in HiBench. For TPC-H, we generate 80 GB input for 8 input
tables.

B. BOE Model

We evaluate the effect of the task-level BOE model. We
use the best cases of Starfish [16] and MRTuner [31] as the
baseline. That is the ground truth execution time when the
degree of parallelism is equal to that in the profiling stage. We
use the median execution time of tasks as the ground truth in
all the evaluations.

1) Single Job: Figure 6 (a), (b), and (c) present the WC
evaluation result for the map, shuffle, and reduce stages,
respectively. The average accuracy for the execution time esti-
mation is 95.2%, 82.3%, and 85.1% for the BOE model. When
the degree of parallelism is 12, the BOE model outperforms
the baseline by a factor of 6.6x, 4.3x, and 4.1x for the map,
shuffle and reduce stages, respectively. For the map stage, there
are enough idle CPU cores when the degree of parallelism is
less than 6. When the degree of parallelism is higher than 6,
the job becomes CPU-bound due to the saturated computing
resource.

Figure 6 (d), (e), and (f) present the TS evaluation result
for the map, shuffle, and reduce stages, respectively. The
average accuracy for the execution time estimation is 94.0%,
81.5%, and 86.8% for the BOE model. For the case in which
the degree of parallelism is 12, the BOE model outperforms

2https://github.com/rxin/TPC-H-Hive

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(a) WC (map)

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

baseline Actual Estimated

(b) WC (shuffle)

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

baseline Actual Estimated

(c) WC (reduce)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(d) TS (map)

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

baseline Actual Estimated

(e) TS (shuffle)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(f) TS (reduce)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(g) TS3R (map)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(h) TS3R (shuffle)

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Degree of Parallelism

Baseline Actual Estimated

(i) TS3R (reduce)
Fig. 6. The Task-level Effect of BOE Model for a Single Job

the baseline by a factor of 4.3x, 10.6x, and 1.9x for the
map, shuffle and reduce stages, respectively. The bottleneck
is steady with varying the degree of parallelism for both the
map and the reduce stage. The map stage is disk-bound, and
the shuffle stage is network-bound. For the reduce stage, the
job is CPU-bound for the low degree of parallelism, and it
becomes disk-bound for the high degree of parallelism. Our
BOE cost model can identify the change of bottleneck by using
the max operation.

Consequently, for single jobs, the BOE model accurately
estimates the execution time with respect to the degree of
parallelism, by identifying the bottleneck for each stage.

TABLE II
TASK LEVEL EFFECT FOR PARALLEL JOBS

DAG Job s1 s2 s3 s4

WC+TS WC 99.5% 84.9% 88.6% 70.5%
TS 99.9% 92.4% - -

WC+TS3R WC 99.9% 92.7% 97.9% 71.7%
TS3R 99.9% 99.9% - -

2) Multiple Jobs: We evaluate the task level BOE model
for parallel jobs. The DAG workflow has two parallel jobs. Ta-
ble II presents the accuracy of the task level model for parallel
jobs including WC, TS, and TS3R, running simultaneously.

For WC and TS run in parallel, the average accuracy
is 99.7% and 88.7% for states 1 and 2, which consist of
parallel jobs. For state 1, the BOE model identified the
CPU bottleneck. When the workflow enters state 2, the BOE
model identifies bottlenecks for the TS reduce stage, which is
network-bound for the shuffle and disk-bound for HDFS write
(with 1 replica). For states 3 and 4, we skip detailed evaluation
since it is covered by single job models in Section V-B1.

For WC and TS3R run in parallel, the average accuracy is
99.9% and 96.3% for states 1 and 2, which consists of parallel
jobs. For state 1, the behavior is the same as the previous DAG
(WC+TS). For state 2, the reduce stage of TS is network-
bounded due to HDFS write (with 3 replicas). For the shuffle
stage, the execution time for TS is reduced by a factor of 2

in comparison with the single job case. This is because the
number of parallel tasks to use the bottleneck resource (i.e.,
network) is reduced by a factor of 2 for the state 2.

Consequently, for parallel jobs, the BOE model can identify
the bottleneck resource and its allocation for each job, and
hence to estimate the execution time for each task.

C. State-based Approach

We evaluate the effectiveness of the state-based estimation
framework for DAG workflow cost estimation. To eliminate
the error of task-level models, we use task execution time
profiles with the identical degree of parallelism for each stage.
For the TPC-H workload, we also count the compilation time
for each query in estimation. We run both micro-benchmarks
(WC or TS) and query/analytics DAGs (TPC-H or HiBench)
in parallel to cover real workloads. Besides the end-to-end
execution time for DAG workflows, we present the average
accuracy of the estimated execution time for each stage
(denoted as Stage Break-downs). This metric provides a break-
down for the estimation and evaluates the accuracy of the state-
based approach for each stage.
Overall DAG Results: First, we present the accuracy for
DAG execution time. The average accuracy of 51 workflows
is 93.50%, 95.00%, 96.38% for median, mean and normal
distribution respectively.

The last 7 columns of the third row group in Table III
present the result for the state-based approach using analytics
DAG workflows. Overall, the minimal accuracy of end-to-end
execution time estimation is more than 81.13% for all the
workflows by Algorithm 1.

The first 2 row groups and the first 10 columns of the third
row group in Table III present the overall DAG estimation
accuracy for hybrid HiBench and TPC-H workload. Overall,
the estimation accuracy on average of 22 WC+TPC-H work-
flows is 94.62%, 96.58%, 97.42% for the median, mean and
normal distribution, respectively. The prediction accuracy on
average of these 22 workflows is 92.94%, 93.67%, and 96.21%
for the median, mean and normal distribution, respectively.
The result indicates that our state-based approach can handle
various workloads from short to long. Some of the queries
have many jobs. For example, Q21 has 9 MapReduce jobs,
which leads to 18 stages when it is run in parallel with the
WC job.
Execution time: Finally, we evaluate the execution time of
the state-based approach for each DAG workflow used in the
above evaluation. The result indicates that the overhead for
computing the cost models is less than 1 second for all the
DAG workflows. This means that the cost model is suitable
to be used in runtime optimizations such as query re-writing
and self-tuning for DAG workflows.

VI. RELATED WORK

MapReduce Cost Models: The cost models for MapReduce
are studied since the bottleneck for data parallel computing
framework are different compared to traditional database sys-
tems. The cost models for single MapReduce jobs are used

TABLE III
ESTIMATION ACCURACY FOR DAGS

TS-Q1 TS-Q2 TS-Q3 TS-Q4 TS-Q5 TS-Q6 TS-Q7 TS-Q8 TS-Q9 TS-Q10 TS-Q11 TS-Q12 TS-Q13 TS-Q14 TS-Q15 TS-Q16 TS-Q17
Alg1-Mean 0.9876 0.9819 0.9887 0.8796 0.8805 0.9423 0.7976 0.9836 0.8905 0.9721 0.9356 0.9938 0.9634 0.959 0.9699 0.9045 0.9881
Alg1-Mid 0.9791 0.9475 0.9785 0.8589 0.8602 0.8972 0.7897 0.9954 0.9276 0.9958 0.8971 0.8423 0.9886 0.902 0.9781 0.9718 0.976

Alg2-Normal 0.9784 0.9647 0.9825 0.9627 0.9968 0.8912 0.9163 0.9986 0.9293 0.9563 0.8866 0.9202 0.9819 0.8758 0.9975 0.9612 0.9841
TS-Q18 TS-Q19 TS-Q20 TS-Q21 TS-Q22 WC-Q1 WC-Q10 WC-Q11 WC-Q12 WC-Q13 WC-Q14 WC-Q15 WC-Q16 WC-Q17 WC-Q18 WC-Q19 WC-Q2

Alg1-Mean 0.8618 0.9392 0.9531 0.8968 0.9375 0.9927 0.9922 0.9833 0.9821 0.9837 0.9871 0.9948 0.9766 0.9854 0.9445 0.9889 0.9878
Alg1-Mid 0.8695 0.9306 0.9452 0.8756 0.9654 0.9386 0.9637 0.9129 0.9553 0.9297 0.9522 0.9834 0.9558 0.9936 0.9015 0.9265 0.9608

Alg2-Normal 0.9506 0.9194 0.9959 0.9706 0.9758 0.974 0.9640 0.9432 0.9548 0.9923 0.9899 0.9413 0.9672 0.9963 0.9885 0.9646 0.9651
WC-Q20 WC-Q21 WC-Q22 WC-Q3 WC-Q4 WC-Q5 WC-Q6 WC-Q7 WC-Q8 WC-Q9 WC-TS WC-TS2R WC-TS3R WC-KM WC-PR TS-KM TS-PR

Alg1-Mean 0.9734 0.9347 0.9538 0.9661 0.9926 0.969 0.9689 0.8464 0.9486 0.8956 0.9994 0.9949 0.9862 0.9687 0.8762 0.9597 0.8113
Alg1-Mid 0.9772 0.9505 0.9549 0.9581 0.9544 0.9699 0.9062 0.8672 0.9651 0.939 0.9495 0.9418 0.9714 0.9331 0.9023 0.9507 0.8463

Alg2-Normal 0.9801 0.9819 0.9281 0.9857 0.9803 0.9831 0.9155 0.9827 0.9643 0.9878 0.9682 0.9723 0.9652 0.9862 0.9725 0.981 0.9839

to tune MapReduce configurations [11], [16], [21], [22], [31],
[37], [38]. These works proposed the general cost-based esti-
mation framework for MapReduce. The authors use queuing
theory to predict key performance indicators (e.g., task waiting
time and blocking probability) of MapReduce jobs in [30].
However, these cost models are for single MapReduce jobs
and do not consider the resource allocation variance with
respect to the degree of parallelism. Thus these cost models
have the limitation in terms of resource estimation for parallel
MapReduce jobs, which is the main focus of this paper.
An analytical cost model is used as the fundamental build-
ing block to optimize resource configuration for SystemML
programs [18]. In contrast to our work, this cost model is
specifically for SystemML resource configuration and does not
consider the general problem for resource contention among
MapReduce tasks. Ernest [36] is a performance prediction
model that collects as few training points as required by using
a statistical technique (i.e., optimal experiment design). Like
Starfish and MRTuner, Ernest also focuses on single jobs
rather than DAGs with parallel jobs. The machine learning
based prediction model is proposed in [32] to estimate job
execution time for Spark. However, the identified features do
not consider the impact of parallelism on system bottleneck.
Thus the model does not fit for the multiple job scenario.

Query Optimizers: Prior to MapReduce, cost models are
widely used in query optimizers in relational database systems.
The cost estimation for relational queries is widely studied
for a parallel database [6]. There do exist interesting works
on the resource usage model for parallel queries such as
join [13], which take the impact of resource contention into
account for the cost estimation. However, the analytical model
for MapReduce is different due to different task execution
frameworks. Resource Bricolage is proposed for parallel query
optimization in a heterogeneous cluster [24]. This approach
quantifies the performance differences among machines with
various resources by profiling workloads. Our problem differs
from theirs as we aim to model the resource usage for parallel
MapReduce tasks rather than parallel queries. A MapReduce
cost model is proposed in [40] to estimate I/O and CPU costs.
Since the model is specially designed for query optimizers,
accurate running time is not estimated. The cost model in [39]
is designed for multi-query optimization. However, it only
models the disk and network I/O costs since these are the
bottleneck in its problem.

DAG Workflow: DAG workflow is a natural representation
for high level query in data parallel frameworks. Stubby

is a transformation-based Optimizer for MapReduce Work-
flows [26]. It uses the What-if Engine building block of
Starfish for the cost estimation [16]. However, the resource
statistics are assumed to be the same between the profiling
and estimation stages, and hence it does not address the
preemptable resource issue for parallel jobs. ParaTimer is a
Progress Indicator for MapReduce DAGs [28], which esti-
mates the critical path for parallel jobs of a DAG workflow.
However, ParaTimer does not consider resource contention
among parallel tasks. The authors experimentally demonstrate
the impact of the degree of parallelism on the execution time
of DAGs in [33]. However, this work focuses on DAG-level,
and it does not address the task-level cost models. The work
in [25] estimates the execution time of DAGs in tuple-level
for distributed streams. However, this work uses regression
algorithms for the prediction, and the accuracy relies on the
quality of the sample space.
Distributed and Parallel Computing: There are previous
works to estimate the execution time for distributed and
parallel computing frameworks. Bandwidth-latency models
such as LogP model [9] and the BSP model [7] models
are proposed to estimate latency and throughput for parallel
computing systems. These models are not suitable for the
MapReduce framework because MapReduce does not rely on
a messaging-based asynchronous communication system. The
work [29] measures the job completion time for a best-case
scenario without blocking on network or disk use, by using
finer-grained instrumentation to Spark compute thread. They
find that the upper bound on the improvement from optimizing
disk and network performance is limited. This work is cross-
validation of the idea that tasks are pipelined executed using
multiple resources, and it focuses on execution analysis rather
than the cost models to estimate the task execution time based
on data, system and job profiles. Jockey [12] uses a simulation-
based approach to predict job completion time for SCOPE [5].
While the prediction framework is similar to that in this paper,
it does not take the skewness into account. Task completion
time estimation is proposed in [4] for scheduling. However, the
prediction is coarse-grained without estimating the accurate
running time.

VII. CONCLUSION

In this paper, we proposed the BOE model to predict
the allocation of preemptable system resources for task-level
execution time estimation. Based on the insights of resource
allocation among stages, the state-based iterative approach
was proposed for workflow-level execution plan estimation.

Our experimental evaluation showed that the BOE model can
automatically identify the bottleneck resource for each stage.
We performed comprehensive experiments to show that our
new cost model outperforms existing models by a factor of
five for task execution time estimation. For the skew-aware
state-based approach to estimate the execution time of a DAG
workflow, the average prediction error is under 3%.

As the follow-up research, we will study the impact of
skewness in cost estimation and apply our cost models in
automatic tuning for DAG workflows.

ACKNOWLEDGMENT

The authors would like to thank Xiaohua Cai from RUC
(now at Tencent) for setting up the cluster and conducting
preliminary benchmarks.

REFERENCES

[1] Apache tez. https://tez.apache.org/.
[2] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti. Big data machine

learning using apache spark mllib. In Big Data (Big Data), 2017 IEEE
International Conference on, pages 3492–3498. IEEE, 2017.

[3] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. R. Burdick,
and S. Vaithyanathan. Hybrid parallelization strategies for large-scale
machine learning in SystemML. VLDB, 7(7):553–564, 2014.

[4] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou. Apollo: scalable and coordinated scheduling for cloud-
scale computing. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 285–300, 2014.

[5] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proceedings of the VLDB Endowment, 1(2):1265–1276, 2008.

[6] S. Chaudhuri. An overview of query optimization in relational systems.
In PODS, pages 34–43, 1998.

[7] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant. Bulk syn-
chronous parallel computing paradigm for transportable software. In
TEPDS, pages 61–76. 1996.

[8] B. Clifton. Advanced web metrics with google analytics. 2012.
[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. Von Eicken. LogP: Towards a realistic model
of parallel computation, volume 28. ACM, 1993.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. CACM, 51(1):107–113, 2008.

[11] M. Ead, H. Herodotou, A. Aboulnaga, and S. Babu. Pstorm: Profile
storage and matching for feedback-based tuning of mapreduce jobs.
pages 1–12, 2014.

[12] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proceedings
of the 7th ACM european conference on Computer Systems, pages 99–
112. ACM, 2012.

[13] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for
parallel execution. In SIGMOD, pages 9–18, 1992.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In NDSI, pages 323–336, 2011.

[15] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative
machine learning on MapReduce. In ICDE, pages 231–242, 2011.

[16] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. VLDB, 4(11):1111–1122, 2011.

[17] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics. In SoCC, page 18,
2011.

[18] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss. Resource elasticity for large-scale machine learning. In SIGMOD,
pages 137–152, 2015.

[19] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis.
In ICDEW, pages 41–51, 2010.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In ACM SIGOPS
Operating Systems Review, volume 41, pages 59–72, 2007.

[21] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop performance
modeling for job estimation and resource provisioning. IEEE Transac-
tions on Parallel and Distributed Systems, 27(2):441–454, 2016.

[22] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain: debugging
mapreduce job performance. VLDB, 5(7):598–609, 2012.

[23] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. Scalla: a platform
for scalable one-pass analytics using mapreduce. TODS, 37(4):27, 2012.

[24] J. Li, J. Naughton, and R. V. Nehme. Resource bricolage for parallel
database systems. VLDB, 8(1):25–36, 2014.

[25] T. Li, J. Tang, and J. Xu. Performance modeling and predictive
scheduling for distributed stream data processing. IEEE Transactions
on Big Data, 2(4):353–364, 2016.

[26] H. Lim, H. Herodotou, and S. Babu. Stubby: A transformation-based
optimizer for mapreduce workflows. VLDB, 5(11):1196–1207, 2012.

[27] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine
learning in apache spark. The Journal of Machine Learning Research,
17(1):1235–1241, 2016.

[28] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: a Progress
Indicator for MapReduce DAGs. In SIGMOD, pages 507–518, 2010.

[29] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI. Making sense of performance in data analytics frameworks. In
NSDI, volume 15, pages 293–307, 2015.

[30] C. Shen, W. Tong, J.-N. Hwang, and Q. Gao. Performance modeling of
big data applications in the cloud centers. The Journal of Supercomput-
ing, 73(5):2258–2283, 2017.

[31] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang. MRTuner: A toolkit
to enable holistic optimization for mapreduce jobs. VLDB, 7(13):1319–
1330, 2014.

[32] R. Singhal and P. Singh. Performance assurance model for applications
on spark platform. In Technology Conference on Performance Evalua-
tion and Benchmarking, pages 131–146. Springer, 2017.

[33] M. Taufer and A. L. Rosenberg. Scheduling dag-based workflows on
single cloud instances: High-performance and cost effectiveness with
a static scheduler. The International Journal of High Performance
Computing Applications, 31(1):19–31, 2017.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive-a petabyte scale data warehouse
using hadoop. In ICDE, pages 996–1005, 2010.

[35] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache Hadoop
YARN: Yet another resource negotiator. In SoCC, pages 5:1–5:16, 2013.

[36] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient performance prediction for large-scale advanced an-
alytics. In NSDI, pages 363–378, 2016.

[37] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: automatic resource
inference and allocation for mapreduce environments. In Proceedings of
the 8th ACM international conference on Autonomic computing, pages
235–244. ACM, 2011.

[38] A. Verma, L. Cherkasova, and R. H. Campbell. Resource provisioning
framework for mapreduce jobs with performance goals. In ACM/I-
FIP/USENIX International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 165–186. Springer, 2011.

[39] G. Wang and C.-Y. Chan. Multi-query optimization in mapreduce
framework. Proceedings of the VLDB Endowment, 7(3):145–156, 2013.

[40] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization for
massively parallel data processing. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 12. ACM, 2011.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI,
2012.

