
Abstract  In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic 
carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize 
the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; 
STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; 
PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used 
to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used 
to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. 
Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and 
geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the 
SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal 
section was not sufficiently characterized. We suggest that our new results of the coastal section should be 
used for past characterizations of the SEP water masses that are usually based on continental margin sediment 
samples.

Plain Language Summary  The Southeast Pacific (SEP) is a large marine region along the western 
continental margin of South America, where water masses that are transported from equatorial, subtropical, and 
subpolar latitudes converge. This study aims to understand the characteristics of water masses using isotopes 
of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) along with other parameters, 
such as temperature, salinity and oxygen, and nutrient concentrations. Significant differences in the chemical 
and isotope composition of SEP water masses are described. The distribution of the water masses above 
1,000 m differs between our new coastal (71°–78°W) and partly existing oceanic (82°–98°W) sections. This 
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1.  Introduction
The coastal region of the Southeast Pacific (SEP) off Peru and Chile (as far as 38°S; Figure 1) hosts one of the 
most productive Eastern Boundary Current Upwelling Systems of the world (Chavez & Messié, 2009; Daneri 
et al., 2000; Montero et al., 2007). It has a complex water mass structure with a confluence of surface, subsur-
face and intermediate water masses coming from the subantarctic and the tropical Pacific, and recirculated deep 
waters (e.g., Silva et al., 2009; Strub et al., 1998). The interplay of these different waters plays a crucial role in 
the distribution of nutrients, heat, gases, and salt, which influence primary productivity, ocean circulation, and 
climate. Physical and chemical variables, such as temperature, salinity, and nutrients have been traditionally used 
to characterize water masses in the SEP (e.g., Llanillo et al., 2012, 2013; Silva et al., 2009). Since the WOCE 
program, several expeditions have taken place in offshore locations (oceanic region) of Peru and Chile. Among 
other measurements, seawater samples were collected and analyzed for their stable isotope composition to serve 
as a water mass tracers in the region. These tracers offered the opportunity to further improve our understanding 
of the complex physical processes affecting the water masses and biogeochemical cycles in the region (Druffel & 
Griffin, 2015; Kumamoto et al., 2011; Martínez-Méndez et al., 2013a; Quay et al., 2003).

Stable isotope ratios of oxygen (δ18O) and hydrogen (δD) in seawater have been used as a conservative hydrolog-
ical tracers to determine the advection, mixing, and formation of water masses (Benway & Mix, 2004; Bigg & 
Rohling, 2000; Conroy et al., 2017; Craig & Gordon, 1965; LeGrande & Schmidt, 2006; Meredith et al., 1999; 
Schmidt, 1998, 1999). The δ18O and δD values and their spatial distribution in the surface ocean are tied to the 
hydrological cycle through evaporation/precipitation (e.g., Conroy et al., 2013; Tiwari et al., 2013), atmospheric 
vapor transport (e.g., Benway & Mix, 2004), continental freshwater inputs (e.g., Khatiwala et al., 1999), and sea-
ice formation/melting (e.g., Bass et al., 2014; Macdonald et al., 1999). Evaporation preferentially removes the 
lighter isotopes (16O and 1H) from the surface ocean layer, causing enrichment of the heavier isotopes (18O and 
2H) as well as an increase in salinity. Precipitation and continental runoff/glacial-ice melting, return freshwater 
with lighter isotopes back to the ocean (Benway & Mix, 2004; Mackensen, 2001; Mikalsen & Sejrup, 2000). 
Hence, there are regional linear relationships between δ18O and δD and salinity (conservative behavior; Benway 
& Mix, 2004; Bigg & Rohling, 2000; Conroy et al., 2017; LeGrande & Schmidt, 2006; Schmidt, 1998, 1999).

The stable carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) is a non-conservative tracer, and 
a semi-quantitative indicator of ventilation and water mass aging (Bostock et al., 2010, 2013; Kroopnick, 1985; 
Kumamoto et al., 2011). The distribution of δ13CDIC in the surface ocean is controlled by air-sea gas exchange, 
photosynthesis, carbonate precipitation, and ocean circulation (Gruber et al., 1999; McNeil et al., 2001). During 
photosynthesis, phytoplankton discriminates 12C against 13C, leaving seawater relatively enriched in 13C leading 
to higher surface ocean δ13CDIC values, accompanied by low nutrient contents (Gruber et al., 1999). This relation-
ship in surface waters is additionally affected by isotope fractionation that occurs during air-sea CO2 exchange 
(δ13Cair-sea; Broecker & Maier-Reimer,  1992; Charles et  al.,  1993; Lynch-Stieglitz et  al.,  1995). For example, 
the cold temperatures in the surface layers in polar and subpolar regions increase the δ13Cair-sea of water masses 
formed there and this isotopic signature is transferred to the ocean interior upon sinking and conserved until 
the water masses mix with other water masses (Bostock et al., 2010, 2013; Broecker & Maier-Reimer, 1992; 
Charles et al., 1993; Charles & Fairbanks, 1990; Oppo & Fairbanks, 1989). Furthermore, as particulate organic 
matter sinks into the deep ocean, aerobic and anaerobic remineralization within the water column releases 12C 
and nutrients back to their dissolved inorganic forms (δ13Cbio). In combination with ocean circulation, δ13CDIC 
(δ13CDIC = δ13Cair-sea + δ13Cbio) of ocean interior water masses become enriched in 12C en route, a process called 
water mass “aging,” making older waters carry lower δ13CDIC and higher nutrient contents (Kroopnick, 1985).

Understanding the distribution of δ13CDIC, δ18O, and δD in the ocean is important since calcifiers (e.g., foraminif-
era) found buried in deep sea sediments as well as pore water/algae lipids, recording chemical signals, provide 
valuable information about past oceanographic environments and conditions.

The study of past water masses geometry and chemistry in the SEP, relies on downcore stable isotope records 
from calcifers collected from the shelf and slope of the western continental margin of South America. These al-
low the reconstructions of density, ventilation, oxygen, and nutrient contents in the water column on various time 

has implications for the interpretation of paleoceanographic records, which are typically collected from the 
continental margin rather close to the coast.
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scales (e.g., Haddam et al., 2018, 2020; Martínez-Fontaine et al., 2019; Martínez-Méndez et al., 2013a; Mohtadi 
et al., 2008; Nürnberg et al., 2015; Siani et al., 2013).

Most of the interpretations from past stable isotope records recovered from the continental shelf and slope in the 
SEP are based on comparisons with modern oceanographic data from the more oceanic part of the region. This 
may lead to biased interpretations. Some examples of potential biases are the over/underestimation of (a) changes 
in past water mass distribution and circulation, due to comparing the extension of a reconstructed water mass in 
the coastal section with its present extension in the more oceanic region (e.g., De Pol-Holz et al., 2006, 2007); 
(b) stable isotope disequilibria between water and calcite in proxy calibration studies, due to comparing the stable 
isotope signature of calcite of coastal samples with water samples collected in the oceanic section (Schmittner 
et al., 2017), and (c) traceability of regional isotope effects (e.g., biological and physical), which may explain the 
stable isotope signature of specific water masses (Mackensen, 2001).

Here, for the first time, we combine δ18O, δD, and δ13CDIC in seawater to characterize the SEP water masses, using 
published and new analyses from both the coastal and oceanic regions off Peru and Chile collected between 1992 
and 2018. Our collection represents a time snapshot that includes potential seasonal, interannual, and decadal 
changes of the water masses; this long-term characterization will help to further understand the water masses and 
the processes, as well as providing calibrations for paleoceanography studies.

Figure 1.  a) Location of the studied hydrological sites (colored dots refer to the individual expeditions listed in the inset 
and in Table 1). The red polygons in (b) and (c) indicate the meridional oceanic (on average > 1,000 km from the coast) 
and coastal (on average < 300 km from the coast) sections discussed in this study. Samples between the oceanic and coastal 
sections are not discussed in this study because they mostly comprise only surface waters and isolated samples from the 
water column. Features indicated in (a) are main ocean currents, oceanographic fronts, and the Antarctic Intermediate Water 
(AAIW) formation zone in the Southeast Pacific. Peru-Chile or Humboldt Current (PCC), Peru-Chile Counter Current 
(PCCC), Peru-Chile Undercurrent (PCUC), Equatorial Undercurrent (EUC), South Equatorial Current (SEC), Cape Horn 
Current (CHC), Subantarctic Front (SAF), and Subtropical Front (STF). In (d) the regions (colored) along the WOCE line 
P19, where the source water masses (Table 2) were defined are indicated. The stations of expeditions P19–P06 and SO211 
correspond to published stable isotope data from the project GLODAP v2 https://www.glodap.info/ and Martinez-Mendez 
et al. (2013a), respectively.
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2.  Regional Setting
2.1.  Water Masses and Ocean Circulation

The SEP represents the ocean region from approximately the Equator to 53°S and between the western con-
tinental margin of South America and 90°W. It comprises the eastern part of the Equatorial Current System 
(with eastward and westward currents), eastern part of the South Pacific Subtropical Gyre (SPSG), the eastward 
West Wind Drift Current which comprises the Peru-Chile Current System (or Humboldt Current System) and 
the Cape Horn Current (Graco et al., 2013; Grados et al., 2018; Halpin et al., 2004; Stramma et al., 2010; Strub 
et al., 1998, 2019). Mesoscale surface and subsurface eddies are common, which act as efficient distributors of 
heat, salt, nutrients, and biomass to the open ocean (Cornejo D’Ottone et al., 2016; Hormazabal et al., 2013; Kars-
tensen & Ulloa, 2009; Morales et al., 2012; Wang et al., 2018). Table S1 shows the acronyms for the individual 
currents and water masses addressed in this study.

The ocean and coastal regions off Chile and Peru are characterized by five main water masses: Subantarctic 
Surface Water (SAAW), Subtropical Water (STW), Equatorial Subsurface Water (ESSW), Antarctic Intermediate 
Water (AAIW), and Pacific Deep Water (PDW; Figures 1 and 2). At the surface, the relatively cold, fresh, oxy-
genated, δ13CDIC enriched, and low nutrient SAAW is advected equatorward from the Subantarctic Front (SAF) 
along the eastern part of the SPSG via the Peru-Chile Current (PCC) until ∼32°S (Llanillo et al., 2012; Silva 
et al., 2009). SAAW flowing along the Chilean coast receives freshwater from perennial rivers and meltwater 
discharges from Patagonian fjords during austral summer (Silva et al., 1997) leading to a fresher SAAW variety 
(referred to Summer Subantarctic Surface Water, SSAAW; Llanillo et al., 2012). At the Subtropical Front (STF; 
35°–30°S) the SAAW subducts into the ocean interior between 50 and 200 m; the subducted SAAW has been 
named the Eastern South Pacific Intermediate Water (ESPIW; Schneider et al., 2003).

North of 32°S, the surface ocean is occupied by the salty, warm, well-oxygenated STW, characterized by high 
values of δ13CDIC and low nutrient content. Most of the STW flows with the SPSG, but in the Tropical Eastern Pa-
cific a fraction of STW is advected poleward by the Peru-Chile Counter Current (PCCC; Fiedler & Talley, 2006; 
Grados et al., 2018; Llanillo et al., 2012; Silva et al., 2009; Tsuchiya & Talley, 1998).

Between 200 and 600 m, the ESSW dominates the water column below the SAAW and STW in the tropical/sub-
tropical SEP. This water mass is characterized by high salinity and nutrient contents, very low oxygen, and low 
δ13CDIC values (Garcia et al., 2014; Quay et al., 2003; Vargas et al., 2021; Wooster & Gilmartin, 1961). The ESSW 
derives from the mixing of aged water masses in the (western) Equatorial Pacific and is transported eastward by 
the Equatorial Undercurrent (EUC). Encountering the Galápagos Archipelago, the EUC deviates south into the 
SEP shadow zone, characterized by stagnant circulation, which enables further oxygen depletion in the ESSW 
(Strub et al., 1998). The ESSW is transported poleward along the continental slope by the Peru-Chile Undercur-
rent (PCUC; also known as the Gunther Undercurrent after Garcia et al., 2014; Llanillo et al., 2013; Wooster 
& Gilmartin, 1961). During upwelling events, the nutrient-rich ESSW reaches the surface ocean, and thus it is 
largely responsible for maintaining the high primary productivity and rich fisheries in the region (Montecino & 
Lange, 2009; Ulloa & Pantoja, 2009). This water mass is associated with the SEP oxygen minimum zone (SEP-
OMZ; Silva et al., 2009) and is clearly identified from equatorial latitudes all the way south along the Chilean 
slope to temperate latitudes (38°S, Llanillo et al., 2012 and 48°S, Silva et al., 2009). Furthermore, south its low 
oxygen signature disappears through mixing with the SAAW and AAIW below.

At intermediate depths, between 500 and 1,000 m, the AAIW is characterized by relatively low salinity, tempera-
ture, and nutrient contents, and high levels of oxygen and δ13CDIC (Bostock et al., 2013; Hanawa & Talley, 2001; 
Martínez-Méndez et al., 2013a; Silva et al., 2009; Tsuchiya & Talley, 1998). One of the main source regions of 
AAIW today lies at Subantarctic latitudes close to Southern Patagonia (Hartin et al., 2011) from where the AAIW 
flows equatorwards at intermediate depths of the eastern boundary current, along the continental slope. Its influ-
ence remains still detectable in the equatorial region (Llanillo et al., 2013) albeit weak. AAIW is crucial for the 
ventilation of the thermocline and intermediate depths of the South Pacific Basin.

At depths >1,500 m, PDW dominates; it is characterized by high nutrient and low oxygen contents and low 
δ13CDIC values (Kumamoto et al., 2011). PDW is the most abundant and oldest water mass worldwide (DeVries, 
& Holzer, 2019; DeVries, & Primeau, 2011). It derives initially from a complex mixing of Lower Circumpolar 
Deep Water (LCDW), Antarctic Bottom Water (AABW) with SAAW, AAIW, and North Pacific Intermediate 
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Figure 2.  Hydrographic parameters: temperature (a and b), salinity (c and d), oxygen (e and f), phosphate (g and h) in 
the oceanic and coastal meridional section in the Southeast Pacific. Main water masses can be seen in all sections: SAAW 
(Subantarctic Surface Water), ESPIW (Eastern South Pacific Intermediate Water), STW (Subtropical Surface Water), ESSW 
(Equatorial Subsurface Water), AAIW (Antarctic Intermediate Water), and PDW (Pacific Deep Water). Each water sample 
site is represented by gray dots. The degree of gridding is indicated in the plot. Dashed lines represent the isoline of 50% of 
the contribution of the water mass to the water mixture. Grey dots show sample sites.
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Water (Koshlyakov & Tarakanov, 2004). Along its very long path from high southern latitudes via the North 
Pacific and before returning south to the SEP, the PDW is further modified by mixing and geothermal warming 
(Talley, 2013).

Coupled ocean-atmosphere interannual and decadal-scale variations like the El Niño Southern Oscillation 
(ENSO) and the Pacific Decadal Oscillation (PDO) play a role in altering the mean distribution of the surface 
and intermediate waters in the SEP (Deutsch et al., 2011; Llanillo et al., 2013; Morales et al., 1999). Llanillo 
et al. (2013) show that during the warm phases of ENSO (El Niño) and PDO (El Viejo), the core of STW moves 
closer to the coast displacing ESSW downward and supplying the upper 250 m with oxygen. During the cold 
phases of ENSO (La Niña) and PDO (La Vieja) intensified upwelling increases the proportion of ESSW in shal-
lower layers, enabling AAIW and ESPIW to concomitantly rise upward and reach further north thereby increas-
ing the oxygenation of the lower part of the SEP-OMZ.

2.2.  Upwelling Regime, Mesoscale Structures, and Primary Productivity

Along the western South American coast, the Southeast Pacific Subtropical Anticyclone (SPSA) drives upwelling 
favorable winds (Bakun & Nelson, 1991). Coastal upwelling causes upward advection of nutrient-rich ESSW, 
boosting high primary productivity up to ∼20 g C m−2 day−1 in the region (Daneri et al., 2000; Morales, Blanco, 
et al., 1996; Morales, Braun, et al., 1996; Testa et al., 2018).

The coastal upwelling regime has different spatial and temporal patterns along the western South American mar-
gin controlled by the SPSA, local topography, bathymetry, and water column stability (Figueroa & Moffat, 2000; 
Montecino et al., 2006). Upwelling is largely persistent between 12° and 24°S offshore Peru and northern Chile. 
However, between 17° and 20°S the Easterly Winds hit the land at a different angle than north or south of this 
location, therefore upwelling does not occur (e.g., ref. upwelling doldrum zone; Rutllant & Montecino, 2002). 
Toward the south, the upwelling regime changes from semi-permanent (23°S) to seasonal (33°–37°S; Letelier 
et al., 2009; Morales, Blanco, et al., 1996; Morales, Braun, et al., 1996). In this region, mesoscale eddies are 
often formed, changing the structure of the water column and regional biogeochemical cycles (Cornejo D’Ottone 
et al., 2016; Morales et al., 2012; Stramma et al., 2013).

In northern and southern Patagonia (>40°S) prevailing onshore Westerly winds together with the eastward 
directed Antarctic Circumpolar Current (Silva et al., 2009) promote downwelling (Shaffer et al., 1995; Strub 
et al., 1998). However, recent studies have shown that the upwelling/downwelling transition area off 40° and 42°S 
is shifting southward (Narváez et al., 2019).

Across these upwelling subsystems, maxima in primary productivity occur during austral spring and summer 
(Morales, Blanco, et al., 1996; Morales, Braun, et al., 1996). Between 30° and 38°S productivity is further fueled 
by nutrient inputs from river runoff (Masotti et al., 2018; Testa et al., 2018). High primary productivity along 
the Patagonian region is mainly supported by nutrient inputs brought about by localized rivers and glacier runoff 
(Pantoja et al., 2011).

3.  Materials and Methods
3.1.  Water Column CTD and Nutrient Data

In all expeditions (Table 1), Seabird-CTDs attached to Rosettes of Niskin bottles were used to measure conduc-
tivity, temperature, pressure, and oxygen. Nutrient samples were siphoned from Niskin bottles into 15 mL plastic 
vials, measured onboard or stored at −20°C for later measurements. The samples were measured using different 
autoanalyzer devices, depending on the expedition and laboratory (for further details see Table S2).

3.2.  Extended Optimum Multi-Parameter Analysis

The Extended Optimum Multi-Parameter (EOMP) method was used to determine the water mass fractions (%) at 
each sampling point (Hupe & Karstensen, 2000; Karstensen & Tomczak, 1998). The EOMP is a multidimension-
al least-square fit that allows obtaining the percentage of mixing of more than three water masses in a water vol-
ume. The EOMP takes into consideration the biogeochemical cycling (respiration, remineralization, and denitri-
fication) by including stoichiometry-scaled unknowns for the equation of each non-conservative parameter (Hupe 
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& Karstensen, 2000). The parameters used for the EOMP analysis are potential temperature, salinity, oxygen, and 
inorganic nutrients (phosphate, silicate, and nitrate; Hupe & Karstensen, 2000; Karstensen & Tomczak, 1998; 
Poole & Tomczak, 1999). The EOMP analysis requires a correct definition of the source water masses expected 
to contribute to the observed parameter in the water mixture. The source regions (Figure 1c) for the five main 
water masses addressed in this study are summarized in Section 2.1 (Table 1).

We used the potential temperature, salinity, oxygen, silicate, and nitrate end-members calculated for SAAW, 
STW, ESSW, AAIW, and PDW by Llanillo et al. (2013; Table 2) assuming that the source waters are in a theoret-
ical steady state. Hence, changes in the water mass fractions and their biogeochemical signals are interpreted as 
responding solely to the redistribution of water masses and to different biogeochemical cycling (remineralization 
and denitrification).

Before resolving the EOMP, the different parameters are normalized and weighted in order to control their rela-
tive influence on the solution (Tomczak & Large, 1989). The largest weights are assigned to mass conservation 
(i.e., the mass conservation equation will be more relevant for the resolution of the EOMP) and to the parameters 
with the largest sampling accuracy (potential temperature and salinity). For potential temperature and salinity the 
assigned weight was 24. Nutrients, such as phosphate, nitrate, and nitrite have weights of 7. Due to a non-constant 

Expedition ID Research vessel ID
Sampling date (day/

month/year)
Longitude ranges 

(degrees east)
Latitude ranges 
(degrees north)

Data provided 
by Measurements

TAITAO R/V Cabo de Hornos 01/11/2018 to 13/11/2018 −74.79 to −75.81 (−41.75) to (−47.66) This study δ13CDIC, δ18O, δD, 
N, O2, TSD

SO-261 R/V SONNE 06/03/2018 to 22/03/2018 (−70.88) to (−71.51) (−21.82) to (−23.88) This study δ13CDIC, δ18O, δD, 
O2, TSD

SO-245 R/V SONNE 25/12/2015 to 30/12/2015 (−84.56) to (−90.03) (−21.82) to (−23.88) This study δ13CDIC, δ18O, δD, 
N*, O2*, TSD*

316N138-3 (P06) R/V Knorr 30/05/1992 to 06/06/1992 (−71.67) to (−96.67) (−32.48) to (−32.51) WOCE, 1992 δ13CDIC*, N*, O2*, 
TSD*

49NZ20030909 (P06) R/V Mirai 03/08/2003 to 16/10/2003 (−72.71) to (−98.66) (−32.49) to (−32.50) WOCE, 2003 δ13CDIC*, N*, O2*, 
TSD*

318M20100105 (P06) R/V Melville 05/01/2010 to 1/02/2010 (−71.92) to (−100.56) (−32.49) to (−32.50) WOCE, 2010 δ13CDIC*, N*, O2*, 
TSD*

LOWPHOX 1 R/V Cabo de Hornos 11–12/2015 (−70.51) to (−71.34) (−20.1) to (27.66) This study δ13CDIC, δ18O, N, 
O2, TSD

RR9702a R/V Roger Revelle 2–4/1997 (−73) to (−81.5) (−13.70) to (−47) This study δ13CDIC, O2

SO-102 R/V SONNE 09/05/1995 to 28/06/1995 (−72.81) to (−82.91) (−21.08) to (−43.24) This study δ13CDIC, N, O2, 
TSD

SO-211 R/V SONNE 10/11/2010 to 26/11/2010 (−70.65) to (−71.77) (−23.85) to (−30.24) This study δ13CDIC*, δ18O, O2, 
TSD

Station18-Udec L/C Kay Kay II 19/05/2015 and 
23/06/2015

−73 −36.50 This study δ13CDIC, δ18O, N, 
O2, TSD

CIMAR-21 R/V Cabo de Hornos 12/10/2015 to 20/10/2015 (−71.25) to (86.8) (−27.09) to (−27.24) This study δ13CDIC, δ18O, N**, 
O2**, TSD**

Crio1812 R/V Jose Oyala 27/12/2018 to 28/12/2018 (−77.22) to (−78.85) −12 This study δ13CDIC, δ18O, δD, 
N, O2, TSD

316N138_12 (P19) R/V Knorr 22/02/1993 to 13/04/1993 (−75.02) to (−88) (−8) to (−54) WOCE, 1993 δ13CDIC*, N*, O2*, 
TSD*

M93 R/V Meteor 06/02/2013 to 10/03/2013 (−76) to (−78) (−12) to (−13) This study δ13CDIC, N*, O2*, 
TSD*

Note. Type of data and samples obtained per expedition are indicated in Tables S1–S3. N: Nutrients; TDS: Temperature, salinity, and density. * SO245 (Ferdelman 
et al., 2019), SO211 (Martínez-Méndez et al., 2013b, 2013c, 2013d, 2013e), M93 (Lavik & Krahmann, 2016). **CIMAR21 data set from shallow water depth is 
available in Farías and Troncoso (2021), in this study we add information about deep stations. * and ** data sets are available in GLODAP and PANGAEA webpages.

Table 1 
Metadata of the Expeditions Providing the Sample Material and Data for This Study
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relationship during remineralization with phosphate and nitrate, silicate was assigned with half of the nutrient 
weight (3.5; Llanillo et al., 2013; Table 2).

The EOMP analysis was applied to the full data set including the oceanic and coastal hydrological sections (Fig-
ure 1), excluding those data points located within the uppermost 55 m of the water column that correspond to an 
average mixed layer estimated for the study area (Leth et al., 2004; Llanillo et al., 2013). As mixed layer points are 
influenced by air-sea interaction processes, they cannot be resolved with the EOMP (i.e., potential temperature 
and salinity are not conservative).

Only data points with a mass conservation error <4% were selected for this study and, consequently, this can be 
interpreted as the uncertainty associated with the EOMP results. In 1,094 out of 2,680 data points it was possible 
to apply the EOMP analysis. 40% of the data qualify for EOMP analyses, providing new insights into the ocean-
ography of this region with the largest dataset for the SEP so far.

3.3.  Water Column Stable Isotope Data

Water samples for δ18O, δD, and δ13CDIC were collected during several expeditions conducted between 1992 
and 2018 in the SEP using Niskin bottles coupled in a Rosette with CTD device (see Table S3 and S4). The 
RR-9702a expedition is an exception; a single Niskin bottle was coupled to the top of a multicorer device. To 
prevent contamination and/or micro-evaporation, water samples were immediately siphoned from Niskin bottles 
into 100 and 25 mL glass and polypropylene bottles avoiding bubbles. Water samples for δ13CDIC determinations 
were poisoned onboard with 0.5 mL of ultra-saturated mercury chloride (HgCl2) to avoid alternating the δ13CDIC 
signature by further remineralization. All δ18O, δD, and δ13CDIC samples were sealed with parafilm and kept at 
4°C until analysis in the laboratory.

3.3.1.  Water Column δ18O and δD Analyses

The δ18O (n = 200, 8 expeditions) and δD (n = 90, 8 expeditions) compositions of water samples were determined at 
MARUM-Bremen, CEOAS-Oregon, and BGS-Nottingham laboratories (see Tables 1 and S3). At MARUM-Bre-
men, dual δ18O-δD analyses were conducted using a Picarro L-2130i performing nine injections per sample. The 
first seven injections were ignored to preclude memory effects that potentially might occur in continuous runs of 
several samples. Results obtained were normalized to VSMOW2 through repeated analyses of house standards as 
SLAP2 (Standard Light Antarctic Precipitation 2; δ18O: −55.5 ± 0.02‰, δD: −427.5 ± 0.3‰; IAEA, 2017) and 
VSMOW2 (Vienna Standard Mean Ocean Water; δ18O: 0 ± 0.02‰, δD: 0 ± 0.3‰; IAEA, 2017). Measurement 
errors for all samples were about 0.08‰ for δ18O and 0.2‰ for δD.

At CEOAS-Oregon and BGS-Nottingham δ18O analyses were done by isotope ratio (dual inlet) mass spec-
trometry using a DeltaPlus X and Isoprime 100 mass spectrometer plus Aquaprep device, respectively. Both 

Water 
mass

Pot. Temp. 
(°C) Salinity

Oxygen 
(μmol kg−1)

Phosphate 
(μmol kg−1)

Silicate 
(μmol kg−1)

Nitrate 
(μmol kg−1)

δ13CDIC 
(‰)

δ18O 
(‰)

δD 
(‰)

STW 20.80 35.52  240.65 0.46 2.23 0.74 0.42  0.60  3.22 

SAAW 11 34 268.20 1.07 2.17 13.70 1.81 −0.12 −1.17

ESSW 10 34.80 13.60 2.43 29.81 32.70 −0.48 0.31 0.82

AAIW 3.00 34 238.20 1.97 24.60 28.50 1.59 0.00 −1.01

PDW 1.82 34.67 105.20 2.76 157.30 38.42 0.04 0.01 −1.28

Weight  24 24 7 7 3.5 7 – – –

Note. The source water masses are Subtropical Surface Water (STW), Subantarctic Surface Water (SAAW), Equatorial 
Subsurface Water (ESSW), Antarctic Intermediate Water (AAIW), and Pacific Deep Water (PDW). The water type values 
and weights (bottom row) of potential temperature, salinity, oxygen, phosphate, silicate, and nitrate concentrations were 
obtained from Llanillo et al. (2013). The variables considered conservative are potential temperature, salinity, δ18O, and δD. 
Oxygen, phosphate, silicate, nitrate, and δ13CDIC parameters were considered non-conservative.

Table 2 
Southeast Pacific Source Water Mass Types (Figure 1d) Used for the EOMP Analysis to Obtain δ13CDIC, δ18O, and δD 
End-Members
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laboratories followed the water-CO2 equilibration method modified by Epstein and 
Mayeda (1953). Working standards SLAP2 and GISP (Greenland Ice Sheet Precipita-
tion; δ18O: −24.76 ± 0.09‰, δD: −189.5 ± 1.2‰, IAEA, 2017) indicate measurement 
errors at <0.05‰ for δ18O and the results were corrected to VSMOW.

3.3.2.  Water Column δ13CDIC Analyses

The δ13CDIC (n = 279, 10 expeditions) samples were prepared and analyzed at MAR-
UM-Bremen, WHOI-Massachusetts, and the Museum für Naturkunde-Berlin laborato-
ries (see Tables 1 and S4). Preparation involved the injection of an aliquot of 2 mL of 
seawater through a septum into a vial with 1 mL concentrated phosphoric acid flushed 
with pure helium. The resulting full batch of samples was kept at room temperature for 
at least 6 hr to enable full reaction between the DIC and the acid to produce CO2. δ13CDIC 
were determined using a Thermo Fisher Gas Bench II coupled to a Thermo Finnigan 
MAT 252 mass spectrometer and Thermo Fisher Scientific Delta V. The standard de-
viation for all laboratories was based on routine measurements of the internal standard 
Ground Solnhofen Limestone-SHK Br2008 (δ13C: −0.96‰) and was better than 0.1‰. 
Working standards were calibrated against NBS 19 (δ13C: +1.95‰; Brand et al., 2014), 
NBS 18 (δ13C: −5.01 ± 0.03; Brand et  al.,  2014). All results were then corrected to 
VPDB. To complement our new data, we include in the database the published δ13CDIC 
values for the SEP (n = 1552, 4 expeditions, see Table S4). This data was prepared fol-
lowing the WOCE protocols and the data are stored in the GLODAP database https://
www.glodap.info/.

The burning of fossil fuels since the Industrial Revolution has led to the long-term deple-
tion of δ13CO2 in the atmosphere, which in turn is affecting seawater δ13CDIC values (e.g., 
ref. Suess Effect; Keeling, 1979; Suess, 1955). The maximum Suess effect in the SEP 
is found in surface waters reaching between −0.6‰ and −0.4‰ at 100 m, −0.4‰ and 
−0.2‰ at 200 m, −0.2‰ and −0.05‰ at 300–400 m. Below 800 m no depleted δ13CO2 
has been registered so far (Eide et al., 2017). The maximum Suess effect in SEP waters has 
been computed by global compilations which only consider the regional P06 WOCE line 
expeditions from 1992, 2003, and 2010 (316N138-3/49NZ20030303/318M20100105). 
Due to the low amount of temporal and spatial δ13CDIC data for the SEP used for Suess 
effect estimations, in this study the corrections are not applied. We provide raw data 
from 1992 to 2018 which offer an accurate distribution of the tracers that can be used as 
a modern analogue for regional paleoceanographic reconstructions.

3.3.3.  δ13C From Air-Sea Exchange (δ13Cair-sea)

For the samples with δ13CDIC and phosphate measurements, the δ13Cair-sea exchange val-
ues were calculated (Table 3) based in the equation proposed by Broecker and Maier-Re-
imer (1992) and reviewed by Lynch-Stieglitz et al. (1995). δ13Cair-sea explains how much 
a water mass can be affected by the fractionation of carbon isotopes in surface waters 
due the exchange of CO2 between the atmosphere and the surface ocean. To calculate 
δ13Cair-sea the δ13CDIC values are corrected using the Redfield relationship from the deep 
Pacific/Indian Ocean:

𝛿𝛿
13
𝐶𝐶air-sea = 𝛿𝛿

13
𝐶𝐶DIC + 1.11 × PO4 − 2.7�

3.3.4.  Stable Isotope End-Member Calculations

Once the composition of the water mixture at each sampled point was calculated using 
the EOMP, the source water types (i.e., end-members) of δ18O, δD, and δ13CDIC values 
for each water mass were computed by resolving (through least-squares) in a system of 
linear equations (one per sampled point with EOMP solution) with the unknowns being 
now the isotopic end-members and the coefficients being the previously computed water 
mass contribution in each sampled point. The maximum error of the EOMP analysis is W
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4%. Because δ13CDIC is considered a non-conservative tracer, the system of equations includes the remineraliza-
tion and denitrification as coefficients previously computed by Llanillo et al. (2013).

3.4.  Water Mass Temperature, Salinity, Nutrients, and Stable Isotope Statistical Analyses

The values considered for statistical analyses (mean and standard deviation, μ ± 1σ) only reflect samples marked 
by a dominant water mass (>50% contribution, calculated using EOMP analysis) and which are from below the 
mixed layer (>55 m).

Because of this criteria no statistical analyses were carried out for δ18O and δD of the oceanic section. Tempera-
ture, salinity, oxygen, nutrients (phosphate, nitrate, nitrite, and silicate), and δ13CDIC data did meet this criteria for 
the oceanic and coastal sections. Table 3 and Figures S1–S9, summarized the μ ± 1σ results for all hydrological 
parameters classified by water mass and region.

To assess whether it is possible to use the δ18O, δD, and δ13CDIC to trace water masses through paleoceanographic 
reconstructions, we statistically differentiate the signatures of the main water masses in the SEP using histograms 
(Figures S8 and S9) and non-parametric Mann-Whitney pairwise testing. These analyses clearly distinguish the 
degree of overlap between tracer values of the individual water mass.

3.5.  Data Visualization and Processing

For data visualization we use Ocean Data View 5.2.1 (Schlitzer, 2021; https://odv.awi.de/). The original data 
for the meridional section plots were gridded using interpolated variational analysis (DIVA, https://github.
com/gher-ulg/DIVA) and weighted-average interpolation. The degree of gridding was maximum 35 in the co-
ordinate axis (X) and 45 in the axis (Y). For the EOMP analysis, a MATLAB code was developed by Llanillo 
et al. (2012, 2013).

A Python code was developed for statistical analyses and data manipulation using elements of the free and open-
source library SciPy for scientific and technical computing https://www.scipy.org/. For further information see 
https://github.com/Paleobiogeochemistry.

4.  Results and Discussion
We present the first isotope characterization of the main water masses of the SEP in order to validate δ18O, δD, 
and δ13CDIC as past water mass tracers (i.e., proxies). Our work provides unique information that compiles a long-
term data set of 20 yr, serving as the first isotopical geochemical baseline for future initiatives aimed at testing 
detailed paleoceanographic dynamics in the SEP.

4.1.  Distribution and Mixing of Southeast Pacific Water Masses

Our EOMP analysis reveals that north of ∼30°S STW dominates in the oceanic section in the upper 200 m, 
contributing >60% to the water mixture (Figure 3a). In the coastal section, STW contributes only 40%–50% of 
the water mass (Figure 3b) due to horizontal mixing with SAAW and vertical mixing (upwelling) with ESSW 
(Figures 3b and 3f), confirming results by Silva et al. (2009).

South of ∼25°S, the SAAW contributes between 60% and 90% to the water mixture in the upper 300 m of the 
oceanic section and it subducts below the STW (Figure 3c). After the subduction, when the SAAW has become 
the ESPIW, its core (>50%, at ∼200 m) can be traced until 20°S. Luyten et al. (1983), Schneider et al., (2003) 
and Hernández-Vaca et al. (2017) propose that SAAW is subducted into the ocean interior along the Subtropical 
Front due to wind-induced Ekman pumping. In the coastal section, SAAW dominates as a surface water mass as 
far north as ∼30°S, without being subducted beneath the STW. We hypothesize that three processes prevent in-
tense downwelling of the SAAW near the coast (a) riverine freshwater input along the coastal section, (b) coastal 
upwelling, and (c) the position further north of the Subtropical Front in the Chilean coast.

In the subsurface below STW and SAAW, ESSW can be found in the northern part of the whole SEP, cradling 
above and alongside AAIW between 100 and 700 m. Here ESSW makes up 50%–70% of the water mixture with 
its core centered at 500 m. The ESSW flows southward and is mixing with SAAW (above) and AAIW (below). 

https://odv.awi.de/
https://github.com/gher-ulg/DIVA
https://github.com/gher-ulg/DIVA
https://www.scipy.org/
https://github.com/Paleobiogeochemistry
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Figure 3.  Relative water mass contribution from the water mixture in percentage (%) presented along the oceanic and coastal hydrological sections. Results were 
obtained using the extended optimum multiparameter (EOMP) analysis with the source water mass characteristics given in Table 3. The representation of the percentage 
distribution for each water mass is from top to bottom as STW (Subtropical Surface Water; (a) Oceanic section, (b) Coastal section), SAAW (Subantarctic Surface 
Water; (c) Oceanic section, (d) Coastal section), ESSW (Equatorial Subsurface Water; (e) Oceanic section, (f) Coastal section), AAIW (Antarctic Intermediate Water; 
(g) Oceanic section, (h) Coastal section), and PDW (Pacific Deep Water; (i) Oceanic section, (j) Coastal section). Each site is represented by gray dots. The degree of 
gridding is indicated in the sections. Samples from the mixed layer (uppermost 55 m) were not included in the analysis. Grey dots show sample sites.
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While this mixing is limited to ∼20° to 30°S in the oceanic section (Figures 3e–3f), ESSW is prominent (30% 
and 50%) in the coastal section as far south as 40°S (Figures 3f and S3 at 50 m) with an upward expansion to 
100 m water depth.

At the coastal section off Peru and northern Chile upwelling brings the ESSW closer to the surface. It also reach-
es a more southern position due to hydrostatic equilibrium where low ESPIW-SAAW contributions to depths 
>100 m allow ESSW to advance further south, transported by the PCUC along the continental slope until it is 
mixing with the AAIW and SAAW. Silva et al. (2009) found a much higher maximum contribution of >90% of 
the ESSW between 30° and 10°S between 100 and 500 m water depth in the oceanic section.

Beneath the SAAW and ESSW (54°–25°S), the northward flowing AAIW contributes between 70% and 50% 
to the water mixture down to depths of 1,200 m, both in the oceanic and coastal sections. In the south, the core 
of the AAIW is centered at ∼600 m with a water column range between ∼200 and ∼800 m. Furthermore north, 
AAIW deepens to 400–800 m in the coastal section, whereas in the oceanic section it remains at a similar depth 
as in the south of the study region (Figures 3g and 3h). AAIW still contributes >50% at 20°S (oceanic section) 
and 25°S (coastal section), respectively, and becomes less important (<30%) between 20° and 15°S (oceanic and 
coastal sections; Figures 3g and 3h).

The water mass contribution results show that there are differences between the coastal and oceanic section above 
1,000 m water depth (Figure 3). In the coastal section the STW has less predominance and mixes with the upper 
part of the ESSW. We observe that the ESSW can extends to southern latitudes than in the oceanic section. As 
well, we find that between the ESSW and the upper part of the AAIW is defined a large mixing zone that is not 
observed in the oceanic sections.

Toward deeper levels in the water column between 1,000 and 4,000 m, the PDW contributes progressively from 
40% to 90% to the water mixture (Figures 3i and 3j). An upper (1,000–1,500 m) and a lower PDW (>1,500 m) 
can be separated by density; the upper horizon actively mixes with AAIW and ESSW whereas lower PDW is 
much purer. Our limited data suggests that there are no differences in PDW contribution offshore and onshore. 
Insufficient data prevents us from considering CDW in the extended EOMP analysis.

4.2.  Water Mass Characterization for the Southeast Pacific Using Stable Isotopes of Oxygen, Hydrogen, 
and Carbon

4.2.1.  Conservative Water Mass Tracers: Oxygen and Hydrogen Isotopes

The characterization of SEP water masses by δ18O and δD is limited to the coastal section due to the scarcity 
of data in the oceanic section (Figures 4c–4f). For PDW it was not possible to calculate the mean and standard 
deviation (μ ± 1σ) due the limited data availability.

The STW, SAAW, ESSW and AAIW maintain their source region δ18O and δD (Figures 1d; Tables 2 and 3). The 
relatively heavy STW isotopic composition (Figures 5 and S8; Table 2) suggests that this water mass originates 
from a region with high evaporation rates (Conroy et al., 2017). This is consistent with earlier work showing 
that the STW is formed in the northern part of the high-pressure Subtropical Pacific Gyre region (Stramma 
et al., 1995; Wyrtki, 1973). Because of the hyperarid climate in southern Peru/northern Chile, the limited dis-
charge of freshwater indeed does not affect the δ18O and δD signature of the broader STW. However, the isotopic 
values combined with temperature and salinity, provide evidence that STW is mixed with upwelled ESSW be-
tween 10° and 32°S (Figures 4b, 4d, 5g, and 5h).

The SAAW has comparably low δ18O and δD values (Figure 4b, 4d, 5g, and 5h; Table 2). This is related to high 
rates of precipitation over the Subantarctic Zone (Bass et al., 2014) and the input and subsequent mixing of fresh-
water coming from discharge of meltwater directly from the humid southern Patagonian glaciers. Temperature/
salinity diagrams of the oceanic (Figure 5a) and coastal (Figures 5g and 5h) sections, clearly reveal that coastal 
SAAW is fresher than its oceanic counterpart, indicating the dominance of the SSAAW (Davila et al., 2002; Lla-
nillo et al., 2012; Rojas & Silva, 1996; Silva et al., 2009; Silva & Neshyba, 1979/1980).

Similar to STW, the ESSW is marked by relatively high isotopic values, indicating that it is formed in the Equa-
torial Pacific region where evaporation exceeds precipitation. Once ESSW mixes with AAIW and SAAW off 
central-southern Chile, its values become modified (Figure 4b, 4d, 5g, and 5h; Table 2).
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Figure 4.  δ18O (a and b), δD (c and d), and δ13CDIC (e and f) oceanic-coastal meridional sections in the Southeast Pacific. Main water masses can be seen in all the 
hydrological sections: STW (Subtropical Surface Water), SAAW (Subantarctic Surface Water), ESPIW (Eastern South Pacific Intermediate Water), ESSW (Equatorial 
Subsurface Water), AAIW (Antarctic Intermediate Water), and PDW (Pacific Deep Water). Small gray dots represent the sampling site. The degree of gridding is 
indicated in the sections. Dashed lines represent the isoline of 50% of the contribution of the water mass to the water mixture. Grey dots show sample sites.
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The AAIW, as the SAAW, is formed in the southern section of the SEP (McCartney, 1977) and travels North 
toward the tropical east Pacific (Llanillo et al., 2018; McCartney, 1977). Its δ18O value (Table 2) is similar to 
those reported previously for surface waters at the Subantarctic front (Bass et al., 2014; δ18O: −0.3‰ and δD: 
0‰) implying that AAIW is also influenced by high oceanic precipitation. Slightly depleted δD values of AAIW 
could also result from the contribution of melting ice from the Patagonian Fjords.

Because there were only a few data points for PDW in the SEP we were not able to calculate mean and standard 
deviations (μ ± 1σ). Hence, these data should be taken with caution.

4.2.2.  δ18O-Salinity and δD-Salinity Relationships in the Southeast Pacific

In the modern regional ocean, δ18O-salinity (δ18O-S) and δD-salinity (δD-S) relationships are used for understand-
ing the ocean and atmosphere forcings that influence these, to enable potential reconstructions of past regional 
hydrographies (Benway & Mix, 2004; Bigg & Rohling, 2000; Conroy et al., 2017; LeGrande & Schmidt, 2006; 
Schmidt, 1998, 1999). LeGrande and Schmidt (2006) and Schmidt (2009) classified δ18O-salinity slopes and in-
tercepts from surface waters from several regions worldwide. These authors concluded that steep slopes (around 
0.5‰/sal) and low intercepts (around −15‰ and −17‰) characterize mid- and high-latitudes, where the δ18O 
end-member of freshwater is controlled by local precipitation. In tropical regions, the δ18O end-member is pri-
marily controlled by evaporation. Therefore, the δ18O signature in the lower latitudes is isotopically heavier due 
to the effect of evaporative fractionation. Slopes and intercepts for the respective δ18O-S relationship tend to be 
flat (0.1‰/sal–0.3‰/sal) and higher (from about −8‰ to −10‰).

There are no published δD-S relationships for the Pacific Ocean and our δD data set is small, therefore the main 
discussion is mostly based on the relationship between δ18O and salinity. We are aware that our δ18O-S and δD-S 

Figure 5.  (a, d, g, and h) Potential temperature-salinity with density isopycnals. (b and e) Nitrate-Phosphate diagram, with Redfield ratio shown by a gray line. (c and 
f) Nitrite-Oxygen diagrams from the oceanic and coastal sections. (i and j) δ13CDIC-δ18O diagram. The figures are color-coded from (a) to (f) by δ13CDIC in (g) by δ18O 
in (h) and by δD in (i and j) by oxygen concentrations. Water mass end-members characteristics are shown in black squares: STW (Subtropical Surface Water), SAAW 
(Subantarctic Surface Water), ESSW (Equatorial Subsurface Water), AAIW (Antarctic Intermediate Water), and PDW (Pacific Deep Water). Grey dots show sample 
sites.
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results rely on a small region and they are analyzed by each water mass. Further studies will be required for 
evaluating if the relationship between stable isotope and salinity could be extended for large areas as well as for 
understanding water mass processes.

For some SEP water masses the δ18O values overlaps (Tables 3 and S5), which is clearly seen in the δ18O-S rela-
tionships (Figure S13 in Supporting Information S1). In contrast, the δD-S relationship shows no overlapping in 
the δD values. Therefore, our results suggest that δD could be a promising tracer for water masses in the region. 
SAAW and ESSW are unique in that they exhibit statistically significant (p < 0.05) δ18O-S and δD-S relation-
ships. Both water masses feature a steep slope and low intercept (Figure S13 in Supporting Information S1; Ta-
ble 4). Our results confirm previous work by LeGrande and Schmidt (2006) suggesting that SAAW is formed in 
the high southern latitudes (Table 4) and indicate the absence of sea-ice formation in the coastal region of the SEP 
(Figure S13). Indeed, the strong winds and low pressure system in the Subantarctic Zone bringing high rates of 
precipitation adding to the input of meltwater from Southern Patagonia are the principal mechanisms explaining 
the δ18O-S and δD-S relationship for the SAAW.

Region or Water Mass 
Year of 

sampling

Data points Slope Intercept r2 p-Value

δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD

This study

SAAW 2010–2018 8 7 0.81 1.04 −27.54 −36.49 0.57 0.15 0.03 0.39

ESSW 2010–2018 22 9 −0.08 4.12 2.97 −142.43 0.00 0.55 0.83 0.02

Published data

South Pacific (Schmidt, 1999) 0.63 −21.5 0.78

Equatorial east Pacific (Schmidt, 1999) 0.10 −3.3 0.35

Northeast Pacific (Schmidt, 1999) 0.37 −12.9 0.96

GISS Central Tropical Pacific (0–75 m; 
Conroy et al., 2014)

0.23 −7.82 0.88

GISS Central Tropical Pacific (80–500 m; 
Conroy et al., 2014)

0.35 −11.83 0.83

Central Tropical Pacific Line Island Ridge 
(0–75 m; Conroy et al., 2014)

0.31 −10.38 0.91

Central Tropical Pacific Line Island Ridge 
(80–500 m; Conroy et al., 2014)

0.42 −14.38 0.94

Western Central Pacific Kiritimati (0–1 m; 
Conroy et al., 2017)

0.17 −5.5 0.37

Western Central Pacific Manus, Papua 
(0–1 m; Conroy et al., 2017)

0.20 −6.6 0.93

East Equatorial Pacific Galapagos (0–1 m; 
Conroy et al., 2017)

0.08 −2.4 0.85

Panama Bight (0–40 m; Benway & Mix, 2004) 0.25 and 0.14 −8.52 and 
−4.80

0.98 and 0.84

Panama Bight (41–400 m; Benway & 
Mix, 2004)

0.47 −16.15 0.55

Panama Bight (>400 m; Benway & 
Mix, 2004)

−1.89 65.42 0.95

Deep Pacific/Indian (LeGrande & 
Schmidt, 2006)

−0.41 14.25 0.03

Note. Regressions were performed for water masses with more than five data points. Significant relationships (p ≤ 0.05) are indicated by bold font.

Table 4 
δ18O-Salinity, δD-Salinity Relationships Results (Slopes, Intercepts, r2, and p-Value) Determined for the Main Water Masses at the Southeast Pacific Compared With 
Published Data
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The δD-S relationship for the ESSW follows the opposite trend expected for tropical regions (i.e., flat slopes 
and high intercepts). It is likely that the ESSW δD-S relationship is affected by vertical mixing (e.g., Conroy 
et al., 2014), causing the loss of its expected δD-S and δ18O-S relationships typical for a tropical water mass 
(Figure S13; Table 4).

4.2.3.  Non Conservative Water Mass Tracers and the Carbon Isotopic Composition (δ13CDIC) of the Main 
SEP Water Masses

The spatial extent of available and new δ13CDIC data in the SEP allows us to expand the discussion of its δ13CDIC 
distribution, especially in the coastal section (Figures 4e–4f). SAAW, ESSW, AAIW, and PDW appear to be 
semi-conservative, maintaining δ13CDIC signatures from their source region (Figure 1d; Tables 2 and 3).

For STW, the mean δ13CDIC values in the coastal section are depleted compared to the oceanic section and the 
oceanic end-member (Figures S9 and S14; Tables 2 and 3). Nutrient contents (silicate, phosphate, and nitrate; 
Figures 2 and S3–S7; Table 3) and δ13Cair-sea values are high in the coastal section compared with the oceanic sec-
tions (Figures S15 and S16; Table 3). Nitrate production is obvious in the STW in the coastal section (Figure 5f; 
Table 3) confirming previous studies that report that anaerobic anammox and/or denitrification processes are 
important in the upper part of the OMZ off Peru/Chile (Codispoti & Christensen, 1985; Hamersley et al., 2007; 
Llanillo et al., 2013; Thamdrup et al., 2006). We propose that depleted δ13CDIC and high δ13Cair-sea values in the 
coastal section are related to vertical mixing of STW with δ13CDIC-depleted ESSW. The phosphate and nitrate 
concentration in the STW follow Redfield ratios (Figures 5b and 5e).

In contrast to the STW, SAAW exhibits high values of δ13CDIC with relative low δ13Cair-sea in the coastal and oce-
anic sections (Figures S9 and S14–S16; Table 3) with high oxygen and low nutrient contents (silicate, phosphate, 
nitrate, and nitrite; Figures 2 and S3–S7; Table 3). The high δ13CDIC and oxygen content and low δ13Cair-sea and 
nutrients values of SAAW reflect the high ventilation in the formation zone of the water mass. The silicate and 
phosphate content is slightly higher in the coastal than in the oceanic section (Figure 2; Table 3), reflecting ad-
ditional nutrient input by river/fjords runoff (between 54° and 36°S) and upwelling of ESSW (between 38° and 
32°S; Vargas et al., 2016 and 2018). A lack of nitrite confirms that redox processes within the SAAW are weaker 
compared with STW. We suggest that the slight excess in phosphate in the coastal region is sourced from the 
southern upwelling cells that exhibit relatively low values of δ13CDIC (Figure S12). In both oceanic and coastal 
sections, the phosphate and nitrate values of the SAAW follow the Redfield ratio (Figures 5b and 5e).

The subsurface ESSW show low δ13CDIC and oxygen values, with high nutrient contents (silicate, phosphate, 
nitrate, and nitrite; Figures 2, S3–S7, S9, and S14; Table 3) and δ13Cair-sea in the coastal and oceanic sections 
(Figure S15; Table 3). These results may be explained by the accumulation of respired 12C during the passage of 
the ESSW along the highly productive upwelling systems off western South America and in situ intense redox 
processes in the coastal section (Chavez & Messié, 2009; Daneri et  al.,  2000; Montero et  al.,  2007; Vergara 
et  al.,  2017). Close to the coast methanogenesis within suspended particles has been observed in the pycno/
oxyclines (Holmes et al., 2000; Naqvi et al., 2010; Sansone et al., 2001; Troncoso et al., 2018), resulting in the 
accumulation of methane depleted δ13C (Tenorio, 2021). This process may also be responsible for some of the 
highly depleted δ13CDIC values observed in ESSW. In the coastal section the phosphate and nitrate concentration 
in the ESSW diverge from Redfield ratios, in contrast to the oceanic section (Figures 5b and 5e), a feature previ-
ously reported to be typical for the SEP-OMZ (Llanillo et al., 2012; Silva et al., 2009). High nitrite contents are 
found in the ESSW reaching up to 7 μmol kg−1 in the coastal section (Figures 5f and S6; Table 3). The presence 
of nitrite is best explained by the reduction of nitrate to nitrite via denitrification within the core of the OMZ (e.g., 
Farías et al., 2007; Graco et al., 2007; Llanillo et al., 2013; Silva et al., 2009).

The AAIW has high and similar δ13CDIC values along the coastal and oceanic sections. δ13Cair-sea values are near 
to zero, similar to that of SAAW (Figures S14 and S15; Table 3). The AAIW exhibits relatively high values of 
oxygen and low nutrient content (as silicate, phosphate, nitrate, and nitrite; Figures 2 and S3–S7; Table 3). The 
phosphate and nitrate concentration in the AAIW is roughly aligned with redfield ratios in the oceanic and coastal 
section (Figures 5b and 5e) and a negligible nitrite production (<0.4 μmol kg−1) is found (Figure 5f; Table 3). 
The similar δ13Cair-sea values of AAIW and SAAW confirm that AAIW is well ventilated with a relatively young 
age, reinforcing previous work indicating that the SEP is the main formation region for AAIW (e.g., Bostock 
et al., 2010, 2013; Piola & Gordon, 1989). On its way north, the AAIW vanishes around 32°–30°S in the coastal 
section and at 24°S in the oceanic section. There is a progressive northward depletion in the AAIW δ13CDIC values 
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from +0.9‰ to +0.4‰ between 32° and 24°S (Martínez-Méndez et al., 2013a) due to mixing with ESSW/PDW 
in the lower part of the SEP-OMZ (Figure 4f).

The PDW has relatively low δ13CDIC values (Figures 4 and S14; Table 3) in the coastal and oceanic section. Ox-
ygen levels are low and nutrient contents (as silicate, phosphate, and nitrate) are high (Figure 2; Table 3). The 
phosphate and nitrate concentrations in the PDW are aligned with the Redfield ratio in the oceanic and coastal 
sections (Figures 5b and 5e). Thus, the PDW is marked by a high content of respired 12C (inferred from the high 
nutrient concentration) and is a poorly ventilated water mass. We do not include in the discussion the computed 
values for δ13Cair-sea (Figures S15 and S16; Table 3) for the PDW. As explained above, it is a mixture of water 
masses with several sources and does not have any active exchange with the atmosphere.

In the coastal section the PDW/ESSW/AAIW mixing zone (Figure 4) exhibits relatively lower δ13CDIC values than 
in the oceanic section. This feature is not traceable with temperature, salinity, oxygen and phosphate, suggesting 
that depleted δ13CDIC from the OMZ/ESSW can reach deep waters and influence the distribution of this tracer in 
the coastal section (Silva et al., 2009; Vargas et al., 2021).

Between 200 and 1,800 m within ESPIW, AAIW, and PDW there are localized spots in the oceanic section that 
display very low δ13CDIC values (Figure 4), which may be caused by mesoscale eddies (Zhang et al., 2014). It 
has been observed that surface-to-deep eddies originating in the coastal section of the SEP can be advected far 
offshore into the oceanic section, contributing to long-distance biogeochemical transport affecting the character-
istics of the water column (Czeschel et al., 2018). We suggest that such eddies possibly originate in the coastal 
zone transferring ESSW characteristics to intermediate and deep waters in the oceanic section of the study area.

In summary we find major differences in δ13CDIC, nutrients, and oxygen content between the coastal and the 
oceanic section. We propose (a) the absence of the ESPIW in the coastal zone allowing the low oxygen, high nu-
trients, δ13CDIC depleted waters originating from the ESSW to extend much further south up to ∼48°S there, while 
such waters are restricted to <30°S in the oceanic section, (b) the very different oxygen, nutrients, and δ13CDIC 
signatures of the STW along the two sections causing a significant depletion of δ13CDIC in the coastal section, and 
(c) the enhanced mixing of the upper-AAIW with ESSW resulting in lower average oxygen and δ13CDIC values in 
the coastal AAIW. These differences, especially in the upper ∼1,000 m of the water column highlight the value 
of such coastal data for paleoceanographic reconstructions which are often based on sedimentary records from 
the continental margin.

4.2.4.  Paleoceanographic Implications

Within the limitations described above, our new δ18O, δD, δ13CDIC, temperature, salinity, oxygen, and nutrient 
data combined with the percentage contribution per water mass (Figures 2–5 and S1–S9; Tables 2 and 3) can be 
used to differentiate modern water mass geometry (i.e., water mass distribution) in the SEP. This characterization 
improves our understanding of chemical processes within water masses, and can contribute to regional proxy 
calibrations.

Statistical analyses (i.e., Mann-Whitney tests) allow us to differentiate oxygen, hydrogen, and carbon stable iso-
topic values of the main water masses (Tables S5–S7). This considers mean isotopic values of each water mass 
and compares them to establish which water masses are isotopically correlated. We are aware that data for δD 
are still limited for the SEP, and patterns described here should be confirmed as further stable hydrogen isotope 
data become available. This is especially true for the PDW, which was excluded from Mann-Whitney analyses 
due to insufficient data. Thus, based on δ18O and δD, SAAW/STW, SAAW/ESSW, and ESSW/AAIW can be 
differentiated, but not STW/ESSW, SAAW/AAIW, ESSW/PDW, and AAIW/PDW. While δ13CDIC can be used 
to differentiate between STW/ESSW (oceanic section), SAAW/ESSW, ESSW/AAIW, and AAIW/PDW, but not 
SAAW/STW and STW/ESSW (coastal section).

For reconstructions of past seawater salinities and temperatures, one important tracer is the oxygen isotopic 
composition of calcifiers, such as foraminifera. Hebbeln et al. (2000) and Mohtadi et al. (2005) studied the δ18O-
calcite in core-top planktonic foraminifera from a North-South latitudinal transect across the SEP, showing that 
foraminifera grown in the STW are relatively depleted compared to the ones from the SAAW. This suggests that 
planktonic foraminifera δ18Ocalcite is a possible route to study changes in the distribution of these surface waters 
in the past. Caniupán et al. (2011), Nürnberg et al. (2015), and Haddam et al. (2018) have subsequently used 
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planktonic foraminifera δ18Ocalcite to study changes in the spatial variations of oceanic fronts and surface water 
masses in the SEP.

It is important to note that the δ18Ocalcite composition of foraminifera is influenced by δ18Osw (closely coupled 
to salinity), temperature, vital and calcification effects, and ice volume (Bemis et al., 1998; Epstein et al., 1953; 
Lynch-Stieglitz et al., 1999; Marchitto et al., 2014; O’Neil et al., 1969; Shackleton, 1967; Urey, 1947). Temper-
ature exerts a strong control on δ18Ocalcite. Past temperature variations are commonly resolved by proxies, such as 
Mg/Ca ratios, or alkenones. δ18Ocalcite has uncertainties in the order of >0.2‰ that represent 1°C (Pearson, 2012). 
Over glacial-interglacial timescales global δ18Osw varies by ∼1.0‰–1.2‰ (Fairbanks,  1989). Together, tem-
perature and ice-volume related uncertainties result in a ±0.4‰ uncertainty in reconstructions of past δ18Osw 
values. This is very close to the range of SEP δ18Osw end-member values observed today. Within the SEP, the 
highest difference in δ18Osw end-member values (0.72‰) is observed between STW and SAAW (e.g., STW 
and ESSW = 0.29; SAAW and ESSW = 0.43; ESSW and AAIW = 0.31, ESSW and PDW = 0.21; AAIW and 
PDW = 0.01). Unless these uncertainties can be reduced, and/or past end-members become statistically different, 
it is unlikely that reconstructions of past δ18Osw values will provide statistically meaningful information about 
water mass distributions within the SEP.

The lack of local equations for describing the δ18O-S relationship leads to additional uncertainties in paleosalinity 
reconstructions based on δ18Osw (Schmidt, 1999). In this regard, our results suggest that salinity inferences could 
be indeed implemented in the SEP, especially for SAAW and ESSW (Figure S13; Table 4), considering δ18O-S 
and δD-S relationships documented here. Nevertheless, these regional paleosalinity reconstructions should rely 
on the assumption that such relationships remained unchanged over time. The use of the δD-S relationship ei-
ther for salinity reconstructions or differentiation of water masses is a striking result, with deep implications for 
paleoceanographic reconstructions. Still, its potential must be explicitly revised as more stable hydrogen isotopic 
characterization of water masses in the SEP are conducted and validated.

The carbon isotopic composition of foraminifera (δ13Ccalcite) from the fossil record is also often used for wa-
ter mass reconstructions. The δ13Ccalcite in foraminifera is influenced by the ambient δ13CDIC and vital effects 
such as metabolic precipitation of calcium carbonate, respiration and symbiont photosynthesis (e.g., Ishimura 
et al., 2012; Mackensen et al., 1993; McCorkle & Keigwin, 1994; Spero, 1992; Spero et al., 2003). Some epifau-
nal benthic (living on top of sediments) have δ13Ccalcite that is similar (1–1 relationship) to bottom water δ13CDIC 
and can be used for reconstruct changes in ventilation and distribution of their habitat water masses (e.g., Schmit-
tner et al., 2017).

Martínez-Méndez et al. (2013a) and Haddam et al., (2020) used δ13Ccalcite in epifaunal foraminifera in sediment 
records from 27°S (970 kys) and 40°–50°S (23 kys), respectively. Comparing epifaunal δ13Ccalcite with δ13CDIC 
values in situ (Martínez-Méndez et al., 2013a) and extrapolated from the oceanic region (Haddam et al., 2020) 
they reconstructed AAIW and PDW/CDW variability through time. The reconstructed δ13Ccalcite values in the 
sediment records are in a similar range as modern δ13CDIC values for AAIW and PDW.

Despite common strong vital effects, planktonic foraminifera δ13Ccalcite often indicate changes in surface to inter-
mediate water masses geometry, ventilation, and productivity (e.g., Hebbeln et al., 2000; Mohtadi et al., 2008; 
Tapia et al., 2015, 2019). In the coastal section, the water masses show δ13CDIC end-member differences in a range 
of 2.29 and 0.52 (e.g., STW and SAAW = 1.39; STW and ESSW = 0.9; SAAW and ESSW = 2.29; ESSW and 
AAIW = 2, ESSW and PDW = 0.52; AAIW and PDW = 1.55). Thus, using epifaunal and planktonic foraminifera 
in the region could provide statistically meaningful information about changes in the characteristics of the water 
mass distributions within the coastal SEP.

δ13Ccalcite of planktonic foraminifera also may be used to reconstruct changes in surface waters within the SEP. 
Hebbeln et al. (2000) and Mohtadi et al. (2005) characterized the δ13Ccalcite of surface and subsurface planktonic 
foraminifera from core top samples recovered in a north-south transect in the coastal SEP. They found that surface 
planktonic foraminifera recorded low δ13Ccalcite beneath the STW compared to high δ13Ccalcite beneath the SAAW, 
corresponding to the regional productivity-upwelling patterns. These results are similar to δ13CDIC values of the 
surface waters indicating that planktonic foraminifera δ13C in the region can be used as a proxy for surface water 
δ13CDIC.
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In terms of using δ18Ocalcite, in combination with temperature reconstructions, to calculate δ18Osw, to trace water 
masses it may be useful to compare this with δ13Ccalcite, in a multi-proxy approach. Hebbeln et al. (2000) plotted 
for the first time δ18Ocalcite versus δ13Ccalcite in planktonic foraminifera for the SEP, showing a regional relationship 
that can be used for reconstructing the geometry of surface water masses. Our results show that δ18O or δD and 
δ13CDIC relationships in sea water can be used as a modern analog for water mass geometry reconstructions (by 
time slices) in the region from surface to deep (Figures 5i and 5j).

Most paleoceanographic reconstructions for the SEP from the late Quaternary are based on sediment cores 
collected from the continental margin. During the last decades, these records were generally compared with 
open ocean data, because data from nearer to the coast was lacking (e.g., Castillo et  al.,  2017; De Pol-Holz 
et al., 2006, 2007; Haddam et al., 2018, 2020; Siani et al., 2013). Our new compilation of δ13CDIC data combined 
with temperature, salinity, oxygen, and nutrient data (Figures 2 and 4) reveal significant differences in the distri-
bution of water masses in the upper ∼1,000 m of the water column between the oceanic and the coastal sections. 
Our data furthermore expose a general absence of the ESPIW (subducted SAAW) in the coastal section (Fig-
ures 2–4). This puts some caveats on interpretations of previous studies (e.g., De Pol-Holz et al., 2006, 2007 and 
Castillo et al., 2017) that considered ESPIW as the main water mass that ventilates the upper part of the coastal 
ESSW/SEP-OMZ. Instead we argue that in the coastal section SAAW and AAIW might play a similar role as 
open ocean ESPIW, in ventilating the upper ESSW.

5.  Conclusions
We present the first spatial characterization of δ18O, δD, and δ13CDIC along with temperature, salinity, oxygen, and 
nutrient contents of the main water masses in the SEP in an oceanic and a coastal section. Our analysis reproduces 
the well-known oceanic distribution of the main SEP water masses, originating in the equatorial, subtropical and 
subantarctic Pacific regions and it is the first one to include a highly resolved EOMP analysis of AAIW and PDW 
in the coastal SEP. However, our data also reveal that the water column structure in the coastal section clearly 
deviates from its oceanic counterpart, especially due to the absence of the ESPIW in the coastal section.

For past oceanographic reconstructions on marine sediment, we can use δ18O and δD to differentiate between 
SAAW/STW, SAAW/ESSW, and ESSW/AAIW, but not between STW/ESSW, SAAW/AAIW, ESSW/PDW, and 
AAIW/PDW. δ18O-S and δD-S relationships are statistically significant for the SAAW and ESSW, suggesting 
that the SAAW have an origin in high-latitudes with strong influences of high precipitation and melted-ice from 
the Patagonian Ice Sheet. Our study confirms that ESSW follows an opposite trend expected for tropical regions, 
possibly due to advection and mixing processes with surface waters. δ13CDIC can be used as a proxy to differen-
tiate between STW/ESSW (oceanic section), SAAW/ESSW, ESSW/AAIW, and AAIW/PDW, but not between 
SAAW/STW and STW/ESSW (coastal section). The δ13CDIC, oxygen, and nutrients database for the oceanic sec-
tion has a good spatial cover and can be compared with the new coastal data set, highlighting strong differences 
in water mass geometry above 1,000 m water depth in the SEP. In the coastal section, (a) the surface waters fill a 
smaller depth range, (b) the ESPIW (subducted SAAW) is absent allowing ESSW to spread much further south, 
(c) the STW δ13CDIC signature differs considerably from its oceanic counterpart, (d) the upper-AAIW with ESSW 
resulting in lower average oxygen and δ13CDIC values in the coastal AAIW, and (e) the PDW/ESSW/AAIW mix-
ing zone shows lower δ13CDIC values than in the oceanic section. All these differences result in on average lower 
δ13CDIC values in the coastal section that partly deviate by >1‰ from the comparable depth/latitude setting in 
the oceanic section. These deviations clearly point out that it is necessary to compare paleoceanographic records 
recovered from intermediate waters along the western South American continental margin with present-day hy-
drological analogs from the coastal section.

The relationships of δ18O, δD, and δ13CDIC with each other and with other parameters like temperature and oxygen 
offer a multiproxy database that can be used as present-day hydrological analogs for reconstructions of past water 
mass distributions. In addition, using the relationship of planktonic and epifaunal benthic foraminifera δ18Ocalcite 
versus δ13Ccalcite in specific time slices may enable the characterization of past SEP water column geometries from 
surface to deep waters.
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Data Availability Statement
All seawater hydrological and stable isotope data used here are provided in the supplementary materials and 
have been submitted to PANGAEA (https://www.pangaea.de/), GLODAP (https://www.glodap.info/) and NASA/
GISS Global Seawater Oxygen Isotope Data Base (https://data.giss.nasa.gov/o18data/).
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