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SYMPOSIUM REVIEW

Extracellular vesicles in cardiovascular disease: are they
Jedi or Sith?
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Abstract In the recent past, extracellular vesicles have become recognized as important players
in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and
apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most
if not all cells. Extracellular vesicle secretion represents a universal and highly conserved
active cellular function. Importantly, increasing evidence supports that extracellular vesicles
may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular
disease undoubtedly represents one of the most intensely studied and rapidly growing areas
of the extracellular vesicle field. However, in different studies related to cardiovascular disease,
extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects.
Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to
cardiovascular health. In this review we provide a general introduction to extracellular vesicles
and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to
untangle the various reasons for the observed discrepancy in biological effects of extracellular
vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that
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the observed functional diversity is in fact due to inherent differences among various types of

extracellular vesicles.
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Abstract figure legend Underlying reasons for the observed diversity in biological effects of extracellular vesicles in

cardiovascular diseases.

Abbreviations

Introduction to extracellular vesicles

Different subtypes of extracellular vesicles. An increa-
sing body of evidence supports that extracellular vesicles
(EVs) are highly heterogeneous structures (Théry et al.
2009; Gyorgy et al. 2011; Buzés et al. 2014; Yanez-Mo
et al. 2015). Current EV classification based on cellular
biogenesis distinguishes exosomes (EXOs), originating
from multivesicular bodies, from larger vesicles directly
shed from the plasma membrane, such as microvesicles
(MVs, which have also been termed microparticles), and
apoptotic bodies (APOs) (Théry et al. 2009; Gyorgy et al.
2011; Théry, 2011; Buzas et al. 2014; Yanez-Mé et al.
2015). Although at present there are no molecular markers
that clearly distinguish these subpopulations, size-based
fractionation has been shown to yield distinct EV sub-
populations (Crescitelli et al. 2013; Osteikoetxea et al.
2015a). These subpopulations include vesicles around
100 nm (considered to correspond to EXOs), which are
currently attracting the most research interest. According
to the size-based fractionation, vesicles of 100—1000 nm
are considered to be MVs, and those > 1 um in diameter
correspond to APOs. However, due to technical limitations
in EV size determination, these size range cut-off values
should not be considered absolute. In this review article
we only indicate the EV subtype in those cases where the
isolated EV population was clearly identified. In the rest
of the cited references we used the collective term EV. In
addition to their differences in size, there are several other
parameters that differ among the EV subtypes and can
have profound implications for their biological roles, and
they are summarized in Table 1.

Isolation of EVs. EVs can be isolated by several
different methods. Currently used EV isolation techniques
are summarized with their strengths and best suited
applications in Table 2. Traditionally, EVs have been iso-
lated using differential centrifugation, which also includes
high speed ultracentrifugation (Théry et al. 20014; Valadi
etal.2007; Crescitelli et al. 2013; Osteikoetxea et al. 2015a).
This common technique, encountered in many studies,
allows the separation of size-based EV subpopulations
with different centrifugation speeds and the processing
of high volumes of sample. Several other techniques
for EV isolation have also emerged to complement or
replace differential centrifugation. Some techniques such

APO, apoptotic body; EV, extracellular vesicle; EXO, exosome; MV, microvesicle.

as density gradient isolation (sucrose or iodixanol) are
well suited to obtain EV preparations of higher purity
than differential centrifugation alone (Raposo et al. 1996;
Théry et al. 20014a,b; Marzesco et al. 2005; Van Deun et al.
2014; Zonneveld et al. 2014; Keerthikumar et al. 2015).
Other isolation techniques that may be either faster or
less dependent on instrumentation include precipitation
techniques (Lee et al. 2012; Musante et al. 2012; Brownlee
et al. 2014), microfluidic devices (Chen et al. 2010; Davies
et al. 2012; Wang et al. 2013; He ef al. 2014; Kanwar et al.
2014; Vaidyanathan et al. 2014), affinity capture (Wubbolts
et al. 2003; Caby, 2005; Kim et al. 2012; Balaj et al.
2015), size-exclusion chromatography (Ogawa ef al. 2008;
Sokolova et al. 2011; Boing et al. 2014; Hong et al. 2014),
and field-flow fractionation (Oh et al. 2007; Sitar et al.
2015). The type of isolation procedure best suited for a
given experiment is dependent on the origin of the sample
(e.g. biological fluid or cell conditioned medium), its
volume, equipment availability, and the subsequent type
of analysis. These different techniques for isolation of EVs
are currently used due to their relative strengths. However,
it is conceivable that future technical advances in isolation
methods may bring about protocols and techniques that
can be applicable to most type of experiments and samples
with equal efficiency.

Detection of EVs. Similarly to EV isolation techniques,
there is also a wide diversity of detection and
characterization techniques currently available for EV
studies. Two common techniques used for molecular
characterization of EVs are Western blotting (Théry et al.
2001a) and flow cytometry (Théry et al. 2001a; Hoen et al.
2012; van der Vlist et al. 2012; van der Pol et al. 2014).
Western blotting is routinely used for bulk molecular
characterization of all EVs present in an isolate. After
initial set-up and bead- or liposome-based gating for
EV detection, fluorescence flow cytometry allows for the
molecular characterization of larger sized EVs such as
MVs (100-1000 nm) and APOs (= 1 um). Furthermore,
flow cytometry enables bulk molecular characterization of
bead-bound EXOs (50120 nm). The coupling of EXOs
to beads for flow cytometry is necessitated since the
sizes of EXOs fall below the limit of detection of most
instruments. EVs may be bound to beads with antibodies
against specific markers or by unspecific adsorption of

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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vesicular molecules to chemically modified surfaces such
as sulfate aldehyde. Antibody based bead capture can result
in highly specific binding to EVs with limited adsorption of
non-vesicular proteins, but this approach may also bias the
measurement by excluding any EVs that lack the selected
marker. On the other hand, while unspecific adsorption
may also bind to non-vesicular proteins, it does not
bias the measurements towards vesicles bearing a chosen
marker. High resolution flow cytometry proves capable
of circumventing the need for bead coupling, allowing
for direct molecular characterization of individual EXOs
by employing optimized set-ups with improved fluidics,
lasers and detectors.

To assess EV particle size and concentration, tunable
resistive pulse sensing (Maas et al. 2014; van der Pol ef al.
2014; Osteikoetxea et al. 20154,b), nanoparticle tracking
analysis (Sokolova et al. 2011; Gardiner et al. 2013; van
der Pol et al. 2014) and dynamic light scattering (Gyorgy
et al. 2010; Sahoo et al. 2011; Sokolova et al. 2011; Sitar
et al. 2015) may be used. For fast quantification of EVs,
both protein (Théry et al. 20014a) and lipid (Osteikoetxea
et al. 2015a) content can be measured. Recently our
group has shown that these two methods together can
yield information about the quality, purity and sub-
type of EV preparations by calculating their total protein
to lipid ratio (Osteikoetxea et al. 2015a). Additionally,
several microscopy methods are routinely used for EV size
and morphology determination including transmission
electron microscopy, scanning electron microscopy and
cryo-electron microscopy (Théry et al. 2001a; Turiak
et al. 2011; Crescitelli et al. 2013; Buzas et al. 2014;
Osteikoetxea et al. 2015a) as well as atomic force micro-
scopy (Gyorgy et al. 2010; Yuana et al. 2010). Many new
studies are also showing the applicability of label-free
techniques such as grating coupled interferometry, surface
plasmon resonance, as well as Raman, infrared and electro-
chemical impedance spectroscopy for characterization of
EVs (Lvovich et al. 2010; Tatischeff et al. 2012; Patko et al.
2013; Im et al. 2014; Rupert et al. 2014). Lastly, different
‘omics’ techniques have been applied to determine the
precise molecular composition of EVs (Wubbolts et al.
2003; Valadi et al. 2007; Skog et al. 2008; Trajkovic et al.
2008; Hong et al. 2009; Carayon et al. 2011; Waldenstrom
etal. 2012; Choi et al. 2013; Escrevente et al. 2013; Llorente
et al. 2013; Thakur et al. 2014). All these techniques are
summarized in Table 3. The International Society for
Extracellular Vesicles has outlined minimal experimental
requirement guidelines for the characterization of EV pre-
parations that may be used for reference when deciding
which characterization techniques to use (Lotvall et al.
2014). As long as these guidelines are met, the best
characterization technique for EV analysis is dependent
on the particular experimental aims and instrument
availability. Furthermore, as long as appropriate controls
such as EV-depleted negative controls or detergent lysis

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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(Gyorgy et al. 2010; Osteikoetxea et al. 2015b) are used to
exclude the interference of non-vesicular components of
the sample, the type of method used for characterization
should not have a major impact on EV characterization
and the biological functions observed.

Possible reasons for discordant functions of EVs

Inherent differences of EV subtypes. Given theimportant
inherent differences between the subpopulations of EVs
(Table 1), certain subpopulations might be responsible for
specific biological effects. One example is a recent study
showing that EVs released during remote ischaemic pre-
conditioning (RIPC) are responsible for reduced infarct
sizes in rat hearts (Giricz et al. 2014). Likewise another
study found that following RIPC, EXOs containing
miR-29a and IGF-1R are released and mediate the cardio-
protective effect (Yamaguchi et al. 2015). In contrast,
another study had found previously that MVs (a single
subtype of EVs) alone could not decrease infarct sizes
(Jeanneteau et al. 2012). Therefore, these studies show
that EXOs but not MVs are the mediators of the
cardioprotective effects observed following RIPC. In a
different setting, apoptotic EVs have been found to limit
atherosclerosis and mediate vascular protection by trans-
fer of miR-126 (Zernecke et al. 2009). Consequently, these
studies suggest that a given subpopulation of EVs and not
the others might be responsible for a particular biological
effect.

Differences in the EV-releasing cell types. Another
important reason for the diversity in biological roles of EV's
can be attributed to the diversity in their releasing cells.
Several studies demonstrate that different cell type-derived
EVs can have either protective or pathogenic effects on the
cardiovascular system.

Numerous reports on endothelial cell-derived EVs
show that these vesicles have vasculoprotective roles.
In the study mentioned above, apoptotic EVs obtained
from endothelial cells were found to be able to deliver
miR-126 to other cells and to induce the expression of
CXCLI12 resulting in recruitment of Sca-1* progenitor
cells for endothelial repair and inhibition of atherosclerosis
(Zernecke et al. 2009). Interestingly, another study has
shown that miR-126-containing MVs are also released
from endothelial cells and enhance endothelial recovery
following electric endothelial denudation of the common
carotid artery in wild-type mice. These MVs incorporated
into recipient endothelial cells and promoted in vitro
migration and proliferation in a miR-126-dependent
manner (Jansen et al. 2013). Endothelial cell shear
stress is known to induce Kriippel-like factor 2 (KLEF2),
a key transcription factor regulating atheroprotective
gene expression changes (Boon & Horrevoets, 2009).
Interestingly, it has been shown that EVs secreted by
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KLF2-transfected human umbilical vein endothelial cells
(HUVECs; a model for endothelial cell shear stress) could
transfer the atheroprotective phenotype to smooth muscle
cellsand reduce atherosclerotic lesions in ApoE~~ miceina
miR-143- and miR-145-dependent manner (Hergenreider
et al. 2012). Additionally, one report has shown that
cardiac endothelial cell-derived EXOs can be cardio-
protective in the case of heart transplantation by inducing
regulatory B cells that can promote immune tolerance to
alloantigens (Song et al. 2014).

Another cellular source of EVs, dendritic cells (DCs)
have been shown to release EVs that induce immune
tolerance in allograft models. A study with a rat cardiac
allograft model has found that intravenous administration
of donor bone marrow DC-derived EXOs induced delayed
acute allograft rejection (Péche et al. 2003). Work from the
same group showed that allograft rejection was further
delayed when EXOs were administered in combination
with a novel immunosuppressant in vivo (Péche et al.
2006). Similarly, another study with a mouse cardiac
allograft model showed that EVs derived from immature
DCs extended cardiac allograft survival and that this
effect was prolonged when combined with the immuno-
suppressant drug rapamycin (Li ef al. 2012).

EVs secreted by yet another cell type, stem cells (SCs),
have been shown to be cardioprotective. A study in a
mouse model of myocardial ischemia-reperfusion injury
has shown that EXOs derived from mesenchymal SCs
mediated their cardioprotective effect and diminished
the sizes of infarcts (Lai et al. 2010). Furthermore,
a following study from the same group found that
EXOs mediated this cardioprotective effect by decreasing
oxidative stress, increasing ATP levels and activating the
PI3K/Akt pathway (Arslan et al. 2013). Another study has
also shown that in vivo administration of EXOs derived
from mouse cardiac progenitor cells protect cardio-
myocytes from oxidative stress and inhibit apoptosis in
an acute ischaemia—reperfusion model (Chen ef al. 2013).
Furthermore, a separate study with cardiac progenitor
cells, expanded in vitro into cardiospheres, has found that
their EXOs can induce the same beneficial therapeutic
effects on infarcted mouse hearts as the cardiospheres
themselves (Ibrahim et al. 2014). Autologous CD347"
SC transplantation has been shown to hold promise
for refractory angina patients following ischaemic injury
(Kawamoto et al. 2006; Losordo et al. 2011). Interestingly,
CD34" SC cell-derived EXOs were found to mediate the
therapeutic effects of SCs by inducing angiogenesis in both
in vivo and in vitro models (Sahoo et al. 2011).

While all the above-mentioned studies have observed
cardioprotective roles for EVs, cardiomyocyte-derived EV's
have been shown to be involved in pathogenic roles. A
study has found that EVs derived from hypoxic cardio-
myocytes contained functional TNF-« and were capable
of inducing apoptosis when administered to normal
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cardiomyocytes (Yu et al. 2012). In another study, EXOs
derived from cardiomyocytes of a type 2 diabetes rat model
were shown to contain and transfer functional miR-320 to
cardiac endothelial cells inhibiting their proliferation and
decreasing angiogenesis (Wang ef al. 2014). These studies
show that cardiomyocyte-derived EVs transfer functional
proteins and nucleic acids that may have an adverse effect
on other cardiomyocytes or endothelial cells.

In addition to the previously discussed cells, other cell
types may also release EVs that can have a biological
effect on the heart. For example, it has been shown
that EXOs secreted by cardiac fibroblasts induce a hyper-
trophic phenotype in cardiomyocytes by transferring
miR-21 (Bang et al. 2014). EXOs derived from platelets
of septic patients have been implicated in cardiomyopathy
by inducing apoptosis in endothelial cells and cardio-
myocytes leading to vascular and cardiac dysfunctions as
well as coagulation (Janiszewski et al. 2004; Azevedo ef al.
2007; Gambim et al. 2007).

Taken together, all the currently available literature
suggests that endothelial cell, SC and dendritic cell-derived
EVs are protective. On the other hand, cardiomyocyte-,
cardiac fibroblast-, and platelet-derived EVs have so
far been shown to be pathogenic. In addition to the
above studies, many reports with plasma-derived EVs
are also available but given the heterogeneity of cell
types releasing EVs into the circulation, these particles
may have disparate effects. Furthermore, preanalytical
variables (such as the choice of anticoagulant and sample
processing and handling) can influence the quantity and
downstream effects of plasma-derived EVs (Witwer et al.
2013). Platelets have been found to be one of the most
important sources of EVs in circulation (Arraud et al.
2014). One study with blood from cardiac surgery patients
found higher tissue factor exposure in MVs, the majority
of which were of platelet origin, compared with those of
healthy individuals. Moreover, MVs from these patients
were highly thrombogenic in a venous stasis thrombosis
model in rats, whereas MVs from healthy individuals were
not (Biré et al. 2003). In contrast, another study has found
that higher plasma levels of MV-associated, but not the
freely circulating, miR-126 and miR-199a were predictive
of a lower risk of major adverse cardiovascular events in
patients with stable coronary artery disease (Jansen et al.
2014).

Differences in the functional states of EV-releasing cells.
As discussed in the previous section, most reports on
EVs derived from endothelial cells have found that these
structures were protective. However, it has also been shown
that 16 kDa N-terminal prolactin fragment (16K PRL)
induces endothelial cells to secrete miR-146a-enriched
EXOs. 16K PRL is an important pro-apoptotic and
pro-inflammatory factor that can initiate and drive
peripartum cardiomyopathy (Hilfiker-Kleiner et al. 2007).

© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
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Thus, in contrast to EXOs secreted by normal endothelial
cells, these 16K PRL-induced EXOs can transfer miR-146a
to cardiomyocytes and inhibit their metabolic activity
and contractile function (Halkein et al. 2013). In another
study with endothelial cells, EVs released during apoptosis
or autophagy were found to differ significantly from
those released during normal conditions. EVs from
serum-starved cells were enriched in autophagosomes and
mitochondria and also carried different danger signals
such as extracellular ATP (Pallet et al. 2013). Interestingly,
in yet another study with endothelial cells, TNF-« was
shown to be able to simultaneously induce the release
of MVs that exerted contrasting effects. Upon TNF-«
treatment, miRNA-rich MVs were released in a RhoA/Rho
kinase pathway-dependent manner and had antiapoptotic
effects. However, this treatment also induced the release
of miRNA-poor MVs in a caspase pathway-dependent
manner with proapoptotic effects (Alexy et al. 2014).

Similarly to the findings with endothelial cells in
different functional states, another report has shown
that EXOs from ischaemic-preconditioned, but not
from non-preconditioned, mesenchymal SCs imparted
significant reduction of cardiac fibrosis and apoptosis
following direct injection into infarcted hearts of mice
(Feng et al. 2014).

Together, these studies show that while there are specific
biological roles for EVs derived from different types of
cells, the functional state of the cells from which the EVs
are released should also be taken into account as it can have
an important impact on the resulting biological effect.

Differences in post-synthetic modifications to molecules
of EVs. Besides being released from cells in different
functional states, EVs and their cargos can also undergo
various post-synthetic modifications that can alter their
biological effects on recipient cells. There has been
growing evidence that many cardiovascular diseases are
associated with an increased oxidative stress (Dhalla
et al. 2000; Tsutsui et al. 2011). Correspondingly,
EVs released under these circumstances may undergo
oxidative post-synthetic modifications. Indeed, it has
been found that MVs from ST-segment elevation myo-
cardial infarction patients carried oxidation-specific
epitopes (OSE) and are increased at the site of coronary
occlusion. Additionally, these MVs were able to induce
pro-inflammatory IL-8 secretion by monocytes in an
OSE-dependent manner (Tsiantoulas et al. 2014).

EVs may have combinatorial effects on target cells.
Several subtypes of EVs released by a broad range of cells
in diverse functional states are simultaneously present
in vivo. In addition to the diversity of EVs, other soluble
mediators are also found in the same biological fluids.
Therefore, a specific subpopulation of EVs secreted by cells
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in a given functional state might still have a combinatorial
effect when interacting with other types of EV's or soluble
mediators. In earlier work from our group, human
monocytes showed a  synergistically increased
up-regulation of IL-8, when exposed to a combination of
cell line-derived EVs and human recombinant TNF. Thus,
the synergistic interaction of EVs with TNF was found to
increase the biological effect of EVs alone (Szabd et al.
2014). In a similar manner, another study has shown a
synergistic effect of EVs and IL-2 on T-cell proliferation
(Wahlgren et al. 2012).

In summary, these studies show that the biological
effects observed with isolated EVs may vary between
different experimental settings because of the specific
milieu in which they may act upon cells. Possible syner-
gistic or antagonistic interactions with soluble mediators/
cytokines and other EVs may thus explain functional
variations observed in various experimental conditions.

EV to target cell ratio. An important parameter to
consider in functional tests is the stoichiometry of EVs
to recipient cells. When possible, it is recommended to
show that the biological effects observed for different EVs
are dose dependent and occur in physiologically relevant
EV concentrations. Instead, if there is a failure to adhere
to the relevant EV-to-cell stoichiometry, treatment with
too few EVs might obscure the biological effect. Inversely,
treatment with high excesses of EVs might produce
effects that would never be encountered in vivo. Different
studies have so far shown that endothelial cell-derived
EVs have protective roles. However, one study has shown
that treatment with endothelial cell-derived EVs at high
concentrations, such as those observed in different cardio-
vascular diseases, can impair angiogenesis via oxidative
stress in human umbilical vein endothelial cells, while
lower physiological concentrations could not (Mezentsev
et al. 2005). Moreover, in three other studies described
earlier in this review, EVs released during RIPC were
observed to either reduce or have no effect on infarct sizes
(Jeanneteau et al. 2012; Giricz et al. 2014; Yamaguchi et al.
2015). Although the probable cause for these discordant
findings is that one of the studies (Jeanneteau et al.
2012) only considered MVs while the other one looked
at both EXOs and MVs (Giricz et al. 2014) or EXOs alone
(Yamaguchi et al. 2015), one cannot rule out the possibility
that too few MVs were administered in the study failing to
observe a reduction in infarct sizes.

Concluding remarks

Taken together, all the studies outlined in this review
support the diversity of EVs and their biological roles.
However, this diversity of roles should not be confused
with experimental discrepancy since ample evidence
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shows that EVs may have inherently different biological
functions depending on factors such as the type of
releasing cell and its functional state, the subpopulation
of EVs, their post-synthetic modifications, and possible
combinatorial effects with soluble factors or other EVs.
Furthermore, the reasons outlined in this review may also
explain possible discrepancies in biological effects found
for EVs in other fields beside cardiovascular diseases.

In the continuous search for future biomarkers and tools
of regenerative medicine, EVs have already shown great
promise. In order to truly fulfil their envisioned potential
in the clinic, the right EV candidates with beneficial rather
than detrimental effects need to be identified and utilized.
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