

AN ITERATIVE PROCESS OF GENERALIZED LIPSCHITIZIAN MAPPINGS IN UNIFORMLY CONVEX BANACH SPACES

A. RAZANI

Received 23 December, 2020

Abstract. In this article, three generalized Lipschitizian mappings in the uniformly convex Banach spaces are considered. By defining an iterative process, the existence of a common fixed point of this iteration is proved. An example is presented to guarantee the convergence of the iteration.

2010 Mathematics Subject Classification: 47H10; 54H10

Keywords: nonexpansive semigroups, iterative approximation, generalized Lipschitizian mappings

1. INTRODUCTION

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n - th approximation is derived from the previous ones. If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x_1 in the basin of attraction of x, and let $x_{n+1} = f(x_n)$ for n = 1, and the sequence $\{x_n\}_{n \ge 1}$ will converge to the solution x. Here x_n is the n-th approximation or iteration of x and x_{n+1} is the next or n + 1 iteration of x (see [4, 7, 9–16], and reference therein).

Let *C* be a nonempty subset of a Banach space $E, T : C \longrightarrow C$ be a mapping and

$$F(T) = \{x \in C : Tx = x\}$$

denotes the set of fixed points of *T*. A mapping *T* is said to be asymptotically non-expansive, if there exists a sequence $\{k_n\}$ of positive numbers with $\lim_{n \to \infty} k_n = 1$ such that for $x, y \in C$ and $n \ge 1$,

$$||T^n x - T^n y|| \le k_n ||x - y||.$$

The study of iterative construction for fixed points of asymptotically nonexpansive mappings began in 1975. Baillon [3] proved, if *C* is a nonempty, closed and convex subset of a Hilbert space \mathcal{H} and $T : C \to C$ is a nonexpansive mapping such that

© 2021 Miskolc University Press

 $F(T) \neq \emptyset$, then for every $x \in C$, the Cesáro means

$$T_n x = \frac{1}{n+1} \sum_{j=0}^n T^j x$$

is weakly convergent to a fixed point of T. Then, Shimizu et al. [18] studied the convergence of the following approximated sequence for an asymptotically nonexpansive mapping in Hilbert space,

$$x_0 = x \in C,$$

 $x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{n+1} \sum_{j=0}^n T^j x_n$

where $\{\alpha_n\}$ is a real sequence satisfying $0 < \alpha_n \le 1$ and $\alpha_n \longrightarrow 0$ as $n \longrightarrow \infty$. They proved that $\{x_n\}$ is strongly convergent to an element of F(T). We recall the definition of uniformly convex space (see [2, 6] for more details).

Definition 1. A Banach space *E* is said to be strictly convex if

$$||x+y|| < 2$$

for all $x, y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$. We recall that a Banach space *E* is called uniformly convex, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that if ||x|| = ||y|| = 1 then

$$\left\|\frac{(x+y)}{2}\right\| \le 1-\delta.$$

It is obvious that uniform convexity implies strict convexity.

In 1991, [23] proved the characterization of uniform convexity as follows.

Theorem 1. A Banach space *E* is uniformly convex if and only if for each fixed number r > 0, there exists a continuous function $\varphi : [0, \infty) \to [0, \infty), \ \varphi(s) = 0 \iff s = 0$, such that

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\varphi(\|x-y\|)$$

for all $\lambda \in [0,1]$ and all $x, y \in E$ such that $||x|| \leq r$ and $||y|| \leq r$.

Shioji et al. [19] studied the strongly convergence of the sequence

$$x_0 = x \in C,$$

 $x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{n+1} \sum_{j=0}^n T^j x_n,$

in uniformly convex Banach spaces with uniformly Gâteaux differentiable norms.

Also, for an asymptotically nonexpansive mapping T, Tan et. al [22] defined the modified Ishikawa iterations process

$$x_{n+1} = t_n T^n (s_n T^n x_n + (1 - s_n) x_n) + (1 - t_n) x_n,$$

where $\{t_n\}$ and $\{s_n\}$ are real sequences such that $\{t_n\}$ is bounded away from 0 and 1 and $\{s_n\}$ bounded away from 1. They proved the sequence $\{x_n\}$ is weakly convergent to a fixed point of *T*.

Definition 2. Let *E* be a Banach space. *E* is said to satisfy Opial's condition if for each sequence $\{x_n\}$ in *E* the condition $x_n \rightharpoonup x$ implies

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|$$

for all $y \in E$ and $y \neq x$.

Definition 3. Let *E* be an arbitrary real Banach space with norm $\|.\|$ and E^* be the dual space of *E*. The duality mapping $J : E \longrightarrow E^*$ is defined by

$$Jx = \{ f \in E^* : \langle x, f \rangle = ||x||^2, ||f|| = ||x|| \},\$$

where $\langle x, f \rangle$ denotes the value of the continuous linear function $f \in E^*$ at $x \in E$.

Lemma 1 ([21]). Let $\{\delta_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be three sequences of nonnegative numbers satisfying the recursive inequality

$$\delta_{n+1} \leq \beta_n \delta_n + \gamma_n \text{ for all } n \geq 1,$$

if $\beta_n \ge 1$, $\sum_{n=1}^{\infty} (\beta_n - 1) < \infty$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, then $\lim_{n \to \infty} \delta_n$ exists.

Lemma 2 ([17]). Let *E* be a uniformly convex Banach space. Assume $\{t_n\}$ is a sequence of real numbers in (0,1) bounded away from 0 and 1. If $\{x_n\}$ and $\{y_n\}$ are two sequences of *E* such that for some $a \ge 0$

 $\limsup_{n \to \infty} \|x_n\| \le a, \ \limsup_{n \to \infty} \|y_n\| \le a \text{ and } \limsup_{n \to \infty} \|t_n x_n + (1 - t_n) y_n\| = a,$

then $\lim_{n \to \infty} ||x_n - y_n|| = 0.$

Lemma 3 ([1]). Let $\{x_n\}$ be a bounded sequence in a uniformly convex Banach space *E*. If $w_w(\{x_n\}) = \{x\}$, then $x_n \rightarrow x$, where $w_w(\{x_n\}) = \{x \in E : \exists x_{nj} \rightarrow x\}$ denotes the weak w-limit set of $\{x_n\}$.

In 2001, Jung et al. [8] introduced the following class of mappings.

Definition 4. A mapping $T : C \to C$, where *C* is a nonempty subset of Banach space *E*, is said to be a generalized Lipschitzian mapping if

$$||T^{n}x - T^{n}y|| \le a_{n}||x - y|| + b_{n}(||x - T^{n}x|| + ||T^{n}y - y||) + c_{n}(||x - T^{n}y|| + ||T^{n}x - y||)$$
(1.1)

for each $x, y \in C$ and $n \ge 1$, where a_n, b_n and c_n are nonnegative constants such that there exists an integer n_0 such that $b_n + c_n < 1$, for all $n > n_0$.

Definition 5. A mapping $T : C \to C$, where *C* is a nonempty subset of Banach space *E*, is said to be a uniformly generalized Lipschitzian mapping if

$$||T^{n}x - T^{n}y|| \le a||x - y|| + b(||x - T^{n}x|| + ||T^{n}y - y||) + c(||x - T^{n}y|| + ||T^{n}x - y||)$$
(1.2)

for each $x, y \in C$ where a, b and c are nonnegative constants and b + c < 1.

Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping. But the vice versa is not necessarily true. See the following example.

Example 1. Let $E = \mathbb{R}$ be the set of real numbers and $C = [0, \infty)$. For each $x \in C$, we define

$$Tx = \begin{cases} \frac{rx}{1+x} & \text{if } x \in [0, \frac{1}{4}], \\ 0 & \text{if } x \in (\frac{1}{4}, \infty), \end{cases}$$
(1.3)

where $0 < r < \frac{1}{4}$. Then $T : C \longrightarrow C$ is not continuous at $x = \frac{1}{4}$ and hence T is not a Lipschitzian mapping. Set $C_1 = [0, \frac{1}{4}]$ and $C_2 = (\frac{1}{4}, \infty)$. In order to prove $T : C \longrightarrow C$ is a generalized Lipschitzian mapping, we need the following steps: for all $x, y \in C_1$ and $n \ge 1$,

$$|Tx - Ty| = \left|\frac{rx}{1+x} - \frac{ry}{1+y}\right| = \left|\frac{rx(1+y) - ry(1+x)}{(1+x)(1+y)}\right| \le r|x-y|$$

and

$$|T^{2}x - T^{2}y| = |\frac{rTx}{1 + Tx} - \frac{rTy}{1 + Ty}| \le r|Tx - Ty| \le r^{2}|x - y|.$$

By induction, for all $n \ge 1$

 $|T^{n}x - T^{n}y| \le r^{n}|x - y| + r^{n}(|x - T^{n}x| + |y - T^{n}y|) + r^{n}(|x - T^{n}y| + |y - T^{n}x|).$ (1.4) For all $x, y \in C_{2}$ and $n \ge 1$,

$$|T^{n}x - T^{n}y| = 0 \le |x - y|.$$
(1.5)

For $x \in C_1$ and $y \in C_2$,

$$|Tx - Ty| = |\frac{rx}{1+x} - 0|.$$

By induction, for $n \in \mathbb{N}$,

$$T^{n+1}x = \frac{rT^nx}{1+T^nx} \le rT^nx \le r^{n+1}x,$$

and by a computation

$$|T^{n}x - T^{n}y| = |T^{n}x - 0|$$

$$\leq r^{n}|(x - y) + (y - T^{n}x) + (T^{n}x - x) + x|$$

$$\leq r^{n}(|x - y| + |T^{n}x - x| + |y - T^{n}x| + |x + y - 0|)$$

$$\leq r^{n}|x - y| + r^{n}(|x - T^{n}x| + |y - T^{n}y|) + r^{n}(|x - T^{n}y| + |y - T^{n}x|).$$
(1.6)

Thus inequalities (1.4), (1.5) and (1.6) imply that $T: C \longrightarrow C$ is a generalized Lipschitzian mapping.

Lemma 4. Let C be a bounded, closed and convex subset of a uniformly convex Banach space E and T be a uniformly generalized Lipschitzian mapping of C into *itself. Then, for any* $\varepsilon > 0$ *, there exists a positive number* $\xi(\varepsilon)$ *such that* $||Tx - x|| < \varepsilon$ for all $x \in [x_0, x_1]$ whenever for $x_0, x_1 \in C$, $||Tx_0 - x_0|| \le \xi(\varepsilon)$ and $||Tx_1 - x_1|| \le \xi(\varepsilon)$, where

$$[x_0, x_1] = \{\lambda x_1 + (1 - \lambda) x_0 : 0 \le \lambda \le 1\}.$$

Proof. Fix $\varepsilon > 0$ and $x \in [x_0, x_1]$. Then $x = \lambda x_1 + (1 - \lambda)x_0$ for some λ with

 $0 \le \lambda \le 1$. We consider two cases, $||x_1 - x_0|| < \varepsilon_1$ and $||x_1 - x_0|| \ge \varepsilon_1$. If $||x_1 - x_0|| < \varepsilon_1$ then it is obvious that $||x - x_0|| < \varepsilon_1$, where $\varepsilon_1 = \frac{1 - (b+c)}{1 + a + 2c} \frac{\varepsilon}{2}$. Since $||Tx - x_0|| < ||Tx - Tx_0|| + ||Tx_0 - x_0|| + ||x_0 - x||$ ||T|

$$\begin{aligned} |Tx - x|| &\leq ||Tx - Tx_0|| + ||Tx_0 - x_0|| + ||x_0 - x|| \\ &\leq a||x_0 - x|| + b(||Tx - x|| + ||Tx_0 - x_0||) \\ &+ c(||x_0 - Tx|| + ||Tx_0 - x||) + ||Tx_0 - x_0|| + ||x_0 - x|| \\ &\leq a||x_0 - x|| + b(||Tx - x|| + ||Tx_0 - x_0||) \\ &+ c(||x - Tx|| + ||Tx_0 - x_0|| + 2||x_0 - x||) + ||Tx_0 - x_0|| + ||x_0 - x|| \end{aligned}$$

and so

$$\|Tx - x\| \le \frac{1 + a + 2c}{1 - (b + c)} \|x_0 - x\| + \frac{b + c + 1}{1 - (b + c)} \|x_0 - Tx_0\|.$$

$$(1.7)$$

Thus if $||Tx_0 - x_0|| \le \xi(\varepsilon) < \frac{1 - (b+c)}{1 + b + c} \frac{\varepsilon}{2}$, then $||Tx - x|| < \varepsilon$. If $||x_0 - x_1|| \ge \varepsilon_1$, let d_0 denote the diameter of *C*. For any nonnegative number

 $0 \le \lambda \le 1$, we consider three cases:

Case 1) If $0 \le \lambda < \frac{\varepsilon_1}{d_0}$, then

$$||x_0 - x|| = \lambda ||x_1 - x_0|| < \frac{\varepsilon_1}{d_0} ||x_1 - x_0|| = \varepsilon_1 \frac{||x_1 - x_0||}{d_0} < \varepsilon_1$$

Thus similar to above, if $\xi(\varepsilon) < \frac{1-(b+c)}{1+b+c}\frac{\varepsilon}{2}$, then inequation (1.7) implies $||Tx-x|| < \varepsilon$. Case 2) If $1 - \frac{\varepsilon_1}{d_0} < \lambda \le 1$ or $0 \le (1 - \lambda) < \frac{\varepsilon_1}{d_0}$, so

$$||x_1-x|| = (1-\lambda)||x_1-x_0|| < \varepsilon_1,$$

and similar to above we have $||Tx - x|| < \varepsilon$.

Case 3) If $\frac{\varepsilon_1}{d_0} \le \lambda \le 1 - \frac{\varepsilon_1}{d_0}$, y = Tx implies

$$|y-x_0|| = ||Tx-x_0|| \le ||Tx-Tx_0|| + ||Tx_0-x_0||.$$

By inequalities (1.2) and (1.7),

$$\|y - x_0\| \le \frac{a+b+c}{1-(b+c)} \|x - x_0\| + \frac{1+b+c}{1-(b+c)} \|Tx_0 - x_0\| \le r\lambda \|x_1 - x_0\| + h\xi(\varepsilon),$$
(1.8)

where
$$r = \frac{a+b+c}{1-(b+c)}$$
 and $h = \frac{1+b+c}{1-(b+c)}$, and also
 $||y-x_1|| \le \frac{a+b+c}{1-(b+c)} ||x-x_1|| + \frac{1+b+c}{1-(b+c)} ||Tx_1-x_1||$ (1.9)
 $\le r(1-\lambda) ||x_1-x_0|| + h\xi(\varepsilon).$

Set

$$z_0 = \frac{y - x_0}{\lambda \|x_1 - x_0\|}$$
 and $z_1 = \frac{x_1 - y}{(1 - \lambda) \|x_1 - x_0\|}$. (1.10)

Then

$$\|z_0\| \leq \frac{r\lambda\|x_1-x_0\|+h\xi(\varepsilon)}{\lambda\|x_1-x_0\|} \leq r + \frac{h\xi(\varepsilon)d_0}{\varepsilon_1^2},$$

and similarly

$$\|z_1\| \leq r + \frac{h\xi(\varepsilon)d_0}{\varepsilon_1^2}.$$

On the other hand, for λ with $\frac{\varepsilon_1}{d_0} \leq \lambda \leq 1 - \frac{\varepsilon_1}{d_0}$,

$$\|\lambda z_0 + (1-\lambda)z_1\| = \frac{\|x_1 - x_0\|}{\|x_1 - x_0\|} = 1.$$

Therefore using uniform convexity of *E*, we can choose $\xi(\varepsilon)$ so small that $||z_1 - z_0|| < \frac{\varepsilon}{d_0}$. Thus by $x = \lambda x_1 + (1 - \lambda) x_0$ and (1.10) we have

$$|y - x|| = ||(1 - \lambda)(y - x_0) - \lambda(x_1 - y)||$$

= $\lambda(1 - \lambda)||x_1 - x_0|| ||z_1 - z_0||$
< ε . (1.11)

Notice that y = Tx, and this means $||Tx - x|| < \varepsilon$.

Lemma 5 ([20]). Let C be a bounded, closed and convex subset of a uniformly convex Banach space E and T be a uniformly generalized Lipschitzian mapping of C into itself. If $\{x_j\}$ is a sequence of C such that $x_j \rightharpoonup x_0$ and $x_j - Tx_j \longrightarrow 0$, then x_0 is a fixed point of T.

Proof. Since $||(I-T)x_j|| = \varepsilon_j \longrightarrow 0$, for each *j* we assume $\varepsilon_j \le \xi(\varepsilon_{j-1}) < \varepsilon_{j-1}$, where $\xi(\varepsilon)$ for any $\varepsilon > 0$ is the constant described in the conclusion of Lemma 4. Hence if $x \in \overline{Co}\{x_j : j \ge k\}$ then $||x - Tx|| \le \varepsilon_{k-1}$. Since $\overline{Co}\{x_j : j \ge k\}$ is weakly compact, $x_0 \in \overline{Co}\{x_j : j \ge k\}$, $k = 1, 2, 3, \cdots$ and hence $||x_0 - Tx_0|| \le \varepsilon_j$, $j = 1, 2, 3, \cdots$. This implies $||Tx_0 - x_0|| = 0$.

Let *C* be a bounded, closed and convex subset of a Banach space *E* and $\{T_n\}$ be a sequence of uniformly generalized Lipschitizian self-mappings of *C*, such that the set *F* of common fixed points of $\{T_n\}$ is nonempty. Let $k_n = \frac{a_n + b_n + c_n}{1 - (b_n + c_n)}$ for T_n and $k_n \ge 1$ for all $n \ge 1$. For a given $x_1 \in C$, we define the sequence $\{x_n\}$ by $x_{n+1} = T_n x_n$ for $n \ge 1$.

Lemma 6. Let *E* be a normed linear space and *C* be a nonempty closed and convex subset of *E*. Let $T : C \longrightarrow C$ be a uniformly generalized Lipschitzian mapping. Let $\{x_n\}$ be defined by $x_{n+1} = T_n x_n$. If $\lim_{n \to \infty} ||x_n - T^n x_n|| = 0$ and $\lim_{n \to \infty} ||x_n - x_{n+1}|| = 0$, then $\lim_{n \to \infty} ||x_n - Tx_n|| = 0$.

Proof. Let $r_n = ||T^n x_n - x_n||$. Since T is a uniformly generalized Lipschitzian mapping,

$$\begin{aligned} \|x_{n+1} - Tx_{n+1}\| &\leq \|x_{n+1} - T^{n+1}x_{n+1}\| + \|Tx_{n+1} - T^{n+1}x_{n+1}\| \\ &\leq r_{n+1} + a\|x_{n+1} - T^nx_{n+1}\| + b(\|x_{n+1} - Tx_{n+1}\| \\ &+ \|T^nx_{n+1} - T^{n+1}x_{n+1}\|) + c(\|x_{n+1} - T^{n+1}x_{n+1}\| \\ &+ \|T^nx_{n+1} - Tx_{n+1}\|) \\ &\leq r_{n+1} + a\|x_{n+1} - T^nx_{n+1}\| + b(\|T^nx_{n+1} - x_{n+1}\| \\ &+ \|x_{n+1} - Tx_{n+1}\| + \|T^{n+1}x_{n+1} - x_{n+1}\| \\ &+ \|c(\|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^nx_{n+1} - x_{n+1}\| + \|x_{n+1} - Tx_{n+1}\|), \end{aligned}$$

and

$$\|x_{n+1} - Tx_{n+1}\| \le \frac{1+b+c}{1-(b+c)}r_{n+1} + \frac{a+b+c}{1-(b+c)}\|x_{n+1} - T^n x_{n+1}\|.$$
 (1.12)

Now we obtain $||x_{n+1} - T^n x_{n+1}||$ as

$$\begin{aligned} \|x_{n+1} - T^n x_{n+1}\| &\leq \|x_n - T^n x_n\| + \|x_{n+1} - x_n\| + \|T^n x_{n+1} - T^n x_n\| \\ &\leq r_n + \|x_{n+1} - x_n\| + a\|x_{n+1} - x_n\| + b(\|T^n x_n - x_n\| \\ &+ \|T^n x_{n+1} - x_{n+1}\|) + c(\|x_{n+1} - T^n x_n\| + \|T^n x_{n+1} - x_n\|). \end{aligned}$$

So

$$||T^{n}x_{n+1} - x_{n+1}|| \le \frac{1+b+c}{1-(b+c)}r_{n} + \frac{1+a+2c}{1-(b+c)}||x_{n+1} - x_{n}||.$$
(1.13)

By relations (1.12) and (1.13),

$$\begin{aligned} \|x_{n+1} - Tx_{n+1}\| &\leq \frac{1+b+c}{1-(b+c)}r_{n+1} + \frac{a+b+c}{1-(b+c)}\|T^nx_{n+1} - x_{n+1}\| \\ &\leq \frac{1+b+c}{1-(b+c)}r_{n+1} + \frac{a+b+c}{1-(b+c)}(\frac{1+b+c}{1-(b+c)}r_n \\ &+ \frac{1+a+2c}{1-(b+c)}\|x_{n+1} - x_n\|). \end{aligned}$$

This completes the proof.

In the next section, based on [19] and [22], a modified version of the iterative process for three generalized Lipschitizian mappings is presented. Then the existence of a common fixed point for these three maps is proved.

2. AN ITERATIVE APPROXIMATION OF THREE GENERALIZED LIPSCHITIZIAN MAPPINGS

In this section, we prove, if $T_i: C \longrightarrow C$, i = 1, 2, 3, are three generalized Lipschitzian mappings, then the sequence $\{x_n\}$ which is defined by equation (2.1) converges to $q \in \bigcap_{i=1}^{3} F(T_i)$ in the uniformly convex Banach space.

The result presented in this section generalizes and improves the corresponding results, in [5, 19] and [22].

Let C be a nonempty subset of real Banach space E and $T_i: C \longrightarrow C$, i = 1, 2, 3, be three generalized Lipschitizian mappings. Consider the following iterative sequence $\{x_n\}$ which is defined by

$$\begin{cases} x_{1} \in C, \\ u_{n} = \frac{1}{n+1} \sum_{j=0}^{n} T_{1}^{j} x_{n}, \\ z_{n} = (1-\lambda_{n}) x_{n} + \lambda_{n} u_{n} \qquad n \ge 1, \\ y_{n} = (1-\beta_{n}) x_{n} + \beta_{n} T_{2}^{n} z_{n} \qquad n \ge 1, \\ x_{n+1} = (1-\alpha_{n}) x_{n} + \alpha_{n} T_{3}^{n} y_{n} \qquad n \ge 1, \end{cases}$$

$$(2.1)$$

where $0 < \alpha_n, \beta_n, \lambda_n < 1$. We prove, if $T_i : C \longrightarrow C$, i = 1, 2, 3, are three generalized Lipschitzian mappings, then the sequence $\{x_n\}$ which is defined by equation (2.1) converges to $q \in \bigcap_{i=1}^{3} F(T_i)$, in a uniformly convex Banach space.

Theorem 2. Let E be a uniformly convex Banach space, satisfying Opial's condition and C be a nonempty, closed and convex subset of E. $T_i: C \longrightarrow C$ are three generalized Lipschitizian mappings for i = 1, 2, 3 satisfying

$$||T_i^n x - T_i^n y|| \le a_n^i ||x - y|| + b_n^i (||x - T_i^n x|| + ||T_i^n y - y||) + c_n^i (||x - T_i^n y|| + ||T_i^n x - y||)$$

for all $x, y \in C$ and $n \ge 1$, where $k_n^i = \frac{d_n^i + b_n^i + c_n^i}{1 - (b_n^i + c_n^i)}$ and $\{k_n^i\} \subset [1, \infty)$ for i = 1, 2, 3 satisfy $k_n^i \longrightarrow 1$ as $n \longrightarrow \infty$. Also $\sum_{n=1}^{\infty} (\eta_n k_n^2 k_n^3 - 1) < \infty$ where $\eta_n = \max\{k_j^1, 1 \le j \le n\}$. Let $\{x_n\}$ be the sequence defined by (2.1). If the following statements hold

- (I) $F = \bigcap_{i=1}^{3} F(T_i) \neq \phi$
- (II) $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$
- (III) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$
- (*IV*) $0 < \liminf_{n \to \infty} \lambda_n \leq \limsup_{n \to \infty} \lambda_n < 1$

then

- (1) $\lim_{n \to \infty} ||x_n q||$ exists, for all $q \in F$.
- (2) $\lim_{n \to \infty} ||x_n u_n|| = 0$ and $\lim_{n \to \infty} ||x_n T_i x_n|| = 0$ (i = 2, 3). (3) The sequence $\{x_n\}$ is weakly convergent to a common fixed point of T_i (*i* = 1, 2, 3).

Proof. For any $q \in F$ and i = 1, 2, 3, we get

$$\begin{aligned} \|T_i^n x_n - q\| &\leq a_n^i \|x_n - q\| + b_n^i \|T_i^n x_n - x_n\| + c_n^i (\|T_i^n x_n - q\| + \|x_n - q\|) \\ &\leq a_n^i \|x_n - q\| + b_n^i (\|T_i^n x_n - q\| + \|x_n - q\|) + c_n^i (\|T_i^n x_n - q\| + \|x_n - q\|), \end{aligned}$$

and so

$$\|T_i^n x_n - q\| \le \frac{a_n^i + b_n^i + c_n^i}{1 - (b_n^i + c_n^i)} \|x_n - q\| = k_n^i \|x_n - q\|.$$
(2.2)

In order to find a bound for $||x_{n+1} - q||$, we need to compute $||u_n - q||$, $||z_n - q||$ and $||y_n - q||$ as follows:

(*i*) Suppose $1 \le j \le n$, by inequality (2.2)

$$\|u_n - q\| \le \frac{1}{n+1} (\|x_n - q\| + \sum_{j=1}^n k_j^1 \|x_n - q\|) \le \eta_n \|x_n - q\|.$$
(2.3)

(*ii*) The definition of z_n in (2.1) implies

$$\begin{aligned} \|z_{n} - q\| &= \|(1 - \lambda_{n})x_{n} + \lambda_{n}u_{n} - q\| \\ &\leq (1 - \lambda_{n})\|x_{n} - q\| + \lambda_{n}\eta_{n}\|x_{n} - q\| \\ &\leq (1 + \lambda_{n}(\eta_{n} - 1))\|x_{n} - q\| \\ &\leq \eta_{n}\|x_{n} - q\|. \end{aligned}$$
(2.4)

(*iii*) The definition of y_n in (2.1) implies

$$\|y_{n} - q\| = \|(1 - \beta_{n})x_{n} + \beta_{n}T_{2}^{n}z_{n} - q\|$$

$$\leq (1 - \beta_{n})\|x_{n} - q\| + \beta_{n}k_{n}^{2}\|z_{n} - q\|$$

$$\leq (1 + \beta_{n}(k_{n}^{2}\eta_{n} - 1))\|x_{n} - q\|$$

$$\leq k_{n}^{2}\eta_{n}\|x_{n} - q\|.$$
(2.5)

By (i), (ii) and (iii) one can have

$$||x_{n+1} - q|| = ||(1 - \alpha_n)(x_n - q) + \alpha_n (T_3^n y_n - q)||$$

$$\leq (1 - \alpha_n) ||x_n - q|| + \alpha_n k_n^3 ||y_n - q||$$

$$\leq (1 - \alpha_n) ||x_n - q|| + \alpha_n k_n^3 k_n^2 \eta_n ||x_n - q||$$

$$\leq (1 + \alpha_n (k_n^3 k_n^2 \eta_n - 1)) ||x_n - q||.$$
(2.6)

Since $\sum_{n=1}^{\infty} (\eta_n k_n^2 k_n^3 - 1) < \infty$, Lemma 1 and inequality (2.6) imply $\lim_{n \to \infty} ||x_n - q|| = r$ exists. Furthermore,

 $\lim_{n \to \infty} ||x_{n+1} - q|| = \lim_{n \to \infty} ||(1 - \alpha_n)(x_n - q) + \alpha_n(T_3^n y_n - q)|| = r.$

Also, by (2.5)

$$\limsup_{n \to \infty} \|T_3^n y_n - q\| \le \limsup_{n \to \infty} (k_n^3 \|y_n - q\|)$$

$$\leq \limsup_{n \to \infty} (k_n^3 k_n^2 \eta_n || x_n - q ||)$$

$$\leq \lim_{n \to \infty} || x_n - q || = r.$$

Lemma 2 shows that $\lim_{n \to \infty} ||T_3^n y_n - x_n|| = 0$. Furthermore, by (2.6)

$$\frac{\|x_{n+1} - q\| - \|x_n - q\| + \alpha_n \|x_n - q\|}{\alpha_n k_n^3} \le \|y_n - q\|,$$
(2.7)

and by taking the limit $n \longrightarrow \infty$ in (2.7), we get

$$\lim_{n\longrightarrow\infty}\|x_n-q\|\leq\liminf_{n\longrightarrow\infty}\|y_n-q\|.$$

By (2.5),

$$\limsup_{n \to \infty} \|y_n - q\| \le \limsup_{n \to \infty} (k_n^2 \eta_n \|x_n - q\|) = \lim_{n \to \infty} \|x_n - q\|.$$
(2.8)

Notice that (2.7) and (2.8) show

$$\lim_{n \to \infty} \|x_n - q\| = \lim_{n \to \infty} \|y_n - q\| = r$$

Thus

$$\limsup_{n \to \infty} \|(1-\beta_n)(x_n-q) + \beta_n(T_2^n z_n - q)\| = \limsup_{n \to \infty} \|y_n - q\| = r.$$

On the other hand, (2.4) implies

$$\begin{split} \limsup_{n \to \infty} \|T_2^n z_n - q\| &\leq \limsup_{n \to \infty} (k_n^2 \|z_n - q\|) \\ &\leq \limsup_{n \to \infty} (k_n^2 \eta_n \|x_n - q\|) \\ &\leq \lim_{n \to \infty} \|x_n - q\| = r, \end{split}$$

and Lemma 2 shows that $\lim_{n \to \infty} ||T_2^n z_n - x_n|| = 0$. Using the same technique, we have $\lim_{n \to \infty} ||z_n - q|| = r$ and $\lim_{n \to \infty} ||u_n - x_n|| = 0$. Now, we prove $||x_n - T_2^n x_n|| \to 0$. From (2.1),

$$\begin{aligned} \|z_n - x_n\| &= \|(1 - \lambda_n)x_n + \lambda_n u_n - x_n\| = \lambda_n \|u_n - x_n\| \longrightarrow 0, \text{ as } n \longrightarrow \infty. \end{aligned}$$
Notice that $\|x_n - T_2^n x_n\| \le \|x_n - T_2^n z_n\| + \|T_2^n z_n - T_2^n x_n\|, \text{ where}$

$$\|T_2^n z_n - T_2^n x_n\| \le a_n^2 \|z_n - x_n\| + b_n^2 (\|z_n - T_2^n z_n\| + \|T_2^n x_n - x_n\|)$$

$$+ c_n^2 (\|T_2^n z_n - x_n\| + \|T_2^n x_n - z_n\|)$$

$$\le a_n^2 \|x_n - z_n\| + b_n^2 (\|z_n - x_n\| + \|T_2^n z_n - x_n\| + \|T_2^n x_n - x_n\|)$$

$$+ c_n^2 (\|T_2^n z_n - x_n\| + \|x_n - z_n\| + \|x_n - T_2^n x_n\|)$$

$$\le (a_n^2 + b_n^2 + c_n^2) \|x_n - z_n\| + (b_n^2 + c_n^2) (\|T_2^n z_n - x_n\| + \|T_2^n x_n - x_n\|). \end{aligned}$$

Since

$$\|x_n - T_2^n x_n\| \le \|x_n - T_2^n z_n\| + (a_n^2 + b_n^2 + c_n^2) \|x_n - z_n\| + (b_n^2 + c_n^2) (\|T_2^n z_n - x_n\| + \|T_2^n x_n - x_n\|)$$

and

$$\|x_n - T_2^n x_n\| \le k_n^2 \|z_n - x_n\| + (1 + k_n^2) \|x_n - T_2^n z_n\|,$$
(2.10)

by inequality (2.10), $||x_n - T_2^n x_n|| \longrightarrow 0$. Similarly, $||x_n - T_3^n x_n|| \longrightarrow 0$. Therefore, by Lemma 6, $||x_n - T_i x_n|| \longrightarrow 0$ as

 $n \longrightarrow \infty$, for i = 2, 3. Since $\lim_{n \to \infty} ||x_n - q||$ exists and by the boundedness of $\{x_n\}$, there exists a subsequence $\{x_{nk}\}$ of $\{x_n\}$ such that $x_{nk} \rightarrow x$. Lemma 5 shows $x \in F$. Notice $w_w(\{x_n\})$ is a singleton. To do this, suppose there exists another subsequence $\{x_{nj}\}$ of $\{x_n\}$ which is weakly convergent to some $z \neq x$ such that $z \in F$. The existence of $\lim_{n \to \infty} ||x_n - q||$ implies the existence of $\lim_{n \to \infty} ||x_n - x||$ and $\lim_{n \to \infty} ||x_n - z||$. Since *E* satisfies the Opial's

condition, we have

$$\lim_{n \to \infty} ||x_n - x|| = \lim_{k \to \infty} ||x_{nk} - x|| < \lim_{k \to \infty} ||x_{nk} - z|| = \lim_{n \to \infty} ||x_n - z||,$$

and

$$\lim_{n \to \infty} \|x_n - z\| = \lim_{j \to \infty} \|x_{nj} - z\| < \lim_{j \to \infty} \|x_{nj} - x\| = \lim_{n \to \infty} \|x_n - x\|,$$

which leads to a contradiction, and $w_w(\{x_n\})$ is a singleton. Therefore by Lemma 3 $\{x_n\}$ is weakly convergent to *x*.

With respect to Theorem 2, the following example is presented.

Example 2. Let $E = \mathbb{R}$, $C = [0, \infty)$. Assume $\{x_n\}$ is the sequence defined by (2.1), where $T_1x = \frac{x}{100}$, $T_2x = \frac{x}{1000}$ and $T_3x = \frac{x}{10000}$. Also $\alpha_n = \frac{n}{3n+1}$, $\beta_n = \frac{n}{4n+1}$ and $\lambda_n = \frac{n}{5n+1}$. We have

$$\begin{cases} u_n = \frac{1}{n+1} \sum_{j=0}^n \frac{x_n}{100^j}, \\ z_n = \frac{4n+1}{5n+1} x_n + (\frac{n}{5n+1}) u_n, \\ y_n = \frac{3n+1}{4n+1} x_n + (\frac{n}{4n+1}) (\frac{1}{1000^n}) z_n, \\ x_{n+1} = \frac{2n+1}{3n+1} x_n + (\frac{n}{3n+1}) (\frac{1}{10000^n}) y_n \end{cases}$$

Let $x_1 = 1$, then by iteration we can have

$$x_{10} = 0.03842, \cdots, x_{20} = 0.00074, \cdots, x_{30} = 0.00001, \cdots$$

This shows $x_n \to 0$. Thus 0 is a common fixed point of T_1, T_2 and T_3 or $\{0\} = \bigcap_{i=1}^3 F(T_i)$.

REFERENCES

- R. P. Agarwal, D. O'Regan, and D. R. Sahu, "Iterative construction of fixed points of nearly asymptotically nonexpansive mappings." J. Nonlinear Convex Anal., vol. 8, pp. 61–79, 2007.
- [2] N. Akkasriworn, A. Kaewkhao, A. Keawkhao, and K. Sokhuma, "Common fixed-point results in uniformly convex Banach spaces." *Fixed Point Theory and Applications*, vol. 2012, no. 171, pp. 1–7, 2012, doi: 10.1186/1687-1812-2012-171.
- [3] J. B. Baillon, "Un thèoreme de type ergodique pour les contractions non linèaires dans un espace de Hilbert." C.R. Acad. Sci. Paris Ser. A-B., vol. 280, pp. 1511–1541, 1975.
- [4] V. Berinde, "Asymptotic Regularity, Fixed Points and Successive Approximations." *Filomat*, vol. 34, no. 3, pp. 965–981, 2020.
- [5] Y. J. Cho, J. I. Kang, and H. Zrou, "Approximating common fixed points of asymptotically nonexpansive mappings." *Bull. Korean Math. Soc.*, vol. 42, pp. 661–670, 2005, doi: 10.4134/BKMS.2005.42.4.661.
- [6] J. A. Clarkson, "Uniformly convex spaces." Trans. Am. Math. Soc., vol. 40, pp. 396-414, 1936.
- [7] M. B. Ghaemi and A. Razani, "Fixed and periodic points in the probabilistic normed and metric spaces." *Chaos, Solitons and Fractals*, vol. 28, pp. 1181–1187, 2006, doi: 10.1016/j.chaos.2005.08.192.
- [8] J. S. Jung and B. S. Thakur, "Fixed point theorems for generalized Lipschitzian semigroups." Int. J. Math. Math. Sci., vol. 28, pp. 41–50, 2001.
- [9] M. A. Ragusa, "Regularity of solutions of divergence form elliptic equations." *Proceedings of the American Mathematical Society*, vol. 128, no. 2, pp. 533–540, 2000, doi: 10.1090/S0002-9939-99-05165-5.
- [10] M. A. Ragusa and A. Tachikawa, "Partial regularity of the minimizers of quadratic functionals with VMO coefficients." *Journal of the London Mathematical Society-second series*, vol. 72, no. 3, pp. 609–620, 2005, doi: 10.1112/S002461070500699X.
- [11] A. Razani, "A fixed point theorem in the Menger probabilistic metric space." New Zealand J. Math., vol. 35, no. 1, pp. 109–114, 2006.
- [12] A. Razani, "Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric spaces." *Chaos, Solitons and Fractals*, vol. 30, no. 2, pp. 367–373, 2006, doi: 10.1016/j.chaos.2005.10.010.
- [13] A. Razani, Results in Fixed Point Theory. Qazvin: Andisheh Zarin publisher, 2010.
- [14] A. Razani, "An existence theorem for ordinary differential equation in Menger probabilistic metric space." *Miskolc Mathematical Notes*, vol. 15, no. 2, pp. 711–716, 2014, doi: 10.18514/MMN.2014.640.
- [15] A. Razani and R. Moradi, *Fixed Point Theory in Modular Space*. Qazvin: Saieh Ghostar publisher, 2006.
- [16] H. R. Sahebi and A. Razani, "A solution of a general equilibrium problem." Acta Mathematica Scientia, vol. 33, no. 6, pp. 1598–1614, 2013.
- [17] J. Schu, "Iterative construction of fixed points of asymptotically nonexpansive mappings." J. Math. Anal. Appl., vol. 158, no. 2, pp. 407–413, 1991, doi: 10.1016/0022-247X(91)90245-U.
- [18] T. Shimizu and W. Takahashi, "Strong convergence to common fixed points of nonexpansive mappings." J. Math. Anal. Appl., vol. 211, pp. 71–83, 1997, doi: 10.1006/jmaa.1997.5398.
- [19] T. Shioji and W. Takahashi, "A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces." *Arch. Math.*, vol. 72, pp. 354–359, 1999, doi: 10.1007/s000130050343.
- [20] W. Takahashi, *Nonlinear Functional Analysis: fixed point theory and its applications*. New York: Yokohama Publishers, 2000.

- [21] K. K. Tan and H. K. Xu, "The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces." *Proc. Amer. Math. Soc.*, vol. 114, no. 2, pp. 399–404, 1992, doi: 10.1090/S0002-9939-1992-1068133-2.
- [22] K. K. Tan and H. K. Xu, "Fixed point iterative processes for asymptotically nonexpansive mappings." *Proc. Amer. Math. Soc.*, vol. 122, no. 3, pp. 733–739, 1994, doi: 10.1090/S0002-9939-1994-1203993-5.
- [23] H. K. Xu, "Inequalities in Banach spaces with applications." *Nonlinear Anal. TMA*, vol. 16, no. 12, pp. 1127–1138, 1991, doi: /10.1016/0362-546X(91)90200-K.

Author's address

A. Razani

Imam Khomeini International University, Faculty of Science, Department of Pure Mathematics, Postal Code: 34149-16818 Qazvin, IRAN

E-mail address: razani@sci.ikiu.ac.ir