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1. INTRODUCTION

In computational mathematics, an iterative method is a mathematical procedure
that uses an initial value to generate a sequence of improving approximate solutions
for a class of problems, in which the n− th approximation is derived from the pre-
vious ones. If an equation can be put into the form f (x) = x, and a solution x is an
attractive fixed point of the function f , then one may begin with a point x1 in the
basin of attraction of x, and let xn+1 = f (xn) for n = 1, and the sequence {xn}n≥1 will
converge to the solution x. Here xn is the n-th approximation or iteration of x and
xn+1 is the next or n+1 iteration of x (see [4, 7, 9–16], and reference therein).

Let C be a nonempty subset of a Banach space E, T : C −→C be a mapping and

F(T ) = {x ∈C : T x = x}

denotes the set of fixed points of T . A mapping T is said to be asymptotically non-
expansive, if there exists a sequence {kn} of positive numbers with lim

n−→∞
kn = 1 such

that for x,y ∈C and n ≥ 1,

∥T nx−T ny∥ ≤ kn∥x− y∥.

The study of iterative construction for fixed points of asymptotically nonexpansive
mappings began in 1975. Baillon [3] proved, if C is a nonempty, closed and convex
subset of a Hilbert space H and T : C → C is a nonexpansive mapping such that
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F(T ) ̸=∅, then for every x ∈C, the Cesáro means

Tnx =
1

n+1

n

∑
j=0

T jx

is weakly convergent to a fixed point of T . Then, Shimizu et al. [18] studied the
convergence of the following approximated sequence for an asymptotically nonex-
pansive mapping in Hilbert space,

x0 = x ∈C,

xn+1 = αnx+(1−αn)
1

n+1

n

∑
j=0

T jxn,

where {αn} is a real sequence satisfying 0 < αn ≤ 1 and αn −→ 0 as n −→ ∞. They
proved that {xn} is strongly convergent to an element of F(T ). We recall the defini-
tion of uniformly convex space (see [2, 6] for more details).

Definition 1. A Banach space E is said to be strictly convex if

∥x+ y∥< 2

for all x,y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. We recall that a Banach space E is
called uniformly convex, if for each ε > 0 there is a δ > 0 such that if ∥x∥= ∥y∥= 1
then

∥(x+ y)
2

∥ ≤ 1−δ.

It is obvious that uniform convexity implies strict convexity.

In 1991, [23] proved the characterization of uniform convexity as follows.

Theorem 1. A Banach space E is uniformly convex if and only if for each fixed
number r > 0, there exists a continuous function ϕ : [0,∞) → [0,∞), ϕ(s) = 0 ⇐⇒
s = 0, such that

∥λx+(1−λ)y∥2 ≤ λ∥x∥2 +(1−λ)∥y∥2 −λ(1−λ)ϕ(∥x− y∥)
for all λ ∈ [0,1] and all x,y ∈ E such that ∥x∥ ≤ r and ∥y∥ ≤ r.

Shioji et al. [19] studied the strongly convergence of the sequence

x0 = x ∈C,

xn+1 = αnx+(1−αn)
1

n+1

n

∑
j=0

T jxn,

in uniformly convex Banach spaces with uniformly Gâteaux differentiable norms.
Also, for an asymptotically nonexpansive mapping T , Tan et. al [22] defined the

modified Ishikawa iterations process

xn+1 = tnT n(snT nxn +(1− sn)xn)+(1− tn)xn,



GENERALIZED LIPSCHITIZIAN MAPPINGS IN UNIFORMLY CONVEX BANACH SPACES 891

where {tn} and {sn} are real sequences such that {tn} is bounded away from 0 and 1
and {sn} bounded away from 1. They proved the sequence {xn} is weakly convergent
to a fixed point of T .

Definition 2. Let E be a Banach space. E is said to satisfy Opial’s condition if for
each sequence {xn} in E the condition xn ⇀ x implies

limsup
n−→∞

∥xn − x∥< limsup
n−→∞

∥xn − y∥

for all y ∈ E and y ̸= x.

Definition 3. Let E be an arbitrary real Banach space with norm ∥.∥ and E∗ be the
dual space of E. The duality mapping J : E −→ E∗ is defined by

Jx = { f ∈ E∗ : ⟨x, f ⟩= ∥x∥2,∥ f∥= ∥x∥},

where ⟨x, f ⟩ denotes the value of the continuous linear function f ∈ E∗ at x ∈ E.

Lemma 1 ([21]). Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers satisfying the recursive inequality

δn+1 ≤ βnδn + γn for all n ≥ 1,

if βn ≥ 1, ∑
∞
n=1(βn −1)< ∞ and ∑

∞
n=1 γn < ∞, then lim

n→∞
δn exists.

Lemma 2 ([17]). Let E be a uniformly convex Banach space. Assume {tn} is a
sequence of real numbers in (0,1) bounded away from 0 and 1. If {xn} and {yn} are
two sequences of E such that for some a ≥ 0

limsup
n−→∞

∥xn∥ ≤ a, limsup
n−→∞

∥yn∥ ≤ a and limsup
n−→∞

∥tnxn +(1− tn)yn∥= a,

then lim
n−→∞

∥xn − yn∥= 0.

Lemma 3 ([1]). Let {xn} be a bounded sequence in a uniformly convex Banach
space E. If ww({xn}) = {x}, then xn ⇀ x, where ww({xn}) = {x ∈ E : ∃xn j ⇀ x}
denotes the weak w-limit set of {xn}.

In 2001, Jung et al. [8] introduced the following class of mappings.

Definition 4. A mapping T : C → C, where C is a nonempty subset of Banach
space E, is said to be a generalized Lipschitzian mapping if

∥T nx−T ny∥ ≤ an∥x−y∥+bn(∥x−T nx∥+∥T ny−y∥)+cn(∥x−T ny∥+∥T nx−y∥)
(1.1)

for each x,y ∈ C and n ≥ 1, where an,bn and cn are nonnegative constants such that
there exists an integer n0 such that bn + cn < 1, for all n > n0.
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Definition 5. A mapping T : C → C, where C is a nonempty subset of Banach
space E, is said to be a uniformly generalized Lipschitzian mapping if

∥T nx−T ny∥ ≤ a∥x− y∥+b(∥x−T nx∥+∥T ny− y∥)+ c(∥x−T ny∥+∥T nx− y∥)
(1.2)

for each x,y ∈C where a,b and c are nonnegative constants and b+ c < 1.

Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping. But
the vice versa is not necessarily true. See the following example.

Example 1. Let E = R be the set of real numbers and C = [0,∞). For each x ∈C,
we define

T x =


rx

1+ x
if x ∈ [0,

1
4
],

0 if x ∈ (
1
4
,∞),

(1.3)

where 0 < r < 1
4 . Then T : C −→ C is not continuous at x = 1

4 and hence T is not a
Lipschitzian mapping. Set C1 = [0, 1

4 ] and C2 = (1
4 ,∞). In order to prove T : C −→C

is a generalized Lipschitzian mapping, we need the following steps: for all x,y ∈C1
and n ≥ 1,

|T x−Ty|= | rx
1+ x

− ry
1+ y

|= |rx(1+ y)− ry(1+ x)
(1+ x)(1+ y)

| ≤ r|x− y|

and
|T 2x−T 2y|= | rT x

1+T x
− rTy

1+Ty
| ≤ r|T x−Ty| ≤ r2|x− y|.

By induction, for all n ≥ 1

|T nx−T ny| ≤ rn|x−y|+ rn(|x−T nx|+ |y−T ny|)+ rn(|x−T ny|+ |y−T nx|). (1.4)

For all x,y ∈C2 and n ≥ 1,

|T nx−T ny|= 0 ≤ |x− y|. (1.5)

For x ∈C1 and y ∈C2,
|T x−Ty|= | rx

1+ x
−0|.

By induction, for n ∈ N,

T n+1x =
rT nx

1+T nx
≤ rT nx ≤ rn+1x,

and by a computation

|T nx−T ny|= |T nx−0| (1.6)

≤ rn|(x− y)+(y−T nx)+(T nx− x)+ x|
≤ rn(|x− y|+ |T nx− x|+ |y−T nx|+ |x+ y−0|)
≤ rn|x− y|+ rn(|x−T nx|+ |y−T ny|)+ rn(|x−T ny|+ |y−T nx|).
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Thus inequalities (1.4), (1.5) and (1.6) imply that T :C −→C is a generalized Lipschit-
zian mapping.

Lemma 4. Let C be a bounded, closed and convex subset of a uniformly convex
Banach space E and T be a uniformly generalized Lipschitzian mapping of C into
itself. Then, for any ε > 0, there exists a positive number ξ(ε) such that ∥T x−x∥< ε

for all x ∈ [x0,x1] whenever for x0,x1 ∈C, ∥T x0 −x0∥ ≤ ξ(ε) and ∥T x1 −x1∥ ≤ ξ(ε),
where

[x0,x1] = {λx1 +(1−λ)x0 : 0 ≤ λ ≤ 1}.

Proof. Fix ε > 0 and x ∈ [x0,x1]. Then x = λx1 + (1 − λ)x0 for some λ with
0 ≤ λ ≤ 1. We consider two cases, ∥x1 − x0∥< ε1 and ∥x1 − x0∥ ≥ ε1.

If ∥x1 −x0∥< ε1 then it is obvious that ∥x−x0∥< ε1, where ε1 =
1−(b+c)
1+a+2c

ε

2 . Since

∥T x− x∥ ≤ ∥T x−T x0∥+∥T x0 − x0∥+∥x0 − x∥
≤ a∥x0 − x∥+b(∥T x− x∥+∥T x0 − x0∥)
+ c(∥x0 −T x∥+∥T x0 − x∥)+∥T x0 − x0∥+∥x0 − x∥

≤ a∥x0 − x∥+b(∥T x− x∥+∥T x0 − x0∥)
+ c(∥x−T x∥+∥T x0 − x0∥+2∥x0 − x∥)+∥T x0 − x0∥+∥x0 − x∥

and so
∥T x− x∥ ≤ 1+a+2c

1− (b+ c)
∥x0 − x∥+ b+ c+1

1− (b+ c)
∥x0 −T x0∥. (1.7)

Thus if ∥T x0 − x0∥ ≤ ξ(ε)< 1−(b+c)
1+b+c

ε

2 , then ∥T x− x∥< ε.
If ∥x0 − x1∥ ≥ ε1, let d0 denote the diameter of C. For any nonnegative number

0 ≤ λ ≤ 1, we consider three cases:
Case 1) If 0 ≤ λ < ε1

d0
, then

∥x0 − x∥= λ∥x1 − x0∥<
ε1

d0
∥x1 − x0∥= ε1

∥x1 − x0∥
d0

< ε1.

Thus similar to above, if ξ(ε)< 1−(b+c)
1+b+c

ε

2 , then inequation (1.7) implies ∥T x−x∥< ε.
Case 2) If 1− ε1

d0
< λ ≤ 1 or 0 ≤ (1−λ)< ε1

d0
, so

∥x1 − x∥= (1−λ)∥x1 − x0∥< ε1,

and similar to above we have ∥T x− x∥< ε.
Case 3) If ε1

d0
≤ λ ≤ 1− ε1

d0
, y = T x implies

∥y− x0∥= ∥T x− x0∥ ≤ ∥T x−T x0∥+∥T x0 − x0∥.
By inequalities (1.2) and (1.7),

∥y− x0∥ ≤
a+b+ c

1− (b+ c)
∥x− x0∥+

1+b+ c
1− (b+ c)

∥T x0 − x0∥ ≤ rλ∥x1 − x0∥+hξ(ε),

(1.8)
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where r = a+b+c
1−(b+c) and h = 1+b+c

1−(b+c) , and also

∥y− x1∥ ≤
a+b+ c

1− (b+ c)
∥x− x1∥+

1+b+ c
1− (b+ c)

∥T x1 − x1∥ (1.9)

≤ r(1−λ)∥x1 − x0∥+hξ(ε).

Set
z0 =

y− x0

λ∥x1 − x0∥
and z1 =

x1 − y
(1−λ)∥x1 − x0∥

. (1.10)

Then

∥z0∥ ≤
rλ∥x1 − x0∥+hξ(ε)

λ∥x1 − x0∥
≤ r+

hξ(ε)d0

ε2
1

,

and similarly

∥z1∥ ≤ r+
hξ(ε)d0

ε2
1

.

On the other hand, for λ with ε1
d0

≤ λ ≤ 1− ε1
d0

,

∥λz0 +(1−λ)z1∥=
∥x1 − x0∥
∥x1 − x0∥

= 1.

Therefore using uniform convexity of E, we can choose ξ(ε) so small that
∥z1 − z0∥< ε

d0
. Thus by x = λx1 +(1−λ)x0 and (1.10) we have

∥y− x∥= ∥(1−λ)(y− x0)−λ(x1 − y)∥ (1.11)

= λ(1−λ)∥x1 − x0∥∥z1 − z0∥
< ε.

Notice that y = T x, and this means ∥T x− x∥< ε. □

Lemma 5 ([20]). Let C be a bounded, closed and convex subset of a uniformly
convex Banach space E and T be a uniformly generalized Lipschitzian mapping of C
into itself. If {x j} is a sequence of C such that x j ⇀ x0 and x j −T x j −→ 0, then x0 is
a fixed point of T .

Proof. Since ∥(I −T )x j∥ = ε j −→ 0, for each j we assume ε j ≤ ξ(ε j−1) < ε j−1,
where ξ(ε) for any ε > 0 is the constant described in the conclusion of Lemma
4. Hence if x ∈ Co{x j : j ≥ k} then ∥x − T x∥ ≤ εk−1. Since Co{x j : j ≥ k} is
weakly compact, x0 ∈ Co{x j : j ≥ k}, k = 1,2,3, · · · and hence ∥x0 − T x0∥ ≤ ε j,
j = 1,2,3, · · · . This implies ∥T x0 − x0∥= 0. □

Let C be a bounded, closed and convex subset of a Banach space E and {Tn} be a
sequence of uniformly generalized Lipschitizian self-mappings of C, such that the set
F of common fixed points of {Tn} is nonempty. Let kn =

an+bn+cn
1−(bn+cn)

for Tn and kn ≥ 1
for all n ≥ 1. For a given x1 ∈ C, we define the sequence {xn} by xn+1 = Tnxn for
n ≥ 1.
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Lemma 6. Let E be a normed linear space and C be a nonempty closed and convex
subset of E. Let T : C −→ C be a uniformly generalized Lipschitzian mapping. Let
{xn} be defined by xn+1 = Tnxn. If lim

n−→∞
∥xn −T nxn∥ = 0 and lim

n−→∞
∥xn − xn+1∥ = 0,

then lim
n−→∞

∥xn −T xn∥= 0.

Proof. Let rn = ∥T nxn − xn∥. Since T is a uniformly generalized Lipschitzian
mapping,

∥xn+1 −T xn+1∥ ≤ ∥xn+1 −T n+1xn+1∥+∥T xn+1 −T n+1xn+1∥
≤ rn+1 +a∥xn+1 −T nxn+1∥+b(∥xn+1 −T xn+1∥
+∥T nxn+1 −T n+1xn+1∥)+ c(∥xn+1 −T n+1xn+1∥
+∥T nxn+1 −T xn+1∥)

≤ rn+1 +a∥xn+1 −T nxn+1∥+b(∥T nxn+1 − xn+1∥
+∥xn+1 −T xn+1∥+∥T n+1xn+1 − xn+1∥)
+ c(∥xn+1 −T n+1xn+1∥+∥T nxn+1 − xn+1∥+∥xn+1 −T xn+1∥),

and

∥xn+1 −T xn+1∥ ≤
1+b+ c

1− (b+ c)
rn+1 +

a+b+ c
1− (b+ c)

∥xn+1 −T nxn+1∥. (1.12)

Now we obtain ∥xn+1 −T nxn+1∥ as

∥xn+1 −T nxn+1∥ ≤ ∥xn −T nxn∥+∥xn+1 − xn∥+∥T nxn+1 −T nxn∥
≤ rn +∥xn+1 − xn∥+a∥xn+1 − xn∥+b(∥T nxn − xn∥
+∥T nxn+1 − xn+1∥)+ c(∥xn+1 −T nxn∥+∥T nxn+1 − xn∥).

So

∥T nxn+1 − xn+1∥ ≤
1+b+ c

1− (b+ c)
rn +

1+a+2c
1− (b+ c)

∥xn+1 − xn∥. (1.13)

By relations (1.12) and (1.13),

∥xn+1 −T xn+1∥ ≤
1+b+ c

1− (b+ c)
rn+1 +

a+b+ c
1− (b+ c)

∥T nxn+1 − xn+1∥

≤ 1+b+ c
1− (b+ c)

rn+1 +
a+b+ c

1− (b+ c)
(

1+b+ c
1− (b+ c)

rn

+
1+a+2c
1− (b+ c)

∥xn+1 − xn∥).

This completes the proof. □

In the next section, based on [19] and [22], a modified version of the iterative
process for three generalized Lipschitizian mappings is presented. Then the existence
of a common fixed point for these three maps is proved.
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2. AN ITERATIVE APPROXIMATION OF THREE GENERALIZED LIPSCHITIZIAN
MAPPINGS

In this section, we prove, if Ti : C −→C, i = 1,2,3, are three generalized Lipschit-
zian mappings, then the sequence {xn} which is defined by equation (2.1) converges
to q ∈

⋂3
i=1 F(Ti) in the uniformly convex Banach space.

The result presented in this section generalizes and improves the corresponding
results, in [5, 19] and [22].

Let C be a nonempty subset of real Banach space E and Ti : C −→C, i = 1,2,3, be
three generalized Lipschitizian mappings. Consider the following iterative sequence
{xn} which is defined by

x1 ∈C,

un =
1

n+1

n

∑
j=0

T j
1 xn,

zn = (1−λn)xn +λnun n ≥ 1,

yn = (1−βn)xn +βnT n
2 zn n ≥ 1,

xn+1 = (1−αn)xn +αnT n
3 yn n ≥ 1,

(2.1)

where 0 < αn,βn,λn < 1. We prove, if Ti : C −→C, i = 1,2,3, are three generalized
Lipschitzian mappings, then the sequence {xn} which is defined by equation (2.1)
converges to q ∈

⋂3
i=1 F(Ti), in a uniformly convex Banach space.

Theorem 2. Let E be a uniformly convex Banach space, satisfying Opial’s con-
dition and C be a nonempty, closed and convex subset of E. Ti : C −→ C are three
generalized Lipschitizian mappings for i = 1,2,3 satisfying

∥T n
i x−T n

i y∥ ≤ ai
n∥x− y∥+bi

n(∥x−T n
i x∥+∥T n

i y− y∥)+ ci
n(∥x−T n

i y∥+∥T n
i x− y∥)

for all x,y ∈C and n ≥ 1, where ki
n =

ai
n+bi

n+ci
n

1−(bi
n+ci

n)
and {ki

n} ⊂ [1,∞) for i = 1,2,3 satisfy

ki
n −→ 1 as n −→ ∞. Also ∑

∞
n=1(ηnk2

nk3
n − 1) < ∞ where ηn = max{k1

j ,1 ≤ j ≤ n}.
Let {xn} be the sequence defined by (2.1). If the following statements hold

(I) F =
⋂3

i=1 F(Ti) ̸= φ

(II) 0 < liminfn−→∞ αn ≤ limsupn−→∞ αn < 1
(III) 0 < liminfn−→∞ βn ≤ limsupn−→∞ βn < 1
(IV ) 0 < liminfn−→∞ λn ≤ limsupn−→∞ λn < 1

then
(1) lim

n−→∞
∥xn −q∥ exists, for all q ∈ F.

(2) lim
n−→∞

∥xn −un∥= 0 and lim
n−→∞

∥xn −Tixn∥= 0 (i = 2,3).

(3) The sequence {xn} is weakly convergent to a common fixed point of
Ti (i = 1,2,3).
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Proof. For any q ∈ F and i = 1,2,3, we get

∥T n
i xn −q∥ ≤ ai

n∥xn −q∥+bi
n∥T n

i xn − xn∥+ ci
n(∥T n

i xn −q∥+∥xn −q∥)
≤ ai

n∥xn −q∥+bi
n(∥T n

i xn −q∥+∥xn −q∥)+ ci
n(∥T n

i xn −q∥+∥xn −q∥),
and so

∥T n
i xn −q∥ ≤ ai

n +bi
n + ci

n

1− (bi
n + ci

n)
∥xn −q∥= ki

n∥xn −q∥. (2.2)

In order to find a bound for ∥xn+1 −q∥, we need to compute ∥un −q∥, ∥zn −q∥ and
∥yn −q∥ as follows:
(i) Suppose 1 ≤ j ≤ n, by inequality (2.2)

∥un −q∥ ≤ 1
n+1

(∥xn −q∥+
n

∑
j=1

k1
j∥xn −q∥)≤ ηn∥xn −q∥. (2.3)

(ii) The definition of zn in (2.1) implies

∥zn −q∥=∥(1−λn)xn +λnun −q∥ (2.4)

≤(1−λn)∥xn −q∥+λnηn∥xn −q∥
≤(1+λn(ηn −1))∥xn −q∥
≤ηn∥xn −q∥.

(iii) The definition of yn in (2.1) implies

∥yn −q∥= ∥(1−βn)xn +βnT n
2 zn −q∥ (2.5)

≤ (1−βn)∥xn −q∥+βnk2
n∥zn −q∥

≤ (1+βn(k2
nηn −1))∥xn −q∥

≤ k2
nηn∥xn −q∥.

By (i), (ii) and (iii) one can have

∥xn+1 −q∥= ∥(1−αn)(xn −q)+αn(T n
3 yn −q)∥ (2.6)

≤ (1−αn)∥xn −q∥+αnk3
n∥yn −q∥

≤ (1−αn)∥xn −q∥+αnk3
nk2

nηn∥xn −q∥
≤ (1+αn(k3

nk2
nηn −1))∥xn −q∥.

Since ∑
∞
n=1(ηnk2

nk3
n −1)< ∞, Lemma 1 and inequality (2.6) imply lim

n−→∞
∥xn−q∥= r

exists. Furthermore,

lim
n−→∞

∥xn+1 −q∥= lim
n−→∞

∥(1−αn)(xn −q)+αn(T n
3 yn −q)∥= r.

Also, by (2.5)

limsup
n−→∞

∥T n
3 yn −q∥ ≤ limsup

n−→∞

(k3
n∥yn −q∥)
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≤ limsup
n−→∞

(k3
nk2

nηn∥xn −q∥)

≤ lim
n−→∞

∥xn −q∥= r.

Lemma 2 shows that lim
n−→∞

∥T n
3 yn − xn∥= 0. Furthermore, by (2.6)

∥xn+1 −q∥−∥xn −q∥+αn∥xn −q∥
αnk3

n
≤ ∥yn −q∥, (2.7)

and by taking the limit n −→ ∞ in (2.7), we get

lim
n−→∞

∥xn −q∥ ≤ liminf
n−→∞

∥yn −q∥.

By (2.5),

limsup
n−→∞

∥yn −q∥ ≤ limsup
n−→∞

(k2
nηn∥xn −q∥) = lim

n−→∞
∥xn −q∥. (2.8)

Notice that (2.7) and (2.8) show

lim
n−→∞

∥xn −q∥= lim
n−→∞

∥yn −q∥= r.

Thus

limsup
n−→∞

∥(1−βn)(xn −q)+βn(T n
2 zn −q)∥= limsup

n−→∞

∥yn −q∥= r.

On the other hand, (2.4) implies

limsup
n−→∞

∥T n
2 zn −q∥ ≤ limsup

n−→∞

(k2
n∥zn −q∥)

≤ limsup
n−→∞

(k2
nηn∥xn −q∥)

≤ lim
n−→∞

∥xn −q∥= r,

and Lemma 2 shows that lim
n−→∞

∥T n
2 zn − xn∥= 0. Using the same technique, we have

lim
n−→∞

∥zn −q∥= r and lim
n−→∞

∥un − xn∥= 0.

Now, we prove ∥xn −T n
2 xn∥ −→ 0. From (2.1),

∥zn − xn∥= ∥(1−λn)xn +λnun − xn∥= λn∥un − xn∥ −→ 0, as n −→ ∞.

Notice that ∥xn −T n
2 xn∥ ≤ ∥xn −T n

2 zn∥+∥T n
2 zn −T n

2 xn∥, where

∥T n
2 zn −T n

2 xn∥ ≤ a2
n∥zn − xn∥+b2

n(∥zn −T n
2 zn∥+∥T n

2 xn − xn∥) (2.9)

+ c2
n(∥T n

2 zn − xn∥+∥T n
2 xn − zn∥)

≤ a2
n∥xn − zn∥+b2

n(∥zn − xn∥+∥T n
2 zn − xn∥+∥T n

2 xn − xn∥)
+ c2

n(∥T n
2 zn − xn∥+∥xn − zn∥+∥xn −T n

2 xn∥)
≤ (a2

n +b2
n + c2

n)∥xn − zn∥+(b2
n + c2

n)(∥T n
2 zn − xn∥+∥T n

2 xn − xn∥).
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Since

∥xn −T n
2 xn∥ ≤ ∥xn −T n

2 zn∥+(a2
n +b2

n + c2
n)∥xn − zn∥

+(b2
n + c2

n)(∥T n
2 zn − xn∥+∥T n

2 xn − xn∥)
and

∥xn −T n
2 xn∥ ≤ k2

n∥zn − xn∥+(1+ k2
n)∥xn −T n

2 zn∥, (2.10)
by inequality (2.10), ∥xn −T n

2 xn∥ −→ 0.
Similarly, ∥xn − T n

3 xn∥ −→ 0. Therefore, by Lemma 6, ∥xn − Tixn∥ −→ 0 as
n −→ ∞, for i = 2,3.

Since lim
n−→∞

∥xn − q∥ exists and by the boundedness of {xn}, there exists a sub-

sequence {xnk} of {xn} such that xnk ⇀ x. Lemma 5 shows x ∈ F . Notice ww({xn}) is
a singleton. To do this, suppose there exists another subsequence {xn j} of {xn} which
is weakly convergent to some z ̸= x such that z ∈ F . The existence of lim

n→∞
∥xn − q∥

implies the existence of lim
n→∞

∥xn − x∥ and lim
n→∞

∥xn − z∥. Since E satisfies the Opial’s
condition, we have

lim
n→∞

∥xn − x∥= lim
k→∞

∥xnk − x∥< lim
k→∞

∥xnk − z∥= lim
n→∞

∥xn − z∥,

and
lim
n→∞

∥xn − z∥= lim
j→∞

∥xn j − z∥< lim
j→∞

∥xn j − x∥= lim
n→∞

∥xn − x∥,

which leads to a contradiction, and ww({xn}) is a singleton. Therefore by Lemma 3
{xn} is weakly convergent to x. □

With respect to Theorem 2, the following example is presented.

Example 2. Let E = R, C = [0,∞). Assume {xn} is the sequence defined by
(2.1), where T1x = x

100 , T2x = x
1000 and T3x = x

10000 . Also αn =
n

3n+1 , βn =
n

4n+1 and
λn =

n
5n+1 . We have 

un =
1

n+1

n

∑
j=0

xn

100 j ,

zn =
4n+1
5n+1

xn +(
n

5n+1
)un,

yn =
3n+1
4n+1

xn +(
n

4n+1
)(

1
1000n )zn,

xn+1 =
2n+1
3n+1

xn +(
n

3n+1
)(

1
10000n )yn.

Let x1 = 1, then by iteration we can have

x10 = 0.03842, · · · ,x20 = 0.00074, · · · ,x30 = 0.00001, · · ·
This shows xn → 0. Thus 0 is a common fixed point of T1,T2 and T3 or
{0}=

⋂3
i=1 F(Ti).
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[3] J. B. Baillon, “Un thèoreme de type ergodique pour les contractions non linèaires dans un espace
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