
Warshall’s algorithm—survey and
applications

Zoltán Kása

Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
Department of Mathematics and Informatics, Târgu Mureş

kasa@ms.sapientia.ro

Submitted: December 23, 2020
Accepted: August 3, 2021

Published online: August 13, 2021

Abstract
This survey presents the well-known Warshall’s algorithm, a generaliza-

tion and some interesting applications: transitive closure of relations, dis-
tances between vertices in graphs, number of paths in acyclic digraphs, all
paths in digraphs, scattered complexity for rainbow words, special walks in
finite automata.

Keywords: Warshall’s algorithm, Floyd–Warshall algorithm, paths in graphs,
scattered subword complexity, finite automata

AMS Subject Classification: 05C85, 68W05, 68R10, 68R14

1. Introduction

Warshall’s algorithm [14] with its generalization [11] is widely used in graph theory
[1, 3–5, 8–10, 12] and in various fields of sciences (e.g. fuzzy [13] and quantum [6]
theory, Kleene algebra [7]). In the following, we present the algorithm, its gener-
alization, and the collected applications related to graphs, to be easily accessible
together here.

Let 𝑅 be a binary relation on the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, we write 𝑠𝑖𝑅𝑠𝑗 if 𝑠𝑖
is in relation with 𝑠𝑗 . The relation 𝑅 can be represented by the so called relation
matrix, which is

𝐴 = (𝑎𝑖𝑗)𝑖=1,𝑛

𝑗=1,𝑛

, where 𝑎𝑖𝑗 =

{︃
1, if 𝑠𝑖𝑅𝑠𝑗 ,
0, otherwise.

Annales Mathematicae et Informaticae
54 (2021) pp. 17–31
doi: https://doi.org/10.33039/ami.2021.08.001
url: https://ami.uni-eszterhazy.hu

17



The transitive closure of the relation 𝑅 is the binary relation 𝑅* defined as:
𝑠𝑖𝑅

*𝑠𝑗 if and only if there exists 𝑠𝑝1
, 𝑠𝑝2

, . . ., 𝑠𝑝𝑟
, 𝑟 ≥ 2 such that 𝑠𝑖 = 𝑠𝑝1

, 𝑠𝑝1
𝑅𝑠𝑝2

,
𝑠𝑝2

𝑅𝑠𝑝3
, . . . , 𝑠𝑝𝑟−1

𝑅𝑠𝑝𝑟
, 𝑠𝑝𝑟

= 𝑠𝑗 . The relation matrix of 𝑅* is 𝐴* = (𝑎*𝑖𝑗).

Let us define the following two operations: i) if 𝑎, 𝑏 ∈ {0, 1} then 𝑎+ 𝑏 = 0 for
𝑎 = 0, 𝑏 = 0, and 𝑎 + 𝑏 = 1 otherwise; ii) 𝑎 · 𝑏 = 1 for 𝑎 = 1, 𝑏 = 1, and 𝑎 · 𝑏 = 0
otherwise. In this case

𝐴* = 𝐴+𝐴2 + · · ·+𝐴𝑛.

The transitive closure of a relation can be computed easily by the Warshall’s algo-
rithm [2, 14]:

Warshall(𝐴,𝑛)
Input: the relation matrix 𝐴; the number of elements 𝑛
Output: 𝑊 = 𝐴*

1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑤𝑖𝑘 = 1 and 𝑤𝑘𝑗 = 1
6 then 𝑤𝑖𝑗 ← 1
7 return 𝑊

Listing 1. Warshall’s algorithm.

The complexity of this algorithm is Θ(𝑛3).
A binary relation can be represented by a directed graph (i.e. digraph) too. The

relation matrix is equal to the adjacency matrix of the corresponding graph. See
Fig. 1 for an example. Fig. 2 represents the graph of the corresponding transitive
closure relation.

𝑣3

𝑣2

𝑣1

𝑣5 𝑣4

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

Figure 1. A binary relation represented by a graph with the cor-
responding adjacency matrix.

18 Z. Kása



𝑣3

𝑣2

𝑣1

𝑣5 𝑣4

⎛
⎜⎜⎜⎜⎝

0 1 1 1 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

Figure 2. The transitive closure of the relation in Fig. 1.

2. Generalization of Warshall’s algorithm

Lines 5 and 6 in the Warshall’s algorithm presented in Listing 1 can be expressed
as

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑤𝑖𝑘 · 𝑤𝑘𝑗

using the operations defined above. If instead of the operations + and · we use two
operations ⊕ and ⊙ from a semiring, a generalized Warshall’s algorithm results
[11]:

Generalized-Warshall(𝐴,𝑛)
Input: the relation matrix 𝐴; the number of elements 𝑛
Output: 𝑊 = 𝐴*

1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 ⊕ (𝑤𝑖𝑘 ⊙ 𝑤𝑘𝑗)
6 return 𝑊

Listing 2. The generalized Warshall’s algorithm.

The complexity of this algorithm is also Θ(𝑛3). This generalization leads us to
a number of interesting applications.

Warshall’s algorithm—survey and applications 19



3. Applications

3.1. Distances between vertices. Floyd–Warshall algorithm

Given a (di)graph with positive or negative edge weights (but with no negative
cycles) and its modified adjacency matrix 𝐷0 = (𝑑0𝑖𝑗), we can obtain the distance
matrix 𝐷 = (𝑑𝑖𝑗) in which 𝑑𝑖𝑗 represents the distance between vertices 𝑣𝑖 and 𝑣𝑗 .
The distance between vertices 𝑣𝑖 and 𝑣𝑗 is the length of the shortest path between
them. The modified adjacency matrix 𝐷0 = (𝑑0𝑖𝑗) is the following:

𝑑0𝑖𝑗 =

⎧
⎪⎨
⎪⎩

0, if 𝑖 = 𝑗,

∞, if there is no edge from vertex 𝑣𝑖 to vertex 𝑣𝑗 , 𝑖 ̸= 𝑗,

𝑤𝑖𝑗 , the weight of the edge from 𝑣𝑖 to 𝑣𝑗 , 𝑖 ̸= 𝑗.

Choosing for ⊕ the min operation (minimum of two real numbers), and for ⊙ the
real addition (+), we obtain the well-known Floyd–Warshall algorithm as a special
case of the generalized Warshall’s algorithm [5, 11, 12] :

Floyd-Warshall(𝐷0, 𝑛)
Input: the adjacency matrix 𝐷0; the number of elements 𝑛
Output: the distance matrix 𝐷
1 𝐷 ← 𝐷0

2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑑𝑖𝑗 ← min{𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗}
6 return 𝐷

Listing 3. Floyd-Warshall algorithm.

An example is presented in Fig. 3. The shortest paths can also be easily obtained
by storing the previous vertex 𝑣𝑘 on the path, in line 5 of Listing 3. In the case
of acyclic digraphs, the algorithm can be easily modified to obtain the longest
distances between vertices and consequently the longest paths.

3.2. Number of paths in acyclic digraphs

Here, by path we understand a directed path. In an acyclic digraph the following
algorithm counts the number of paths between vertices [4, 9]. The operation ⊕, ⊙
are the classical add and multiply operations for real numbers and let 𝑤𝑖𝑗 denote
the number of paths from vertex 𝑣𝑖 to vertex 𝑣𝑗 .

20 Z. Kása



𝑣1 𝑣2 𝑣3

𝑣4𝑣5

1 1

3

8 1

2

45

𝐷0 =

⎛
⎜⎜⎜⎜⎝

0 1 3 ∞ 8
∞ 0 1 ∞ 5
∞ ∞ 0 1 ∞
∞ ∞ ∞ 0 2
∞ ∞ 4 ∞ 0

⎞
⎟⎟⎟⎟⎠

𝐷 =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 5
∞ 0 1 2 4
∞ ∞ 0 1 3
∞ ∞ 6 0 2
∞ ∞ 4 5 0

⎞
⎟⎟⎟⎟⎠

Figure 3. A weighted digraph with the corresponding matrices.

Warshall-Paths(𝐴,𝑛)
Input: the adjacency matrix 𝐴; the number of elements 𝑛
Output: 𝑊 with number of paths between vertices
1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑤𝑖𝑘 · 𝑤𝑘𝑗

6 return 𝑊

Listing 4. Finding the number of paths between vertices.

The proof is omitted, as it is very similar to the one given in [2] for the original
Warshall’s algorithm.

An example can be seen in Fig. 4. For example between vertices 𝑣1 and 𝑣3 there
are 3 paths: (𝑣1, 𝑣2, 𝑣3); (𝑣1, 𝑣2, 𝑣5, 𝑣3) and (𝑣1, 𝑣6, 𝑣5, 𝑣3).

For the case when the arcs of the graph are colored, we may be interested in
the number of monochromatic paths. The generalized algorithm can also be used
for monochromatic subgraphs. The following novel algorithm (first described here)
solves the problem for all colors at once.

In the adjacency (color) matrix, 𝑎𝑖𝑗 is equal to the code of the color of the arc
(𝑣𝑖, 𝑣𝑗), and is equal to 0, if there is no arc from 𝑣𝑖 to 𝑣𝑗 . In the three-dimensional
result matrix 𝑊 the element 𝑤𝑖𝑗𝑝 represents the number of the paths from 𝑣𝑖 to 𝑣𝑗
with 𝑝-colored arcs each.

Warshall’s algorithm—survey and applications 21



𝑣3

𝑣2

𝑣1

𝑣6

𝑣5

𝑣4

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

𝑊 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 3 4 2 1
0 0 2 2 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 4. An acyclic digraph and the corresponding matrices.

Warshall-Monochromatic-Paths(𝐴,𝑛, 𝑐)
Input: adjacency color matrix 𝐴; number of elements 𝑛; number of colors 𝑐
Output: matrix 𝑊 with number of monochromatic paths between vertices
1 Set all elements of 𝑊 equal to 0
2 for 𝑖← 1 to 𝑛
3 do for 𝑗 ← 1 to 𝑛
4 do if 𝑎𝑖𝑗 ̸= 0
5 do 𝑤𝑖𝑗𝑎𝑖𝑗

← 1
6 for 𝑝← 1 to 𝑐
7 do for 𝑘 ← 1 to 𝑛
8 do for 𝑖← 1 to 𝑛
9 do for 𝑗 ← 1 to 𝑛

10 do 𝑤𝑖𝑗𝑝 ← 𝑤𝑖𝑗𝑝 + 𝑤𝑖𝑘𝑝 · 𝑤𝑘𝑗𝑝

11 return 𝑊

Listing 5. Finding the number of monochromatic paths between vertices.

The sides for 𝑝 = 1, . . . , 𝑐 of the three-dimensional matrix 𝑊 contain the result
for the different colors (see Fig. 5).

22 Z. Kása



𝑣3

𝑣2𝑣1

𝑣6

𝑣5 𝑣4

No. of red paths:

𝑊 (*, *, 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 2 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0
0 1 2 0 1 0
0 1 1 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

No. of blue paths:

𝑊 (*, *, 2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 3 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 5. An example of a colored digraph with the two sides of
the solution matrix.

3.3. All paths in digraphs

The Warshall’s algorithm combined with the Latin square method can be used to
obtain all paths in a (not necessarily acyclic) digraph [9]. A path will be denoted
by a string formed by its vertices in their natural order in the path.

Let us consider a matrix 𝒜 with the elements 𝐴𝑖𝑗 which are a set of strings.
Initially, the elements of this matrix are defined as:

𝐴𝑖𝑗 =

{︃
{𝑣𝑖𝑣𝑗}, if ∃ an arc from 𝑣𝑖 to 𝑣𝑗 , 𝑖 ̸= 𝑗,

∅, otherwise,
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (3.1)

If 𝒜 and ℬ are sets of strings, 𝒜ℬ will be formed by the set of concatenation of
each string from 𝒜 with each string from ℬ, if they have no common letters:

𝒜ℬ =
{︀
𝑎𝑏
⃒⃒
𝑎 ∈ 𝒜, 𝑏 ∈ ℬ, if 𝑎 and 𝑏 have no common letters

}︀
. (3.2)

If 𝑠 = 𝑠1𝑠2 · · · 𝑠𝑝 is a string, let us denote by ′𝑠 the string obtained from 𝑠 by
eliminating the first character: ′𝑠 = 𝑠2𝑠3 · · · 𝑠𝑝. Let us denote by ′𝐴𝑖𝑗 the set 𝐴𝑖𝑗

in which we eliminate from each element the first character. In this case ′𝒜 is a
matrix with elements ′𝐴𝑖𝑗 .

Operations are: set union and set product defined as before.
Starting with the matrix 𝒜 defined as before, the algorithm to obtain all paths

is the following, in which 𝑊𝑖𝑗 represents the set of paths from vertex 𝑣𝑖 to 𝑣𝑗 .

Warshall’s algorithm—survey and applications 23



Warshall-Latin(𝒜, 𝑛)
Input: the adjacency matrix 𝒜 defined in (3.1); the number of elements 𝑛
Output: 𝒲 matrix of the paths between vertices
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑊𝑖𝑘 ̸= ∅ and 𝑊𝑘𝑗 ̸= ∅
6 then 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪𝑊𝑖𝑘

′𝑊𝑘𝑗

7 return 𝒲

Listing 6. Algorithm for finding all paths in digraphs.

An example is presented in Fig. 6: here, for example, between vertices 𝑣1 and 𝑣3
there are two paths: 𝑣1𝑣3 and 𝑣1𝑣2𝑣3.

𝑣1 𝑣2 𝑣3

𝑣4𝑣5

𝒜 =

⎛
⎜⎜⎜⎜⎝

∅ {𝑣1𝑣2} {𝑣1𝑣3} ∅ {𝑣1𝑣5}
∅ ∅ {𝑣2𝑣3} ∅ ∅

{𝑣3𝑣1} ∅ ∅ ∅ ∅
∅ ∅ {𝑣4𝑣3} ∅ {𝑣4𝑣5}
∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎠

𝒲 =

⎛
⎜⎜⎜⎜⎝

∅ {𝑣1𝑣2} {𝑣1𝑣3, 𝑣1𝑣2𝑣3} ∅ {𝑣1𝑣5}
{𝑣2𝑣3𝑣1} ∅ {𝑣2𝑣3} ∅ {𝑣2𝑣3𝑣1𝑣5}
{𝑣3𝑣1} {𝑣3𝑣1𝑣2} ∅ ∅ {𝑣3𝑣1𝑣5}
{𝑣4𝑣3𝑣1} {𝑣4𝑣3𝑣1𝑣2} {𝑣4𝑣3} ∅ {𝑣4𝑣5}
∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎠

Figure 6. An example of digraph for all paths problem with the
corresponding matrices.

Although the algorithm is not polynomial (due to the 𝑊𝑖𝑘
′𝑊𝑘𝑗 multiplication),

the method can be used well in practice for many cases.

24 Z. Kása



3.4. Scattered complexity for rainbow words
The application described in this subsection can be found in [9]. Let Σ be an
alphabet, Σ𝑛 the set of all length-𝑛 words over Σ, Σ* the set of all finite word over
Σ.

Definition 3.1. Let 𝑛 and 𝑠 be positive integers, 𝑀 ⊆ {1, 2, . . . , 𝑛 − 1} and 𝑢 =
𝑥1𝑥2 . . . 𝑥𝑛 ∈ Σ𝑛. An 𝑀-subword of length 𝑠 of 𝑢 is defined as 𝑣 = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑠
where

𝑖1 ≥ 1,

𝑖𝑗+1 − 𝑖𝑗 ∈𝑀 for 𝑗 = 1, 2, . . . , 𝑠− 1,

𝑖𝑠 ≤ 𝑛.
Definition 3.2. The number of 𝑀 -subwords of a word 𝑢 for a given set 𝑀 is the
scattered subword complexity, simply 𝑀 -complexity.

Examples. The word 𝑎𝑏𝑐𝑑 has 11 {1, 3}-subwords: 𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑑, 𝑏, 𝑏𝑐, 𝑏𝑐𝑑,
𝑐, 𝑐𝑑, 𝑑. The {2, 3 4, 5}-subwords of the word 𝑎𝑏𝑐𝑑𝑒𝑓 are the following: 𝑎, 𝑎𝑐, 𝑎𝑑,
𝑎𝑒, 𝑎𝑓 , 𝑎𝑐𝑒, 𝑎𝑐𝑓 , 𝑎𝑑𝑓 , 𝑏, 𝑏𝑑, 𝑏𝑒, 𝑏𝑓 , 𝑏𝑑𝑓 , 𝑐, 𝑐𝑒, 𝑐𝑓 , 𝑑, 𝑑𝑓 , 𝑒, 𝑓 .

Words with different letters are called rainbow words. The 𝑀 -complexity of a
length-𝑛 rainbow word does not depend on what letters it contains, and is denoted
by 𝐾(𝑛,𝑀).

To compute the 𝑀 -complexity of a rainbow word of length 𝑛 we will use graph
theoretical results. Let us consider the rainbow word 𝑎1𝑎2 . . . 𝑎𝑛 and the corre-
sponding digraph 𝐺 = (𝑉,𝐸), with

𝑉 =
{︀
𝑎1, 𝑎2, . . . , 𝑎𝑛

}︀
,

𝐸 =
{︀
(𝑎𝑖, 𝑎𝑗) | 𝑗 − 𝑖 ∈𝑀, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛

}︀
.

For 𝑛 = 6,𝑀 = {2, 3, 4, 5} see Fig. 7.
The adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑖=1,𝑛

𝑗=1,𝑛

of the graph is defined by:

𝑎𝑖𝑗 =

{︃
1, if 𝑗 − 𝑖 ∈𝑀,

0, otherwise,
for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

Because the graph has no directed cycles, the element in row 𝑖 and column 𝑗 in 𝐴𝑘

(where 𝐴𝑘 = 𝐴𝑘−1𝐴, with 𝐴1 = 𝐴) will represent the number of length-𝑘 directed
paths from 𝑎𝑖 to 𝑎𝑗 . If 𝐼 is the identity matrix (with elements equal to 1 only on
the first diagonal, and 0 otherwise), let us define the matrix 𝑅 = (𝑟𝑖𝑗):

𝑅 = 𝐼 +𝐴+𝐴2 + · · ·+𝐴𝑘, where 𝑘 < 𝑛, 𝐴𝑘+1 = 𝑂 (the null matrix).

The 𝑀 -complexity of a rainbow word is then

𝐾(𝑛,𝑀) =

𝑛∑︁

𝑖=1

𝑛∑︁

𝑗=1

𝑟𝑖𝑗 .

Warshall’s algorithm—survey and applications 25



𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

Figure 7. Graph for {2, 3, 4, 5}-subwords of the rainbow word of
length 6.

Matrix 𝑅 can be better computed using the Warshall-Paths algorithm described
in Listing 4, which gives a matrix 𝑊 , and therefore 𝑅 = 𝐼 +𝑊 .

For example, let us consider the graph in Fig. 7. [9] The corresponding adja-
cency matrix is:

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

After applying the Warshall-Paths algorithm:

𝑊 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 2 3
0 0 0 1 1 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, 𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 2 3
0 1 0 1 1 2
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and then 𝐾
(︀
6, {2, 3, 4, 5}

)︀
= 20, the sum of elements in 𝑅.

Remark 3.3. For this case the Warshall-Paths algorithm can be slightly modi-
fied: because of the specific form of the graph the lines 2 and 4 can also be written
in the following form:

2 for 𝑘 ← 2 to 𝑛− 1
4 do for 𝑗 ← 𝑖+ 1 to 𝑛

Using the Warshall-Latin algorithm (Listing 6) we can obtain all nontrivial
(with length at least 2) 𝑀 -subwords of a given length-𝑛 rainbow word 𝑎1𝑎2 · · · 𝑎𝑛.

26 Z. Kása



Let us consider a matrix 𝒜 with the elements 𝐴𝑖𝑗 which form a set of strings.
Initially this matrix is defined as:

𝐴𝑖𝑗 =

{︃
{𝑎𝑖𝑎𝑗}, if 𝑗 − 𝑖 ∈𝑀,

∅, otherwise,
for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

The set of nontrivial 𝑀 -subwords is
⋃︀

𝑖,𝑗∈{1,2,...,𝑛}𝑊𝑖𝑗 .

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8

Figure 8. Graph for {3, 4, 5, 6, 7}-subwords of the rainbow word of
length 8.

For 𝑛 = 8, 𝑀 = {3, 4, 5, 6, 7} (see Fig. 8) the initial matrix is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ {𝑎1𝑎4} {𝑎1𝑎5} {𝑎1𝑎6} {𝑎1𝑎7} {𝑎1𝑎8}
∅ ∅ ∅ ∅ {𝑎2𝑎5} {𝑎2𝑎6} {𝑎2𝑎7} {𝑎2𝑎8}
∅ ∅ ∅ ∅ ∅ {𝑎3𝑎6} {𝑎3𝑎7} {𝑎3𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ {𝑎4𝑎7} {𝑎4𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The result of the algorithm in this case is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ {𝑎1𝑎4} {𝑎1𝑎5} {𝑎1𝑎6} {𝑎1𝑎7, 𝑎1𝑎4𝑎7} {𝑎1𝑎8, 𝑎1𝑎4𝑎8, 𝑎1𝑎5𝑎8}
∅ ∅ ∅ ∅ {𝑎2𝑎5} {𝑎2𝑎6} {𝑎2𝑎7} {𝑎2𝑎8, 𝑎2𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ {𝑎3𝑎6} {𝑎3𝑎7} {𝑎3𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ {𝑎4𝑎7} {𝑎4𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Warshall’s algorithm—survey and applications 27



3.5. Special walks in finite automata
Let us consider a finite automaton 𝐴 = (𝑄,Σ, 𝛿, {𝑞1}, 𝐹 ), where 𝑄 is a finite set
of states, Σ the input alphabet, 𝛿 : 𝑄 × Σ → 𝑄 the transition function, 𝑞1 the
initial state, 𝐹 the set of final states. In the following, we omit to mark the initial
and the final states. The transition function can also be generalized to words:
𝛿(𝑞, 𝑤𝑎) = 𝛿(𝛿(𝑞, 𝑤), 𝑎), where 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, 𝑤 ∈ Σ*. A sequence of the form

𝑞1, 𝑎1, 𝑞2, 𝑎2, . . . , 𝑎𝑛−1, 𝑞𝑛, 𝑛 ≥ 2,

where
𝛿(𝑞1, 𝑎1) = 𝑞2, 𝛿(𝑞2, 𝑎2) = 𝑞3, . . . , 𝛿(𝑞𝑛−1, 𝑎𝑛−1) = 𝑞𝑛

is a walk in the automata labelled by the word 𝑎1𝑎2 . . . 𝑎𝑛−1. This also can be
written as:

𝑞1
𝑎1−−−→ 𝑞2

𝑎2−−−→ 𝑞3
𝑎3−−−→ · · ·

𝑎𝑛−2

−−−→ 𝑞𝑛−1

𝑎𝑛−1

−−−→ 𝑞𝑛,

or shortly: 𝑞1
𝑎1𝑎2...𝑎𝑛−1

−−−−−−→ 𝑞𝑛.

We are interested in finding walks with special labels: one-letter power words
(power of a single letter) and rainbow words (containing only dissimilar letters).

3.5.1. Walks labeled with one-letter power words

For each pair 𝑝, 𝑞 of states we search for the letters 𝑎 for which there exists a natural
𝑘 ≥ 1 such that we have the transition 𝛿(𝑝, 𝑎𝑘) = 𝑞 (see [11]). Let us denote these
sets by:

𝑊𝑖𝑗 = {𝑎 ∈ Σ | ∃𝑘 ≥ 1, 𝛿(𝑞𝑖, 𝑎
𝑘) = 𝑞𝑗},

where 𝑎𝑘 is a length-𝑘 one-letter power word.
Here the elements 𝐴𝑖𝑗 of the adjacency matrix 𝒜 initially are defined as:

𝐴𝑖𝑗 = {𝑎 | 𝛿(𝑞𝑖, 𝑎) = 𝑞𝑗}, for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Instead of ⊕ we use here set union (∪) and instead of ⊙ set intersection (∩).

Warshall-Automata-1(𝒜, 𝑛)
Input: the adjacency matrix 𝒜; the number of states 𝑛
Output: the matrix 𝒲 with sets of letters for one letter power words
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪ (𝑊𝑖𝑘 ∩𝑊𝑘𝑗)
6 return 𝒲

Listing 7. Finding walks labeled by one-letter power words.

28 Z. Kása



𝑞1 𝑞2

𝑞3𝑞4

𝑐

𝑏, 𝑑

𝑎
𝑏

𝑏

𝑏

Figure 9. An example of a finite automaton without indicating
the initial and final states.

The transition table of the finite automaton in Fig. 9 is:

𝛿 𝑎 𝑏 𝑐 𝑑
𝑞1 𝑞3 𝑞2 𝑞1 𝑞2
𝑞2 ∅ 𝑞3 ∅ ∅
𝑞3 ∅ 𝑞4 ∅ ∅
𝑞4 ∅ 𝑞1 ∅ ∅

Matrices for the graph in Fig. 9 are the following:

𝒜 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑} {𝑎} ∅
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}
{𝑏} ∅ ∅ ∅

⎞
⎟⎟⎠ , 𝒲 =

⎛
⎜⎜⎝

{𝑏, 𝑐} {𝑏, 𝑑} {𝑎, 𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}

⎞
⎟⎟⎠ .

For example 𝛿(𝑞2, 𝑏𝑏) = 𝑞4, 𝛿(𝑞2, 𝑏𝑏𝑏) = 𝑞1, 𝛿(𝑞2, 𝑏𝑏𝑏𝑏) = 𝑞2, 𝛿(𝑞1, 𝑐𝑘) = 𝑞1 for 𝑘 ≥ 1.

3.5.2. Walks labeled with rainbow words

To find walks with rainbow labels, we can use the a variant of the Warshall-
Latin algorithm (Listing 6), where instead of string of vertices 𝑣1𝑣2 · · · 𝑣𝑘 we use
the corresponding string of labels of the edges (𝑣1, 𝑣2), . . . , (𝑣𝑘−1, 𝑣𝑘).

Here the elements 𝐴𝑖𝑗 of the adjacency matrix 𝒜 are initially defined as:

𝐴𝑖𝑗 = {𝑎 | 𝛿(𝑞𝑖, 𝑎) = 𝑞𝑗}, for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

The concatenation 𝑊𝑖𝑘𝑊𝑘𝑗 in the following algorithm is defined as in the formula
(3.2). Each element of 𝑊𝑖𝑘 is concatenated with each element of 𝑊𝑘𝑗 only if these
elements (which are strings) have no common letters. If a string appears more than
once during concatenation, only one copy is retained. The following algorithm is a
new one.

Warshall’s algorithm—survey and applications 29



Warshall-Automata-2(𝒜, 𝑛)
Input: the adjacency matrix 𝒜; the number of states 𝑛
Output: the matrix 𝒲 of the rainbow words between vertices
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑊𝑖𝑘 ̸= ∅ and 𝑊𝑘𝑗 ̸= ∅
6 then 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪𝑊𝑖𝑘𝑊𝑘𝑗

7 return 𝒲

Listing 8. Finding walks labeled by rainbow words.

For the automaton in Fig. 9 the above algorithm uses the matrix 𝒜:

𝒜 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑} {𝑎} ∅
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}
{𝑏} ∅ ∅ ∅

⎞
⎟⎟⎠

and gives the following result:

𝒲 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑, 𝑐𝑏, 𝑐𝑑} {𝑎, 𝑐𝑎, 𝑑𝑏, 𝑐𝑑𝑏} {𝑎𝑏, 𝑐𝑎𝑏}
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}

{𝑏, 𝑏𝑐} {𝑏𝑑, 𝑏𝑐𝑑} {𝑏𝑎, 𝑏𝑐𝑎} ∅

⎞
⎟⎟⎠ .

Conclusions

In 1962 S. Warshall published the algorithm later named after him for computing
the transitive closure of a binary relation [14]. R. W. Floyd reported the applica-
tion of this in the same year to determine the shortest paths in weighted graphs
[5]. P. Robert and J. Ferland in their 1968 article [11] gave an interesting gener-
alization that led to the applications discussed in this article [5, 9, 11, 12]. Two
algorithms, Warshalł-Monochromatics-Paths and Warshall-Automata-2,
are new applications firstly described here.

It is amazing how diverse the applications are. And there can be more!

Acknowledgements. The author thanks the anonymous reviewers for their at-
tentive and thorough work in improving the paper with their helpful remarks.

30 Z. Kása



References

[1] A. Ainia, A. Salehipour: Speeding up the Floyd–Warshall algorithm for the cycled shortest
path problem, Applied Mathematics Letters 25.1 (2012), pp. 1–5,
doi: https://doi.org/10.1016/j.aml.2011.06.008.

[2] S. Baase: Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley,
1983, 1988.

[3] R. Berghammer: A Functional, Successor List Based Version of Warshall’s Algorithm
with Applications. Relational and Algebraic Methods in Computer Science. RAMICS, 2011.
Lecture Notes in Computer Science, vol 6663, in: Relational and Algebraic Methods in
Computer Science,
doi: https://doi.org/0.1007/978-3-642-21070-9_10.

[4] C. Elzinga, H. Wang: Kernels for acyclic digraphs, Pattern Recognition Letters 33.16
(2013), pp. 2239–2244,
doi: https://doi.org/10.1016/j.patrec.2012.07.017.

[5] R. W. Floyd: Algorithm 97: Shortest Path, Communications of the ACM 5.6 (1962), p. 345,
doi: https://doi.org/10.1145/367766.368168.

[6] A. S. Gupta, A. Pathak: Quantum Floyd-Warshall algorithm, arXiv:quant-ph/0502144.

[7] P. Höfner, B. Möller: Dijkstra, Floyd and Warshall meet Kleene, Formal Aspect of
Computing 24 (2012), pp. 459–476,
doi: https://doi.org/10.1007/s00165-012-0245-4.

[8] S. Hougardy: The Floyd–Warshall algorithm on graphs with negative cycles, Information
Processing Letters 110, pp. 279–281,
doi: https://doi.org/10.1016/j.ipl.2010.02.001.

[9] Z. Kása: On scattered subword complexity, Acta Univ. Sapientiae Informatica 3.1 (2011),
pp. 127–136,
url: acta.sapientia.ro/acta-info/C3-1/info31-6.pdf.

[10] A. Ojo, N. Ma, I. Woungang: Modified Floyd-Warshall algorithm for equal cost multipath
in software-defined data center. 2015 IEEE International Conference on Communication
Workshop (ICCW), London, in: pp. 346–351,
doi: https://doi.org/10.1109/ICCW.2015.7247203.

[11] P. Robert, J. Ferland: Généralisation de l’algorithme de Warshall, Revue Française
d’Informatique et de Recherche Opérationnelle 2.7 (1968), pp. 71–85,
url: www.numdam.org/item/?id=M2AN_1968__2_1_71_0.

[12] Z. A. Vattai: Floyd-Warshall again,
url: www.ekt.bme.hu/Cikkek/54-Vattai_Floyd-Warshall_Again.pdf.

[13] Q. Wang, D. Zhang: A simple and direct algorithm for computing transitive closure of
fuzzy matrix, Journal of Xi’an University of Technology 3 (2006),
url: en.cnki.com.cn/Article_en/CJFDTOTAL-XALD200603011.htm.

[14] S. Warshall: A theorem on boolean matrices, Journal of the ACM 9.1 (1962), pp. 11–12,
doi: https://doi.org/10.1145/321105.321107.

Warshall’s algorithm—survey and applications 31


