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1. Bone tissue biology 

1.1 Bone tissue structure and function 

Bone is a hard, highly vascularized mineralized connective tissue that exerts important 

functions in the body such as locomotion, support, protection of soft tissues, mineral storage, 

metabolic and endocrine functions and it contains the bone marrow which is the primary site 

of hematopoiesis.  Despite its inert appearance, bone it’s a dynamic organ that is continuously 

renewed and remodeled throughout the life of vertebrate organisms thus allowing the 

skeleton to respond to changes in its mechanical environment, to different loading and to 

damages, in order to maintain an optimal balance between function and shape.  

Bone tissue is classified in two different categories: cortical and cancellous bone, with each 

of them characterized by different structure, morphology and function. Cortical or compact 

bone is a dense tissue which composes the outer layer (cortex) of bones and it is covered by 

periosteum on its outer surface and by the endosteum on the inner one. It makes up 80% of 

total skeletal tissue mass and it has high density and low porosity. These features allow 

cortical bone to contribute to the mechanical role of bone. It is located primarily in 

mechanically demanding regions, such as the shafts of long bones.  Cancellous (or trabecular) 

bone is light and less dense than cortical bone and it has a porous, honeycomb-like structure, 

named trabeculae, enclosing large spaces with a spongy appearance that contain the bone 

marrow. It makes up about 20% of the skeleton, providing structural support and flexibility. 

It is found in areas that are not subject to great mechanical stress, such as at the ends of long 

bones, near joints and inside the vertebrae [1] (Fig. 1A). 

Bone extracellular matrix consists of organic and inorganic components and provides 

mechanical strength and stability to the skeleton, as well as serves as a scaffold for bone 
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formation, cell attachment as deposit for minerals. The organic phase of the bone matrix is 

mainly composed by a network of interlinked type I collagen fibers, with trace amounts of 

types III and V and FACIT collagens during stages of bone formation [2]. Collagen accounts for 

90-95% of the organic components of the bone matrix and it consists of strands of repeating 

units of tropocollagen molecules, which are long rigid molecules consisting of two α-1 chains 

and one α-2 chain with a distinct motif  bounded together in a right-handed triple helix [3] 

(Fig. 1B).  

 

Figure 1. (A) Bone structure: cancellous and cortical bone. Bone marrow lies in the cavities of cancellous bone, 

which are lined by the endosteum structure. Tightly packed osteons integrate cortical tissue, which is covered by 

the periosteum membrane. Osteons are formed by Harversian canals, which contain blood vessels and nerve 

tissue, surrounded by concentric lamellae. Osteocytes reside in the osteon inside lacuna structures. (B) Bone 

tissue is constituted at the nanometric scale by collagen fibers that comprise assembled collagen triple helix 

structures that give rise to the collagen fibril, with a characteristic periodic spacing of 67 nm, and gaps of 40 nm 

where the mineral component of bone is located. Reproduced from [4]. 
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Collagen is organized in a hierarchical manner and arranged in a directional manner 

corresponding to cellular orientation. Collagen fibers are highly cross-linked in physiological 

condition, which makes the bone matrix insoluble, except during bone remodeling [5, 6].  

The other component of the organic part of bone extracellular matrix are non-collagenous 

proteins produced by bone cells. Among them Bone Sialoprotein (BSP), osteopontin (OPN), 

ostenectin (ON), fibronectin (FN), proteoglycans and matrix metalloproteins (MMPs) are the 

most characterized [7]. Even if they represent a minor and quantitatively variable portion of 

the organic components of the calcified matrices they play a major role in inducing and 

regulating the mineralization process [8, 9] Moreover, bone matrix also contains numerous 

growth factors, including bone morphogenic proteins (BMPs), transforming growth factor-

beta (TGFb) superfamily, fibroblast growth factors (FGFs), platelet-derived growth factors 

(PDGFs), colony stimulating factors (CSFs). These proteins and many more play key roles in 

cell proliferation, differentiation, cross-talk, and are crucial during bone development and 

bone repair, and in maintaining bone homeostasis during adult life [10-12]. 

The inorganic component within the bone matrix consists predominantly of phosphate and 

calcium ions and a minor quantity of bicarbonate, fluorite, sodium, potassium, citrate, 

magnesium, carbonate, fluorite, zinc, barium and strontium. Calcium and phosphate are 

organized in nanosized crystals which have composition and structure similar to the synthetic 

hydroxyapatite (HA) mineral. Differently from HA, which as a chemical formula of 

Ca10(PO4)6(OH)2, bone mineral incorporates substantial carbonate CO3, and it is characterized 

by small and poorly crystalline units. Bone-apatite has to be consider a carbon-substitute 

apatite that is insoluble enough to provide stability, yet sufficiently reactive to allow 

continuous resorption and deposit during the process of remodeling [13, 14].  

  



 
 

 10 

Bone is formed mainly by three types of cells: osteoblasts, osteocytes and osteoclasts that 

are respectively responsible for production, maintenance, and resorption of bone. These cells 

types are highly specialized and differentiated, and they have lost the capacity to proliferate. 

Bone tissue is continuously remodeled and the high demand of new cells is met by less 

differentiated cells, referred as osteogenic progenitors, which are responsible to generate 

mature bone cells.  

Osteoblasts are cuboidal cells located on the interface of newly synthetized bone where 

bone is actively formed. Osteoblasts stem from two distinct embryonic germ layers and they 

form different bones in the skeleton: 1) craniofacial bones and the clavicle are formed by 

osteoblasts directly derived from condensation of mesenchymal progenitors that originates 

from the neural ectoderm, without intermediate stages through a process termed 

intramembranous ossification [15, 16]; 2) the remaining part of the skeleton is built by cells 

of mesoderm origin and by endochondral ossification, where osteoblasts differentiate from 

an intermediate class of perichondral cells [17, 18] or directly from hypertrophic 

chondrocytes [19-21]. 

Osteoblast lineage cells, including osteoprogenitors, osteoblasts, and osteocytes, derive 

from mesenchymal progenitor cells commonly referred to as mesenchymal stromal cells 

(MSCs). MSCs from bone marrow, periosteum, and other sources are capable of 

differentiating along the osteoblastic, chondrogenic, adipogenic, and/or myogenic cell 

lineages in vitro using inductive cell culture conditions [22]. The lineage commitment of MSCs 

to osteoblast is spatially and temporally determined by the expression of specific genes. The 

expressions of Runt-related transcription factors 2 (Runx2), Distal-less homeobox5 (Dlx5), and 

osterix (Osx) are crucial for osteoblast differentiation. Runx2 is a master regulator of 

osteoblast differentiation. Indeed, Runx2-/- mice show complete lack of both 
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intramembranous and endochondral ossification due to the absence of osteoblast 

differentiation [23-25].  

Runx2 upregulates genes such as Col1A1, ALP, BSP and OCN and initiates osteoblast 

maturation. Once osteoblast progenitors start to express Runx2 and Col1A1 a proliferation 

phase is initiated. In this phase, osteoblast progenitors show alkaline phosphatase (ALP) 

activity, and are considered pre-osteoblasts. The transition of pre-osteoblasts to mature 

osteoblasts is characterized by an increase in the expression of Osx and in the secretion of 

bone matrix proteins such as osteocalcin (OCN), BSP I/II, and type I collagen [1]. Some of the 

cells ultimately undergo apoptosis or become bone lining cells, while another subset of 

osteoblasts becomes embedded in the bone matrix and further differentiates to osteocytes, 

expressing dentin matrix protein 1 (Dmp1) and sclerostin (Sost) [25]. 

Osteocytes are the most abundant cell population of mammalian bones, making up 90-

95% of the adult bone cells. Despite many studies, the processes of how osteoblasts are 

buried within the matrix and how osteocytes are formed are still largely unclear. How 

osteoblasts transform into osteocytes is dependent on the mode of ossification 

(intramembranous or endochondral), the type of bone (woven or lamellar), the location, the 

species and on the age/gender of the individual [26]. The transition from osteoblast to 

osteocyte results in profound changes in morphology, including the reorganization of the 

actin cytoskeleton that leads to a distinctive dendritic shape and a decrease in cell size [27].  

During osteocyte maturation many of the previously expressed osteoblast markers, such as 

OCN, BSPII, type I collagen and ALP are downregulated and osteocyte markers, as Dmp1 and 

Sost start to be highly expressed [28]. Osteocytes are located in the lacunae and they are 

interconnected to neighboring osteocytes and cells at the bone surface through adherent 

junctions made of cadherins and gap junctions made of connexins (Cx) [29]. Recent evidences 
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have been demonstrated that osteocytes can directly control and regulate the differentiation 

and activity of both osteoclasts and osteoblasts [30].  

Osteoclasts are multinucleated giant cells that differentiate from myeloid precursors that 

are fundamental for bone homeostasis. They are responsible for bone resorption in 

physiological and pathological conditions; indeed, any unbalance between bone formation 

and bone resorption cause bone abnormalities such as osteopetrosis and osteoporosis. 

Osteoclasts originate from mononuclear cells of the hematopoietic stem cells lineage under 

the influence of several factors like macrophage colony stimulating factor (M-CSF) and 

receptor activator of NF-kB ligand (RANKL) produced by osteoblasts and/or osteocytes [31]. 

M-CSF binds to its receptor (cFMS) present on osteoclast precursors and stimulates their 

proliferation and inhibits their apoptosis. RANKL is a crucial factor for osteoclastogenesis and 

is expressed by osteoblasts, osteocytes, and stromal cells. When it binds to its receptor RANK 

in osteoclast precursors, osteoclast formation is induced. On the other hand, another factor 

called osteoprotegerin (OPG), which is produced by a wide range of cells including osteoblasts 

and stromal cells, binds to RANKL, preventing the RANK/RANKL interaction and, 

consequently, inhibiting the osteoclastogenesis. Thus, the RANKL/RANK/OPG system is a key 

mediator of osteoclastogenesis [1, 31, 32]. The initial event in bone degradation is the 

attachment of osteoclasts to the target matrix. Once attached to bone, the cell generates an 

isolated extracellular microenvironment between itself and the bone surface. Bone 

demineralization involves acidification of the isolated extracellular microenvironment, a 

process mediated by a vacuolar H+–adenosine triphosphatase (H+-ATPase) in the cell's ruffled 

membrane. The result of these ion transporting events is secretion of HCl into the resorptive 

microenvironment, prompting a pH of ∼4.5. This acidic milieu first mobilizes bone mineral; 

subsequently, the demineralized organic component of bone is degraded by a lysosomal 
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protease, cathepsin K and metalloproteinases (MMPs). The products of bone degradation are 

endocytosed by the osteoclast and transported to and released at the cell's antiresorptive 

surface [33]. 

1.2 Bone tissue development 

In mammals, during embryogenesis, bone tissue is formed via two different processes. 

Intramembranous bone formation produces many of the craniofacial bones directly from 

mesenchymal condensations. In contrast, endochondral ossification, the principal process 

responsible for forming the majority of the mammalian skeleton, generates bone via a 

cartilage intermediate, and it is also the main process through which bone heal after fracture. 

Neural crest cells from the dorsal margins of the closing neural tube migrate into the anterior 

region of the skull, giving rise to dentin of teeth and the connective tissue and some of the 

bones and cartilages of the face and anterior skull. Prechordal mesodermal cells produce 

cartilages and bones in the posterior part of the skull. Paraxial mesoderm (somites) is the 

cellular source of the axial skeleton, whereas lateral plate mesodermal cells form the 

appendicular skeleton. The initiation of skeletogenesis starts with migration of mesenchymal 

cells, which express paired-related homeobox 1 (Prx1), derived from these embryonic 

lineages to the sites of the future bones. Here they form condensations of high cellular density 

that outline the shape and size of the future bones.  
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1.2.1 Endochondral bone formation 

During endochondral ossification Prx1+ mesenchymal progenitors from the lateral plate 

mesoderm proliferate and populate the emerging limb bud (Fig. 2a). Cells at the center of the 

mesenchymal condensation express Col2a1 and enter in chondrogenic differentiation 

program, and start secrete type II collagen and aggrecan (Fig. 2b). These cells express a 

characteristic genetic program driven by the transcription factors Sox9, FGFs, Prx1, and Indian 

hedgehog (Ihh) [34]. The cartilage enlarges through chondrocyte proliferation and matrix 

production. Chondrocytes start forming a polarized structure comprising primarily three 

different chondrocyte layers. The periarticular layer near the end of the cartilage comprises 

round, non-column-forming chondrocytes with a moderate proliferation rate. Some 

periarticular chondrocytes form the joint surface, while others differentiate into flat, column-

forming proliferating chondrocytes that proliferate vigorously (Fig. 2d). Chondrocytes in the 

center of the cartilage template stop proliferating and enlarge becoming hypertrophic (Fig. 

2b and 2c) [35]. Central hypertrophic chondrocytes upregulate Col10a1 and start producing 

high level of type X collagen, and fibronectin preparing the matrix for calcification. Around 

the same time that chondrocyte hypertrophy occurs, osteoblast precursors first appear in the 

surrounding region termed the perichondrium (Fig. 2c). 
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Figure 2. Longitudinal views of key steps of endochondral bone formation during development of mouse limbs 

(a) Prx1+ progenitors proliferate and populate the future limb; (b) Cells in the center of the template, condensate 

and differentiate to chondrocytes expressing Col2a1; (c) Central chondrocytes stop proliferating, become 

hypertrophic and express Col10a1. This event is followed by matrix deposition, vascular invasion and recruitment 

of hematopoietic progenitors and Osx1+ osteoprogenitors; (d) Osteoclasts resorb the cartilage template, blood 

vessels enlarge, osteoprogenitors differentiate into osteoblasts and two growth plates are established; (e) Within 

the remodeled cartilage template, bone-forming osteoblasts are derived from Osx1+ cells arriving with the 

invading vasculature, as well as hypertrophic Col10a1+ chondrocytes that transdifferentiate as they exit the 

growth plate into the marrow cavity. As bones grow in length and width, a second wave of vascularization forms 

the secondary ossification centers; (f) mature endochondral bone. Reproduced from [36].  

 

The calcification of the extracellular matrix prevents nutrients from reaching the 

chondrocytes and causes them to undergo apoptosis. The resulting cell death creates voids 

in the cartilage template and allows blood vessels to invade. Blood vessels further enlarge the 

spaces, which eventually combine and become the medullary cavity. This is followed by 

invasion of osteoblast progenitors (Osx+ cells), osteoclasts and hematopoietic cells from the 

perichondrium into the hypertrophic cartilage (Fig. 2c) [36]. The hypertrophic cartilage is 

resorbed (Fig. 2d), the incoming osteoblast progenitors differentiate into trabecular bone-

forming osteoblasts, and hematopoietic and endothelial cells form the bone marrow, which 
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becomes the primary ossification center. Osteoblast progenitors in the perichondrium 

differentiate into osteoblasts that deposit cortical bone around the cartilage template. As the 

fetus grows, the primary ossification center expands and secondary ossification centers form 

in one or both ends of the developing bone (Fig. 2e). This results in the development of 

epiphyseal cartilage growth-plate, responsible for the longitudinal growth of bones. Within 

growth plates, chondrocytes are organized into structural and functional zones, which display 

distinct gene expression patterns. Small and relatively inactive cells are located in the reserve 

zone close to the secondary ossification center, whereas proliferating chondrocytes are 

present in the adjacent proliferative zone. These cells undergo clonal expansion and align 

themselves into columns parallel to the direction of longitudinal growth [18]. The process of 

endochondral ossification is largely recapitulated during the healing of large and unstable 

fractures. This involves generation of fibrocartilage and soft callus at the center of the fracture 

site that undergo endochondral bone formation. During fracture healing osteoprogenitors 

cells positive for Prx1 are present in the periosteum and differentiate into chondrocytes in a 

similar way as during bone development [37]. Bone healing processes are addressed in detail 

in paragraph 1.6.  

1.2.2 Intramembranous bone formation  

Intramembranous ossification is the direct conversion of mesenchymal tissue into bone 

that generates the flat bones of the skull and the lateral clavicles. Mesenchymal stem cells 

initially proliferate and condensate in dense cluster and subsequentially undergo 

differentiation into osteoblast with an associated morphological change from spindle-shaped 

to columnar. Osteoblasts deposit the extracellular matrix called osteoid tissue, which is 

mainly composed of type I collagen fibrils and is able to bind calcium. Finally, the osteoid 
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tissue mineralizes to form rudimentary bone tissue with mature osteocytes in the middle and 

active osteoblasts at the osteogenic front [38]. These bones constantly grow by new 

osteogenic differentiation and the deposition of new bone material at their margins. As 

during endochondral bone formation, angiogenesis plays a crucial role also in 

intramembranous ossification. Compared to endochondral ossification, intramembranous 

ossification and intramembranous angiogenesis are poorly understood. However, just like 

long bones, flat bones are highly vascularized, and intramembranous angiogenesis appears to 

occur similarly to endochondral vascularization [39] (Fig. 3). 

 

 

Figure 3. Intramembranous ossification and angiogenesis. (A) Mesenchymal cells condensate to form sponge-

like structures and differentiate into osteoprogenitors and osteoblast; (B) These cells secrete ECM and form 

ossification centers, and ultimate differentiate into osteocytes; (C) Matrix proteins and pro-angiogenic factors 

generated by the ossification centers attract blood vessels; (D) The subsequent vascularization of the developing 

flat bone promotes osteogenesis. Reproduced from [39].   

 

During development, intramembranous bones do not fuse but remain separated by 

specialized structures, the sutures [40]. Sutures allow spatial separation of the bones during 

growth and they need to remain in an unossified state, yet allow new bone to be formed at 

the edges of the overlapping bone fronts. This process relies on the production of sufficient 

new bone cells to be recruited into the bone fronts, while ensuring that the cells remaining in 



 
 

 18 

the suture remain undifferentiated. Once sutures are formed, a second phase of development 

occurs, in which rapid growth of the cranial bone takes place via the regulated proliferation 

and differentiation of osteoprogenitor at the periphery of each bone field, which is called the 

osteogenic front. While the sutures are developing, the growing and expanding bone fronts 

both invade and recruit the intervening mesenchymal tissue into the advancing edges of the 

bone fronts. In this process, the mesenchyme is separated with an outer ectoperiosteal layer 

and an inner dura mater by the intervening bones [41]. At birth, the flat bones of the skull are 

rather widely separated by the sutures. These open spaces, the fontanelles, allow a 

considerable amount of deformation of the skull at birth, a fact which is important in allowing 

the relatively large head to pass through the birth canal. After birth, apposition of bone along 

the edges of the fontanelles eliminates these open spaces fairly quickly, but the bones remain 

separated by a thin periosteum line suture for many years, eventually fusing in adult life.  

The cellular origin and transcriptional regulation of osteoblasts differentiation during 

intramembranous bone formation is still poorly understood. It has been recently shown the 

Runx2 play a crucial role in this process [42]. In this study was shown that Runx2 deficiency in 

Prx1+ progenitors resulted in defective intramembranous ossification and that Runx2 was 

heterogeneously expressed in Prx1-GFP+ cells located at the intrasutural mesenchyme in the 

calvaria of transgenic mice expressing GFP under the control of the Prx1 promoter. The 

authors suggested that osteoblast differentiation in the calvaria begins from double-positive 

cells for Prx1 and stem cell antigen-1 (Sca1) (Prx1+Sca1+ cells). These cells mature into 

Runx2+Osx+Prx1-Sca1- osteoblast precursor, which eventually form mature osteoblast. 

Moreover, Runx2 deficiency in Osx+ cells resulted in severe defects in intramembranous 

ossification 
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1.3 Bone remodeling 

Bone is highly dynamic tissue that undergoes remodeling throughout life. Remodeling is a 

physiological process due to the activity of osteoblasts and osteoclasts, and it is fundamental 

to maintain bone homeostasis and repair microfractures. In normal conditions bone 

resorption and bone deposition are perfectly balanced so that old and damaged bone is 

continuously replaced by new tissue. The remodeling cycle starts with an initiation phase, 

which consists of bone resorption by osteoclasts, followed by a transition phase (or reversal) 

and conclude by a phase of bone deposition by osteoblasts. These two cells type closely 

collaborate in what is called a basic multicellular unit (BMU). In the initiation phase, 

mechanical loading and microdamage are sensed by osteocytes, which stimulate the 

recruitment of osteoclasts precursors by releasing RANKL, M-CSF and ligands for 

immunoglobulin receptors. In the subsequent transition phase, osteoprogenitors migrate to 

the resorbed sites and differentiate into osteoblast. This phase is controlled by many coupling 

factors, including BMPs, Wnts, parathyroid hormone, prostaglandins, insulin-like growth 

factors (IGFs), TGF-β1, FGFs and angiogenic factors. Many of these factors are stored in the 

bone matrix and released during bone resorption [11]. Recent evidences showed the 

involvement of another category of molecules called semaphorins. During the initial phase, 

osteoblast differentiation is inhibited by semaphorin 4D (Sema4D), released by osteoclasts, 

in order to allow a complete resorption of the bone.  The binding of Sema4D to its receptor 

Plexin-B1 on osteoblasts inhibits IGF-1 pathway that is essential for osteoblast differentiation 

[43]. Conversely, during the phase of bone deposition, osteoblasts prevent the generation of 

additional sites of bone resorption by inhibiting osteoclasts differentiation. Osteoblasts 
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produce and release semaphorin 3A (Sema3A) which inhibits osteoclast differentiation and 

migration, and at the same time stimulate bone formation [44, 45] (Fig. 4).  

 

Figure 4. The bone remodeling cycle and its phases. Osteoclastogenesis is stimulated by the RANKL, macrophage 

colony-stimulating factor (M-CSF) and ligands for immunoglobulin-like receptors, which are produced by 

osteoblast lineage cells including osteocytes, and bone resorption starts. Osteoclasts inhibit bone formation 

during bone resorption through the expression of Sema4D. In the transition phase, classical coupling factors, 

including IGF-I and TGF-β1, stimulate the migration of osteoprogenitors to the resorbed sites and promote 

differentiation into osteoblasts. In the bone formation phase, osteoblasts replenish the resorbed area with new 

bone. Sema3A, which is produced by osteoblast lineage cells, inhibits osteoclastogenesis and simultaneously 

promotes bone formation in this phase. Reproduced from [45].  

 

In addition, it has been shown that ephrinB2/ephrinB4 pathway is involved in the ending 

the resorption phase and in inducing osteoblast differentiation. EphrinB2 is expressed on the 

osteoclasts membrane and binds to eprhineB4 expressed on osteoblast. The 

ephrinB2/ephrinB4 binding transduces bidirectional signals, which promote osteoblast 

differentiation, whereas the reverse signaling (ephrinB4/ephrinB2) inhibits 
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osteoclastogenesis [46]. Besides osteoclasts and osteoblasts, it has been demonstrated that 

osteocytes play key roles during bone remodeling. Osteocyte apoptosis may indirectly 

stimulate osteoclastogenesis by inducing stromal/osteoblastic cells to secrete RANKL. In 

addition, osteocytes can directly produce and potentially secrete RANKL. Mature osteocytes 

embedded in the matrix selectively secrete sclerostin, the product of the Sost gene, which 

antagonizes several members of the BMP family of proteins and also binds to LRP5/LRP6 

preventing canonical Wnt signaling and inhibiting of bone formation. During the phase of 

bone formation Sost is downregulated leading to an increase in Wnt signaling and subsequent 

bone deposition [47]. 

1.4 Bone marrow 

The bone marrow (BM) is a highly vascularized tissue which is found in the central cavities 

of axial and long bones. It consists of hematopoietic tissue islands and adipose cells 

surrounded by vascular sinuses interspersed within a meshwork of trabecular bone. The bone 

marrow is the major hematopoietic organ, and a primary lymphoid tissue, responsible for the 

production of erythrocytes, granulocytes, monocytes, lymphocytes and platelets. 

Macroscopically the bone marrow can be red or yellow, depending on whether it consists of 

mainly hematopoietic (and therefore, red-colored) tissue or fatty (and therefore a yellow-

colored) tissue. Both types of bone marrow are highly vascularized, being enriched with 

numerous blood vessels and capillaries. Red marrow is found mainly in the flat bones, such 

as the hip bone, sternum bone, skull, ribs, vertebrae, and shoulder blades, as well as in the 

metaphyseal and epiphyseal ends of the long bones, such as the femur, tibia, and humerus, 

where the bone is cancellous or spongy. Yellow marrow is found in the hollow interior of the 

diaphyseal portion or the shaft of long bones. During aging the red marrow is replaced by 
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yellow marrow. However, the yellow marrow can revert to red if there is increased demand 

for red blood cells, such as in instances of blood loss.  

Blood vessels localized in the BM cavity orchestrate the process of hematopoiesis, and 

provide the Hematopoietic Stem Cells (HSCs) with the necessary niche. Although it is currently 

commonly accepted that HSCs are localized in the vicinity of bone blood vessels (both arteries 

and veins), a specific location of their niche has been unclear and controversial so far. It has 

been recently reported that, in mouse, 85% of HSC are placed within 10-30μm of a sinusoidal 

blood vessel and that most HSCs, both dividing and non-dividing, are distant from arterioles, 

transition zone vessels, and bone surfaces [48].On the other hand, others reported that 

quiescent HSCs associate specifically with the small arterioles distributed within the endosteal 

bone marrow [49]. More recently, Kusumbe et al. [50] showed that HSCs are frequently 

detected in close proximity of a specific subtype of capillaries and arterioles in the endosteal 

region. Recent improvements with bone imaging methods provided insights into the 

localization of HSCs within the bone marrow where they frequently localize close to blood 

vessels. Endothelial cells maintain and regulate the HSC niche by releasing numerous 

angiocrine factors, such as stem cell factor (SCF), interleukins (ILs) and chemokines like 

CXCL12 [51] (Fig. 5).  
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Figure 5. The bone marrow hematopoietic niche. HSC are found associated to sinusoids, where mesenchymal 

stromal cells and endothelial cells promote their maintenance by producing SCF, CXCL12 and other coupling 

factors. Skeletal progenitors are also located in close proximity of blood vessels. Reproduced from [52].  

 

The post-natal BM has traditionally been seen as an organ composed of two main systems 

rooted in distinct lineages: the hematopoietic tissue and the associated supporting stroma, 

that is poor in collagen and essentially made of network of cells. The predominant types of 

blood vessel in the bone marrow are large-caliber, venous vessels called sinusoids. Cell 

trafficking in and out of the bone marrow takes place across the endothelial wall of sinusoids. 

Slow blood flow in sinusoids facilitates adherence and extravasation of blood-borne cells. 

Their outer abluminal, surface is covered with stromal cells called adventitial reticular cells 

(ARCs) for their position and morphology. These cells express alkaline phosphatase, low-

affinity nerve growth factor receptor (CD271), vascular cell adhesion molecule-1 (CD106), the 

melanoma cell adhesion molecule (CD146), endoglin (CD105), α-smooth muscle actin and 

CD10 [53]. Even though the identification of these markers was proven in many works during 
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the last decades, ARC markers are dynamically expressed in vivo and no marker yet identifies 

all ARCs at all times. ARCs share their anatomical location (directly beneath the endothelial 

layer) with pericytes in other tissues, although BM sinusoids are not the same as capillaries in 

other tissues. ARCs also express markers otherwise expressed in pericytes of other tissues, 

such as in skeletal muscle and myocardium [53-55]. ARCs have been identified as self-

renewing, multipotent progenitors for skeletal lineages (cartilage, bone, marrow adipocytes, 

fibroblasts). These progenitors (skeletal stem cells, SSCs) secure a reservoir of bone-forming 

cells for bone growth during development and bone remodeling. BM stromal cells (BMSCs), 

including SSCs, also shape and regulate the local microvascular network, regulate 

differentiation of osteoclasts, and establish and maintain the hematopoietic 

microenvironment necessary for growth and blood cell maturation (Fig. 5). In addition, they 

might be essential for retaining long-term self-renewing HSCs (niche function) [56]. All the 

extra-skeletal tissues and organs in which MSC have been found (e.g. muscle, placenta, 

adipose tissue) are developmentally distinct from skeletal lineages, do not contribute to 

skeletal development or postnatal physiology, do not display skeletogenic properties 

assayable in vivo and are not generated by skeletal progenitors found in the BM [57]. 

1.5 Mesenchymal stem cells 

The term mesenchymal stem cell (MSC) was introduced for the first time in 1991 by Arnold 

Caplan to describe a class of cells from human and mammalian bone marrow, and 

periosteum, that could be isolated and expanded in culture while maintaining the in vitro 

capacity to be induced to form a variety of mesodermal phenotypes and tissues [58]. The first 

indication that cells in the BM had the ability to generate bone dates back in 1968, when 

Tavassoli and Crosby clearly stablished proof of an inherent osteogenic potential associated 
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with the BM [59]. However, these experiments were conducted with entire fragments of 

bone-free BM, the precise identity of any cell functioning as a progenitor of differentiated 

bone cells (and therefore of nonhematopoietic, mesenchymal cells) could not be delineated. 

It was in the early seventies that Friedenstein and coworkers demonstrated that the 

osteogenic potential, as revealed by heterotopic transplantation of BM cells, was associated 

with a minor subpopulation of BM cells [60, 61]. These cells were distinguishable from the 

majority of hematopoietic cells by their rapid adherence to tissue culture plastic and by the 

fibroblast-like appearance of their progeny in culture, pointing to their origin from the stromal 

compartment of BM.  

Two opposing description of MSCs exist at this time in cell biology. The first one refers to 

MSCs as post-natal, self-renewing, and multipotent stem cells giving rise to all skeletal tissues. 

When explanted in culture, these progenitors generate a clonal progeny of transplantable 

stromal cells. Upon in vivo transplantation, these stromal populations generate miniature 

chimeric replicas of bone as an organ (an organoid), which include bone and bone marrow 

stroma of donor origin, as well as host-derived hematopoietic tissue and blood vessels within 

a marrow cavity. The single cell that initiates a clonal population in culture, which in turn can 

establish a complete organoid in vivo (including secondarily transplantable stromal cells), is a 

stem cell, and it is multipotent and self-renewing [55, 62].The second alternative description 

states that MSC are not necessarily either stem cells or mesenchymal, but rather Multipotent 

Stromal Cells [63], Mesenchymal Stomal Cells [64] or Medicinal Signaling Cells [65]. 

Despite the different terminologies it is becoming broadly accepted in the community that 

the term “Mesenchymal Stem Cell”, and in particular the “stem” part, should be abandoned 

[57, 66].Moreover, MSC cultures are characterized by strong heterogeneity and regardless of 

the mode of isolation and selection employed, and even if the culture is initiated by a single 
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cell, cultures initiated by explanted MSCs do not meet rigorous criteria that would allow them 

to be defined as cultures of stem cells, no matter how uniform their antigenic profile. Thus, 

culturing of stromal cells cannot be mistaken for, or referred to as, the expansion of stem cells 

[53]. 

Although clarifying the nature of MSC is difficult, it is possible to affirm the BM stroma 

hosts self-renewing, multipotent progenitors for skeletal lineages that can be defined as 

Skeletal Stem or Skeletal Progenitor Cells (SSCs) [57].  

1.5.1 Characteristic of MSCs 

Skeletal progenitors can be isolated on the base of surface marker expression (although 

no unique markers have been identified yet) or by establishing clonal adherent cultures. 

However, these cultures of stromal cells contain heterogeneous mixtures of cells with 

indeterminate potencies and promiscuous contribution to many overlapping lineages, such 

as bone, cartilage, fat, muscle, fibroblast, endothelial cells, and stroma. Likely, these cells 

represent a population comprised of multiple types of distinct stem cells rather than a 

uniform purified skeletal stem cell [67].  

Several markers have been found to characterized MSC in vitro: they express CD105, 

CD49a, CD73, CD90, CD146 and STRO-1 and they lack the expression of haemopoietic 

markers, such as CD45, CD34, CD13, CD11b, CD79a, CD19 [63, 68]. On the basis of immune-

localization several studies identified skeletal progenitors in association with blood vessels in 

different tissues [54, 69], and some stromal cell populations have further been described to 

be pericytes [55, 70]. In contrast, it has also been shown that skeletal progenitors in bone are 

enriched in and around the avascular regions of the hypertrophic growth plates, though they 

have also been found in the periosteum as well as fracture calluses [71]. It is, therefore, 
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possible that MSCs are either comprised of more committed progenitor populations 

descending from SSCs settling in sinusoidal regions or contain a multipotent pericyte-like 

stem cell giving rise to more restricted progenitor cell types itself [72]. The description of SSCs 

have been extended by single and combinatorial use of surface marker/genetic labeling, 

transplantation assays, and in vivo lineage tracing. This has led to the discovery of multiple 

SSC populations in the growth plate, the endosteal and perisinusoidal bone marrow space, or 

the perichondrium. However, the description of these cell populations is often incomplete or 

redundant leaving contradictory results. A potential explanation can be found in the complex 

and plastic nature of bone tissues and might be vested in technical limitations or an indication 

for the presence of an everchanging network of multiple subtypes of SSCs orchestrating 

skeletal homeostasis and repair [72]. 

At a clonal level, MSCs display different phenotypes: fibroblastic elongated cells, large 

flattened cells and thin star-shaped cells. When plated at low density they form colonies 

(fibroblastic colony forming units, CFU-f) of different diameter size, indicating heterogeneity 

in terms of morphology and proliferation capacity. It has been shown that several growth 

factors, including EGF (epidermal growth factor), PDGF and FGF-2 are able to increase the 

MSCs proliferative potential [73]. FGF-2 expanded MSCs maintain unaltered their original 

elongated phenotype for a longer time. It was shown that expression of osteogenic 

differentiation markers was reduced in the presence of FGF-2. Moreover, Bianchi et al. 

showed that FGF-2 may select for a population of earlier progenitors. In fact, assessment of 

telomere length, medium switch experiments, and a decrease in the number of the initial 

colonies indicated that FGF-2 supported the survival of a subpopulation with increased 

proliferation and differentiation potential [74]. 
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1.5.2 MSC based therapy for bone regeneration 

MSCs play a key role in fracture repair by differentiating into bone-forming osteoblast and 

cartilage-forming chondrocytes. Several signaling pathways, including BMP, Wnt, and Notch 

signaling, regulate MSC proliferation and differentiation. MSCs can be harvested, cultivated, 

and delivered to promote bone healing. Whether isolated and purified, MSCs participate 

directly in the healing process or indirectly influence healing is not well defined [75]. Tissue 

engineering and regenerative medicine (TERM) strategies combine scaffolds, growth-factors 

(e.g. BMP-2), and MSCs to improve bone repair and regeneration. Most in vitro and many in 

vivo studies have suggested that MSCs have the potential to promote osteogenesis [76, 77]. 

How MSCs home to the injury site has not been clarified yet. Many chemo-attractant 

molecules released at the site of injury have been shown to be essential for MSC recruitment, 

such as stromal cell-derived factor 1 (SDF-1), macrophage inflammatory protein 1α (MIP-1α) 

and monocytes chemotactic protein 1 (MCP-1) [78]. However, despite the long-lasting 

therapeutic efficacy of MSCs in many in vivo models (such as bone and cartilage repairing, 

cardiovascular and neurological diseases), the incidence of MSCs engraftment remained very 

low. These data suggested that the general therapeutic effects of MSCs might be due their 

ability to modulate the host microenvironment and host progenitor cells rather than directly 

participating to the healing process.  

Transplanted adult MSCs were shown to mediate regeneration of tissues by releasing 

paracrine signals and this inspired the definition of these cells as “site-regulated, multidrug 

dispensaries, or injury drugstores” [65]. For example, it has been shown that primary MSCs 

cultured in the presence of FGF-2 in vitro, have the potential to induce host regenerative 

response in vivo [79]. Recent studies started to identified the specific components present in 
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the MSC conditioned medium that could be responsible for the activation of endogenous 

repair processes. Recent studies indicated that the cross-talk between MSCs and cells of the 

innate immunity could be carried out by secreted extracellular vesicles (EVs). In particular, 

EVs isolated from the conditioned medium of MSC harvested under both normoxic and 

hypoxic culture conditions acted as mediators of the dynamic interplay between MSCs and 

cells of the innate immunity both in vitro and in vivo in a mouse model of skeletal muscle 

regeneration. In particular, EVs effectively triggered the macrophage proliferation and 

polarization from an M1 to an M2 phenotype [80]. Generally, the basic mechanisms of MSCs 

action on bone regeneration and repairing can be summarized in: replacing damaged cells by 

proliferation and differentiation; modulation of the immune system; secretion of factors that 

induce tissue repair; recruitment of endogenous MSCs or progenitor cells to the injury site; 

possible transfer of vesicular components containing mRNA, miRNA and proteins [81]. 

Although MSCs were studied because of their differentiation capacity, there is now 

accumulating evidences suggesting that immunomodulatory and paracrine actions 

predominantly contribute to their therapeutic efficacy. Some molecules such as VEGF, BMP-

2 and MCP-1 play essential roles in the mechanism of MSCs induce tissue regeneration. 

1.6 Bone healing 

Bone has the unique and intrinsic ability to heal tissue damage without the formation of 

scar tissue. In physiological conditions and for small defects bone can regenerate and restore 

its characteristics and function with high efficiency. This tremendous regenerative capacity 

depends on the fact that fracture repair in the adult closely resembles bone development, as 

it recapitulates many of the key molecular pathways during fetal life. The precise series of 

ordered events required to produce new bone are modulated by systemic and local factors, 
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and disruption of these orderly events may cause healing problems. Thus, a clear 

understanding of the sequence of events and their regulation is needed to promote healing 

and to avoid complications [82]. 

Facture healing, the most common form of bone repair, is a multistage process that 

involves complex and well-orchestrated steps, namely, inflammation phase, soft callus phase, 

cartilage turnover (replacement by bony callus) phase and bone remodeling phase [83]. 

Depending on the stability of fracture fixation and supply of blood vessels, endochondral or 

intramembranous ossification occurs at the facture sites. Instability or lack of blood supply 

may lead to endochondral bone formation during the repair, while a stable facture or fracture 

rich in vasculature results in intramembranous ossification [84]. However, most of the 

fractures heal mainly by endochondral ossification with limited contribution of 

intramembranous ossification.  In addition, a third type of ossification called transchondroid 

bone formation has been proposed in a model of distraction osteogenesis. During 

transchondroid ossification, chondrocyte-like cells induced by mechanical strains form 

chondroid bone, which is gradually transformed to bone [85].   

Following a trauma, disruption of the local vascular system results in blood clotting and 

hematoma formation, which consists of cells from both peripheral and intramedullary blood, 

as well as bone marrow cells. The injury initiates an inflammatory response which is necessary 

for the healing to progress. The response causes the hematoma to coagulate in between and 

around the fracture ends, and within the medulla forming a template for callus formation. 

Cells within the hematoma are crucial for the initiation of the inflammation phase. The initial 

proinflammatory response involves secretion of tumor necrosis factor-α (TNF-α), interleukin-

1 (IL-1), IL-6, IL-11 and IL-18 [83]. These factors further recruit inflammatory cells and promote 

angiogenesis. As a consequence of the vascular trauma, the fracture site becomes hypoxic 
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and osteocytes are deprived of nutrition supply and undergo apoptosis. The formation of 

necrotic tissue triggers the recruitment of leukocytes and macrophages to the region. 

Macrophages phagocyte the necrotic tissue and release signaling factors, such as BMPs (BMP-

2, BMP-5 and BMP-7), bFGF, TGFβ, PDGF, IGF and VEGF. These factors orchestrate crucial 

events such as recruitment, proliferation and differentiation of osteoprogenitor cells and 

MSCs (Fig. 6).  

 

Figure 6. The angiogenic response during normal fracture healing. Activation of the hypoxia signaling pathway 

stimulates the production of VEGF and PlGF by several cell types present at the fracture site. In addition, early 

blood vessel formation supports the invasion of inflammatory cells which actively contribute to the fracture 

healing process and produce proangiogenic cytokines. During the formation of the soft and hard callus, the 

vascular system also mediates the progenitors migration to the fracture site and promote bone regeneration by 

supplying oxygen, nutrients and ions necessary for mineralization. Reproduced from [86]. 

 

Depending on their relative distance to the blood vessels, these progenitor cells either 

differentiate into chondrocytes, which deposit a collagenous matrix that is later replaced by 

bone, or they directly maturate into bone-forming osteoblasts. Indeed, chondrocytes are 

located furthest away from the blood vessels [87], possibly because their metabolism is 

adapted to survive and function in a poorly vascularized environment. In contrast, 

differentiation of osteoprogenitors to mature osteoblasts during intramembranous bone 
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repair depends more on oxidative metabolism and thus requires a constant substantial supply 

of nutrients from neighboring blood vessels [88]. The cartilage callus is subsequently replaced 

by bone tissue in a process resembling endochondral ossification. In the final phase of fracture 

repair, the healing bone undergoes remodeling together with the restoration of the vascular 

supply to the normal state. Bone repair requires the mobilization of stem cells to allow 

deposition of mineralized matrix at the injury site. Two major sources for these stem cells are 

the periosteum and the bone marrow, although other sources are also possible. Lineage-

tracing experiments indicate that two distinct types of stem cells, periosteal stem cells and 

MSCs differentially participate in bone repair; cells from the periosteum are the source of 

chondrocytes and osteoblasts, whereas cells from the bone marrow undergo osteoblast 

differentiation. Therefore, periosteal stem cells are likely to retain the capability to 

regenerate a growth plate after fracture, at least in early life. Interestingly, during the 

postnatal period, Prx1 expression becomes confined to the periosteum in the cambium layer, 

immediately outside the osteoblasts lining the bone surface [89]. Prx1 periosteal cells 

differentiate into chondrocytes and osteoblast in the fracture callus suggesting the possibility 

that Prx1-expressing cells in the periosteum include stem cells retaining characteristics similar 

to those of limb bud mesenchymal cells during early morphogenesis [34]. 
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2. VEGF family, receptors and signaling 

2.1 VEGF family 

Vascular Endothelial Growth Factors (VEGF) are the most important growth factors for the 

regulation of vascular development and angiogenesis, both in physiological and in 

pathological conditions. Since bone is a highly vascularized organ and angiogenesis plays an 

important role in osteogenesis, VEGF also influences skeletal development and postnatal 

bone repair [85]. In mammals, the VEGF family comprises five members: VEGF-A, placenta 

growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. VEGF-A, as now on referred as VEGF, is the 

most abundant form and plays crucial role in proliferation, migration and activation of 

endothelial cells as well as in promotion of permeability of blood vessels [90]. VEGF-C and -D 

are important for lymphangiogenesis [91, 92] and VEGF-B has a role in embryonic 

angiogenesis [93, 94]. Two other non-mammalian proteins have been included in the VEGF 

family: the parapoxvirus VEGF-E and the snake venom VEGF-F [95]. 

The VEGF gene is organized as eight exons separated by seven introns (Fig. 7A). Depending 

on alternative splicing, VEGF mRNA is translated into four major isoforms (VEGF121, VEGF165, 

VEGF189, VEGF206), having respectively 121, 165, 189 and 206 amino acids, after signal 

sequence cleavage. In mouse, instead, VEGF isoforms have one amino acid less compared to 

the human ones (VEGF120, VEGF164, VEGF188, VEGF205).  
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Figure 7. (A) Vegfa mRNA exons composition. (B) Pro-angiogenic VEGF-A splicing isoforms. (C) Anti-angiogenic 

VEGF-A isoforms. Adapted from [96]. 

 

VEGF is a heparin-binding homodimeric glycoprotein and its isoforms differ in their affinity 

for the extracellular matrix (ECM) [97]. VEGF121 is an acidic polypeptide that does not bind to 

the ECM and can diffuse freely. VEGF189 and VEGF206 are highly basic and bind to heparin with 

high affinity and they are almost completely sequestered by the ECM. VEGF165 has 

intermediary properties, as it is secreted but a significant fraction remains bound to the cell 

surface and ECM. The ECM-bound isoforms may be released in a diffusible form by plasmin 

cleavage at the C terminus, which generates a bioactive fragment [90]. Studies in transgenic 

models expressing only one of the major VEGF isoforms showed that their specific ability to 

bind ECM is critical for proper vascular morphogenesis. VEGF120, which does not bind ECM, 

induces vascular networks with reduced branching and abnormally enlarged diameters, 

VEGF188, which binds ECM strongly, causes opposite defects, with ectopic branching and 

reduced capillary size, whereas VEGF164, which binds ECM with intermediate affinity, is the 

only isoform capable of inducing physiologically patterned vasculature [98].  
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2.3 VEGF receptors 

VEGF molecules bind to three distinct tyrosine kinase receptors in mammals: VEGFR-1 (Flt-

1) and VEGFR-2 (Flk-1), which can also exist as soluble forms, named sVEGFR-1 and sVEGFR-2 

respectively, and VEGFR- 3 (Flt-3). Ligand binding leads to receptor dimerization, which is 

followed by autophosphorylation of the intracellular kinase domain and subsequent initiation 

of the signal transduction cascade. Depending on the ligand, both homodimeric and 

heterodimeric receptor complexes can be formed. Furthermore, the three VEGF-Receptors 

are also able to interact with co-receptors of the neuropilin family (neuropilin-1, NRP1 and 

neuropilin-2, NRP2), macromolecules like heparan sulfate and proteoglycans (syndecan and 

glypican), non-VEGF-binding auxiliary proteins like vascular endothelial cadherin (VE-

cadherin), integrins, ephrin-B2, and protein tyrosine phosphatase [99]. VEGFR-1, which can 

also bind to VEGF-B, is the receptor with the highest affinity for VEGF-A, but it displays only 

weak tyrosine phosphorylation activity. As a consequence, the interaction of VEGFR-1 with 

the ligand does not start the signal transduction cascade efficiently, and VEGFR-1 may rather 

act as both a decoy receptor by sequestering VEGF-A and as a modulator of the activity of 

VEGFR-2 homodimers. VEGFR-2 is able to bind to VEGF-A with an affinity 10-fold lower than 

that of VEGFR-1, but it is the main mediator of VEGF-A activity in endothelial cell 

differentiation, proliferation, migration, angiogenesis and vessel permeabilization (Fig. 8) 

[100]. 
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2.4 VEGF signaling pathway 

VEGFR signaling is tightly regulated at numerous different levels, including receptor 

expression levels, the availability and affinities for binding of its different ligands, the 

presence of VEGF-binding co-receptors, non-VEGF binding auxiliary proteins and inactivating 

tyrosine phosphatases, the rate of receptor cellular uptake, degradation and speed of 

recycling. VEGFR endocytosis and trafficking regulate the specificity as well as the duration 

and amplitude of the signaling output. Once they are in the cytoplasm, VEGFRs are either 

transported to lysosomes for degradation or recycled back to the membrane via fast or slow 

recycling pathways [101]. 

The canonical (classical VEGF ligands) and non-canonical (non-VEGF ligands) activation of 

VEGFR2 trigger intracellular pathways that are crucial to endothelial biology and regulate cell 

survival, migration, proliferation and blood vessels permeability. These include the 

phospholipase Cγ (PLCγ)-ERK1/2 pathway, which has a central role during vascular 

development and in adult arteriogenesis; the PI3K–AKT–mTOR pathway, which is crucial for 

cell survival, regulation of vasomotion and regulation of barrier function; and SRC and small 

GTPases, which are involved in cell shape, cell migration and polarization, as well as regulation 

of endothelial junctions and the vascular barrier function (Fig. 8) [101, 102].  
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Figure 8. VEGF receptors and their downstream pathways. The diffusible isoforms of VEGF, including VEGF121 and 

VEGF165, signal through VEGFR2, the major VEGF signaling receptor for angiogenesis. The binding of VEGF to 

VEGFR2 leads to a cascade of different signaling pathways. Binding of ligands causes dimerization of the 

receptor, followed by intracellular activation of the PLCγ– PKC–Raf kinase–MEK–MAPK pathway and subsequent 

initiation of DNA synthesis and cell growth, whereas activation of PI3K–Akt pathway leads to increased 

endothelial-cell survival. Activation of Src can lead to actin cytoskeletal changes and induction of cell migration. 

Reproduced from [103] 

 

In contrast to VEGF signaling in endothelial cells that has been widely studied, VEGF 

signaling in osteoblasts remains less well known. The levels of VEGFR expression in 

osteoblastic cells depend on animal species and methods used for cell isolation. Osteoblast-

derived VEGF usually acts in a paracrine manner on adjacent endothelial cells via binding to 

VEGF receptors to regulate endothelial migration, proliferation and vessel permeability. In 

addition to endothelial cells, VEGF receptors are also expressed and functional in other cells 

types, including pericytes and osteoclasts [104]. However, expression of VEGF receptors in 

osteoblasts is quite variable, particularly in mice, making paracrine/autocrine effects of 
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osteoblast-derived VEGF on osteoblasts difficult to study. Expression of VEGF and its 

receptors in differentiating osteoblasts has been detected in cultured cells [105], and in vivo 

by in situ hybridization [106]. In some studies, it has been shown that migration, proliferation 

and differentiation of the osteoblastic cells could be stimulated by recombinant VEGF (rVEGF) 

[107]. It has also been shown that in vitro, in murine osteoblastic MC3T3 cells, VEGF promoted 

alkaline phosphatase and osteocalcin expression [108]. In other studies, primary murine 

mesenchymal progenitors and osteoblasts failed to respond to rVEGF [85, 109]. However, 

mice with conditional deletion of Vegfr1 or Vegfr2 in osteoblastic cells exhibited reduced 

bone density two weeks after birth, and their bone marrow had reduced numbers of 

osteoprogenitors [109]. These findings suggest that both VEGFR1 and VEGFR2 are regulators 

of skeletal development [104]. VEGF has also been found to directly affect activation of 

osteoclast precursor differentiation through binding to VEGFR-2 [110], and VEGF 

overexpression was shown to cause bone resorption by excessive osteoclast recruitment 

[111]. 
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3. Angiogenesis 

Angiogenesis is the growth or expansion of micro-vascular capillary networks from 

preexisting ones and is driven by ischemia and hypoxia. However, hypoxia-induced 

angiogenesis alone is not sufficient to restore physiological blood flow after an ischemic 

event. In fact, capillaries are responsible for the metabolic exchanges between blood and 

tissue, but feeding arteries are required to supply sufficient blood flow to satisfy the tissue 

needs. In contrast, arteriogenesis is the formation of mature, functional arteries through the 

functional remodeling of pre-existing and little-perfused interconnecting arterioles after an 

occlusion of large conductance arteries, thereby bypassing the block and restoring blood flow 

to ischemic tissue downstream [100]. Angiogenesis is a complex process in which the growth 

of normal, stable, and functional vessels is critically dependent on the coordinated interplay 

in space and time of different cell types and growth factors [112].  

3.1 Cellular mechanisms: sprouting/intussusception 

The growth of new blood vessels can occur in two different, but complementary, ways: 

sprouting and intussusception (or splitting angiogenesis). Sprouting is the best characterized 

mode of vascular growth, and it consists in the invasion of avascular tissues by new vessels 

guided by gradients of growth factors, e.g. during embryonic development. Instead, in 

intussusceptive angiogenesis new blood vessels originate from the expansion and remodeling 

of pre-exiting vascular networks, both in development and in post-natal life [113, 114]. 

Initiation of sprouting requires the functional specification of endothelial cells into either tip 

or stalk cells. Tip cells do not proliferate and they extend filopodia through which they can 

sense VEGF gradients, and migrate towards the VEGF source, thereby guiding the nascent 

sprout. Stalk cells, which instead proliferate just behind the tip, form the body of the sprout 
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and start the process of lumen formation (Fig. 9A). This phenotype specialization is transient 

and reversible, depending on the balance between pro-angiogenic factors, such as VEGF and 

Jagged-1 (JAG-1), and suppressors of endothelial proliferation such as delta-like ligand 4 

(Dll4)-Notch activity [115]. Physiological patterning of sprouting vessels requires a balanced 

formation of tip and stalk cells, which is finely regulated by Notch signaling. In fact, tip cells 

increase expression of the Dll4 in response to VEGF signaling. This activates Notch1 in 

adjacent cells, instructing them in turn to downregulate VEGFR2 and Dll4 and acquire the stalk 

phenotype [116]. Once endothelial cells are assembled in tubular structures (morphogenesis 

phase), pericytes, recruited by PDGF-BB, released by the activated endothelium, associate 

with the newly formed vessels (maturation phase). Pericytes provide many regulatory signals, 

such as TGF-β1, Angiopoietin 1 (Ang1) and EphrinB2, leading to endothelial quiescence and 

new vessel survival independently of further angiogenic stimulation (stabilization phase) [98] 

(Fig. 9C).  

 

Figure 9. (A, C) Sprouting and (B) Intussusception: two alternative ways of angiogenesis. (A,C) Sprouting 

angiogenesis implies the functional specification of endothelial tip cells , which migrate towards the VEGF 
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gradient source, and stalk cells , which proliferate behind the tip, forming ab-luminal sprouts that fuse together 

and generate new vessels. (B) In the absence of a gradient, all endothelial cells respond to VEGF by assuming a 

stalk phenotype without tip cells. The subsequent proliferation without migration leads to circumferential 

enlargement of vessels without sprouting followed by formation of intra-luminal endothelial pillars which fuse 

together and cause longitudinal splitting into two new vessels. Adapted from [117](A,B) and [98](C).  

 

In contrast, in intussusception morphogenic events take place inside the lumen rather than 

towards the ab-luminal side of vessels. Trans-luminal tissue pillars form either through a zone 

of contact between the endothelial cells of opposite capillary walls, with subsequent 

reorganization of the endothelial junctions and invasion of the pillar core by myofibroblasts, 

or through the extension and fusion of intraluminal protrusions exclusively made of 

endothelial cells (intraluminal sprouting). Subsequently, transluminal tissue pillars align along 

the length of the preexisting vessel, progressively fuse together and divide the affected 

vascular segment longitudinally into new, individual vascular structures (Fig. 9B). It is not 

completely clear what determines whether VEGF induces sprouting or splitting angiogenesis. 

However, recent reports showed that VEGF over-expression, at the doses required to induce 

functional benefit and to restore tissue perfusion after ischemia in the therapeutic target 

tissue of skeletal muscle, induces angiogenesis intussusception rather than sprouting [118]. 

Therapeutic doses of VEGF may saturate the very limited amount of extracellular matrix 

between muscle fibers, and the lack of a concentration gradient may cause endothelium to 

acquire an all-stalk phenotype, leading to proliferation without migration and therefore 

circumferential enlargement rather than sprouting (Gianni-Barrera et al, unpublished data). 
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3.4 Therapeutic angiogenesis 

Therapeutic angiogenesis aims at restoring blood flow to ischemic tissues by the 

generation of new vessels. This strategy targets the treatment of ischemic diseases, where 

endogenous tissue itself is insufficiently perfused, and may improve the rapid vascularization 

of tissue-engineered grafts, where in vitro-generated new tissue is transplanted to repair 

tissue lost through damage or surgery [98]. Blood vessels are critical in developmental, adult 

physiology and in tissue regeneration since they bring oxygen, nutrients, cells and signals. 

Without sufficient blood supply, tissues and organs cannot maintain regular activities. On the 

other hand, induction of neovasculature provides a potential strategy to treat many ischemic 

illnesses, especially cardiovascular diseases, including coronary and peripheral arterial 

diseases. Therapeutic angiogenesis has also been suggested for management of fracture 

healing in acute injuries, non-unions, and distraction osteogenesis. Various growth factors in 

the angiogenic cascade, including VEGF, FGF, and PDGF, are potential targets for upregulation 

and direct administration [119]. Additionally, other suggested therapies to improve 

angiogenesis include enhancement of HIF signaling, blockade of angiogenesis inhibitors, 

delivery of endothelial progenitor cells and others. Therapeutic options and strategies to 

improve bone regeneration and vascularization in bone grafts are addressed in paragraph 7.  
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4. Coupling of angiogenesis and osteogenesis 

Bone regeneration entails a complex series of biological events, with the interplay of 

different cell types and the orchestration of several intracellular and extracellular signaling 

pathways. Bone health requires vascular control since blood vessels are key regulators for 

bone homeostasis, both providing nutrients and minerals and serving as structural templates 

for bone development [119]. In the bone marrow, the vasculature also provides a niche 

environment for HSCs regulating their quiescence and mobilization. HSCs and progenitors 

have been found in the proximity of small arterioles and specialized sinusoids [49], where 

different cell types, including endothelial cells, pericytes, stromal progenitors and 

sympathetic neuronal cells, contribute to the maintenance of HSCs self-renewal. In addition 

to these well-known functions, blood vessels have been recently ascribed a so-called 

angiocrine function [120], providing paracrine signals that coordinate growth, differentiation, 

and regeneration of different tissues, including bone, where they can promote osteogenesis 

[121]. Therefore, angiogenesis and vascular cells can affect biological processes in the 

bone/marrow organ at several different levels [122]. Osteogenesis and angiogenesis are 

intimately coupled. The coupling consists of a complex molecular cross-talk among cells 

involved in both processes. Importantly, such angiocrine functions of the endothelium are not 

confined to a few specialized settings but appear to represent a fundamental principle 

controlling many aspects of developmental and regenerative tissue growth.  

4.1 Bone vascular architecture 

As in other organs, vasculature in bone shows a typical hierarchical organization. Typical 

long bones, such as the femur and tibia, are supplied by several arteries and arterioles, which 

are classified based on their region of blood supply. The central artery, also called nutrient 
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artery, enters bone through a foramen and branches into a number of smaller arteries and 

arterioles to supply maximum regions of adult bone. It sustains high blood pressure to reach 

distant locations, usually terminating into capillaries present in the metaphysis and 

endosteum. There is a central large vein that receives blood from capillaries present in various 

regions and drains deoxygenated blood and nutrient waste from bone. Periosteal arteries 

supply the outer surface of bone and are connected to Haversian arteries present in the 

cortical region through Volkmann’s arteries. Haversian arteries run parallel to the longitudinal 

axis of the long bone in the cortex while shorter Volkmann’s arteries run perpendicularly to 

the long bone axis. Haversian arteries eventually converge into metaphyseal capillaries to 

deliver blood into the medullary region. In contrast, blood supply from epiphyseal arteries 

does not have a route to enter the medullary region of long bones, thus maintaining a 

separate blood circulation in the epiphysis region. Epiphyseal arteries enter the bone from a 

heavy network of periarticular vascular plexus present near the ends of long bones. The veins 

draining the epiphyseal blood are relatively smaller compared to the vein present in the 

medullary region [123].  

Bone vasculature is mainly formed by angiogenesis. During endochondral bone formation 

of murine long bones blood vessels start to invade the cartilage template at embryonic day 

(E) 13.5 to 14.5, and vascular growth is largely completed in adolescent and young adult 

animals [124]. Hypertrophic chondrocyte, located in the future primary ossification center, 

secrete pro-angiogenic factors that stimulate angiogenesis; recruited osteoprogenitors are 

also a source of pro-angiogenic factors. Later on, blood vessels invade the hypertrophic 

template and form an initial vascular network, which is accompanied by ossification 

processes. The release of signals by maturing and hypertrophic growth plate chondrocytes at 

the two ends of the developing long bone further promotes vessel growth and ossification 
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along the longitudinal axis, which leads to the extension of the growing skeletal element. This 

also involves the formation of distinguishable metaphyseal and diaphyseal capillary networks 

[125]. Later in development, vessels invade the epiphyseal chondrocytes at the two distal 

ends of the long bone and thereby initiate secondary ossification center formation [39]. Bones 

formed by intramembranous ossification are also highly vascularized and vascularization 

occurs in a similar fashion to that seen during endochondral angiogenesis, which suggests 

that similar molecular mechanisms are involved [126].  

Based on marker expression and functional characteristics, two subtypes of bone 

capillaries can be distinguished in long bones: H and L [125]. Type H capillaries express high 

levels of CD31 (or PECAM1) and the sialoglycoprotein endomucin (EMCN) (CD31hi EMCNhi). 

They are found in the metaphysis in close proximity of the avascular growth plate, and they 

are organized as vessel columns that are interconnected at their distal end in proximity to the 

growth plate (Fig. 10B). These vessels, as well as the endosteal type H capillaries that are 

proximal to compact bone, are closely associated with perivascular osterix (or SP7) expressing 

osteoprogenitor cells (Fig. 10C). By contrast, type L vessels express lower levels of CD31 and 

EMCN (CD31lo EMCNlo) and they form the dense, highly branched capillary network in the 

bone marrow cavity of the diaphysis (Fig. 10C). Sinusoidal type L capillaries, which are 

surrounded by densely packed hematopoietic cells, connect to the large central vein. 

Interestingly, arteries and distal arterioles do not deliver blood directly into type L sinusoidal 

capillaries, but instead arteries exclusively connect to type H vessels in the metaphysis and 

endosteum (Fig. 10B) [125]. Blood flows through arteries into type H capillaries, enters the 

type L sinusoidal network at the interface between the metaphysis and diaphysis, and is finally 

drained into the large central vein. As a consequence, distinct metabolic environments can 
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be detected in postnatal long bone: the diaphysis is highly hypoxic due to the lack of direct 

arterial supply, whereas the metaphysis is comparably more and well oxygenated [125, 127].  

 

Figure 10. Architecture of the long bone vasculature. (A) Confocal image of endomucin (EMCN, in red)-

immunostained endothelium in a 100 μm thick section of P21 murine femur; (B) In the metaphysis, type H vessels 

(CD31hiEMCNhi) exhibit a columnar organization and arterial connections (arrowheads); (C) In the diaphysis, 

highly branched sinuoidal type L capillaries (CD31loEMCNlo) are found; these connect to endosteal type H vessels 

in the proximity of compact bone; (D) Osterix-positive osteoprogenitors (marked by green nuclear staining) 

associate with type H capillaries found in the metaphysis (left panel) and with endosteal type H vessels found in 

the proximity of compact bone in the diaphysis (right panel) but not with diaphyseal type L vessels found in the 

bone marrow cavity (right panel), gp =growth plate; (E) Perivascular cells associated with blood vessels in the 

bone. Larger arteries within bone are covered by smooth muscle cells (SMCs) that are αSMA+NG2+. Distal 

arterioles, which connect to type H capillaries, are surrounded by perivascular cells (PVCs) expressing nestin, 

PDGFRβ+ and NG2. PDGFRβ+NG2+ PVCs are also found around type H vessel columns. By contrast, two types of 

PVCs LEPR+ PDGFRα+ mesenchymal cells and CXCL12-abundant reticular (CAR) cells are found on sinusoidal type 

L vessels. Red arrows indicate the direction of blood flow. Adapted from [39]. 

 

Type H vessels, in mice, are mostly present during development and they gradually 

disappear during the first 4 weeks of age [128]. It has been recently shown that at E16.5 

during development, type H cells are rare and another separate subset of endothelial cells is 
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mainly present. This endothelial subpopulation, named type E, is also characterized by high 

expression of CD31 and EMCN, but rapidly declined postnatally. Characteristic features of 

type E endothelial cells are their strong association with Osx+ cells and capacity to promote 

osteogenesis. Moreover, type E endothelium can give rise to type H endothelium and both 

subtypes can differentiate into type L and arterial endothelial cells during postnatal 

development [128]. 

The bone vasculature is associated with several different kind of perivascular cells (Fig. 

10E). Type L vessels are surrounded by leptin receptor (LERPR) positive cells and CXCL12-

abundant reticular (CAR) cells, that have important roles in the regulation of hematopoiesis 

by secreting angiocrine signal such as stem cell factors (SCF), CXCL12 and angiopoietin [129]. 

LEPR positive cells have been described to have the capability to differentiate into the 

mesenchymal lineage cells (bone, cartilage, adipocytes) and they express platelet derived 

growth factor receptor α (PDGFRα) and are negative for the pericyte markers PDGFRβ and 

neural/glial antigen 2 (NG2) [130]. Arteries are covered by smooth muscle cells positive for 

alpha smooth muscle active (αSMA), NG2 and Nestin and they can differentiate into different 

mesenchymal lineages [50]. PDGFRβ and NG2 positive perivascular cells surround H type 

capillaries and they are regulated by PDGFB secreted from the endothelium [50]. 

Interestingly, a new population of vessel associated osteoclasts (VAOs) has been found to be 

closely in contact with type H vessels [131]. To be distinguished from bone-associated 

osteoclasts (BAOs), VAOs are predominant in early developing bones and are located in close 

contact with the type H vessels in proximity of the growth plate (Fig. 10A). Surprisingly, the 

research team found that VAOs are not directly involved in resorbing processes but sustain 

type H vessels elongation and activity. Instead, H endothelium secrete metalloproteases 

(Mmp2, Mmp9 and Mmp14) that mediate cartilage resorption [131]. 
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4.2 Role of angiocrine and coupling signals in bone homeostasis 

To date, several factors have been described to regulate both blood vessels formation 

and osteogenesis. Osteoclasts, osteoblasts, chondrocytes secrete factors that induce 

proliferation of endothelial cells, vessel formation and stabilization, such as PDGF-BB, VEGF, 

and SLIT3 (Fig. 11).  

 

Figure 11. Bone marrow microenvironment paracrine signaling coupling angiogenesis and osteogenesis. (A) 

Multiple cells secrete factors into the bone marrow microenvironment to support type H vessel formation. 

Hypertrophic chondrocytes, osteoblast lineage cells and ECs can secrete VEGF. Mature osteoblasts and 

osteoclasts secrete SLIT3. Preosteoclasts secrete PDGF-BB. VEGF, SLIT3, and PDGF-BB promote type H vessels 

formation. Type H ECs express RANKL and support VAOs through a RANKL–RANK signaling mechanism to 

facilitate cartilage resorption and bone formation. VAOs also promote anastomoses of type H vessels. (B) During 

hypoxia, type H ECs increase HIF-1α expression, which triggers the expression of genes controlling angiogenesis, 

such as VEGF. VEGF binds its receptor on ECs to stimulate blood vessel growth. PDGF-BB and SLIT3 also bind to 

their respective receptors on ECs, which can further enhance EC VEGF expression and promote EC migration, tube 

formation, and branching. The increase in blood flow can stimulate Notch signaling within the EC. Endothelial 

Notch/Dll4 signaling stimulates Noggin production. Noggin stimulates differentiation of perivascular 

osteoprogenitor cells, facilitates chondrocyte hypertrophy maturation, and promotes EC proliferation. Type H 

ECs express higher levels of PDGFA and PDGFB, TGFβ1, TGFβ3, and FGF1 relative to type L ECs, which are secreted 

growth factors to promote osteoprogenitor survival and proliferation. Adapted from [132]. 
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In response, endothelial cells produce factors that modulate bone formation, such as Notch, 

BMPs, PDGF and VEGF (Fig. 13B) [122].  

PDGF-BB is critical in promoting migration, proliferation and differentiation of several 

mesenchymal cell types, like endothelial progenitors and MSCs. It has been shown that PDGF-

BB, in the bone marrow, is mainly produced by immature precursors of resorptive osteoclasts, 

and promotes the migration and differentiation of MSCs and endothelial progenitors via 

binding to PDGFRβ [133]. Recently Böhm et al. found that PDGF-PDGFRβ signaling is 

functionally required to drive the expansion, recruitment, and blood vessels affinity of 

skeletal progenitor cells (SSPCs) during bone repair [134]. PDGFRβ positive SSPCs are 

recruited by PDGF released by blood vessels, and they interact via VCAM-1 that binds to VLA-

4 (α4β1 integrin) on the endothelium. As a result of the signaling the SSPCs produce more 

MMP-9, mediating tissue remodeling required for the osteo-angiogenic co-invasion [134]. 

SLIT3, a well-known axonal guidance molecule, has been recently described to promote 

formation of type H vessels and bone formation. Genetic deletion of Slit3 in osteoblast lineage 

cells results in a reduction of type H capillaries, reduced osteoblast activity, bone formation 

and fracture repair. Additionally, administration of SLIT3 promotes fracture healing and 

prevents bone loss by augmentation of type H vessel formation [135]. 

Activation of Notch signaling in bone endothelial cells was found to promote local 

angiogenesis and osteogenesis. This involves the Notch-controlled secretion of noggin, an 

antagonist of the BMP pathway, by endothelial cells, which was found to promote the 

formation of hypertrophic, VEGF-producing chondrocytes in the adjacent growth plate. 

Endothelial specific Notch loss-of function mutants, mice lacking the Notch ligand DLL4, 

exhibited reduced angiogenesis, loss of type H vessels and bone formation defects [127]. 
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Therefore, the cross-talk between the endothelium and other cell types ensures the 

coupling of angiogenesis and bone formation in the skeletal system.  

4.3 Coupling of angiogenesis and osteogenesis by VEGF 

VEGF is one of the most important regulators of angiogenesis and it is critical for both bone 

development and regeneration. In these processes VEGF has a dual role, acting both on 

endothelial cells to promote their migration and proliferation, and stimulating osteogenesis 

through the regulation of osteogenic growth factors [136]. VEGF is required for endochondral 

bone formation, where it promotes vessel invasion and recruitment of osteoclasts into 

hypertrophic cartilage, enabling the replacement of the cartilaginous template by bony callus 

[85, 137, 138], but also for intramembranous ossification [126, 139-141]. Angiogenesis and 

osteogenesis are, therefore, intimately connected and they must be tightly coupled for 

physiological bone function. In fact, alterations in vascular growth can compromise 

physiological bone healing, e.g., leading to osteonecrosis, osteoporosis, and non-union 

fractures [142-146]. On the other hand, VEGF has also been described to inhibit osteoblast 

differentiation and to compete with PDGF-BB for binding to PDGFRs, impairing pericyte 

function, leading to the formation of immature blood vessels and to the interruption of the 

coupling of angiogenesis and osteogenesis [147-149]. Moreover, VEGF overexpression may 

also cause bone resorption due to excessive osteoclast recruitment [111]. These data suggest 

that VEGF can have opposite effects on osteogenesis under different circumstances, but the 

underlying mechanisms through which VEGF regulates bone homeostasis are not yet fully 

understood, posing a challenge to the design of rational therapies to promote angiogenesis. 
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4.3.1 Roles of VEGF during bone development  

VEGF is essential for coupling angiogenesis and osteogenesis during endochondral 

ossification. In mice, VEGF164 and VEGF188 are crucial for a proper bone formation, since a 

complete loss of both isoforms leads to impaired bone vascularization, growth plate 

morphogenesis and non-physiological endochondral ossification. These effects are caused by 

an impairment of differentiation and function of hypertrophic chondrocytes, osteoblasts, 

endothelial cells and osteoclasts [150]. VEGF164 activates the PI3K/AKT pathway in osteoblasts 

and induces stabilization and signal transduction by the main component of the Wnt signaling 

pathway, β-catenin. Overexpression of VEGF164 leads to hypervascularization and excessive 

osteoblasts differentiation, resulting in bone overgrowth and altered bone morphology [124]. 

During mesenchymal cell condensation and cartilage template formation, VEGF is critical. 

Expression of VEGF by mesenchymal cells and chondrocytes occurs in response to increased 

protein levels of hypoxia-induced factor 1α (HIF-1α) and Sox9 [151]. Later, hypertrophic 

chondrocytes increase expression of VEGF inducing osteoblast precursor to migrate into the 

primary ossification center together with blood vessels, osteoclasts and haemopoietic cells 

[106, 152] (Fig. 12A).  
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Figure 12. Angiogenesis and roles of VEGF during bone development. (A) VEGF expression is induced by 

transcription factor, as Runx2 and Osterix, produced by osteoprogenitors and hypertrophic chondrocytes. The 

combined secretion of three VEGF isoforms (VEGF120, VEGF164 and VEGF188) results in a VEGF gradient that 

controls guided sprouting angiogenesis; (B) Hypoxia in the epiphyseal growth plate results in HIF stabilization 

and VEGF release that triggers vascular ingrowth and chondrocytes survival. MMPs released by blood vessels 

contribute in cartilage degradation. Adapted from [153]. 

 

The importance of VEGF produced by osteogenic lineage cells has been shown in several 

different works. Mice with deletion of Vegfa in Col2-expressing cells exhibit a delay in 

osteoclast and blood vessel invasion into the primary ossification center and cartilage 

removal [106, 154]. Osterix expressed by osteoblastic precursor cells in the perichondrium 

and hypertrophic chondrocytes, is essential for osteoblast differentiation and positively 

regulates VEGF expression by binding to VEGF promoters [155, 156]. Mice with deletion of 

Vegfa in Osx+ osteolineage cells show decreased numbers of blood vessels in perichondrium 

and impaired differentiation of osteoblast precursors during development of long bones 

[157]. Hypoxia is a major driver of VEGF expression (Fig. 12B). The protein levels of HIF-1α are 

greatly elevated under low oxygen stress in osteoblasts, and this promotes transcription of 
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various angiogenic factors, including VEGF. In mice with HIF-1α deficiency, chondrocyte 

apoptosis in central epiphyseal regions of developing cartilage is highly increased. 

Overexpression of VEGF in mice lacking HIF-1α partially rescues chondrocyte apoptosis, 

suggesting that VEGF is a critical downstream effector of HIF-1α in the support of chondrocyte 

survival [158]. Not only secreted diffusible VEGF, but also VEGF sequestered in the growth 

plate matrix contributes to optimal blood vessel growth, as evidenced by the phenotype of 

mice deficient in matrix metalloproteinase 9 (Mmp9). This enzyme mediates localized 

proteolytic degradation of the cartilage and bone matrix. Bones from Mmp9−/− mice show 

decreased metaphyseal vascularization [159], a phenotype that was largely rescued by 

administration of exogenous VEGF [160] (Fig. 12B). 

VEGF has also important roles during intramembranous ossification. VEGF is highly 

expressed during craniofacial development and cranial neural crest cells-derived VEGF 

regulates proliferation, vascularization and ossification in membranous bones. Mice lacking 

VEGF164 display multiple craniofacial defects, such as unfused cranial sutures and shorter jaws 

[161]. Recently, it has been shown that VEGF functions in an autocrine manner in Osx+ 

precursors as it regulates the specification and expansion of mesenchymal cells in the jaw 

[162].  

4.3.2 Roles of VEGF in bone healing and fracture repair 

VEGF plays crucial roles during the hematoma formation after trauma and in the 

subsequent inflammatory phase that initiate bone repair [85]. VEGF concentrations in the 

hematoma have been reported to increased significantly and to be 15-fold higher than in the 

plasma. As previously mentioned, hypoxia is one the main driven factor that induces VEGF 

expression in bone cells. The hypoxia in the hematoma induces VEGF expression and recruits 
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inflammatory cells to the injury site. VEGF released by cells, bone matrix, platelets and 

recruited immune cells can bind to the heparin associated with the fibrin clot and be 

sequestered in the fibrin matrix creating a reservoir. After injury, neutrophils are recruited 

and contribute removing bone debris and microbial pathogens. VEGF has been reported to 

induce neutrophil chemotaxis and increase sinusoid permeability in the bone marrow [163]. 

Release of neutrophils from the bone marrow into the circulation is reduced in mice with 

specific Vegfa osteoblast deletion, suggesting that osteoblast-derived VEGF facilitates the 

entry of neutrophils into the circulation in the acute inflammation stage [164]. Following 

neutrophil infiltration, macrophages and other inflammatory cells are recruited to the injury 

sites. This results in a release of cytokines, such as Tumor necrosis factor alpha (TNF-α), IL-1α, 

and IL-1β. These cytokines activate endothelial cells and promote revascularization at the 

injury sites by inducing VEGF expression in inflammatory and osteoblastic cells. Importantly, 

VEGF stimulate macrophage/monocytes recruitment during the resolution phase (3-7 days 

after fracture). Macrophages are responsible for the up-taking of aging and dying neutrophils, 

they release angiogenic factors, such as VEGF. Uptake of apoptotic neutrophils causes 

macrophages to change the phenotype from activated M1 to reparative M2 states, and 

release of mediators, such TGF-b1, suppress the proinflammatory response and initiate the 

repair process [165]. There is a strong association between the density of macrophages and 

blood vessels during the inflammation phase of bone repair [164], but what comes first is not 

entirely clear. In fact, it is likely that angiogenesis and macrophage recruitment are coupled 

processes. Newly formed blood vessels may recruit macrophages, and these in turn may 

produce angiogenic factors, including VEGF, to further promote angiogenesis [104].  

A specific population of monocytes co-expressing CD11b and NRP1, named neuropilin-

expressing monocytes (NEMs), promote smooth muscle cell recruitment and arteriogenesis 
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by TGF-β1 and PDGF-BB secretion during VEGF-induced angiogenesis [166], and also 

accelerate vascular stabilization, i.e., the ability of newly induced vessels to persist 

independently of further VEGF stimulation [167]. It has been recently shown that Sema3A is 

specifically responsible for NEM recruitment and that VEGF dose dependently inhibits vessel 

stabilization by impairing both endothelial Sema3A expression and NEM recruitment, leading 

to decreased TGF-β1 and endothelial SMAD2/3 activation[167]. Given the importance of 

Sema3A in bone homeostasis [44], these data suggest the possibility Sema3A and NEMs could 

be important during bone healing and that VEGF might modulate Sema3A expression [122] 

(Fig 13C).  

 

Figure 13. Coupling of angiogenesis and osteogenesis during intramembranous ossification. (A) Physiological 

levels of vascular endothelial growth factor (VEGF) maintain bone homeostasis, whereas too little VEGF 

interrupts osteoblast differentiation and too much VEGF increases osteoclast recruitment, leading to bone 

resorption. (B) During bone repair, VEGF is produced by osteoblasts and promotes migration and proliferation of 

endothelial cells. In turn, endothelial cells secrete osteogenic factors, like bone morphogenetic protein (BMP)-2 

and BMP-4, which support osteoblast differentiation. (C) VEGF dose dependently regulates Sema3A expression 

in endothelial cells and Sema3A from different sources suppresses osteoclast differentiation and stimulates bone 

deposition. (D) Sema3A is also responsible for the recruitment of neuropilin 1-expressing (Nrp1+) monocytes 

(NEM), which promote vessel stabilization. Reproduced from [122] 
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Both endochondral and intramembranous ossification occur in bone repair, depending on 

the stability of the fracture, blood vessel supply, and the location of bone formation. Stable 

fractures heal primarily by intramembranous ossification, but moderate amounts of cartilage 

may form in the injured periosteum. Endochondral ossification predominates in unstable 

fractures and large amounts of cartilage may be formed, facilitated by lack of blood supply 

[168]. The endochondral ossification repair process recapitulates the stages in developmental 

endochondral bone formation: cartilage formation, vascular and osteoclast invasion, cartilage 

resorption and replacement by bone. As during endochondral ossification, VEGF is crucial also 

in this phase of bone repair. Inhibition of VEGF signaling in skeletal progenitor cells facilitates 

cartilage formation at the expense of bone formation [71]. Knockdown of Vegf in 

hypertrophic chondrocytes and osteoblastic precursors causes strong induction of 

chondrogenesis in the injured periosteum of mice with induced cortical bone defect, 

consistent with the conclusion that VEGF stimulates differentiation of periosteal progenitor 

cells to osteoblasts [164]. VEGF induces vessels invasion and osteoclast recruitment to the 

periosteal callus during the healing of a cortical defect. Inhibition of VEGF signaling, by soluble 

VEGFR1, delays cartilage turnovers, disrupts conversion of the soft cartilaginous callus to a 

hard-bony callus, and impairs healing in mice with femoral fractures [140].  

The importance of VEGF in recruiting osteoclasts during cartilage remodeling and to the 

injury sites as been shown in several works [169]. VEGF can substitute for M-CSF in osteoclast 

recruitment and differentiation [170]. Recently, it has been shown that VEGF recruits 

osteoclast progenitors in arthritic joints through VEGFR1 and subsequent phosphorylation of 

focal adhesion kinase [110]. VEGF can also directly stimulate osteoclastic bone resorption and 

survival of mature osteoclasts via VEGFR2 [171, 172]. Furthermore, VEGF overexpression by 

genetically modified bone marrow-derived MSC caused excessive osteoclast recruitment and 
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bone resorption in tissue-engineered osteogenic constructs [111] (Fig. 13A). The potential 

influence of osteoclast mediated bone resorption should be considered when using VEGF as 

a therapeutic target to promote bone repair and regeneration.  

During intramembranous bone regeneration, exposure to hypoxia in the initial 

inflammatory phase stimulates osteoblasts to release several factors, including VEGF, via the 

HIF-1α pathway, inducing endothelial migration and proliferation and vessel permeability 

[173]. The new vessels increase the supply of nutrients, oxygen and minerals necessary for 

osteogenesis and may recruit osteoprogenitors to the injury site. Furthermore, endothelial 

cells also produce osteogenic factors (e.g., BMP-2 and BMP-4) that promote osteoblast 

differentiation, while differentiating osteoblasts secrete angiogenic factors (e.g., PDGF-BB 

and VEGF) to further support angiogenesis by a positive feedback loop [157, 162]. 

Administration of neutralizing antibodies against VEGF receptors to mice, undergoing 

distraction osteogenesis following a cut across the tibial diaphysis, significantly decreases the 

amount of blood vessel formation and intramembranous bone formation in the distraction 

gap [139]. Overexpression of HIF-1α in osteoblasts of the same mice model results in a VEGF-

dependent increase in blood vessels and mineralized bone in the distraction gap [141]. In 

addition to the indirect effects on bone formation by means of stimulation angiogenesis, 

osteoblast-derived VEGF  has been recently described to control transcriptional regulation 

and cell survival also through intracrine signaling [109, 174]. Osteoblast-specific and 

conditional VEGF knockout mice exhibited an osteoporosis-like phenotype, with decreased 

bone mass and increased bone marrow fat [109]. Here VEGF acted as a regulator of stem cell 

fate: it stimulated osteoblastic and blocked adipogenic differentiation by an intracellular 

mechanism involving the transcription factors RUNX2 and PPARy2, rather than by paracrine 
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signaling [18, 109]. However, the precise mechanisms by which intracrine VEGF regulates 

osteoprogenitor fate are not yet fully understood. 

5. Semaphorin 3A family, receptors and signaling 

Semaphorin 3A (Sema3A), also known as C-Collapsin-1, H-Sema III, M-SemD, R-Sema III, 

Sema-Z1a is a membrane-associated secreted protein originally identified as a diffusible 

axonal chemorepellent that modulates axon guidance and growth in the neurosystem [175-

177]. Sema3A is secreted from target tissue, it forms gradients and causes inhibition of axonal 

outgrowth and cell migration in a concentration-dependent manner. It is fundamental for 

neural development, indeed  Sema3a-/- mice have several neuronal defects in the cerebral 

cortex, olfactory system and axon projections of dorsal root ganglia neurons [175, 178, 179]. 

Semaphorins are involved in several other biological processes, including bone biology, 

angiogenesis, cancer progression, and immune disorders [175, 180-183]. On the other hand, 

recent studies have shown the importance of Sema3A in the regulation of bone homeostasis. 

Hayashi et al. showed that Sema3A has an osteoprotective effect by both suppressing 

osteoclast bone resorption and increasing osteoblastic bone formation, as evidenced by the 

severe osteopenic phenotype of Sema3A knock-out mice [44, 184]. 

5.1 Semaphorin family 

The semaphorin superfamily contains three protein families: semaphorins, plexins, and the 

MET and RON receptor tyrosine kinases (RTKs), with central roles in cell signalling.  

Semaphorins and plexins  are  present  in  both  vertebrate  and  invertebrate organisms,   

whereas   MET   and   RON   are   vertebrate-specific proteins [185]. The semaphorin family 

includes 30 proteins divided into 8 classes (Fig. 14). Class 1 and 2 samaphorins are found only 
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in invertebrates, while class 3-7 can be found only in vertebrates. Among those, class 5 is 

encoded by viruses.  Class 1, 4, 5 and 6 members are type I transmembrane proteins, class 

2,3 and 5 members are secreted, and class 7 members are glycosylphosphatidylinositol (GPI) 

linked. All semaphorins contain a conserved ∼400 amino-acid 'Sema' domain. The Sema 

domain is present as single copy at the N-terminus of Sema proteins and it is essential for 

signaling. Interestingly, sema domains are also found in plexins and in many receptor tyrosine 

kinases that are included in the Sema superfamily.  

 

Figure 14. The semaphorin protein family. Semaphorins are grouped into 8 classes based on their domain 

structure. All classes of proteins contain a Sema (in pink) domain at N-terminus and it is essential for signalling. 

Reproduced from [186]  

 

Consisting with diverse functional studies, different structural studies have indicated that the 

Sema domain mediates homophilic dimerization, suggesting that dimerization is important 

for the function of these proteins  [185-189]. 
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5.2 Semaphorin receptors 

Two group of proteins, neuropilins (NRPs) and plexins, have been identified as the primary 

semaphorin receptors.  

Plexins: most Sema signaling is mediated by plexin receptors and members of all classes of 

Sema have been shown to interact with plexins. Plexins are canonical semaphorin receptors 

that have large cytoplasmic domains. In the nervous system, plexin-mediated signals have 

been shown to exert diverse neural functions by regulating GTPase activities and 

cytoplasmic/receptor-type protein kinases. These signals are also involved in integrin-

mediated attachment [176]. Plexins are grouped into four categories (A-D) based on overall 

homology. They can function as both ligand-binding receptors and as signaling receptors for 

semaphorins. Most plexin–semaphorin interactions are mediated through the Sema domains 

of both proteins, except for class 3 semaphorins, which, with the exception Sema3E, require 

Neuropilins as essential semaphorin-binding co-receptors to signal through class A plexins 

[190, 191]. 

Neuropilins are single-transmembrane-spanning cell-surface glycoproteins that have a 

large extracellular domain, a single transmembrane domain, and a short cytoplasmic tail. The 

extracellular domain comprises two N-terminal CUB motifs (domain a1 and a2), two 

coagulation factor V/VIII homology domains (domain b1 and b2) and a membrane-proximal 

MAM domain (domain c). Domain b1 is involved in the interaction with VEGF and the basic 

carboxy terminus of Sema3A [192]. There are two forms of neuropilins, NRP-1 and NRP-2, and 

they bind to class 3 semaphorins. They have very short intracellular domains that are not 

required, in some context, for transduction of Sema signaling. Neuropilins work in association 
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with different signal transducing receptors, including plexins and cell adhesion molecules 

(CAMs) such as Nr-CAM [193] and L1 CAM [194].   

5.3 Semaphorin 3A in bone homeostasis and repair 

Sema3A is the first semaphorin identified in vertebrates and acts to induce the retraction 

and collapse of the structure on axonal growth cone. In 1996 Behar et al. have shown that 

Sema3A-deficient mice displayed fusion of cervical bones, partial duplication of ribs, and poor 

alignment of the rib-sternum junctions, indicating an important role for Sema3A in bone 

development and bone homeostasis [175]. More recently, different studies have suggested 

that Sema3A regulates bone resorption and bone deposition synchronously, by suppressing 

osteoclast differentiation and promoting osteoblastic differentiation [44, 175, 184]. 

Additionally, Gomez et al. reported that Sema3A expression precede or coincide with the 

invasion of bone by blood vessels and nerve fibers, not only in the temporal but also at the 

spatial level. Sema3A and its receptors were identified in the pre-hypertrophic and 

hypertrophic chondrocytes in ossification centers, around the periosteum, with the onset of 

endochondral ossification and vascular invasion [195]. 

5.3.1 Sema3A in osteoclastogenesis 

The first indication that Sema3A was involved in osteoclast regulation derives from the 

observation that Sema3A present in conditioned medium of OPG-deficient mouse calvaria 

cells could inhibit osteoclast formation in vitro and that Sema3A-deficient mice showed a 

severe osteopenic phenotype, which was caused by a decrease in the osteoblastic bone 

formation and an increase in osteoclastic bone resorption. Moreover, Hayashi et al. also 

showed that, mice mutant for Nrp1, which lacked the Sema-binding ability, exhibited a similar 
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phenotype to Sema3A-deficient mice [44]. Osteoclast precursors express c-Fms (M-CSF 

receptor) and RANK (RANKL receptor) and they differentiate into osteoclasts in the presence 

of M-CSF and RANKL, that can be produced by osteoblast and stromal cells [196]. M-CSF can 

induce the activation of the RhoA and Rac GTPases that are key regulator of osteoclast 

differentiation and activation. Sema3A has been shown to have repulsive effect on M-CSF 

induced osteoclast precursor migration and to impair M-CSF induced osteoclast 

differentiation by inhibiting the activation of RhoA, rather than Rac. Sema3A inhibits RANKL-

induced tyrosine phosphorylation of phospholipase Cg2 (PLCg2) and calcium oscillation 

through immune-receptor tyrosine-based activation motif (ITAM) signaling pathway [44]. 

Osteoclastogenesis induced by RANKL is dependent on the co-stimulatory receptor signaling 

through ITAMs, including Fc receptor common g (FcRg) and DNAX-activating protein (DAP12). 

RANK and ITAM signaling cooperated to induce NFATc1, which is the transcription of 

osteoclast-specific genes. FcRg and DAP12 are associated with osteoclast-associated receptor 

(OSCAR) and triggering receptor expressed on myeloid cells 2 (TREM2). PlexinA1 promotes 

osteoclast differentiation by activating the ITAM signal through the formation of the 

PlexinA1–TREM2–DAP12 complex in response to ligands such as Sema6D. However, Haiyashi 

et al. showed that NRP1 forms a receptor complex with PlexinA1 in pre-osteoclast once 

activated by Sema3A. With the increasing expression of NRP1, the amount of PlexinA1 binding 

to NRP1 increased and PlexinA1 binding to TREM2 decreased.  RANKL induced the formation 

of the PlexinA1-TREM2-DAP12 complex by the downregulation of NRP1, thereby releasing 

PlexinA1 from the PlexinA1–NRP1 complex. Treatment with Sema3A inhibited RANKL-

induced formation of the PlexinA1-TREM2-DAP12 complex by inhibiting NRP1 

downregulation and maintaining the PlexinA1-NRP1 complex [44]. As such, the Sema3A-NRP1 



 
 

 63 

axis inhibited the osteoclast differentiation, which separated the PlexinA1 from the PlexinA1-

TREM2-DAP12 complex. This further suppressed the ITAM signaling [192]. (Fig 15). 

 

Figure 15. Sema3A signaling in bone remodeling. Sema3A increases bone mass by the stimulation of osteoblast 

differentiation and inhibition of osteoclast differentiation. Same3A regulates osteoblasts through Wnt/b-catenin 

pathway. Sema3A inhibits osteoclast differentiation through the arresting of PLCg activation and calcium 

oscillation. Additionally, the inhibition of RhoA suppresses the migration of osteoclast precursors that are bone 

marrow-derived monocyte/macrophage precursor cells. Reproduced from [192] 

 

5.3.2 Sema3A in osteoblastogenesis 

It has been shown that Sema3A-deficient and NrpSema- (mutant with NRP1 lacking Sema 

binding site) mice display a decreased osteoblast number, a reduced bone forming rate, and 

an increased adipocyte number. Additionally, calvaria-derived cells isolated from Sema3a-/- 

and NrpSema- mice cultured in osteogenic medium without Sema3A showed a significant 

decrease in APL activity, bone nodule formation, osteogenic differentiation markers (Runx2, 

Sp7, Alp and Bglap) and they differentiated toward the adipocyte lineage. Sema3A treatment 

rescued osteoblast differentiation in Sema3a-/- but not in NrpSema- mice. Hayashi et al. 

concluded that Sema3A activated osteoblast differentiation and inhibited adipocyte 
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differentiation through NRP1 [44]. The molecular mechanism through which Sema3A 

modulates osteoblast differentiation it has also been elucidated in the same work, and it 

involved the canonical Wnt pathway signaling. Canonical Wnt signaling is well-known to 

regulate the differentiation of osteoblasts and adipocytes. Rac1 activation can promote 

nuclear accumulation of b-catenin in response to Wnt signaling. Interestingly, in Sema3A 

deficient calvaria cells, the activation of Rac1 in response to Wnt3a treatment was suppressed 

and both the mRNA expression of most of the transcriptional targets of b-catenin and the 

Wnt3a-induced nuclear accumulation of b-catenin were suppressed in Sema3a deficient cells. 

When cells were treated with Sema3A, instead, nuclear translocation of b-catenin and Rac1 

activation were restored. Moreover, Sema3A stimulates the activation of Rac1 through FARP2 

[44] (Fig. 15). Recent studies confirmed the involvement of Sema3A in bone homeostasis and 

Sema3A therapeutic potential has been started to be investigated [197-202]. It has also been 

reported that Sema3A works as an autocrine factor for neuronal development and neuron-

derived Sema3A contributes to normal nervous system development. Neuron-specific 

Sema3A deficient mice, like Sema3a-/- had a phenotype of a low bone mass, which was due to 

the decreased bone formation and increased bone resorption. It has been hypothesized that 

neuronal cell-derived Sema3A regulates bone mass by modifying embryonic sensory 

innervation and that osteoblast-derived Sema3A plays a less important role [184]. This was 

mainly based on the observation in mice lacking Sema3A from the neonatal stage, which have 

a defect in innervation into the bone. However, it has been later proved that Sema3A derived 

from the mesenchymal cells regulated bone mass in adults in an innervation-independent 

manner. Indeed, post-natal global deletion of Sema3A resulted in higher bone resorption and 

lower bone deposition. Moreover, this phenotype was recapitulated in mice in which Sema3A 

expression was deleted in the limb mesenchyme [198]. In this work, the authors also showed 
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that, Sema3A deletion in osteoblast lineage cells (Sp7-tTA-tetO-Cre+ Sema3aflox/D mice) 

after 8 weeks of age, resulted in a significant reduction in trabecular bone volume, reduced 

osteoblast differentiation and enhanced bone resorption.  

6. The need for vascularization in bone tissue engineering 

Bone tissue engineering (BTE) aims at developing bone substitutes to replace bone tissue 

losses due several clinical situations, such as trauma, unhealed fractures, osteonecrosis and 

tumor resection. The capacity for the normal process of fracture healing to repair skeletal 

defects and restore load-bearing function to the injured bone is often insufficient. In fact, lack 

of blood supply, infection of the bone or the surrounding tissues and systemic diseases can 

negatively influence bone healing, resulting in delayed unions or non-unions fractures [203]. 

Critical-size bone defects do not heal spontaneously and autologous bone transplantation 

(autograft) is still considered the “gold standard” in clinical treatment [4]. However, 

autografts are associated with several limitations and disadvantages, such as chronic pain and 

donor site morbidity, neurovascular injuries, shortage of tissue available and unpredictable 

biologic behavior upon in vivo implantation [204]. The biologic behavior of a graft includes its 

ability to integrate with the surrounding bone tissue, resist infection, and tolerate mechanical 

load. The characteristics of any osseous graft are largely related to the survival of the loaded 

osteoprogenitors after transplantation. To overcome these issues, BTE combines 

osteoprogenitors cells, isolated from suitable sources (e.g. BM), with biocompatible scaffolds 

that mimics the bone ECM, and growth factors to generate osteogenic grafts to replace and 

heal bone tissue losses. Moreover, to ensure cell survival, the early onset of vascular invasion 

should be promoted.  
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The scaffold itself must fulfil primary functions to ensure successful treatment of bone 

defects. It must provide the correct anatomic geometry to define and maintain the space for 

tissue regeneration. Importantly, the scaffold must provide temporary mechanical load 

bearing within the tissue defect and it should enhance the regenerative capability of the 

chosen factors. After implantation, bone biomaterials modulate the interaction of bone 

implants with the surrounding cells and tissues. Therefore, the selection of the biomaterials 

is a key step in the preparation of ideal bone grafts. Ideal materials should be osteoinductive 

(capable of promoting osteogenic differentiation), osteoconductive (support bone and 

vascular ingrowth from surrounding native bone) and should promote osteointegration [205]. 

In addition, bone biomaterials play crucial roles in bone repair by providing the necessary 

substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity 

and function. Cells, including stem and progenitor cells, interact with their microenvironment 

and can sense extracellular signals, which regulate their behavior. Cell adhesion to ECM and 

biomaterials is mediated by the binding of ligands, such as elastic fibers, collagen, 

proteoglycans, glycosaminoglycans and adhesive glycoproteins to integrin receptors [206]. As 

organic materials, biodegradable polymers can act as an ECM for cell attachment, and 

adhesion is promoted by combining the polymer with ligands. Natural polymers, such as 

albumin, alginate, amylose/amylopectin, chitosan, collagen, elastin, fibrin, fibronectin, 

hyaluronic acid, keratin, and silk, are largely used and can promote cell adhesion [207]. 

Although a variety of well characterized osteoinductive biomaterials have been studied, the 

precise mechanism through which they promote cell differentiation and bone formation is 

still unclear [207, 208].  

For load-bearing purposes, achieving stiffness and strength equivalent to bone tissue 

requires minimally porous scaffolds. Conversely, delivery of growth factors requires more 
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highly connected porous scaffolds to allow cell migration, vascularization and connective 

tissue formation within scaffolds [82].  

However, upon implantation in vivo, a major challenge for clinically relevant large-size 

grafts is the maintenance of cell viability in the core of the scaffold, which critically depends 

on the rapid invasion by host blood vessels.  Vascularization of large bone grafts is one the 

main problems that held back the clinical translation of engineered bone grafts in the last 

decades. As discuss previously, the vascular system is crucial to maintain the bone tissue 

healthy, since it continuously provides oxygen, nutrients, osteoprogenitor cells and 

angiocrine factors that are necessary for skeletal growth and remodeling. Upon graft 

implantation, the formation of new blood vessels from pre-existing ones occurs 

spontaneously in response to inflammation and it is part of the wound-healing process 

generated by the host as a response to the ischemia-reperfusion injury formed during surgery 

[209]. The induced vascularization in response to the inflammatory phase is a transient 

process and new blood vessels regress within a week [210]. In addition to the capillary 

networks formed during wound healing, neovascularization of the scaffold occurs. However, 

the slow rate of infiltration of blood vessels into the scaffold makes it an insufficient process 

to vascularize tissues of clinically relevant size, leading to hypoxia and necrosis in the core. 

Another problem associated with the lack of vascularization is the removal of degradation 

products from biodegradable scaffolds. In the absence of a functional vasculature the 

capacity of the surrounding tissue to eliminate the degradation products derived from the 

implant material is very low and can trigger inflammatory responses [211]. Physiologically, 

blood vessels are distributed in within 100-300μm of distance to supply sufficient levels of 

oxygen and nutrients, as well as to remove metabolic waste [212]. Indeed, when the distance 

between cells and capillaries increases above this range, the diffusion of nutrients and oxygen 
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is impaired, and cell viability and proliferation decrease. Insufficient blood circulation in the 

implanted bone material results in a lack of integration with the host environment, and inner 

graft necrosis [213]. To date limited success has been achieved in clinical translation of BTE 

approaches because of these limitations. In particular blood vessels growth and vascular 

integration must be achieved at multiple levels: larger blood vessels are needed for 

restoration of blood flow into the site of injury, while smaller microvascular networks are 

required to provide blood across the entire scaffold volume, sustaining osteogenesis and cell 

survival until bone function is restored. 

7. Strategy to improve vascularization in osteogenic grafts 

Several approaches to improve vascularization, through enhanced vasculogenesis and 

angiogenesis, of the implanted grafts are currently being investigated. The classical 

vascularization strategies focus on the stimulation of vascular ingrowth into the implanted 

grafts from the surrounding host tissue by optimizing the material properties of scaffolds, by 

incorporation of growth factor delivery systems and by endothelial progenitor cells seeding. 

Hydroxyapatite (HA) and collagen are the main components in natural bone. An ideal scaffold 

for bone tissue engineering should incorporate the same biological characteristics of these 

components to help promote vascularized bone formation. Commonly used scaffold 

materials include bioactive materials with good biocompatibility but poor mechanical 

properties, such as natural collagen and fibrin gel, and bone cement. In addition, bioactive 

glass and other artificial materials such as polylactic acid have been investigated as scaffold 

materials, being degradable but with poor hydrophilicity and histocompatibility [214]. The 

chemical composition of scaffold materials has been shown to influence the angiogenic 

process at the implantation site. For example, poly (lactic-co-glycolic acid) (PLGA), HA and 
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dentin scaffolds induce a slight inflammatory response that results in an increase angiogenic 

response and a good vascularization of the grafts [215]. Differently, collagen-chitosan-HA 

hydrogel scaffolds induce severe inflammation that leads to cell death within the surrounding 

tissue and to a complete lack of vascular ingrowth [215]. Despite extensive research on 

various materials for the development of bone tissue, a single scaffolding material may not 

fully meet all the requirements, especially in terms of angiogenesis. Therefore, different 

combinations of biomaterials might be required for the design of vascularized bone grafts 

according to the clinical application. 

Pre-vascularization of osteogenic grafts, before implantation, is one of the strategies that 

are extensively investigated in BTE. For example, a two-step in vivo pre-vascularization 

strategy involves the initial implantation of tissue-engineered grafts within well-vascularized 

sites, such as muscle, for complete vascularization prior to subsequent implantation at the 

defect site [216]. This approach has the advantage that fully functional blood vessels are 

formed in the implants without the need of complex cell isolation, seeding and cultivation 

procedures. This approach allows for instantaneous reperfusion by surgical anastomosis, 

thereby ensuring its therapeutic efficacy. However, it requires multiple surgeries for 

transferring the graft from the pre-vascularization to the injury site [217]. 

Another interesting approach concerns the use of co-culture system with endothelial cells 

and other cell types to achieve in vitro pre-vascularization and generate vascularization within 

the graft.  While endothelial cells cultured alone showed limited potential for vascular growth, 

studies have shown that their combination with osteoblasts or MSCs as well as with 

biomolecules involved in osteogenesis enhanced their vascularization capacity [218]. The 

choice of endothelial cell type is a crucial point for pre-vascularized grafts. Proangiogenic cells, 

such as endothelial cells, endothelial progenitor cells, and mural cells (pericytes and smooth 
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muscle cells), are widely used as cell source. Other cell sources including adult stem cells, MSC 

from adipose tissue and induced pluripotent stem cells are also suggested as suitable sources 

for this purpose [219]. However, limitations of cell-based pre-vascularization approaches are 

that these approaches usually need complex and time-consuming cell isolation and 

cultivation procedures. Besides, their safety and success are highly sensitive to the quality of 

the cell isolates, the applied seeding strategy, and the number of cells seeded. A promising 

cell source that might be exploited in tissue engineering is the stromal vascular fraction (SVF) 

of human adipose tissue. SVF contains heterogeneous cell population, which include 

multipotent stem cells and progenitor cells, including endothelial cells, adipose derived 

mesenchymal stem cells (ASCs), pericytes, preadipocytes, and hematopoietic cells. SVF also 

contains macrophages, which secrete a multitude of vascular growth factors and cytokines. 

SVF is an interesting source for intraoperative procedures for bone repair [220]. However, 

compared with bone marrow MSCs, ASCs have been reported to have a lower osteogenic 

potency. Consequently, additional processing steps are required to promote osteogenic 

differentiation [221]. 

Recently, bioprinting has emerged as powerful new tool to develop tissue constructs with 

precise size, shape and characteristic. For example it has been recently reported that a 3D 

printed  bone constructs implemented in a rat calvaria bone defect, showed newly formed 

vascularized bone tissue throughout the implants, including the central portion, with no sign 

of necrosis [222].  

Despite the many advances in the previous discussed strategies, one of the most promising 

and widely investigated approach to improve vascularization in osteogenic grafts is the 

stimulation of the angiogenic host tissue response by incorporating angiogenic growth-

factors. To this end, VEGF, FGF-2, PDGF and angiogenin are the most studied and used. 
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Growth-factors provide signals that allow progenitors cells to differentiate, migrate and 

initiate the healing process, moreover, they are also important for the recruitment of 

inflammatory cells. One of the major challenges for growth factors in clinical use is the 

development of appropriate delivery systems. Direct injection into the injury sites, systemic 

injection or local supplementation have been proven to be ineffective and resulted in low 

availability of growth-factors due to their rapid degradation in vivo, instability, short half-life 

and deactivation by enzymes [223]. To overcome this, delivery of supraphysiologic doses have 

been investigated, but it resulted in the increase adverse effects. For example, several large-

scale studies confirmed a high frequency of adverse effects associated with the clinical use of 

BMP-2 to treat bone defects. The supraphysiologic dosing requirements have been shown to 

lead to ectopic bone formation, osteolysis, inflammation, cancer and other severe 

complications [224]. VEGF, despite promising preclinical data, is also known for adverse 

effects: delivery of VEGF to adult tissues increases vessel permeability causing severe edema 

and loss of limbs in animals [225-227]. It was also shown that uncontrolled VEGF expression 

induces the growth of vascular tumors (hemangiomas) in skeletal muscle [228], myocardium, 

and other tissues. Physiological VEGF concentrations are tightly controlled and preclinical 

data also showed a surprisingly narrow therapeutic window for VEGF gene delivery, such that 

low vector doses are safe but not sufficiently effective to yield a therapeutic benefit, whereas 

only slightly higher doses rapidly become unsafe [100]. Recent evidences show that VEGF 

doesn’t not have an intrinsically steep dose-response curve in vivo, but rather that the dose 

delivered must be controlled at the microenvironmental level. Due to the ECM-binding of 

VEGF, few “hotspots” of excessive VEGF expression can cause toxic effect even in case of a 

relative low total dose [112]. Therefore, the same total dose of VEGF can have different 

effects, therapeutic or toxic, depending on whether it is distributed homogeneously in the 
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tissue or not. Indeed, when the VEGF dose is homogeneously distributed in tissue, a wide 

range of microenvironmental VEGF doses are capable of inducing exclusively physiological 

microvascular networks, until a threshold level is reached, above which aberrant angiogenesis 

is initiated [229]. Moreover, we previously showed the uncontrolled VEGF delivery also cause 

adverse effects in osteogenic grafts. Indeed, uncontrolled and continuous overexpression of 

VEGF in BMSC was effective in improving vascularization but caused a global reduction in 

bone quantity and quality, by strongly increasing osteoclast recruitment into the graft. This 

suggests that in order to couple angiogenesis and osteogenesis VEGF dose must be tightly 

controlled [111]. 

VEGF effects in bone regeneration are not yet fully understood and different in vivo models 

and delivery platforms have shown different outcomes. First studies showed that treatment 

of mice with a soluble, neutralizing VEGF receptor decreased angiogenesis, bone formation, 

and callus mineralization in femoral fractures; on the other hand, treatment with exogenous 

VEGF enhanced vascularization and ossification in the same model [140]. However, one of 

the drawbacks with this study, was the supraphysiological doses of VEGF required to induce 

bone regeneration as high microenvironmental concentrations of VEGF results in the 

formation of aberrant and leaky vasculature. On the other hand, VEGF has also been 

described to inhibit osteoblast differentiation and to compete with PDGF-BB for binding to 

PDGF-Rs, impairing pericyte function, leading to the formation of immature blood vessels and 

to the interruption of the coupling of angiogenesis and osteogenesis [122]. Interestingly, 

many reports utilizing VEGF in bone defects showed no difference between scaffolds with and 

without VEGF, but they showed synergistic effects of VEGF with other proteins, such as BMPs 

[230].  
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Current strategies aim at mimicking ECM embedding to reproduce physiological 

presentation of angiogenic signals within the bone defects. For example, a highly tunable 

fibrin-based platform has been recently optimized to precisely control the dose and duration 

of VEGF protein delivery in tissues [231]. In this model growth factors are engineered to 

contain an octapeptide sequence derived from alpha-2-plasmin inhibitor (NQEQVSPL), which 

is a substrate for the transglutaminase factor XIIIa and allows the engineered factors to be 

covalently cross-linked to the fibrin during the polymerization process. Here VEGF could be 

released only by enzymatic cleavage by invading cells in vivo and optimized delivery ensured 

normal, stable, and functional angiogenesis over a 500-fold dose range and improved 

perfusion of ischemic tissues. In a conceptually different strategy, a recombinant fibronectin 

fragment was engineered to contain the natural binding sites for fibrin, integrins, and growth 

factors [232]. Delivery of this fragment within a fibrin construct together with BMP-2 and 

PDGF-BB significantly increased bone healing in a rat calvaria defect at very low and otherwise 

ineffective doses, thanks to their presentation in the physiological matrix context. Along 

similar lines, but with a reverse approach, engineering with a short domain of placenta growth 

factor-2 endowed any growth factor with super affinity for ECM proteins [233]. Such 

engineering of VEGF, PDGF-BB, and BMP-2 greatly improved both angiogenesis and bone 

formation in a calvaria defect. Therefore, biomaterials can be more than just carriers and can 

be engineered to reproduce an ECM-like environment decorated with growth factors, 

through either covalent or affinity-based interactions, that present physiological signals to 

endogenous promoters and promote bone healing.  
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9. Aims of the thesis 

After blood transfusion, bone is the second most transplanted tissue, with over two million 

bone grafting procedures performed annually worldwide [1]. In fact, non-healing bone 

fractures and defects are a significant source of patient morbidity and a relevant economic 

load for the healthcare system of Western countries [2, 3]. Autologous bone transplantation 

is still the gold standard approach for the treatment of large bone defects. However, the 

shortage of tissue supply and post-surgery complications, especially donor-site morbidity, 

highlight the need for new and more effective therapeutic strategies. 

Bone tissue engineering is a promising alternative to autologous grafts and it aims at 

developing bone substitutes based on the combination of tailor-made biomaterials, 

osteogenic progenitor cells and growth factors to fulfill this as yet unmet medical need. 

Despite intensive research, the clinical translation of this approach has not been widespread 

so far. One of the major challenges limiting the clinical success, in particular for large critical-

size osteogenic graft, is the rapid and efficient vascularization upon implantation in vivo, 

which is required for tissue integration and engrafting, the maintenance of cell viability and 

for the robust formation of healthy bone tissue [4]. To add further complexity to the 

endeavor, the biological processes of osteogenesis and angiogenesis are intimately coupled. 

In fact, blood vessels do not simply provide metabolic exchange and minerals, but they also 

serve as structural templates for bone development [5], and even help regulating bone 

homeostasis and regeneration through angiocrine signaling [6]. 

The growth factor VEGF is the master regulator of vascular growth both in normal and 

pathological angiogenesis and therefore its delivery, in combination with suitable 

biomaterials and osteogenic progenitor cells, is an attractive strategy to generate vascularized 
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bone grafts. However, the biology of VEGF is complex and the simple addition of the factor to 

an osteogenic graft does not suffice to achieve a therapeutic benefit, showing the need for 

careful regulation of its dose and spatio-temporal distribution [7]. 

For example, we have previously showed that sustained over-expression of VEGF by 

transduced BMSC can efficiently improve the vascularization of ectopic osteogenic constructs 

[8] and blood perfusion in critical-size grafts, as well as their mineralization. However, these 

studies also showed that paradoxically the amount of bone tissue formed by the implanted 

BMSCs was severely reduced, due to excessive osteoclast recruitment and increased bone 

resorption [8]. Furthermore, it has been shown that VEGF distribution in tissue needs to be 

finely controlled both at the spatial and temporal levels in order to ensure functional 

assembly and persistence of new vascular structures: the physiological interaction of VEGF 

with extracellular matrix plays a key role in determining these requirements [9]. 

A better understanding of the molecular crosstalk between VEGF, angiogenesis and 

osteogenesis is clearly needed. Therefore, the overarching aim of this thesis is to elucidate 

the role of VEGF in controlling both vascularization and bone formation, in order to provide 

rational bases for novel, safe and effective therapeutical strategies for the repair of bone 

tissue and the generation of vascularized osteogenic grafts. To this end, three aspects have 

been investigated experimentally and the results are presented in the form of three scientific 

manuscripts: 

• In Chapter 2 we addressed the role of duration of exposure to VEGF signaling and the 

therapeutic potential of transient delivery of recombinant VEGF from factor-decorated 

fibrin matrices both in an ectopic and in a critical-size orthotopic models of bone formation. 

• In Chapter 3 we rigorously investigated the dose-dependent effects of VEGF on osteogenesis 

and angiogenesis. In particular, we sought to identify a VEGF dosing therapeutic window 
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that could enable both rapid vascularization and efficient bone formation. We also studied 

the cellular mechanisms through which VEGF dose regulates bone homeostasis during 

ossification by human BMSC in osteogenic grafts. 

• In Chapter 4 we investigated the molecular mechanisms underlying the coupling of 

angiogenesis and osteogenesis by VEGF, and in particular the role of Sema3A signaling. In 

fact, it has been shown that Sema3A regulates both bone resorption and deposition during 

bone development and repair [10, 11], while we found that VEGF dose-dependently and 

directly inhibits endothelial Sema3A expression in skeletal muscle [12]. We have also studied 

the requirement for Sema3A during intramembranous bone formation and its therapeutic 

potential in coupling angiogenesis and osteogenesis in tissue-engineered bone grafts. 
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Introduction 

Bone tissue loss due to trauma, surgical resection or degenerative diseases, for which 

physiological endogenous bone repair is not sufficient, poses a significant clinical need. 

Autologous bone transplantation (autograft) is the current gold-standard approach used in 

clinic, but its efficacy is limited by significant issues related to chronic pain at the harvest site, 

neurovascular injury, structural weakness and the limited amount of autologous bone 

available [1, 2]. Bone tissue engineering aims at developing bone substitutes, combining 

osteogenic progenitors and suitable biomaterials, and is an attractive solution to the unmet 

clinical need of bone replacement. 

A major challenge for clinically relevant large-size grafts is the maintenance of cell viability 

in the core of the scaffold upon implantation in vivo, which critically depends on the rapid 

invasion of the constructs by host blood vessels from the surrounding vascular beds. In fact, 

a functional vasculature is fundamental to provide oxygen and nutrients, as well as to remove 

metabolic waste [3, 4], and spontaneous vascular growth is too slow to avoid progenitor 

death in the central core of the implants. Therefore, under normal conditions bone tissue 

formation is limited to the outer 1-2 millimeters of osteogenic grafts with clinically relevant 

size [5]. 

An attractive strategy to accelerate the vascularization of osteogenic grafts is the 

stimulation of the endogenous response by supplying specific signals that regulate 

physiological angiogenesis. Vascular Endothelial Growth Factor (VEGF) is the master regulator 

of vascular growth both in normal tissue growth and regeneration and in pathological 

conditions [6]. Therefore, VEGF is the most attractive and well-characterized factor for 

inducing the therapeutic growth of new blood vessels [7]. 
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For example, we previously showed that sustained VEGF over-expression by genetically 

modified osteoprogenitors was effective both to increase the vascularization of small-size 

osteogenic constructs [8], and also to accelerate early blood perfusion and improve 

progenitor survival, tissue formation and mineralization in clinically relevant large grafts [9]. 

However, sustained production of VEGF by transduced cells also significantly increased 

osteoclast recruitment and bone resorption, paradoxically reducing the net efficiency of bone 

formation [8]. These observations suggest that prolonged exposure to VEGF also has the 

potential to disrupt bone homeostasis towards excessive resorption, posing a challenge to its 

clinical application. 

Although the biological processes of vascular growth and bone formation are functionally 

connected, they develop with fundamentally different kinetics. In fact, vascular 

morphogenesis takes place rapidly within 1 week, followed by functional remodeling of the 

formed networks, and within 3-4 weeks newly formed vessels are stabilized and persist 

indefinitely without the need for further VEGF stimulation [10, 11]. On the other hand, new 

bone tissue in osteogenic grafts starts appearing about 4 weeks after in vivo implantation, 

fully developing in quantity and quality until 8-12 weeks. Also during development and repair 

of native bone vascular ingrowth precedes bone matrix deposition [12, 13]. This suggests that, 

in order to improve vascularization in osteogenic grafts, prolonged VEGF expression, as well 

as causing adverse effects, might actually be unnecessary. 

The duration of therapeutic protein delivery in vivo can be precisely controlled by 

decoration of fibrin matrices with engineered factors [14]. As factors are engineered with an 

octapeptide sequence derived from alpha-2-plasmin inhibitor (NQEQVSPL), which is a 

substrate for the transglutaminase factor XIIIa (TG-factors), they can be covalently cross-

linked to the fibrin during its polymerization and released only upon enzymatic cleavage. The 
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rate of release and its duration can then be controlled by tuning the rate of degradation of 

the hydrogel with different concentrations of the fibrinolysis inhibitor aprotinin, which is also 

covalently cross-linked into the hydrogel by the TG-hook (TG-aprotinin) [15]. 

Here we hypothesized that short-term controlled delivery of recombinant TG-VEGF, limited 

to less than 4 weeks after in vivo implantation, may efficiently couple angiogenesis and bone 

formation in osteogenic grafts, ensuring increased and rapid vascularization and avoiding 

excessive osteoclast recruitment. 
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Materials and methods 

BMSC isolation and culture 

Human primary MSC were isolated from bone marrow aspirates (BMSC). The aspirates 

were obtained from the iliac crest of 3 healthy donors during routine orthopaedic surgical 

procedures according to established protocols, after informed consent by the patients and 

following protocol approval by the local ethical committee (EKBB, Ref. 78/07). Cells were 

isolated and cultured as previously described [8, 16]. Briefly, after centrifugation the pellet 

was washed in PBS (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Cells 

were resuspended in α-MEM medium (GibcoTM, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) supplemented with 10% bovine fetal serum (HyClone, South Logan, 

Utah, USA), 1mM Sodium Pyruvate (GibcoTM, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), 10mM HEPES (GibcoTM, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) and 5 ng/mL FGF-2 (R&D System Minneapolis, Minnesota, USA), plated 

at a density of 105 nucleated cells/cm2 and cultured in 5% CO2 at 37°C. 

Generation of VEGF-expressing BMSC 

Primary human BMSC were transduced according to a high-efficiency protocol [17]. Briefly, 

starting on day 6 after plating, cells were transduced twice a day for a total of 4 rounds with 

bicistronic retroviral vectors carrying either the gene for mouse VEGF164 (mVEGF164) linked to 

a truncated version of mouse CD8a (trCD8a) by an internal ribosomal entry site (IRES) 

sequence (VICD8), or trCD8a alone as a control (ICD8). For this purpose, BMSC were cultured 

in 60-mm dishes, incubated with retroviral vector supernatants supplemented with 8 mg/ml 

polybrene (Sigma Aldrich, St. Louis, Missouri, USA) for 5 min at 37°C. The dishes were then 
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centrifuged at 1100g for 30 min at room temperature and supernatants were replaced with 

fresh medium. All experiments were performed with freshly prepared viral supernatants. 

Assessment of transduction efficiency 

Transduction efficiency was assessed by flow cytometry staining of transduced BMSC with 

an antibody against mouse CD8a (clone 53-6.7; BD Pharmingen, San Jose, California, USA) at 

1:20. Data were acquired with a FACSCalibur flow cytometer (BD Biosciences, San Jose, 

California, USA) and analysed using FlowJoTM software (FlowJo LLC, Ashland, Oregon, USA). 

mVEGF164 ELISA measurements 

mVEGF164 production by VEGF-expressing VICD8 cells was quantified in cell culture 

supernatants using a Quantikine mouse VEGF immunoassay ELISA kit (R&D Systems Europe, 

Abingdon, UK). 1 ml of medium was harvested from VICD8 cells in one 60-mm dish, following 

a 4h incubation at 37°C, filtered and analysed in duplicate. Results were normalized by the 

number of cells in the dish and time of exposure to medium. Two dishes of cells were assayed 

per donor (3 independent donors, n = 6). 

Recombinant α2PI1–8-VEGF164 production and purification 

The cDNA for mouse VEGF-A164 was amplified by PCR using primers designed to allow for 

fusion of the transglutaminase substrate sequence NQEQVSPL, comprising the 8 N-terminal 

residues of α2-plasmin inhibitor (α2PI1–8), onto the N-terminus of the amplified cDNA before 

insertion into the expression vector pRSET (Invitrogen, Carlsbad, California, USA). The fusion 

protein was expressed in Escherichia coli strain BL21 (D𝜖3) pLys (Novagen, Merck, Darmstadt, 

Germany). The recombinant α2PI1–8-VEGF-A164 was isolated from inclusion bodies, processed, 

and refolded using a slightly modified version of a previously published protocol [18]. Briefly, 

the inclusion bodies were collected from the bacterial lysate by centrifuging, washed with 
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Triton X114 to remove membrane proteins and endotoxins, and extracted with urea buffer 

overnight at 4°C under magnetic stirring. Further dimerization of α2PI1–8-VEGF-A164 was done 

with a redox system (0.5 mM oxidized glutathione, 5 mM reduced glutathione) added into 

the protein solution after the 2 M urea dialysis, and α2PI1–8-VEGF-A164 was dimerized under 

stirring for 48 h at 4°C. Then, glutathione and urea were removed by three sequential dialyses 

of 24 h against Tris buffers. Proteins were then concentrated using a 10-kDa Amicon tube 

(Millipore, Merck, Darmstadt, Germany) and further filtered through a 0.22-μm filter. α2PI1–

8-VEGF-A164 monomers and dimers were separated using size exclusion with a HiLoad 16/60 

Superdex 75-pg column (GE healthcare, Chicago, Illinois, USA). Fractions corresponding to 

α2PI1–8-VEGF dimers were pooled together, concentrated with Amicon tubes, and filtered 

through a 0.22-μm filter. α2PI1–8-VEGF dimers were verified to be >99% pure by SDS/PAGE 

and MALDI-TOF analysis. Endotoxin level was verified to be under 0.05 EU/mg of protein using 

the LAL assay (GenScript, Piscataway, New Jersey, USA). 

Generation and in vivo subcutaneous implantation of osteogenic constructs 

60 mm3 of silicate-substituted apatite granules of 1-2mm size (Actifuse®; Apatech-Baxter, 

Elstree, UK) where mixed with 1x106 BMSC and embedded in a fibrin gel prepared by mixing 

25 mg/ml human fibrinogen (plasminogen-, von Willebrand Factor-, and fibronectin-

depleted; Milan Analytica AG, Rheinfelden, Switzerland), 3 U/mL factor XIIIa (CSL Behring, 

King of Prussia, Pennsylvania, USA), and 6 U/ml thrombin (Sigma-Aldrich, St. Louis, Missouri, 

USA) with 2.5 mM Ca2+ in 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid (Hepes, Lonza, 

Basel, Switzerland). Fibrin gels decorated with 51 µg/ml of aprotinin-α2PI1–8 and 1 µg/ml of 

α2PI1–8-VEGF-A164 were obtained by adding the engineered proteins to the cross-linking 

enzymes solution before mixing with fibrinogen. Osteogenic grafts were allowed to 
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polymerize at 37°C for 10 min after mixing before in vivo implantation. The resulting 

constructs were implanted subcutaneously in nude mice (CD1-Foxn1nu, Charles-River, 

Sulzfeld, Germany). Six constructs were implanted for each condition (n=6 samples/group), 

generated with cells from 3 independent donors (2 replicates/donor). After 1, 4 and 8 weeks, 

mice were sacrificed by inhalation of CO2 and constructs were explanted. 

Critical-size calvaria bone defects 

Critical-size bilateral bone defects of 6 mm were created in both parietal bones of immune-

deficient nude NIH-Foxn1rnu rats (Charles-River, Sulzfeld, Germany), lateral to the midsagittal 

suture, using a trephine bur (ACE Dental Implant System, Brockton, Massachusetts, USA) and 

a piezoelectric tool (Mectron, Flexident AG, Stansstad, Switzerland) under low-speed drilling 

with continuous cool saline irrigation. Rats were under inhalation anesthesia (isoflurane) 

throughout the surgical procedure. Round osteogenic constructs of 6-mm diameter and 3-

mm thickness were generated in the same way as described above with cells from 2 

independent donor (n=4 samples/group, 2 replicates/donor) and implanted in the defects. 

After 1 and 4 weeks, rats were anesthetized with ketamine (100 mg/kg) and xylazine (10 

mg/kg), and sacrificed by total-body vascular perfusion of 1% paraformaldehyde in PBS pH 

7.4 for 3 min under 120 mm/Hg of pressure, followed by 2 h of post-fixation in 0.5% 

paraformaldehyde in PBS and kept in PBS at 4°C until micro-CT analysis was performed. After 

micro-CT analysis, constructs were processed for histological analysis as described below. 

Animals were treated in agreement with Swiss legislation and according to a protocol 

approved by the Veterinary Office of Canton Basel-Stadt (permission #1797). 
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Micro-CT 

Micro-computed tomography (μCT) data were acquired using a Phoenix Nanotom M 

scanner (General Electric, Fairfield, CT, http://www.ge.com) with 0.5 mm aluminum-filtered 

X-rays (applied voltage 70 kV; current 260 μA). Transmission images were done during a 360° 

rotational scan with an incremental rotation step size of 0.25°. Reconstruction was made 

using a modified Feldkamp algorithm at an isotropic voxel size of 2.5 μm. For quantification 

of bone mineral density and bone volume, all data were normalized to the volume of each 

constructs. Threshold-based segmentation, 3D measurement analyses (mineral density and 

volume) and 3D rendering of the structures was performed using VGStudio MAX 2.2 software 

(Volume Graphics, Heidelberg, Germany, http://www.volumegraphics.com/en/). 

Histological processing 

Explanted constructs were washed with PBS and fixed over night at 4°C with freshly 

prepared 1% paraformaldehyde (Sigma Aldrich, St. Louis, Missouri, USA) in PBS. 

Subsequently, the samples were decalcified in a PBS-based solution containing 7% w/v EDTA 

(Sigma-Aldrich, St. Louis, Missouri, USA) and 10% w/v sucrose (Sigma-Aldrich, St. Louis, 

Missouri, USA) and incubated at 37°C on an orbital shaker. The solution was renewed daily 

for 20 days, until the samples were fully decalcified, as estimated by the degree of sample 

stiffness. Finally, the samples were embedded in OCT compound (CellPath Ltd, Newtown, UK) 

frozen in freezing 2-methylbutane (Sigma Aldrich, St. Louis, Missouri, USA) and 10 μm-thick 

sections were obtained with a cryostat. 

Immunofluorescence tissue staining 

Immunofluorescence staining was performed on 10 µm-thick frozen sections. The 

following primary antibodies and dilutions were used: rat anti-mouse CD31 (clone MEC 13.3, 
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BD Bioscience, San Jose, California, USA) at 1:100; mouse anti-rat CD31 (clone TLD-3A12, BD 

Bioscience, San Jose, California, USA); mouse anti-Human nuclei (clone 235-1, Merk Millipore, 

Darmstadt, Germany) at 1:200; polyclonal rabbit anti-Ki67 (Abcam, Cambridge, UK) at 1:100; 

polyclonal rabbit anti-Cleaved Caspase 3 (Asp175) (Cell Signaling Technology, Danvers, 

Massachusetts, USA) at 1:200; mouse anti-human BSPII (Clone LFMb-24,  Santa Cruz 

Biotechnology, California, USA) at 1:50. Fluorescently labelled secondary antibodies 

(Invitrogen, Thermo Fisher Scientific, Waltham, Massachusset, USA) were used at 1:200. 

Images were acquired with an Olympus BX63 microscope (Olympus, Münster, Germany) 

and a Nikon Ti2 Eclipse microscope (Nikon, Tokyo, Japan). All image measurements were 

performed with CellSens software (Olympus, Münster, Germany), NIS-Elements (Nikon, 

Tokyo, Japan) and FIJI software (ImageJ, http://fiji.sc/Fiji). 

Angiogenesis 

Vascularization in the ectopic bone grafts was assessed by immunofluorescent CD31 

staining. At least 5 representative images were acquired per sample (n=6 samples/group) and 

vessel length density (VLD) was measured by tracing the total length of vessels in the fields 

and by normalizing it to the tissue area in each field. The quantification of the vascular 

invasion and the VLD in the rat calvaria defects was performed on cryosections stained for rat 

CD31 (n=4 samples/group). Briefly, complete images of the whole samples were acquired, the 

areas of tissue invaded by blood vessels were manually measured and normalized by the total 

tissue area of the defect. VLD was measured within the areas of invasion in at least 5 different 

fields per sample, as described above. 
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Bone formation and maturation 

Bone tissue was detected by Hematoxylin and Eosin (H&E) staining. In addition, the 

presence of mature bone matrix was examined with Masson trichrome staining (Réactifs RAL, 

Martillac, France), performed according to manufacturer's instructions. Ten whole-section 

reconstructions per sample (n=6 samples/group) were acquired with transmitted light and 

bone tissue was quantified by tracing the area occupied by mineralized matrix and 

normalizing it by the total area of the section. In addition, the presence of mature bone matrix 

(red staining in Masson’s trichrome staining) was measured and normalized by the total 

amount of bone. 

Osteoclast recruitment 

In order to detect osteoclasts, sections were stained for tartrate-resistant acid 

phosphatase (TRAP) activity. Briefly, after rising with water, slides were incubated for 20 

minutes with 0.1M Acetate Buffer (0.2M Sodium Acetate, 0.2M Acetic Acid, 50mM Sodium L-

tartrate dibasic dihydrate, pH 5.0) and then stained with a solution of 1 mg/ml Fast Red LB 

salt (Sigma-Aldrich, St. Louis, Missouri, USA) and 1 mg/ml naphthol AS-MX phosphate (Sigma-

Aldrich, St. Louis, Missouri, USA) in 0.1M acetate buffer for 1 hour at 37°C. After TRAP staining, 

nuclear counter staining was performed with Haematoxylin for 1 min at room temperature. 

TRAP-positive cells were quantified on 15 random fields per construct in 6 

constructs/condition (n=6 samples/group). Multinucleated TRAP+ cells in the fields were 

counted manually and the total number was normalized by the tissue area. 
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Human progenitor engraftment 

The presence of human cells was assessed by staining with a specific anti-human nuclei 

antibody. In the ectopic bone grafts, human cells were counted automatically in at least 15 

random fields (n=6 samples/group) by using ImageJ software. Quantification of the number 

of human cells in the rat calvaria defects was performed on complete images of the whole 

samples longitudinally divided in 5 standardized segments, in order to distinguish border, 

intermediate and center areas (Fig. 8B). Human cells were manually counted in each area and 

the number was normalized by the tissue area (n=4 samples/group). Proliferation and 

apoptosis of implanted human progenitor cells were assessed after 1 week in vivo by 

immunostaining for Ki67 and Cleaved-Caspase3 (Cas3), respectively, together with the anti-

human nuclei antibody. 15-20 random fields per sample (n=6 samples/group) were analyzed 

by manually counting the number of human cells that were also Ki67+ or Cas3+ in the field 

and normalizing it by the total number of human cells. Osteogenic differentiation of human 

progenitors was assessed in rat calvaria defects 4 weeks after in vivo implantation by 

immunostaining for human-specific Bone Sialoprotein (BSP). 

Statistics 

Results are expressed as the mean ± standard error of the mean (SEM). The significance of 

differences was assessed with the GraphPad Prism 7.03 software (GraphPad Software, San 

Diego, California, USA). The normal distribution of all data sets was tested by D’Agostino and 

Pearson or Shapiro–Wilk tests and, depending on the results, the significance of differences 

was determined with the parametric 1-way analysis of variance (ANOVA) followed by the 

Bonferroni test for multiple comparisons, or with the non-parametric Kruskal–Wallis test 

followed by Dunn’s post-test. P<0.05 was considered statistically significant. 
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Results 

TG-VEGF induces rapid and stable angiogenesis in osteogenic grafts 

In order to compare sustained and transient VEGF signaling, the factor was provided in 

osteogenic grafts at functionally equivalent doses, either as stable transgene expression from 

retrovirally transduced BMSC, or as recombinant protein cross-linked into the fibrin matrix 

(TG-VEGF). Human BMSC from 3 independent bone marrow donors were retrovirally 

transduced to express mouse VEGF linked to a truncated form of murine CD8a as a FACS-

detectable cell surface marker (VICD8-BMSC), as previously described [17] with >90% 

transduction efficiency. Production of mouse VEGF protein was quantified in vitro by ELISA 

and found to be 68.0±18.7 ng/106cells/day by transduced cells, whereas it was absent in naïve 

BMSC (0.7±0.3 ng/106cells/day). Based on previous studies of the dose-dependent outcomes 

of VEGF delivery in skeletal muscle by cell-based gene transfer [11, 19] and by fibrin-based 

protein delivery [15], it was determined that expression levels of about 60 ng/106 cells/day 

by transduced cells induce similarly normal and functional angiogenesis as a concentration of 

1 µg/ml of fibrin-bound TG-VEGF. 

Ectopic osteogenic grafts were therefore generated with naïve human BMSC embedded in 

fibrin hydrogels decorated with 1 µg/ml TG-VEGF or with VICD8 BMSC embedded in empty 

fibrin. Naïve BMSC were also combined with empty fibrin matrices as control. The mineral 

phase was provided by silicate-substituted hydroxy-apatite (HA) granules of 1-2mm size in all 

conditions (Fig. 1) 
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Figure 1. Study design for the ectopic model of bone formation. 

 

Graft vascularization was assessed by immunostaining for CD31 after 1, 4 and 8 weeks in 

vivo. After 1 week, blood vessels were only present in the periphery of the grafts in all 

conditions, whereas by 4 weeks the constructs were homogeneously vascularized. As shown 

in Fig. 2, both TG-VEGF and VICD8 cells increased graft vascularization at all time points 

compared to the controls. Quantification of vessel length density (VLD), i.e. the total vessel 

length per tissue area, showed that the increased vascular density induced by both VEGF 

conditions was stable over time and, after a further increase between 1 and 4 weeks, 

persisted essentially unchanged after 8 weeks (Fig. 2B-D). 
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Figure 2. (A) Immunostaining of endothelium (CD31, in red) and nuclei (DAPI, in blue) of constructs after 1, 4 and 

8 weeks of in vivo implantation; (B-D) Quantification of induced angiogenesis. VLD = vessel length density, 

expressed as millimeters of vessel length per square millimeter of tissue area (mm/mm2), in constructs after 1 

(B), 4 (C) and 8 (D) weeks of in vivo implantation (**=p<0.01, ***=p<0.001). Scale bar = 100 µm. 

 

TG-VEGF prevents bone tissue loss and enables mature bone tissue formation 

Bone formation was assessed by H&E staining. After 1 week in vivo (Fig. 3A, upper panels), 

fibrin was still abundantly present in the constructs of all conditions (F=Fibrin), with 

embedded cells (black arrows), and no bone tissue was present in any graft. After 4 weeks 

(Fig. 3A, middle panels), fibrin was essentially completely degraded and initial formation of 

dense collagenous matrix (DM=Dense Matrix) could be observed at the interface with HA 

granules (G=Granules) in the naïve and TG-VEGF conditions, but not in the constructs with 

VEGF-expressing BMSC. After 8 weeks (Fig. 3A bottom panels), frank bone tissue, 

characterized by a dense collagenous matrix with organized collagen fibers and the presence 

of osteocyte lacunae (B=Bone), could again be detected only with Naïve BMSC and TG-VEGF, 

but not in the VICD8 condition. Quantification of the area occupied by osteogenic matrix 
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showed that bone formation in the presence of TG-VEGF was as efficient as with Naïve BMSC 

alone, but was almost completely abolished with VEGF-expressing BMSC both after 4 weeks 

(Fig. 3B; Naïve=1.89±0.3%, TG-VEGF=1.30±0.2%, VICD8=0.14±0.04%, p<0.001 and p<0.05 vs 

VICD8) and after 8 weeks (Fig. 3C; Naïve=6.83±0.84%, TG-VEGF=4.91±0.85%, 

VICD8=0.46±0.15%, p<0.001 vs VICD8). 

 

Figure 3. (A) H&E staining of constructs harvested 1, 4 and 8 weeks after in vivo implantation. (B-C) 

Quantification of areas occupied by osteogenic matrix (expressed as % of construct area) after 4 (B) and 8 weeks 

(C). *=p<0.05, ***=p<0.001. Black arrows = embedded cells; F=Fibrin; G=Granules; DM=Dense Matrix; B=Bone. 

Scale bar = 100 µm. 
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The degree of bone maturation after 8 weeks was evaluated by Masson's trichrome 

staining, as defined by the presence of elastic fibers (Fig. 4A, in red). Quantification of the 

areas occupied by elastic fibers (Fig. 4B) showed a similar amount of mature bone in the Naive 

and TG-VEGF conditions (Naïve=1.88±0.4%, TG-VEGF=2.64±0.4%; p=n.s.), whereas the little 

amount of bone detectable in the VICD8 constructs was completely immature 

(VICD8=0.08±0.01%, p<0.001 vs. Naive and TG-VEGF). 

 

Figure 4. (A) Masson's trichrome staining of constructs 8 weeks after in vivo implantation (B=Bone tissue, in 

green; MB=Mature Bone with elastic fibers, in red). (B) Quantification of areas occupied by mature bone 

(expressed as % of total bone tissue; ***=p<0.001). Scale bar = 100 µm. 

 

TG-VEGF prevents excessive osteoclasts recruitment 

We previously shown that a mechanism by which sustained expression of VEGF by 

genetically modified BMSCs causes loss of bone tissue in osteogenic grafts is a significant 

increase in bone resorption by osteoclasts [8]. Therefore, osteoclast activity was evaluated by 

tartrate-resistant acid phosphatase (TRAP) staining. After 4 and 8 weeks, both naïve and TG-

VEGF constructs contained very few TRAP-positive cells (Fig. 5A, in red), which were visible in 

close proximity to the bone matrix or at the interface with the HA granules. In contrast, grafts 
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with VEGF-expressing BMSC contained a high density of TRAP-positive cells, usually in contact 

with the HA granules (Fig. 5A, right panels). 

Quantification of the density of multinucleated TRAP-positive cells (Fig 5B-C) showed that 

VEGF-expressing BMSC increased osteoclast recruitment by 2- to 3-fold compared to the 

naïve and TG-VEGF conditions, both after 4 and 8 weeks (4 weeks: Naïve=24.53±2.1, TG-

VEGF=36.34±2.0, VICD8=73.35±11.6 TRAP+ MNC/mm2, p<0.001; and 8 weeks: 

Naïve=23.44±1.9, TG-VEGF=37.73±1.9, VICD8=68.94±9.3 TRAP+ MNC/mm2, p<0.001). 

 

Figure 5. (A) Histochemical stain for TRAP activity (red) and nuclear counterstaining with hematoxylin (blue) of 

constructs harvested 4 and 8 weeks after in vivo implantation. (B-C) Quantification of TRAP+ multinucleated cells 

(TRAP+ MNC) after 4 (B) and 8 weeks (C), expressed as number of TRAP+ MNC/mm2 of tissue (**=p<0.01, 

***=p<0.001). Scale bar = 100 µm. 
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TG-VEGF preserves in vivo expansion of human progenitors 

Since bone formation depends on the balance between matrix deposition by progenitor-

derived osteoblasts and resorption by osteoclasts, we investigated the engraftment of the 

implanted human osteo-progenitors. Human cells were quantified both after 1 and 4 weeks 

by staining for a human-specific nuclear antigen (HuNu, red nuclei in Fig. 6A). After 1 week 

human cells were homogenously distributed within the graft and their density was similar in 

all conditions (Fig. 6B; Naïve=92.00±7.2 cells/field, TG-VEGF=91.15±7.6 cells/field, 

VICD8=94.84±17.3 cells/field; p=n.s.). After 4 weeks human cells had significantly expanded 

by about 3-fold in both the naïve and TG-VEGF conditions (Fig. 6C; Naïve=260.10±38.5 

cells/field, TG-VEGF=325.7±51.5 cells/field; p=n.s.), but did not increase in the constructs 

containing VEGF-expressing cells (VICD8=110.04±15.6 cells/field; p<0.05 vs Naïve and p<0.01 

vs TG-VEGF). Furthermore, human progenitors in the naïve and TG-VEGF constructs were 

found embedded within the dense matrix areas (Fig. 6A; DM) deposited at the surface of HA 

granules (G) and as bone lining cells (white arrows), whereas in the VICD8 grafts they 

appeared sparse and did not form a compact bone-depositing front. 
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Figure 6. (A) Immunostaining of human nuclei (HuNu, red), blood vessels (CD31, green), and nuclei (DAPI, blue) 

1 and 4 weeks after in vivo implantation; (B, C) quantification of human nuclei per microscopic field of view 

(*=p<0.05, **=p< 0.01). DM = Dense Matrix; G = Granules; White arrows = bone-lining cells. Scale bar = 200 µm 
 

Next, we asked whether the lack of human progenitor expansion in the VEGF-expressing 

constructs was due to decreased proliferation or increased cell death 1 week after 

implantation (Fig. 7). Human cells were specifically stained with an anti-human nuclei 

antibody (HuNu, in red), in combination with a proliferation marker (Ki67, in cyan in Fig. 7A) 

or with the apoptosis marker cleaved-Caspase3 (Cas3, in green in Fig. 7C). No significant 

difference in human progenitor proliferation was found between all conditions (Fig. 7B; 

Naïve=2.7±0.3%, TG-VEGF=3.6±0.2%, VICD=2.4±0.5%, p=n.s.). However, apoptosis was 

significantly increased in the VICD8 condition compared to both Naïve and TG-VEGF 

constructs (Fig. 7D; Naïve=3.7±0.6%, TG-VEGF=5.0±0.7%, VICD8=7.51.2%; p<0.05 vs both 

Naïve and TG-VEGF). 
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Figure 7. Quantification of human cell proliferation and apoptosis 1 week after in vivo implantation. (A) 

Immunostaining for human nuclei (HuNu, red), proliferating cells (KI67, cyan) and nuclei (DAPI, blue); (B) 

Quantification of proliferating human cells (%) (*=p<0.05); (C) Immunostaining for human nuclei (HuNu, red), 

apoptotic cells (Cas3, green) and nuclei (DAPI, blue); (D) Quantification of apoptotic human cells (%). 

Scale bar = 50 µm 

 

TG-VEGF promotes rapid vascularization and repair of critical bone defects 

We next investigated whether the ability of VEGF-decorated fibrin matrices to effectively 

couple angiogenesis and osteogenesis, shown above in an established small-size model of 

ectopic bone formation, could translate to improved repair of critical-size bone defects in an 

orthotopic setting, where insufficiently rapid vascularization of the central area of the defect 

is a key limitation to its repair. Therefore, osteogenic constructs incorporating human BMSC 

alone or in combination with 1 µg/ml TG-VEGF or VEGF-expressing BMSC were implanted into 

6-mm critical-size defects in rat calvaria (Fig. 8A). Vascularization of the constructs was 

assessed along the whole length of the defects, on sections of the central part corresponding 

to the largest diameter, as shown graphically on a representative H&E image in Fig. 8B. 

Immunostaining for rat CD31 showed that after 1 week in vivo initial spontaneous 

vascularization of the constructs was limited and started independently from the sides of the 

defect (surrounding bone) and from the overlying skin at the center of the defect, but not 



 
 

 118 

from the underlying meningeal layer (Fig. 8C, Naïve condition, white dotted areas). However, 

both VEGF conditions significantly accelerated vascular invasion of the constructs, more than 

doubling the vascularized area (Fig 8C-D; Naive=27.3±8.3% vs TG-VEGF=62.0±9.9% and 

VICD8=65.8±9.6%; p<0.05 for both vs Naive). Quantification of vessels length density (VLD) 

within the areas of vascular invasion showed that both VEGF conditions also similarly 

increased vascular density by about 3-fold compared to spontaneous vascular growth in Naïve 

conditions (Fig. 8C and 8E; Naive=2.4±0.5 mm/mm2 vs TG-VEGF=6.9±0.8 mm/mm2 and 

VICD8=6.4±1.0 mm/mm2; p<0.05 for both vs Naïve). 

  



 
 

 119 

 

Figure 8. (A) Study design for the orthotopic model of critical-size defect repair; (B) Representative H&E image 

across the larges diameter of a rat calvaria defect with the quantified 6-mm region of interest containing the 

implanted constructs; (C) Immunostaining of endothelium (CD31, in green) and nuclei (DAPI, in blue) in 

osteogenic constructs 1 week after in vivo implantation. The left panels show overviews of the whole defects, 

with areas invaded by vascular structures indicated by white dotted lines. Homogeneous green staining outside 

of these areas is caused by autofluorescence of the remaining fibrin; (D) Quantification of areas of vascular 

invasion 1 week after in vivo implantation, expressed as a percentage of the total construct area (%); (E) 

Quantification of vascular density (VLD = vessel length density) within the areas of invasion 1 week after in vivo 

implantation, expressed as millimeters of vessel length per square millimeter of tissue area (mm/mm2); 

*=p<0.05. Scale bars = 1 mm (left panels in C) and 100 µm (right panels in C). 
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The survival of seeded human BMSC was assessed by immunofluorescent staining 1 and 4 

weeks after implantation in 3 different standardized regions of interest along the defect, in 

order to distinguish a border, an intermediate and center part, as show in Fig. 9A. After 1 

week, the presence of TG-VEGF cross-linked into the fibrin greatly increased human cell 

survival throughout the defect compared with the naïve condition, between 2.6-fold (in the 

center) and 6.5-fold (at the border) whereas VEGF expression by the cells (VICD8) was less 

effective (Fig. 9B-C; Border: Naïve=36.5±17.2 human cells/mm2, TG-VEGF=237.4±26.1, 

VICD8=145.0±46.8, p<0.05 TG-VEGF vs Naïve; Intermediate: Naïve=69.9±16.8 human 

cells/mm2, TG-VEGF=284.2±18.4, VICD8=206.0±32.8, p<0.01 TG-VEGF vs Naïve and p<0.05 

VICD8 vs Naïve; Center: Naïve=94.9±26.1 human cells/mm2, TG-VEGF=252.0±45.2, 

VICD8=160.7±8.3, p<0.05 TG-VEGF vs Naïve). Interestingly, after 4 weeks human cells were 

essentially lost in the VICD8 condition, whereas they could still be found in both the naïve and 

TG-VEGF constructs (Fig. 9D). The human BMSC still present in both these conditions had 

undergone proper osteogenic differentiation, as demonstrated by their expression of human 

bone sialo-protein (hBSP; Fig. 9E). 
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Figure 9. (A) Representative H&E image across the larges diameter of a rat calvaria defect with the implanted 

constructs, showing the standardized areas (2x border, 2x intermediate and 1x center) that were separately 

quantified; (B) Quantification of human cell survival 1 week after in vivo implantation, expressed as number of 

human cells per square millimeter (human cells/mm2) of tissue area (*=p<0.05, **=p<0.01); (C, D) 

Immunostaining of human cells (HuNu, in red) and nuclei (DAPI, in blue) 1 (C) and 4 weeks (D) after in vivo 

implantation; (E) Immunostaining for human-Bone Sialoprotein (hBSP, green) and nuclei (DAPI, blue) 4 weeks 

after in vivo implantation. Scale bars: (C, D) = 200 µm, (E) = 50 µm. 
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Lastly, the efficiency of bone formation in the treated defects was assessed by micro-

computerized tomography of explanted calvaria after 4 weeks (micro-CT; Fig. 10A). 

Quantification of the calcified tissue inside the defects showed that transient provision of 

matrix-bound recombinant TG-VEGF significantly improved bone formation by about 2-fold 

compared to naïve BMSC alone, both in the center part of the defect and in the outer part in 

contact with the native calvaria (Fig. 10B). In contrast, sustained VEGF gene expression by 

VICD8 cells failed to improve bone formation despite the effective promotion of 

vascularization. The presence of actual bone tissue was confirmed by histological analysis 

with Masson-Trichrome staining (Fig. 10C-D). 
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Figure 10. (A) Micro-CT representative images of osteogenic grafts after 4 weeks of in vivo implantation in a rat 

calvaria defect. Gray areas = new bone tissue, white areas = HA granules; (B) Quantification of bone volume in 

the defects 4 weeks after in vivo implantation, measured by micro-CT and normalized by the naïve condition 

(% vs Naïve; *=p<0.05); (C-D) Masson's trichrome staining showing bone tissue (green) in the central area of the 

grafts (C) and in the outer area in contact with the native calvaria (D) 4 weeks after in vivo implantation. Yellow 

dashed lines indicate the edge of the defects. Scale bars: (A) = 1 mm; (C, D) = 200 µm. 
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Discussion 

Angiogenesis and osteogenesis are physiologically coupled processes that need to be 

coordinated for therapeutic regeneration of vascularized bone. VEGF is the master regulator 

of angiogenesis during bone development, but it also has the potential to paradoxically impair 

net bone formation when delivered therapeutically. Here we found that the timing of VEGF 

supply is key to its therapeutic potential. In fact, transient delivery of VEGF protein for less 

than 4 weeks, controlled through a highly tunable fibrin-based platform, was able to 

effectively stimulate vascularization of human BMSC osteogenic grafts without interfering 

with bone formation, whereas prolonged sustained expression led to bone loss. Efficient 

coupling of angiogenesis and osteogenesis by transient VEGF protein delivery translated into 

accelerated vascular invasion and significantly improved bone formation in the repair of 

critical-size calvaria defects. 

Rapid vascular ingrowth is a fundamental requirement to ensure cells survival in the core 

of a critical-size scaffold and the subsequent formation of healthy bone tissue. Upon VEGF 

stimulation, the process of blood vessels formation can be divided in two functional stages: 

1) vascular morphogenesis, i.e. the initial growth of new vessels from pre-existing ones, which 

is a rapid process and requires only a few days; and 2) vessel stabilization, which takes 3-4 

weeks and during which the newly formed vascular structures become independent of 

continued VEGF stimulation [7]. Therefore, VEGF signaling is only necessary for a duration of 

up to 4 weeks, beyond which newly formed vasculature persists indefinitely in the absence of 

further angiogenic stimulus [10, 11]. Consistently with these biological features, here we 

found that both TG-VEGF and VEGF-expressing cells effectively promoted the morphogenesis 

of new vessels within 1 week in vivo compared to the naïve conditions. Further, vessel density 
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remained stable between 4 and 8 weeks with TG-VEGF, despite the fact that fibrin and its 

associated recombinant VEGF had completely degraded by 4 weeks, showing that the newly 

induced vascularization had successfully stabilized and could persist indefinitely. 

It should also be considered that vessels invading osteogenic grafts may actually stabilize 

faster than in other tissues. In fact, vascular stabilization is mediated by endothelial 

association with support cells called pericytes and the establishment of a paracrine molecular 

cross-talk [7]. Multiple lines of evidence indicate that MSC share functional features of 

vascular pericytes, as MSC are found in the perivascular niche of virtually every organ, share 

common markers with pericytes (e.g. CD146) and can be activated upon injury to support 

tissue regeneration [20, 21]. Therefore, it is reasonable to speculate that the BMSC in the 

constructs, beyond providing the population of osteoprogenitors for bone formation, may 

also accelerate the stabilization of newly induced blood vessels, further reducing the period 

of time over which VEGF signaling needs to be sustained. Testing this hypothesis will require 

further experimental work, e.g. by reducing the concentration of TG-aprotinin, or omitting it 

altogether, in order to accelerate fibrin degradation and so further reduce the duration of 

VEGF stimulation. 

Osteogenesis, on the other hand, takes place with significantly slower kinetics than 

angiogenesis [12, 22]. In fact, vascular invasion precedes the initiation of osteogenic 

differentiation of progenitors and, as confirmed by the data reported here, while significant 

blood vessel in-growth took place within the first week of implantation, no signs of bone 

tissue formation could be detected at the same time. Only after 4 weeks, when angiogenesis 

is complete and new vessels have already stabilized and achieved VEGF-independence, an 

initial template of dense collagenous matrix was deposited on the surface of the 

hydroxyapatite granules by MSC-derived osteoblasts. This immature osteoid matrix required 
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several more weeks to develop into mature bone tissue by 8 weeks, characterized by the 

presence of organized lamellar structures, osteocytes embedded in their lacunae and elastic 

fibers. The clear difference in the kinetics of blood vessels growth and bone tissue formation 

in osteogenic grafts underlies the notion that the timing and duration of angiogenic 

stimulation by VEGF delivery carries significant therapeutic implications. 

If prolonged VEGF delivery is not necessary for efficient vascularization, it can actually have 

detrimental effects on bone tissue formation. In fact, we have previously found that 

continuous expression of VEGF by genetically modified human BMSCs can impair bone 

formation in osteogenic grafts by promoting osteoclast recruitment and unbalancing bone 

homeostasis towards excessive bone resorption [8]. VEGF signaling is crucial and required 

during bone development both in endochondral and in intramembranous ossification [13] 

and VEGF-receptors are expressed by various cells involved in the osteogenic process, such 

as osteoprogenitors, osteoblasts and osteoclasts [23, 24]. Therefore, the detrimental effects 

of sustained VEGF delivery on net bone formation may not be limited to increasing resorption 

and affect also bone anabolism. However, both previous evidence and the data reported here 

do not suggest a direct toxicity to the implanted osteoprogenitors by VEGF. In fact, VEGF 

transgene expression did not impair either BMSCs proliferation nor their osteogenic 

differentiation potential in vitro [17], and here we found that in small-size ectopic implants 

human BMSCs engraftment was not impaired after 1 week of in vivo implantation and 

exposure to VEGF, regardless of its delivery method (Fig. 6B). 

On the other hand, sustained VEGF expression impaired osteoprogenitor expansion by 4 

weeks, while transient delivery did not (Fig. 6C). This suggests an indirect effect, requiring 

longer time to develop, and in fact it has been found to correlate with the VEGF-induced 

stimulation of osteoclast recruitment, which is not sustained in the conditions of transient 



 
 

 127 

VEGF (Fig. 5). It has been described that osteoclast differentiation requires a combination of 

paracrine signals and cell-to cell contacts with stromal cells, osteoblasts and osteocytes at the 

site of bone remodeling [25]. During active bone resorption, osteoclasts produce coupling 

signals, which temporarily impair osteoblasts differentiation [26]. After osteoclasts erode the 

matrix they normally undergo apoptosis, and osteoblasts are recruited and can deposit new 

bone matrix [27]. On the other hand, the majority of osteoblasts assembled at the remodeling 

site also die, while only a small percentage becomes quiescent as bone lining cells or remains 

entrapped within the mineralized matrix as osteocytes [28]. Our data suggest that, in 

conditions of prolonged VEGF overexpression, osteoclast recruitment is uncoupled from its 

physiological regulation and driven to sustained activity. This provides a likely mechanism for 

the observed drop in human osteoprogenitors in small ectopic grafts between 1 and 4 weeks 

after in vivo implantation specifically in the sustained VEGF condition, through unregulated 

osteoclast activity both impairing further bone deposition and driving MSC-derived 

osteoblasts towards apoptosis (Fig. 7B). Transient delivery of VEGF protein, instead, avoids 

sustained perturbation of osteoclast activity and allows the establishment of the physiological 

coupling between osteoblast and osteoclast activity after the first few weeks. 

Results in the small-size ectopic model show that increased vascularization by VEGF 

protein delivery did not further improve progenitor survival and expansion compared to naive 

conditions. In contrast, in the critical-size calvaria defects human cells survival was already 

compromised after 1 week when VEGF was not provided (Fig. 9B). This difference highlights 

the importance of early vascularization in clinically relevant conditions. In fact, small-size 

ectopic models allow the study of the intrinsic bone-forming potential of the implanted cells, 

but do not provide critical vascularization conditions for progenitor survival and engraftment 

[29]. 
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In summary, these results show that the therapeutic effects of VEGF delivery for the 

regeneration of vascularized bone are time-dependent: 1) VEGF is beneficial over the first 3-

4 weeks to accelerate early vascular ingrowth in osteogenic grafts, improving both progenitor 

survival and bone formation in critical-size defects; but 2) is detrimental if sustained beyond 

this duration, through excessive osteoclast activation leading to both progenitor death and 

bone loss. 

These findings bear translational relevance for the design of effective therapeutic 

strategies to generate vascularized osteogenic grafts. In particular we showed that by 

controlling the kinetics of VEGF delivery it is possible to maintain the physiological coupling 

of angiogenesis and osteogenesis that is required for effective bone regeneration, by first 

stimulating rapid vascular ingrowth and osteogenic progenitor survival, and then avoiding 

detrimental VEGF effects on excessive bone resorption. From this perspective, fibrin matrices 

decorated with engineered VEGF protein provide a highly tunable and readily translatable 

platform to generate a controlled regenerative environment, which can mimic the ECM 

proprieties, present growth factors in a physiological manner and improve tissue 

regeneration [14]. 
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Introduction 

Bone has the intrinsic capacity to heal in response to injury, as well as during skeletal 

development or remodeling in adult life. In physiological conditions, bone repair is a rapid, 

well-orchestrated and an efficient process that involves endogenous regenerative potentials 

to restore the pre-exiting characteristics and function. However, this process can be 

compromised and may not be sufficient to repair large tissue losses due to trauma, surgery 

or other clinical conditions [1], and the treatment of these large bone defects is still a 

significant challenge in clinical practice. Autologous bone transplantation is the current “gold 

standard” approach to treat critical-size bone defects, but it is associated with several 

limitations, including chronic pain at the harvest site, neurovascular injury, structural 

weakness and limited amount of autologous bone available [2]. 

Tissue-engineered bone grafts are a promising strategy for the treatment of critical-size 

bone defects. However, the success of these constructs critically depends on rapid 

vascularization by host blood vessels. In fact, lack of a functional vasculature exposes cells to 

hypoxia and insufficient nutrients supply and full blood vessels ingrowth may require weeks, 

until it is achieved. This can lead to loss of cell functionality, impairment of differentiation and 

also to cell death [3]. Furthermore, the processes of osteogenesis and angiogenesis are 

biologically coupled: blood vessels provide nutrients, minerals and allow the recruitment of 

endogenous osteoprogenitors and immune cells, and also serve as structural templates for 

bone development [4]. Due to their angiocrine functions, blood vessels also provide paracrine 

signals that coordinate bone development and regeneration, as well as osteoprogenitor 

differentiation and behaviour [5]. 
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An attractive strategy to drive vascular growth into osteogenic grafts is the supply of 

specific signals that regulate physiological angiogenesis. Vascular Endothelial Growth Factor 

(VEGF) is the master regulator of vascular growth both in normal and pathological 

angiogenesis and is therefore the key target for inducing the therapeutic growth of new blood 

vessels [6]. 

Several lines of evidence indicate that VEGF levels of expression must be carefully 

regulated during osteogenesis in vivo. In fact, while physiological levels are required to 

maintain bone homeostasis, too little VEGF can impair osteoblast differentiation and bone 

deposition, whereas too much can stimulate excessive bone resorption and likewise lead to 

bone loss (reviewed in [7]). Therefore, it is of great interest to understand the dose-

dependent effects of VEGF delivery on both angiogenesis and osteogenesis for the 

therapeutic regeneration of vascularized bone. However, this line of investigation is 

challenging because of the difficulty of precisely controlling the amount of VEGF available in 

developing osteogenic grafts (reviewed in [8]). Genetic modification of progenitors leads to 

sustained and uncontrolled overexpression of heterogenous levels within the cell 

populations. On the other hand, the recombinant VEGF protein has a very short half-life in 

vivo and, while different biomaterial-based approaches have been developed to allow 

sustained release of angiogenic factors, the kinetics of release are uneven over time and their 

application to an osteogenic environment remains challenging. Furthermore, the 

physiological presentation of VEGF to its target cells requires the interaction with extracellular 

matrix, which orchestrates its activity by regulating its local concentration, bioavailability and 

signalling  [9]. 

Therefore, here we employed a protein engineering approach to decorate fibrin matrices 

with homogeneous concentrations of VEGF, in order to both control its dose and recapitulate 



 
 

 136 

its physiological matrix-bound presentation in osteogenic grafts. An engineered version of 

mouse VEGF164 was fused to the octapeptide substrate sequence for the transglutaminase 

coagulation Factor XIII (TG-VEGF), whereby upon cross-linking of fibrinogen monomers into a 

fibrin hydrogel, TG-VEGF is covalently linked to the fibrin network. The degradation rate of 

the fibrin matrix in vivo is further controlled by also incorporating a TG-version of the plasmin 

inhibitor aprotinin. This optimized platform is highly tunable and allows precise control over 

the dose of VEGF presented to endothelial cells invading the fibrin matrix, while ensuring a 

duration of about 4 weeks in vivo [10]. 

Taking advantage of this unique platform to engineer a specific signalling 

microenvironment within osteogenic grafts, we investigated the role of VEGF dose in 

regulating the effective coupling of angiogenesis and osteogenesis for the therapeutic 

regeneration of vascularized bone. 
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Materials and methods 

BMSC isolation and culture 

Human primary bone marrow mesenchymal stromal cells (BMSC) were isolated from 

marrow aspirates. The aspirates were obtained from the iliac crest of healthy donors during 

routine orthopaedic surgical procedures according to established protocols, after informed 

consent by the patients and following protocol approval by the local ethical committee (EKBB, 

Ref. 78/07). Cells were isolated and cultured as described [11, 12]. Briefly, after 

centrifugation, the cell pellet was washed in PBS (GibcoTM, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), resuspended in α-MEM medium (GibcoTM, Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) containing 10% bovine serum (HyClone, South Logan, Utah, 

USA), 1mM Sodium Pyruvate (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA), 10mM HEPES Buffer Solution (GibcoTM, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) and 5 ng/ml FGF-2 (R&D System Minneapolis, Minnesota, USA) and 

plated at a density of 105 nucleated cells/cm2. BMSC were cultured in 5% CO2 at 37°C. 

Generation and in vivo implantation of osteogenic constructs 

Osteogenic constructs were prepared as described above in Chapter 2 (Burger and Grosso 

et al., manuscript submitted). Briefly, fibrin matrices were decorated with recombinant VEGF 

engineered with a transglutaminase substrate sequence (TG-VEGF) to allow cross-linking into 

fibrin hydrogels. Fibrin gels were prepared by mixing 25 mg/ml human fibrinogen 

(plasminogen, von Willebrand Factor-, and fibronectin-depleted; Milan Analytica AG, 

Rehinfelden, Switzerland), 3 U/mL factor XIIIa (CSL Behring, King of Prussia, Pennsylvania, 

USA), and 6 U/ml thrombin (Sigma-Aldrich, St. Louis, Missouri, USA) with 2.5 mM Ca2+ in 4-

(2-hydroxyethyl)-1- piperazineethanesulfonic acid (Hepes, Lonza, Basel, Switzerland). To 
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control fibrin degradation in vivo a TG-version of the plasminogen inhibitor Aprotinin (TG-

Aprotinin) was also incorporated at 51 µg/ml. 

Osteogenic grafts were prepared with 1x106 human BMSC and hydroxyapatite granules in 

a fibrin hydrogel containing different doses of TG-VEGF (0.1, 1 and 100 µg/ml) and implanted 

subcutaneously in nude mice (CD1-Foxn1nu, Charles-River, Sulzfeld, Germany). Animals were 

treated in agreement with Swiss legislation and according to a protocol approved by the 

Veterinary Office of Canton Basel-Stadt (permission #1797). Naïve BMSCs were also combined 

with fibrin matrices with no TG-VEGF as controls. Six constructs were implanted for each 

condition (n=6-9 samples/group), generated with cells from 3 independent donors (2-3 

replicates/donor). After 1, 4 and 8 weeks, mice were sacrificed by inhalation of CO2 and 

constructs were explanted. 

Histological processing and immunofluorescence tissue staining 

Explanted constructs were washed with PBS and fixed overnight at +4°C with freshly 

prepared 1% paraformaldehyde (Sigma-Aldrich, St. Louis, Missouri, USA) in PBS. 

Subsequently, the samples were decalcified in a PBS-based solution containing 7% w/v EDTA 

(0.5M, pH 8, Sigma-Aldrich, St. Louis, Missouri, USA) and 10% w/v sucrose (Sigma-Aldrich, St. 

Louis, Missouri, USA) and incubated at 37°C on an orbital shaker. The solution was renewed 

daily for about 20 days, until the samples were fully decalcified, as estimated by the degree 

of sample stiffness. Finally, the samples were embedded in OCT compound (CellPath LTD, 

Newtown, UK), frozen in freezing 2-methylbutane (isopentane) (Sigma-Aldrich, St. Louis, 

Missouri, USA) and 10 µm-thick sections were obtained with a cryostat. 

Immunofluorescence staining was performed with the following primary antibodies and 

dilutions: rat anti-mouse CD31 (clone MEC 13.3, BD Bioscience, San Jose, California, USA) at 
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1:100;  mouse anti-Human nuclei (clone 235-1, Merk Millipore, Darmstadt, Germany) at 

1:200; rabbit anti-Ki67 (abcam, Cambridge, UK) at 1:100; rabbit anti-Cleaved Caspase 3 

(Asp175; Cell Signaling Technology, Danvers, Massachusetts, USA) at 1:200; mouse anti-

human BSPII (Clone LFMb-24,  Santa Cruz Biotechnology, California, USA) at 1:50; rabbit anti-

mouse BSPII (Clone M-154, Santa Cruz Biotechnology, California, USA) at 1:50. Fluorescently 

labeled secondary antibodies (Invitrogen, Thermo Fisher Scientific, Waltham, Massachusset, 

USA) were used at 1:200. Mouse-on-mouse (M.O.M) kit (Vector Laboratories, Inc., 

Burlingame, California, USA) was used when primary mouse antibodies were applied. 

Fluorescence images were acquired with an Olympus BX63 microscope (Olympus, 

Münster, Germany), a Nikon Ti2 Eclipse (Nikon, Tokyo, Japan) and with 40x objectives on a 

Carl Zeiss LSM710 3-laser scanning confocal microscope (Carl Zeiss, Oberkochen, Germany). 

All image measurements were performed with cellSens software (Olympus, Münster, 

Germany), NIS-Elements (Nikon, Tokyo, Japan) and FIJI software (ImageJ, http://fiji.sc/Fiji). 

Angiogenesis 

Invasion of osteogenic constructs by blood vessels, as well as vascular density were 

assessed after 1 week in vivo by immunostaining for CD31. Complete images of whole sections 

from the central part of each sample were acquired (n=6 samples/group) and the area of 

invasion was measured by tracing the area occupied by blood vessels (CD31+ structures) and 

expressed as percentage of the total graft area. To quantify vessel density at week 1, at least 

15 images were acquired per sample within the invaded areas (n=6 samples/group) and vessel 

length density (VLD) was measured tracing the total length of vessels in the fields and by 

normalizing it to the field area (mm/mm2). Total vessels length (mm) was obtained 

multiplying the measured VLD by the area invaded by blood vessels. VLD at 4 and 8 weeks 



 
 

 140 

was quantified on 15 randomly acquired images, covering all the area of the tissue section, 

since constructs were completely invaded by these time-points. 

Proliferation and apoptosis 

Proliferation and apoptosis of implanted human progenitor cells were quantified after 1 

week in vivo by immunostaining for Ki67 or Cleaved-Caspase3, respectively, together with 

anti-Human nuclei. Images of whole sections for each condition (n=6 samples/group) were 

divided in three concentric layers, each spanning a depth of 500 µm from the external surface, 

and the remaining central part was considered the core (Fig. 3A). Ki67+ or Caspase3+ human 

cells were manually counted in 6-8 fields of 300 µm2-area within each layer and expressed as 

percentage of the total number of human cells in the field. 

Bone formation 

Bone tissue was detected by Masson’s trichrome staining (Réactifs RAL, Martillac, France), 

performed according to manufacturer’s instructions. Ten whole-section reconstructions per 

sample (n=6 samples/group) were acquired with transmitted light and bone tissue was 

quantified tracing the area occupied by mineralized matrix (dark green staining) and 

normalizing it by the total area of the section. In addition, the presence of mature bone (red 

staining) matrix was measured and normalized by the total amount of bone. 

Osteoclast detection 

In order to detect osteoclasts, sections were stained for tartrate-resistant acid 

phosphatase (TRAP) activity. Briefly, after rinsing with water, slides were incubated for 20 

minutes with 0.1M Acetate Buffer (0.2M Sodium Acetate, 0.2M Acetic Acid, 50mM Sodium L-

tartrate dibasic dihydrate, pH 5.0) and then stained with 1 mg/ml of Fast Red LB salt (Sigma-

Aldrich, St. Louis, Missouri, USA) and 1 mg/ml of naphtol AS-MX phosphate (Sigma-Aldrich, 
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St. Louis, Missouri, USA) dissolved in 0.1M acetate buffer for 1 hour at 37°C. After TRAP 

staining, nuclear counter staining was performed with Haematoxylin for 1 min at room 

temperature. TRAP-positive cells were quantified on 15 randomly-chosen fields per construct 

in 6 constructs/condition (n=6 samples/group). Multinucleated TRAP+ cells in the fields were 

counted manually and the total number was normalized by the field area. 

Quantification of bone sialoprotein II (BSPII) 

To quantify the amount of human BSP, immunofluorescence staining was performed and 

5-7 random fields (n=6 samples/group) were acquired per each condition. The amount of 

human BSP was quantified using a custom-made macro in FIJI software. Briefly, a region of 

interest (ROI) was traced, thresholding was applied to the human BSP channel and the 

number of pixels above the threshold was normalized by the total number of the pixels of the 

ROI. The number of human cells (detected by immunofluorescence staining for an anti-human 

nuclei antibody) was quantified automatically on a whole section per each sample (n=6 

samples/group) using FIJI software and normalized by the tissue area. 

Quantitative real-time PCR 

For RNA extraction from osteogenic grafts, constructs were immediately frozen in liquid 

nitrogen after harvesting (n=8-10 samples/group). Tissues were disrupted and homogenized 

using a Qiagen Tissue Lyser (Qiagen, Basel, Switzerland) in 1 ml TRIzol Reagent (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) for every 100 mg of tissue. Total RNA from lysed 

tissues was isolated with a RiboPure RNA purification kit (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) according to manufacturer’s instruction. Total RNA from in vitro-

cultured human BMSC (n=6, from 3 independent donor) was isolated with a Quick-RNA 
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Miniprep plus kit (Zymo Research Europe GbmH, Freiburg im Breisgau, Germany) according 

to manufacturer’s instruction. 

RNA from tissues and human BMSC was reverse-transcribed into cDNA with the 

SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). Quantitative Real-Time PCR (qRT-PCR) was performed on an ABI 7300 Real-Time PCR 

system (Applied Biosystems, Foster City, California, USA). Expression of genes of interest was 

determined using the following human-specific TaqMan gene expression assays (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA): Runx2 (Hs01047973_m1); SP7/Osterix 

(Hs01866874_s1); BSP (Hs00913377_m1); BGLAP/Osteocalcin (Hs01587814_g1). Reactions 

were performed in duplicate for each template, and normalized to expression of the GAPDH 

housekeeping gene (Hs02786624_g1). 

Statistics 

Data are presented as mean ± standard error of the mean (SEM). The significance of 

differences was assessed with the GraphPad Prism 8 software (GraphPad Software, San 

Diego, California, USA). The normal distribution of all data sets was tested and, depending on 

the results, multiple comparisons were performed with the parametric one-way analysis of 

variance (ANOVA) followed by the Bonferroni test, or with the nonparametric Kruskal–Wallis 

test followed by Dunn's post-test. Percentage of proliferating and dying human cells were 

first normalized by log2-transformation and then analyzed by one-way ANOVA followed by 

Bonferroni test for multiple comparisons. Differences were considered statistically significant 

if p<0.05. 
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Results 

Increasing VEGF doses impair rapid vascular invasion and determine the distribution of 

vascular growth 

Vascularization of the constructs by host blood vessels needs to occur rapidly within the 

first week after in vivo implantation to ensure survival of the implanted progenitor cells. 

Therefore, osteogenic constructs were harvested after 1 week in vivo and tissue sections were 

immunostained for CD31 to assess vascular invasion. Reconstructions of whole construct 

sections were acquired under fluorescent light (Fig. 1A) and areas invaded by blood vessels 

were traced according to the presence of CD31 staining (in yellow in Fig. 1A) and quantified. 

As expected, blood vessel growth started from the surrounding tissue and remained confined 

at the periphery of the control constructs (Naïve), while significantly larger areas of the grafts 

containing 0.1 µg/ml of TG-VEGF were already invaded by blood vessels. Surprisingly, higher 

doses of TG-VEGF not only did not further increase vascular invasion, but actually prevented 

it, as invaded areas were similar to the control condition with no VEGF at all (Fig. 1A). In fact, 

quantifications showed that while 0.1 µg/ml of TG-VEGF dose accelerated vascular invasion 

to reach about 30% of the total graft area in the first week (Fig. 1B; TG-VEGF 0.1=24.9±4.8% 

vs Naïve=9.5±1.9%, p<0.05), increasing TG-VEGF doses did not improve vascular invasion 

compared to the Naïve condition (TG-VEGF 1=10.1±2.7%, TG-VEGF 10=10.5±3.1%, TG-VEGF 

100=8.2±2.6%; p=n.s.). 
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Figure 1. (A) Reconstruction of graft sections under fluorescent light to evidence the areas of blood vessel growth 

(in yellow); (B) Quantification of the areas invaded by blood vessels. (*=p<0.05). Scale bar = 500 µm. 

 

In order to determine whether increasing TG-VEGF doses actually impaired vascular 

growth or just vessel migration into the constructs, vascular density was assessed within the 

invaded areas after immunostaining for CD31 (Fig. 2A) by quantification of vessel length 

density (VLD), defined as millimeters of vessel length per square millimeter of tissue area (Fig. 

2B). Interestingly, 0.1 µg/ml of TG-VEGF did not increase VLD compared to controls, whereas 

higher doses progressively increased vascular density within the invaded areas 

(Naïve=8.2±0.9 mm/mm2, TG-VEGF 0.1=7.8±0.6 mm/mm2, TG-VEGF 1=11.5±2.6 mm/mm2, 

TG-VEGF 10=23.2±3.9 mm/mm2, TG-VEGF 100=35.2±7.2 mm/mm2). Since the area of vascular 

invasion and the vessel density within those areas appeared to be inversely regulated by TG-

VEGF dose, the total amount of vascular growth was measured by quantifying the total vessel 

length in each construct, i.e. VLD in each area of invasion multiplied by the surface of the area 

itself. This quantification showed that all TG-VEGF doses stimulated vascular growth within 
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the constructs without significant differences (Fig. 2C) (Naïve=13.0±2.5 mm, TG-VEGF 

0.1=25.0±3.7 mm, TG-VEGF 1=17.7±2.9 mm, TG-VEGF 10=37.4±10.1 mm, TG-VEGF 

100=30.7±6.3 mm; p=n.s.). Therefore, these results suggest that VEGF dose determined how 

the induced vascular growth distributes within the construct, with a low dose favoring rapid 

ingrowth while maintaining density similar to controls, and higher doses slowing effective 

ingrowth, thereby increasing vessel density in the periphery. 

 

Figure 2. (A) Immunostaining of endothelium (CD31, in red) and nuclei (DAPI, in blue) of areas invaded by blood 

vessels after 1 week of in vivo implantation; (B) quantification of induced angiogenesis, after 1 week in vivo, 

expressed as VLD (vessel length density), calculated as millimeters of vessel length per square millimeter of tissue 

area (mm/mm2); (C) quantification of total vessel length within the invaded areas, expressed as mm. (*=p<0.05, 

**=p<0.01). Scale bar = 100 µm. 

 

Only a low TG-VEGF dose promotes human progenitor proliferation and survival down to 

the core 

To investigate the functional effects of the rapid vascular invasion provided by a low dose 

(0.1 µg/ml) of TG-VEGF, proliferation and apoptosis of the implanted human cells were 

analyzed at different levels of depth inside the graft, by arbitrarily designing four concentric 

areas: 3 layers each spanning a depth of 500 µm and a the central core of about 1 mm radius 

(Fig. 3A). Tissue sections were immunostained with an antibody that specifically recognizes 
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human cell nuclei (HuNu), in combination with a marker for proliferation (Ki67) or apoptosis 

(Cleaved-Caspase3, Cas3), as exemplified in Figure 3B and 3C, and human cells positive for 

either marker were counted in each layer for every condition. A clear trend of decreasing 

proliferation was observed at increasing depths towards the centre of the graft in each 

condition, with the notable exception of the 0.1 ug/ml dose of TG-VEGF, which significantly 

increased the proportion of proliferating human progenitors in each layer compared to all 

other conditions (Fig. 3D). Interestingly, even deep inside the core, grafts containing 0.1 µg/ml 

of TG-VEGF enabled human progenitors to proliferate similarly to the middle layer of all other 

conditions (TG-VEGF 0.1 = 2.0±0.4% Ki67+ human cells vs 1-2% for all other conditions in the 

middle layer), despite being about 1 mm deeper (Core depth = 1.5-2.5 mm; Middle layer 

depth = 0.5-1 mm). 

Conversely, quantification of Cas3+ human cells showed a clear trend of increasing 

apoptosis, for each condition, from the surface towards the core of the graft (Fig. 3E). While 

no significant difference between the conditions was observed in the outer layer of the grafts, 

only 0.1 µg/ml of TG-VEGF significantly promoted human cells survival in all deeper layers 

down to the core, never exceeding the frequency of apoptotic cells of the outer layer (TG-

VEGF 0.1 Core = 3.8±0.7% Cas3+ human cells vs 2-3% for all other conditions in the outer 

layer). 
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Figure 3.  (A) Reconstruction of graft sections under fluorescent light (layer subdivision in yellow); (B) Example of 

immunostaining of human nuclei (HuNu, in red), proliferating cells (Ki67, also in the nucleus, in green) and all 

nuclei (DAPI, in blue) of constructs (representative picture of the outer layer of TG-VEGF 0.1 condition) after 1 

week of in vivo implantation; (C) Immunostaining of human nuclei (HuNu, in red), dying cells (CAS3, also in the 

nucleus, in green) and all nuclei (DAPI, in blue) of constructs (representative picture of the middle layer of TG-

VEGF 10 condition) after 1 week of in vivo implantation (D) Quantification of proliferating human cells (%) in 

each layer (*=p<0.05). (E) Quantification of dying human cells (%) in each layer (*=p<0.05, **=p<0.01, 

***=p<0.001). (A) Scale bar = 500 µm; (B, C) Scale bar = 50 µm. 

 

TG-VEGF dose-dependently increases steady-state vascular density 

Four weeks after in vivo implantation constructs were completely invaded by blood vessels 

in all conditions. Vascularization was still increased by increasing TG-VEGF doses as shown by 

the presence of more CD31+ structures (Fig. 4A) compared to the constructs containing only 

Naïve cells. Quantification of vessel length density (Fig. 4A-B), showed that global vascular 

density was progressively increased by increasing TG-VEGF doses starting from 1 μg/ml 

compared to the Naïve condition (Naïve =1.3±0.1 mm/mm2, TG-VEGF 0.1=1.9±0.1 mm/mm2, 

TG-VEGF 1=2.2±0.1 mm/mm2 p<0.001; TG-VEGF 10=3.7±0.2 mm/mm2 p<0.001; 
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TG- VEGF 100=5.8±0.3 mm/mm2 p<0.001). After 8 weeks, vascular density remained similar 

to what was observed at the 4 week time-point (Fig. 4C-D; Naïve=1.63±0.1 mm/mm2, TG-

VEGF 0.1=1.6±0.1 mm/mm2, TG-VEGF 1=2.5±0.1 mm/mm2 p<0.001; TG-VEGF 10=2.5±0.1 

mm/mm2 p<0.001; TG-VEGF 100=5.0±0.3 mm/mm2 p<0.001). These results show that the 

steady-state had been reached by 4 weeks and the induced vasculature was stable. 

 

Figure 4. Immunostaining of endothelium (CD31, in red) and nuclei (DAPI, in blue) of constructs after 4 (A) and 8 

(C) weeks of in vivo implantation; Quantification of vessel length density (VLD), expressed as millimeters of vessel 

length per square millimeter of tissue area (mm/mm2) after 4 (B) and 8 (D) weeks of in vivo implantation 

(***=p<0.001). Scale bar = 100 μm. 
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TG-VEGF dose-dependently impairs bone tissue formation 

Bone matrix deposition was assessed with Masson’s trichrome staining, which shows the 

presence of compact collagen fibers in green and of elastic fibers in red [11]. After 4 weeks in 

vivo, fibrin was almost completely degraded and initial formation of a dense collagenous 

matrix could be observed at the interface with the hydroxyapatite granules (dark green stain 

in Fig. 5A). However, grafts with TG-VEGF doses higher than 1 µg/ml contained almost only 

fibrous tissue. Quantification of the areas occupied by dense collagenous matrix (Fig. 5B) 

showed that only 0.1 µg/ml TG-VEGF dose supported matrix deposition as efficiently as in the 

Naïve condition (Naïve=1.2±0.2% and TG-VEGF 0.1=1.0±0.2%; p=n.s.). In constructs 

containing higher TG-VEGF doses, instead, dense matrix deposition was progressively 

impaired (TG-VEGF 1=0.6±0.1 %, TG-VEGF 10=0.1±0.1%, TG-VEGF 100=0.04±0.0%; p<0.05 vs 

Naïve and TG-VEGF 0.1). 

 

Figure 5. (A) Representative images of Masson's trichrome staining of constructs 4 weeks after in vivo 

implantation (dense collagenous tissue in green). (B) Quantification of areas occupied by dense collagenous 

matrix (expressed as % of construct area; *=p<0.05). Scale bar = 200 µm. 

 

After 8 weeks, frank bone tissue formation could be observed, characterized by dense 

collagenous matrix with organized collagen fibers and the presence of osteocyte lacunae 
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(Fig. 6A). Quantification of bone matrix showed that bone formation was severely and dose-

dependently impaired by TG-VEGF doses higher that 1 µg/ml, whereas the 0.1 µg/ml dose 

supported bone tissue formation as efficiently as in the Naïve condition (Fig. 6B: 

Naïve=8.1±0.6%, TG-VEGF 0.1=8.5±0.8%, TG-VEGF 1=3.3±0.3%, TG-VEGF 10=1.7±0.4%, 

TG VEGF 100=0.3±0.1%; p<0.001 for Naïve and TG-VEGF 0.1 vs all other conditions). 

Masson’s trichrome staining also allows the evaluation of the degree of maturation of 

bone tissue, characterized by the deposition of elastic fibers and detected by a red staining. 

Mature bone tissue was mainly found in constructs containing Naïve MSC alone or in 

combination with 0.1 µg/ml of TG-VEGF (Fig. 6A). Interestingly, quantification of the areas 

occupied by elastic fibers (Fig. 6C, expressed as percentage of total bone tissue formed) 

showed that that the 0.1 µg/ml TG-VEGF dose could significantly increase the amount of 

mature bone tissue compared to all other conditions (TG-VEGF 0.1=5.4±1.4% vs 

Naïve=2.5±1.1%, TG-VEGF 1=1.4±0.5%, TG-VEGF 10=1.3±0.9%, TG-VEGF 100=0.7±0.4%; 

p<0.05). 

 

Figure 6. (A) Representative pictures of Masson's trichrome staining of constructs 8 weeks after in vivo 

implantation (bone tissue in green, elastic fibers in red); (B) Quantification of areas occupied by bone tissue 

(expressed as % of construct area); ***=p<0.001; (C) Quantification of areas occupied by mature bone (expressed 

as % of total bone tissue); *=p<0.05. Scale bar = 200 µm. 
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TG-VEGF dose-dependently stimulates bone resorption 

The amount of bone tissue depends on the balance between deposition by osteoblasts 

and resorption by osteoclasts. Therefore, osteoclast recruitment was assessed by staining for 

the osteoclast-specific enzyme tartrate-resistant acid phosphatase (TRAP). Few TRAP-positive 

cells were detected in the constructs with Naïve BMSC alone or in combination with 0.1 µg/ml 

TG-VEGF, in close proximity to the bone matrix or at the interface with the hydroxyapatite 

granules, both at 4 and 8 weeks (Fig. 7A and 7C). However, constructs containing higher TG-

VEGF doses showed a greater density of TRAP-positive cells at both time-points. 

Quantification of the number of TRAP+ multinucleated cells per tissue area (TRAP+ MNC/mm2) 

in the different conditions showed that TG-VEGF doses of 1 µg/ml or higher significantly 

increased osteoclast recruitment compared to the Naïve conditions at both time points (Fig. 

7B and 7D; 4 weeks: Naïve=15.3±1.6 TRAP+ MNC/mm2, TG-VEGF 1=30.0±2.7, 

TG- VEGF 10=37.4±2.5, TG-VEGF 100=41.0±4.6; 8 weeks: Naïve=23.4±1.7 TRAP+ MNC/mm2, 

TG-VEGF 1=40.0±2.7, TG-VEGF 10=37.4±3.2, TG-VEGF 100=44.6±3.8). Constructs containing 

0.1 µg/ml of TG-VEGF, instead, did not increase osteoclast recruitment compared to BMSC 

alone (TG-VEGF 0.1=17.1±2.0 at 4 weeks and 24.2±1.9 at 8 weeks, p=n.s. vs Naive). 
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Figure 7. (A, C) Histochemical stain for TRAP activity (red) and nuclear counterstaining with hematoxylin (blue) 

of constructs 4 (A) and 8 (C) weeks after in vivo implantation; (B, D) Quantification of Trap+ multinucleated cells 

(MNC) per tissue area (mm2) after 4 (C) and 8 (D) weeks; **=p<0.01, ***=p<0.001. Scale bar = 200 µm 

  



 
 

 153 

TG-VEGF dose-dependently impairs osteogenic differentiation of human progenitors in 

vivo 

In order to evaluate the VEGF dose-dependent effects on bone homeostasis, we also 

investigated its influence on osteogenic differentiation of the implanted human BMSC. Since 

bone differentiation is a dynamic process and the first appearance of bony matrix in vivo takes 

about 4 weeks, expression of human-specific osteogenic genes was measured on samples 

harvested 1 and 4 weeks after in vivo implantation and compared to their expression in the 

undifferentiated BMSCs cultered in vitro, right before implantation. As shown in Fig. 8A, after 

1 week (black dots), the expression of human Runx2, Osterix (OSX), Bone sialoprotein (BSP) 

and Osteocalcin (OCN) in all conditions was similar to that of undifferentiated cells in vitro 

(dotted line, gray area), indicating that ostegenic differentiation had not started yet. After 4 

weeks (red dots), all osteogenic genes were strongly upregulated in constructs containg BMSC 

alone as well as 0.1 µg/ml of TG-VEGF, indicating robust differentiation. However, in 

constructs containing 100 µg/ml of TG-VEGF, which displayed reduced bone mass, the 

upregulation of osteogenic gene expression was significantly impaired compared to the other 

conditions and barely greater than the undifferentiated controls. Gene expression data were 

confirmed by immunostaining for human bone sialoprotein protein (hBSP, in red Fig. 8B and 

8E) on tissue sections. These showed a significant loss of human BSP protein in the presence 

of high TG-VEGF both after 4 and 8 weeks, whereas BSP production by human cells was 

preserved with the low TG-VEGF dose of 0.1 µg/ml in comparison with the Naïve condition. 
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Figure 8. (A) Gene expression of human Runx2, OSX, BSP and OCN was quantified by qRT-PCR and expressed as 

relative expression to human GAPDH (2-ΔCt). Data represent the values of individual samples (colored dots) and 

the mean (black bar; n= 8-10); **=p<0.01, ***=p<0.001, ****=p<0.0001. Dotted line and grey area = expression 

range of undifferentiated hBMSC in vitro; black dots = 1 week; red dots = 4 weeks. (B, E) Immunostaining of 

osteogenic constructs 4 (B) and 8 (E) weeks after in vivo implantation for human BSP (hBSP, red), mouse BSP 

(mBSP, green) and nuclei (DAPI, blue). (C, F) Quantification of human BSP positive matrix after 4 (C) and 8 (F) 

weeks expressed as percentage of total tissue area. (D, G) Quantification of the number of human cells per tissue 

area (mm2) after 4 (D) and 8 (G) weeks; *p<0.05;  Scale bar = 100 µm. 
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In order to determine whether the loss of human-derived osteogenic matrix was due to a 

specific impairement of human BMSC-derived osteoblast differentiation or their loss, the 

amount of human BSP-positive matrix was quantified and correlated to the number of human 

cells present in each condition. The number of human cells was similar among all conditions 

after 4 weeks (Fig. 8D; Naïve=1220±143.6 cells/mm2, TG-VEGF 0.1=1186±123.7 cells/mm2, 

TG-VEGF 100=1036±212.5 cells/mm2; p = n.s.), showing that initial osteoprogenitor survival 

and engraftment was not affected by VEGF at any dose. However, the amount of human BSP 

positive matrix was significantly reduced in the presence of 100 µg/ml of TG-VEGF compared 

to BMSC alone, but not with 0.1 µg/ml of TG-VEGF (Fig. 8C; Naïve=3.33±0.97%, 

TG- VEGF 0.1=4.66±1.17%, TG-VEGF 100=0.19±0.06%; p<0.05). These data strongly suggest 

that high VEGF doses specifically impair differentiation of the implanted human BMSC, 

without affecting their initial engraftment. After 8 weeks (Fig. 8E), human BSP protein 

abundance was stable compared to 4 weeks and significantly reduced in the presence of 100 

µg/ml of TG-VEGF, but not with 0.1 µg/ml (Fig. 8F; Naïve=3.13±0.97%, 

TG- VEGF 0.1=4.18±0.91%, TG-VEGF 100=0.15±0.11%; p<0.05). However, by this later time-

point the frequency of human cells appeared also reduced in grafts containing 100 µg/ml of 

TG-VEGF, although the difference was not statistically significant (Fig. 8G; Naïve=1048±128.8 

cells/mm2, TG-VEGF 0.1=1183±200.3 cells/mm2, TG-VEGF 100=382.9±275.1 cells/mm2). 

Interestingly, BSP of murine origin (stained in green) could be found both at 4 (Fig. 8B) and 8 

weeks (Fig. 8E), but in different locations compared to human BSP, mainly within the matrix 

in between the granules, and it was similarly expressed in all conditions (data not shown). 
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Discussion 

In this study we found that VEGF dose-dependently controls both the kinetics of vascular 

in-growth and the efficiency of bone formation in osteogenic grafts. Effective and optimal 

coupling of the two processes requires a low VEGF dose in the graft microenvironment (0.1 

µg/ml) and both are progressively disrupted by higher doses. The underlying mechanism is 

complex and comprises distinct and opposing effects on vessel migration inside the 

constructs, bone resorption through osteoclast recruitment and bone formation through 

osteoprogenitor differentiation. The balance between these processes is directed towards 

robust formation of vascularized bone at low VEGF doses, but is skewed towards net bone 

catabolism and failure of osteogenesis with increasing VEGF signaling. 

In order to ensure the survival of the osteoprogenitor cells seeded into the initially 

avascular osteogenic grafts, blood vessels in-growth has to be stimulated from the 

surrounding pre-existing vascular network. In fact, it has become clear that improving 

vascularization is fundamental for the design and the clinical application of bone grafts [13]. 

However, most of the studies mainly focused on inducing a greater amount of blood vessels 

within the implant, without taking in consideration the kinetics of growth. As we have shown 

here, progenitors survival depends on the extent of vascular invasion rapidly achieved within 

1 week rather than on its density. In fact, the vascular density induced spontaneously, in the 

grafts containing only BMSC, but not VEGF, was sufficient to support osteogenesis. Moreover, 

it can be noted how after 4 weeks the steady-state vascular density was significantly reduced 

by 5 to 10 times compared to the initial growth after 1 week at all VEGF doses and it remained 

stable at 8 weeks. This observation further reinforces the notion that the spontaneously 
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occurring vascular density is more than sufficient to support physiological tissue formation, 

while the speed of vascular invasion is a more important therapeutic target. 

The observation that higher VEGF doses impaired active vascular migration inside the graft 

and rather promoted vessel expansion at the graft surface, leading to high vascular densities 

in limited areas, is remarkable. Considering the different mechanisms, by which new vessels 

grow, may suggest an explanation for this phenomenon. In fact, rapid invasion of an avascular 

tissue, such as an implanted graft, takes place by the process of vascular sprouting [14]. 

Sprouting angiogenesis is guided by the formation of VEGF concentration gradients, which 

determine the specialization of activated endothelial cells into two functionally distinct 

phenotypes: tip and stalk. Tip cells respond to the gradient distribution by migrating toward 

its source, while stalk cells proliferate behind and form the new vessel lumen [15]. Therefore, 

coordinated endothelial migration and proliferation are required for new vascular structures 

to enter avascular tissue and be guided towards the source of VEGF production, i.e. the 

hypoxic areas in need of blood supply. However, vascular growth can also take place by the 

alternative mechanism of intussusception, or splitting angiogenesis. In this case, endothelial 

cells proliferate without migrating, leading to circumferential enlargement of pre-existing 

vessels, which subsequently split longitudinally to form new structures [16]. This mode of 

vascular growth is highly efficient to expand pre-existing networks, but does not have an 

intrinsic directional component, leading rather to increases in vessel density than to invasion. 

Recent unpublished findings suggest that splitting angiogenesis may result from higher doses 

of VEGF, which saturate the extracellular matrix of the vessel microenvironment and 

therefore present endothelial cells with a flat concentration profile rather than a gradient 

(Gianni-Barrera, R.; Banfi, A. et al. manuscript in preparation). Preferential activation of 

splitting angiogenesis by higher VEGF doses, and its associated inhibition of endothelial 
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migration, could explain the observed delay in vascular invasion of grafts decorated with 

concentrations greater than 1 µg/ml of TG-VEGF. In fact, TG-VEGF is released from the fibrin 

hydrogel upon enzymatic cleavage and becomes available both for signaling and for binding 

to the extracellular matrix: if its concentration is sufficient to saturate the microenvironment 

surrounding the graft, the lack of a gradient would direct endothelium to proliferate without 

migration, leading to enlargement and splitting rather than sprouting towards the core of the 

graft. On the other hand, the release of lower VEGF concentrations may allow the formation 

of a gradient suitable for endothelial sprouting and effective migration inside the graft. The 

dichotomy between vascular expansion and in-growth determined by increasing VEGF doses 

carries functional implications for human osteoprogenitors survival, which was directly 

proportional to the extent of blood vessels invasion and not to their density. 

The initial discrepancy in vascular invasion was a transient phenomenon, as all grafts were 

fully vascularized with all VEGF doses after 4 weeks. A likely explanation is related to the 

transient nature of the fibrin-bound delivery of VEGF: as fibrin degrades over this time-frame, 

the “barrier” of high VEGF concentration also is lost and the endothelium is again exposed to 

moderate VEGF concentrations and microenvironmental gradients conducive to migration 

inside the tissue. Therefore, high VEGF doses do not stably prevent vascular invasion, but 

rather delay it over the crucial initial time window of 1 week, increasing progenitor apoptosis 

and decreasing their proliferation. 

On the other hand, VEGF is also known to play key roles in bone development, both in 

intramembranous and endochondral ossification, as well as during bone repair. Its loss causes 

skeletal deficits and malformities [17, 18]. Both osteoprogenitors and osterix-positive 

osteoblasts express VEGF receptors (especially VEGF-R2) and VEGF can directly regulate their 

differentiation and activity maintaining bone homeostasis, through paracrine and intracrine 
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mechanisms [19]. Here we found that VEGF signaling controls several processes at the 

crossroads of angiogenesis and osteogenesis in a dose-dependent manner, with clear 

implications for the therapeutic development of osteogenic grafts. In fact, while a low dose 

of 0.1 µg/ml improves both the speed of vascular ingrowth and the early survival of seeded 

osteoprogenitors, higher doses not only delay optimal angiogenesis, but also significantly 

impaired bone tissue formation. Beyond confirming the previously found effect on 

stimulating excessive osteoclast recruitment and bone resorption [11], here we uncovered a 

specific impairment of osteoprogenitors differentiation by increasing VEGF doses. In fact, 

while 0.1 µg/ml of VEGF ensured the activation of osteogenic differentiation genes (Runx2, 

OSX, BSP, OCN) in human cells, 100 µg/ml of VEGF dramatically impaired their upregulation. 

The impairment of osteoblast development was not accompanied by any loss of implanted 

human osteoprogenitors, which engrafted similarly in all conditions, showing a specific effect 

on the cell fate decision of osteogenic commitment. Therefore, VEGF dose-dependently 

impairs bone formation through 2 parallel mechanisms, i.e. by both increasing osteoclast 

recruitment and impairing osteoblast differentiation, which in combination lead to greatly 

decreased net bone mass already after 4 weeks of in vivo implantation. 

Despite the acceleration of vascular invasion and the improvement of osteoprogenitor 

survival over the first week afforded by the optimal VEGF dose of 0.1 µg/ml, the amount of 

bone tissue formed was not increased compared to the Naïve condition, although the amount 

of mature bone was improved. This was expected, since the model we used was not critical, 

meaning that the small size of the subcutaneous grafts enables efficient formation of bone 

throughout the constructs without the need to stimulate vascular invasion. Based on the 

results obtained in this standardized and medium-throughput model, the optimal VEGF dose 

will need to be tested in a critical-size bone repair model, such as in rat calvaria defects, in 
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which spontaneous angiogenesis does not suffice for complete repair and a faster and deeper 

vascularization would be expected to translate into improved progenitor survival and bone 

tissue regeneration. 

Hu and Olsen [20] also reported that excessive VEGF delivery can impair endogenous bone 

repair. In fact, it was found that 1 μg of VEGF (at a concentration of 1’000 µg/ml) loaded in 

collagen sponges inhibits intramembranous bone formation in a tibial cortical defect when 

the endogenous levels of VEGF are normal. This was ascribed mainly to reduced collagen I 

accumulation and BSP expression in the area of the defect, suggesting a possible impairment 

of endogenous osteoprogenitors differentiation. In agreement with the results reported here, 

a lower dose of VEGF (0.1 µg total, at a concentration of 100 µg/ml) did not impair, but also 

did not increase bone repair at the defect site. In contrast, delivering of 0.1 μg of VEGF 

increased formation of mineralized bone in the injury region in Vegfafl/fl Osx-Cre, in which 

VEGF was specifically deleted in the osteoblast lineage cells, compared to the control group. 

The authors suggested that local delivery of optimal amounts of VEGF may enhance bone 

repair when VEGF levels are low (or depleted) at the repair site, but that exogenous VEGF 

treatment may fail at improving regeneration when endogenous VEGF levels are 

physiological. These observations are generally in agreement with the data reported here and 

support the importance of VEGF dose in regulating osteogenesis. However, key differences in 

the experimental design prevent a detailed comparison. In fact, 1) exogenous human 

osteoprogenitors were not used in the mouse bone defect model, limiting the significance of 

the findings in the context of therapeutic bone tissue engineering; 2) VEGF concentrations 

were much higher compared to the ones used in this study; and 3) VEGF was passively 

released very rapidly from the collagen sponges within 3 days of implantation. Therefore, the 

collagen-based delivery platform could not provide a sufficiently sustained VEGF release to 
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investigate the steady-state consequences of different VEGF doses on either angiogenesis, 

osteogenesis or osteoclastogenesis, which require several weeks to complete. 

Taking advantage of a unique delivery platform based on factor-decorated fibrin matrix, in 

the present study we could rigorously investigate the dose-dependent effects of VEGF on 

both osteogenesis and angiogenesis, during intramembranous bone generation within 

human BMSC-based tissue-engineered grafts. In particular, we found that a low VEGF dose of 

0.1 µg/ml is required for efficient coupling of angiogenesis and osteogenesis, which are 

instead disrupted by higher doses. These results carry translational relevance for the 

therapeutic generation of functionally vascularized bone grafts. In fact, the factor-decorated 

fibrin matrix that was used for these investigations provides also a readily applicable platform 

for a clinical application, with several attractive features: 1) no need for genetic modifications 

of progenitors; 2) homogeneous and easily tunable factor dosing and 3) limited and 

controllable duration of factor delivery over the physiologically required time-window of 4 

weeks. However, it is still unclear whether VEGF affects bone formation by human BMSCs in 

a direct way or by modulating the expression of other osteogenic molecules, for example 

angiocrine factors by endothelial cells [5]. Elucidating the underlying mechanisms through 

which VEGF dose controls osteogenic differentiation might identify further molecular targets 

for bone tissue repair. 
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Introduction 

Therapeutic bone regeneration requires rapid and effective vascularization of engineered 

osteogenic grafts [1]. However, the processes of angiogenesis and osteogenesis are 

biologically coupled and the therapeutic control of both is complex [2-4]. In order to identify 

rational molecular targets to induce vascularized bone regeneration, it is crucial to 

understand the cross-talk between angiogenesis and osteogenesis. 

Spontaneous angiogenesis is insufficient to support the survival and differentiation of 

engineered osteogenic grafts sufficiently large to repair clinical-size defects and it is necessary 

to provide a therapeutic stimulation. Vascular Endothelial Growth Factor (VEGF) is the master 

regulator of blood vessel growth and has been widely investigated to stimulate angiogenesis 

in tissue engineering [5-8]. However, VEGF delivery for therapeutic vascularization of 

osteogenic grafts remains challenging. In fact, VEGF can also promote osteoclast activity and 

excessive bone resorption [5]. We have previously found that the effective coupling of 

angiogenesis and osteogenesis in tissue-engineered osteogenic grafts crucially depends on 

VEGF dose (Grosso et al., manuscript in preparation; see Chapter 3). Transient delivery of a 

low dose of 0.1 µg/ml of recombinant VEGF protein, cross-linked into fibrin matrix, both 

improved rapid vascular ingrowth and ensured efficient bone formation, whereas increasing 

doses delayed vascular invasion and progressively impaired bone formation, by increasing 

bone resorption and inhibiting osteogenic differentiation. While it is clear that VEGF dose-

dependently regulates both angiogenesis and osteogenesis, the underlying mechanism is not 

known. 

Semaphorins have been described to be involved in several biological processes, including 

bone and cardiac development, cancer progression, inflammation and angiogenesis [9-12]. In 
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particular, Semaphorin3A (Sema3A) has gained increasing interest for its role in bone 

development, homeostasis and repair [13-16]. In particular, it has been reported that Sema3A 

binding to the Neuropilin-1 (NP1)/Plexin A1 complex receptor enhances bone formation by 

both inducing osteoblasts differentiation and inhibiting osteoclast differentiation [14] 

Sema3a−/− and NP1Sema− mice (in which NP1 lacks the Sema3A-binding site) displayed severe 

osteopenia, characterized by increase osteoclast number and decrease osteoblastic bone 

formation [14]. Mechanistically, Sema3A activates the canonical Wnt/β-catenin pathway in 

the process of osteoblast differentiation and suppresses macrophage-colony-stimulating 

factor (M-CSF)-induced osteoclast differentiation through the Rho A signaling pathway [14]. 

On the other hand, Sema3A has also been described to regulate sprouting angiogenesis, 

inhibiting endothelial cell migration [12] and increasing vascular permeability [17]. 

Interestingly, we have previously found that Sema3A is required to stabilize newly formed 

blood vessels, but VEGF dose-dependently inhibits endothelial Sema3A expression in skeletal 

muscle, causing vascular instability and regression [18]. 

Therefore, here we hypothesized that VEGF dose might couple bone formation and 

vascularization by regulating Sema3A expression. In particular, we investigated whether, in 

tissue-engineered osteogenic grafts: a) high VEGF doses impair bone formation by inhibiting 

endogenous Sema3A expression; b) Sema3A/NP1 signaling is required for intramembranous 

bone formation; c) Sema3A treatment can improve both bone formation and vascularization. 
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Material and methods 

BMSC isolation and culture 

Human primary MSC were isolated from bone marrow aspirates (BMSC). The aspirates 

were obtained from the iliac crest of 3 healthy donors during routine orthopaedic surgical 

procedures according to established protocols, after informed consent by the patients and 

following protocol approval by the local ethical committee (EKBB, Ref. 78/07). Cells were 

isolated and cultured as previously described [5, 19]. After centrifugation the pellet was 

washed in PBS (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Cells were 

resuspended in α-MEM medium (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA) supplemented with 10% bovine fetal serum (HyClone, South Logan, Utah, USA), 1mM 

Sodium Pyruvate (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, USA), 10mM 

HEPES (GibcoTM, Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 5 ng/mL FGF-2 

(R&D System Minneapolis, Minnesota, USA), plated at a density of 105 nucleated cells/cm2 

and cultured in 5% CO2 at 37°C. 

Generation and in vivo subcutaneous implantation of osteogenic constructs 

60 mm3 of silicate-substituted apatite granules of 1-2mm size (Actifuse®; Apatech-Baxter, 

Elstree, UK) where mixed with 1x106 BMSC and embedded in a fibrin gel prepared by mixing 

25 mg/ml human fibrinogen (plasminogen-, von Willebrand Factor-, and fibronectin-

depleted; Milan Analytica AG, Rheinfelden, Switzerland), 3 U/mL factor XIIIa (CSL Behring, 

King of Prussia, Pennsylvania, USA), and 6 U/ml thrombin (Sigma-Aldrich, St. Louis, Missouri, 

USA) with 2.5 mM Ca2+ in 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid (Hepes, Lonza, 

Basel, Switzerland). Recombinant α2PI1–8-VEGF164, α2PI1–8-Sema3a and α2PI1–8-aprotinin were 

produced as previously described (Chapter 2).  Fibrin gels were decorated with α2PI1–8-VEGF-
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A164 at 0.1, 1, 10 or 100 µg/ml, α2PI1–8-Sema3A at 0.1, or 10 µg/ml, or with both mixed at ratio 

1:1 or 1:10. 51 µg/ml of aprotinin-α2PI1–8 were also incorporated into the hydrogel to control 

its degradation time. The engineered proteins were mixed to the cross-linking enzymes 

solution before mixing with fibrinogen. Osteogenic grafts were allowed to polymerize at 37°C 

for 10 min after mixing before in vivo implantation. The resulting constructs were implanted 

subcutaneously in nude mice (CD1-Foxn1nu, Charles-River, Sulzfeld, Germany). Animals were 

treated in agreement with Swiss legislation and according to a protocol approved by the 

Veterinary Office of Canton Basel-Stadt (permission #1797). Three to nine constructs were 

implanted for each condition (n=3-10 samples/group), generated with cells from 3 

independent donors. After 1, 4 and 10 weeks, mice were sacrificed by inhalation of CO2 and 

constructs were explanted. 

Anti-NRP1A antibody treatment 

Animals were treated systemically by i.p. injection of the blocking antibody anti-NP1A 

(YW64.3, Genentech Inc., South San Francisco, California, USA) [20] in PBS with 0.5% BSA (10 

mg/kg) at the time of constructs implantation (day 0) and every 3 days, according to the 

previously published treatment schedule [21]. IgG2a antibody (10 mg/kg in PBS with 0.5% 

BSA; Lubio Science, Lucerne, Switzerland) was given i.p. as isotype control. 

Histological processing and immunofluorescence tissue staining 

Explanted constructs were washed with PBS and fixed over night at +4°C with freshly 

prepared 1% paraformaldehyde (Sigma-Aldrich, St. Louis, Missouri, USA) in PBS. 

Subsequently, the samples were decalcified. Constructs were transferred into a PBS-based 

solution containing 7% w/v EDTA (0.5M, pH 8, Sigma-Aldrich, St. Louis, Missouri, USA) and 

10% w/v sucrose (Sigma-Aldrich, St. Louis, Missouri, USA) and incubated at 37°C on an orbital 
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shaker. The solution was renewed daily for about 20 days, until the samples were fully 

decalcified, as estimated by the degree of sample stiffness. Finally, the samples were 

embedded in OCT compound (CellPath LTD, Newtown, UK), frozen in freezing 2-methylbutane 

(isopentane) (Sigma-Aldrich, St. Louis, Missouri, USA) and 10 µm thick sections were obtained 

with a cryostat. 

Immunofluorescence staining was performed on 10 µm-thick frozen sections. The 

following primary antibodies and dilutions were used: rat anti-mouse CD31 (clone MEC 13.3, 

BD Bioscience, San Jose, California, USA) at 1:100; mouse anti-Human nuclei (clone 235-1, 

Merk Millipore, Darmstadt, Germany) at 1:200; rabbit anti-Sema3A (Abcam, Cambridge, UK) 

at 1:100; rat anti-CD11b (Thermo Fisher Scientific, Waltham, Massachusset, USA) at 1:200; 

rabbit anti-Neuropiln 1 (Abcam, Cambridge, UK) at 1:200. Fluorescently labeled secondary 

antibodies (Thermo Fisher Scientific, Waltham, Massachusset, USA) were used at 1:200.  

For pSMAD2/3 staining, tissue sections were permeabilized with ice-cold methanol for 10 

min and blocked with 5% goat serum and 2% BSA in PBS with 0.3% Triton X for 1h at RT. Rabbit 

anti-pSMAD 2/3 (Santa Cruz Biotechnology, California, USA) was used at 1:100. 

Fluorescence images were acquired with an Olympus BX63 microscope (Olympus, 

Münster, Germany), a Nikon Ti2 Eclipse (Nikon, Tokyo, Japan) and with 40x objectives on a 

Carl Zeiss LSM710 3-laser scanning confocal microscope (Carl Zeiss, Oberkochen, Germany). 

All image measurements were performed with cellSens software (Olympus, Münster, 

Germany), NIS-Elements (Nikon, Tokyo, Japan) and FIJI software (ImageJ, http://fiji.sc/Fiji). 
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Quantification of Sema3A expression  

The quantification of Sema3A+ human cells was performed on frozen sections after 

immunostaining for human nuclei (HuNu), endothelium (CD31) and Sema3A. The number of 

Sema3A+ cells was counted either in the core or within the vascularized areas of the graft, and 

normalized by the total number of human cells. At least 7 random fields in each sample were 

acquired with a confocal microscope for both the core and invaded areas. 

The immunofluorescent staining for Sema3A was quantified on complete images of whole 

samples using a custom-made macro in FIJI software. Briefly, the region of interest (ROI) was 

traced and thresholding was applied to the Sema3A channel and the number of pixels above 

the threshold was normalized by the total number of the pixels of the ROI. All conditions were 

stained with the same batch of antibodies and at the same time. Pictures were acquired with 

a Nikon-Ti2 Eclipse microscope during the same session. 

Quantification of SMAD2/3 activation 

The quantification of nuclei positive for pSMAD2/3 was performed on cryosections after 

immunostaining for human nuclei (HuNu), endothelium (CD31) and pSMAD2/3. Human or 

mouse endothelial nuclei, positive for pSMAD2/3 were manually counted in at least 7 

randomly acquired fields in each sample. 

Quantification of Neuropilin-Expressing Monocytes (NEM) 

The quantification of CD11b+/NP1+ NEM was performed on frozen sections after 

immunostaining for monocytes (CD11b) and NP1, counting all the CD11b+/NP1+ cells found in 

all the sections of each histological sample preparation. Quantification was expressed as the 

absolute number of NEM per sample. 
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Analysis of angiogenesis 

Invasion of osteogenic constructs by blood vessels was assessed after 1 week in vivo by 

immunofluorescence for CD31 (n=3-6 samples/group). Briefly, complete images of the whole 

samples were acquired, the areas of tissue invaded by blood vessels were manually measured 

and normalized by the total tissue area. Vessel length density (VLD, mm/mm2) was quantified 

tracing the total length of vessels within the invaded areas and dividing it by the area of 

invasion. Total vessels length (mm) was obtained multiplying the quantified VLD within the 

area of invasions by the area invaded by blood vessels. 

Vascularization at 4 weeks was assessed on at least 15 random fields which were acquired 

per sample (n=3-6 samples/group). VLD was measured by tracing the total length of vessels 

in the fields and by normalizing it to the tissue area in each field. 

Analysis of bone formation 

Bone tissue was detected by Masson’s trichrome staining (Réactifs RAL, Martillac, France), 

performed according to manufacturer’s instructions. Twenty section reconstructions per 

sample (n=3-6 samples/group) were acquired with transmitted light and bone tissue was 

quantified by tracing the area occupied by dense collagenous matrix (dark green staining) and 

normalizing it by the total area of the section. 

Osteoclast detection 

In order to detect osteoclasts, histological sections were stained for tartrate-resistant acid 

phosphatase (TRAP) activity. Briefly, after rising with water, slides were incubated for 20 

minutes with 0.1M Acetate Buffer (0.2M Sodium Acetate, 0.2M Acetic Acid, 50mM Sodium L-

tartrate dibasic dihydrate, pH 5.0) and then stained with a solution of 1 mg/ml Fast Red LB 

salt (Sigma-Aldrich, St. Louis, Missouri, USA) and 1 mg/ml naphthol AS-MX phosphate (Sigma-
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Aldrich, St. Louis, Missouri, USA) in 0.1M acetate buffer for 1 hour at 37°C. After TRAP staining, 

nuclear counter staining was performed with Haematoxylin for 1 min at room temperature. 

TRAP-positive cells were quantified on 15 random fields per construct in 6 

constructs/condition (n=3-6 samples/group). Multinucleated TRAP+ cells in the fields were 

counted manually and the total number was normalized by the tissue area. 

Human progenitor engraftment 

The presence of human cells was assessed by staining with a specific anti-human nuclei 

antibody. Human cells were counted automatically in at least 15 random fields/sample (n=6 

samples/group) by using ImageJ software. 

Quantitative real-time PCR 

For RNA extraction from osteogenic grafts, constructs were immediately frozen in liquid 

nitrogen after harvesting (n=8-10 samples/group). Tissues were disrupted and homogenized 

using a Qiagen Tissue Lyser (Qiagen, Hilden, Germany) in 1 ml TRIzol Reagent (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) for 100 mg of tissue. Total RNA was isolated from 

lysed tissues with a RiboPure RNA purification kit (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) according to manufacturer’s instruction.  

RNA from tissues was reverse-transcribed into cDNA with the SuperScript III Reverse 

Transcriptase (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Quantitative Real-

Time PCR (qRT-PCR) was performed on an ABI 7300 Real-Time PCR system (Applied 

Biosystems, Foster City, California, USA).  

Expression of genes of interest was determined using the following TaqMan gene 

expression assays: (Thermo Fisher Scientific, Waltham, Massachusetts, USA): human- Sema3a 

(Hs00173810_m1), mouse- Sema3a (Mm00436469_m1). Reactions were performed in 
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duplicate for each template, and normalized to expression of the species-specific Gapdh 

housekeeping gene (human: Hs02786624_g1; mouse: Mm99999915_g1). 

Statistics 

Results are expressed as the mean ± standard error of the mean (SEM). The significance of 

differences was assessed with the GraphPad Prism 8 software (GraphPad Software, San 

Diego, California, USA). The normal distribution of all data sets was tested by D’Agostino and 

Pearson or Shapiro–Wilk tests and, depending on the results, the significance of differences 

was determined with the parametric 1-way analysis of variance (ANOVA) followed by the 

Bonferroni test for multiple comparisons, or with the non-parametric Kruskal–Wallis test 

followed by Dunn’s post-test. p<0.05 was considered statistically significant. 

  



 
 

 175 

Results 

High VEGF dose impairs Sema3A production in osteogenic grafts  

To investigate whether Sema3A expression is affected by different VEGF doses after in vivo 

implantation, grafts were decorated with a low (0.1 µg/ml) and a high (100 µg/ml) dose of 

TG-VEGF, which were previously shown to preserve and impair bone formation, respectively 

(see Chapter 3 above). Histological sections of constructs explanted after 1 and 4 weeks were 

immunostained for Sema3A. After 1 week, Sema3A was detected around human progenitor 

cells present both in the core of the constructs and in the area invaded by blood vessels (Fig. 

1A and 1C). However, constructs containing a high dose of VEGF (100 µg/ml) displayed a 

significantly reduced percentage of human progenitors expressing Sema3A compared to 

constructs loaded with a low dose of VEGF (0.1 µg/ml) and to control grafts (Fig. 1B and 1C). 

 Interestingly, while in the core of the grafts the number of Sema3A+ cells was only slightly 

reduced by high VEGF (Fig. 1B; Naïve = 41.6±3.8%, TG-VEGF 0.1 = 42.6±2.4% vs TG-VEGF 100 

= 29.9±2.0%; p<0.05), the angiogenic areas displayed a much greater reduction (Fig. 1C; Naïve 

= 37.7±2.9%, TG-VEGF 0.1 = 38.3±4.8% vs TG-VEGF 100 = 8.9±0.9%; p<0.001). 
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Figure 1. Immunostaining of human cells (HuNu, red), Sema3A (cyan) and nuclei (DAPI, blue) of osteogenic grafts 

after 1 week of in vivo implantation, in the core (A) and in the invaded areas (C); quantification of the percentage 

of human cells expressing Sema3A in the core (B) and in the invaded areas (D); *=p<0.05, ***=p<0.001; 

scale bar = 30 µm. 

 

After 4 weeks Sema3A abundance was increased from 1 week and it could be detected in 

close proximity to endothelial cells, bone lineage cells (osteoblasts and osteocytes) and 

embedded within the extracellular matrix (in green in Fig. 2A). Constructs loaded with 

0.1 µg/ml of TG-VEGF and Naïve cells contained similarly high amounts of Sema3A, whereas 

in grafts with 100 µg/ml of TG-VEGF, Sema3A presence was significantly reduced (Fig. 2A-B; 

Naïve=10.3±1.2%, TG-VEGF 0.1=11.9±1.9% vs TG-VEGF 100=4.2.9±0.6%; p<0.05). 

  



 
 

 177 

 

Figure 2. (A) Immunostaining of endothelium (CD31, red), Sema3A (green) and nuclei (DAPI, blue) of osteogenic 

constructs after 4 weeks of in vivo implantation. Scale bar=30 µm; (B) Quantification of Sema3A+ pixels 

(expressed as % of the total number of pixels; (C) Quantification of the density human cells within the tissue 

(human cells/mm2); (D-G) Gene expression of human- and mouse- Sema3A was quantified by qRT-PCR and 

expressed as relative expression to human and mouse GAPDH respectively (2-ΔCt); (D,E) Gene expression of 

human- and mouse- Sema3A after 4 weeks of in vivo implantation; (F, G) Comparison of the gene expression of 

human- and mouse- Sema3A at 1 and 4 weeks after in vivo implantation. Data represent the values of individual 

samples (colored dots) and the mean (black bar; n=8-10); *=p<0.05, **=p<0.01, ****=p<0.0001. 

Black dots = 1 week; red dots = 4 weeks.  
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Quantification of human progenitors, which are a source of Sema3A (Fig. 1) showed similar 

persistence in all conditions (Fig. 2C; Naïve=1409.0±1.2 human cells/mm2, 

TG- VEGF 0.1=1272.0±100.6, TG-VEGF 100=1161.0±181.8; p=n.s.), suggesting that Sema3a 

protein may be reduced through downregulation of its expression rather than loss of 

producing cells. 

Gene expression analysis further confirmed that Sema3A gene expression was 

downregulated in human cells with high VEGF (Fig. 2D). As it has been shown that endothelial 

cells can also be a source of Sema3A [18]  and the endothelium invading the constructs is 

derived from the host, we also quantified the expression of murine Sema3A and found that 

its expression level was not appreciably affected by VEGF at any dose (Fig. 2E). 

By comparing expression levels between 1 and 4 weeks it was found that human Sema3A 

was significantly upregulated over this time frame (Fig. 2F), whereas mouse Sema3a remained 

much less expressed (Fig. 2G). Taken together, these data suggest that human 

osteoprogenitors are the principal source of Sema3a in osteogenic grafts and VEGF can dose-

dependently downregulate its expression, consensually with its effect on impairing bone 

formation. 

Early Sema3A expression by human progenitors is not impaired by Neuropilin-1 blockage 

To determine the role of Sema3A/Neuropilin-1 (NP1) signaling on the vascularization and 

the intramembranous bone formation of tissue-engineered osteogenic grafts, we performed 

a loss of function experiment by systemic treatment with a specific antibody that recognizes 

the CUB domain (a1a2) of NP1 and prevents its binding with Sema3A, but does not affect the 

interaction with VEGF with a different domain (anti-NP1A, YW64.3) [21].  
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It has been shown that Sema3A/NP1 signaling starts a positive feedback loop sustaining 

Sema3A production itself in skeletal muscle endothelium [18]. Therefore, constructs were 

stained for Sema3A 1 week after in vivo implantation. Sema3A protein was detected with 

similar frequency in all conditions, in association with human progenitor cells present both in 

the core of the construct and in the areas invaded by blood vessels (Fig. 3; Inner Core: Naïve 

Ctrl=75.6±4.3%, Naïve α-NP1A=70.4±9.1%, TG-VEGF 0.1 Ctrl=80.1±3.8%; TG-VEGF 0.1 α-

NP1A=72.7±7.2%, p=n.s.; Invasion Area: Naïve Ctrl=62.9±1.6%, Naïve α-NP1A=68.7±4.3%, TG-

VEGF 0.1 Ctrl=70.4±0.9%; TG-VEGF 0.1 α-NP1A=60.6±10.1%, p=n.s.). These results suggest 

that Sema3A expression by human osteoprogenitor cells in the early stage of engraftment 

does not depend on NP1 activation. 

 

Figure 3. Immunostaining of human cells (HuNu, red), Sema3A (cyan), endothelium (CD31, green) and nuclei 

(DAPI, blue) of osteogenic grafts after 1 week of in vivo implantation, in the core (A) and in the invaded areas 

(B); quantification of the percentage of human cells expressing Sema3A in the core (C) and in the invaded areas 

(D); scale bar=30 µm. 
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Neuropilin-1 blockade impairs vascularization of osteogenic grafts 

Sema3A is a multifunctional factor, with roles in processes as diverse as neural guidance 

and angiogenesis, as well as in bone homeostasis, and its functions are often context-

dependent. Further, we previously found that VEGF directly and dose-dependently regulates 

the amplitude of blood vessels invasion into osteogenic grafts (Chapter 3). While endothelial 

cell migration and vascular invasion of the graft are promoted by low VEGF levels (0.1 µg/ml), 

they are delayed by increasing doses. We therefore investigated whether Sema3A/NP1 

blockade could affect blood vessels in-growth in the presence and in the absence of VEGF. As 

expected, graft decoration with 0.1 µg/ml of TG-VEGF promoted vascular invasion compared 

to Naïve condition (Fig. 4A-B; TG-VEGF 0.1 Ctrl=16.4±1.8% vs Naïve Ctrl=4.9±0.7%, p<0.001). 

Strikingly, inhibition of Sema3A/NP1 signaling significantly impaired the extent of vascular 

invasion, especially in the presence of VEGF (Fig. 4A-B; Naïve α-NP1A=2.6±1.5%, TG-VEGF 0.1 

α-NP1A=8.2±1.3%, p<0.01 vs TG-VEGF 0.1 Ctrl).  

 

Figure 4. (A) Reconstruction of graft sections under fluorescent light to evidence the areas of blood vessel growth 

(in yellow) stained for CD31 (red); (B) Quantification of the areas invaded by blood vessels (expressed as % of 

total section area). Scale bar = 500 µm. (C)  Quantification of induced angiogenesis within the invaded areas, 

after 1 week in vivo, expressed as VLD (vessel length density), calculated as millimeters of vessel length per square 

millimeter of tissue area (mm/mm2); (D) quantification of total vessel length within the invaded areas, expressed 

as mm. (*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001) 
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Vessel length density (VLD) within the invaded areas was also slightly reduced, although 

not significantly (Fig. 4C; Naïve Ctrl=7.1±0.3 mm/mm2, Naïve α-NP1A=4.6±1.1, TG-VEGF 0.1 

Ctrl=8.3±0.9, TG-VEGF 0.1 α-NP1A=6.5±0.9; p=n.s.), but the total vessel amount within the 

grafts was significantly reduced compared to the controls (Fig. 4D; TG-VEGF 0.1 Ctrl=19.2±2.5 

mm vs Naïve Ctrl=5.6±0.7 mm, Naïve α-NP1A=2.5±1.9 mm, TG-VEGF 0.1 α-NP1A=7.6±1.2 mm; 

p<0.01). 

By 4 weeks vascularization was complete throughout all grafts, as expected. However, NP1 

blockade significantly decreased vascular density, especially in the presence of VEGF (Fig. 5; 

Naïve Ctrl=2.6±0.1 mm/mm2, Naïve α-NP1A=1.9±0.2, TG-VEGF 0.1 Ctrl=2.9±0.4, TG-VEGF 0.1 

α-NP1A=1.6±0.2; p<0.05 Naïve Ctrl vs TG-VEGF 0.1 α-NP1A; p<0.01 TG-VEGF 0.1 Ctrl vs TG-

VEGF 0.1 α-NP1A). 

 

Figure 5. (A) Immunostaining of endothelium (CD31, in red) and nuclei (DAPI, in blue) of constructs after 4 weeks 

of in vivo implantation; (B) Quantification of vessels density vessel length density (VLD) ) expressed as millimeters 

of vessel length per square millimeter of tissue area (mm/mm2) after 4 weeks of in vivo implantation (*= p<0.05, 

**=p<0.01). Scale bar = 200 μm. 
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Neuropilin-1 blockade impairs bone formation and decreases Sema3A expression after 4 

weeks 

After 4 weeks, bone tissue development was similarly efficient with 0.1 µg/ml of TG-VEGF 

and with naïve BMSC alone, but treatment with the anti-NP1A blocking antibody severely 

impaired bone formation by over 80% in both conditions (Fig. 6A and 6D; Naïve Ctrl=3.4±0.6%, 

Naïve α-NP1A=0.5±0.2%, TG-VEGF 0.1 Ctrl=2.3±0.3%; TG-VEGF 0.1 α-NP1A=0.6±0.7%). 

Sema3A signaling through NP1 regulates the recruitment and differentiation of osteoclasts 

[14]. As expected, Naïve and low TG-VEGF conditions, which are characterized by efficient 

bone formation, displayed a low number of osteoclasts (Fig. 6B and 6E; Naïve Ctrl=9.3±1.0 

TRAP+ MNC/mm2, TG-VEGF 0.1 Ctrl=7.7±1.0; p=n.s). Instead, after Sema3A/NP1 inhibition the 

density of TRAP-positive cells was significantly increased (Fig. 6B and 6E; Naïve α-

NP1A=14.6±1.1 TRAP+ MNC/mm2, TG-VEGF 0.1 α-NP1A=17.3±2.3). 
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Figure 6. (A) Representative pictures of Masson's trichrome staining of constructs after 4 weeks of in vivo 

implantation (mineralized tissue in green); (B) Histochemical stain for TRAP activity (red) and nuclear 

counterstaining with hematoxylin (blue) of constructs after 4 weeks of in vivo implantation; (C) Immunostaining 

of endothelium (CD31, red), Sema3A (green) and nuclei (DAPI, blue) of osteogenic constructs after 4 weeks of in 

vivo implantation; scale bar = 100 µm; (D) Quantification of areas occupied by mineralized tissue (expressed as 

% of construct area); (D) Quantification of Trap+ multinucleated cells (MNC) per tissue area (mm2): (E) 

Quantification of Sema3A+ pixels (expressed as % of total number of pixels);.*=p<0.05, **=p<0.01. 

Scale bars = 200 µm. 
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Interestingly, the amount of endogenous Sema3A protein, quantified by immunostaining 

in constructs containing naïve BMSC alone or with low VEGF, was also significantly reduced, 

but not completely abolished, by the treatment with the blocking antibody (Fig. 6C and 6F; 

Naïve Ctrl=11.7±0.8%, TG-VEGF 0.1 Ctrl=12.2±1.7% vs Naïve α-NP1A=5.6±0.7%, TG-VEGF 0.1 

α-NP1A=5.5±0.6%; p<0.01). On the other hand, the engraftment of human progenitors was 

also significantly impaired by Sema3a/NP1 blockade 4 weeks after in vivo implantation, both 

with and without VEGF (human cells in red, Fig. 7A; Naïve Ctrl=1342.0±79.78 human 

cells/mm2, TG-VEGF 0.1 Ctrl=1351.0±116.1 vs Naïve α-NP1A=534.5±148.4, TG-VEGF 0.1 α-

NP1A=471.5±105.6; p<0.001). 

 

Figure 7. (A) Immunostaining for human nuclei (Hunu, in red), blood vessels (CD31, In green) nuclei (DAPI, blue) 

of osteogenic constructs after 4 weeks of in vivo implantation; (B) quantification of the number of human cells 

per tissue area (mm2); ***=p<0.001. Scale bar = 200 µm 

 

These data suggest that Sema3A binding to NP1 is required for bone formation by 

intramembranous ossification, and that its blockade shifts bone homeostasis towards 

excessive bone resorption. 
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NEM recruitment is impaired by high VEGF levels and requires Sema3A 

During angiogenesis Sema3A has been shown to recruit a specific population of circulating 

monocytes expressing NP1 (Neuropilin-Expressing Monocytes, or NEM), which produce 

several paracrine factors [22]. Among these, TGF-β1 has been found to be important to 

stabilize newly induced vessels and also to further promote Sema3A production by 

endothelium [18]. A role for NEM during osteogenesis is unknown. 

NEM presence in the osteogenic grafts was quantified by co-staining for the monocyte 

marker CD11b and NP1. We found that, 1 week after in vivo implantation, CD11b+/NP1+ NEM 

were recruited in the areas of active angiogenesis in all the conditions (Fig. 8A). However, 

NEM recruitment was significantly reduced in constructs decorated with 100 µg/ml of TG-

VEGF compared to both Naïve and low-VEGF conditions (Fig. 8B; Naïve=35.0±2.1 

NEM/Construct, TG-VEGF 0.1=36.4±4.8 vs TG-VEGF 100=9.2±1.3; p<0.0001), consistently with 

the loss of Sema3A production with high VEGF. 

 

Figure 8. (A) Immunofluorescence staining for CD11b (in red), and NP1 (in cyan) on frozen section from constructs 

after 1 week of in vivo implantation. Scale bar=30 µm; (B) Quantification of the number of NEM, expressed as 

absolute number per sample; ****=p<0.0001. 
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Inhibition of Sema3A/NP1 signaling also significantly impaired NEM recruitment into the 

angiogenic areas of both Naïve and low-VEGF grafts (Fig. 9), showing that Sema3A is required 

for NEM recruitment during intramembranous osteogenesis in tissue-engineered grafts 

(Naïve Ctrl=42.5±6.7 NEM/Construct, TG-VEGF 0.1 Ctrl=54.0±8.7 vs Naïve α-NP1A=11.2±2.0, 

TG-VEGF 0.1 α-NP1A=21.0±3.7; p<0.01). 

 

Figure 9. (A) Immunofluorescence staining for CD11b (in red), and NP1 (in cyan) on frozen section from constructs 

after 1 week of in vivo implantation. Scale bar=30µm; (B) Quantification of the number of NEM, expressed as 

absolute number per sample. *=p<0.05, **=p<0.01. 

 

Neuropilin-1 blockade inhibits SMAD2/3 activation in human progenitor cells and mouse 

endothelium 

We have previously shown that NEM-derived TGF-b1 signaling through SMAD 2/3 

phosphorylation plays a key role in sustaining Sema3A expression during VEGF-induced 

angiogenesis [18]. Therefore, we determined whether the Sema3A/NEM/TGF-b1 axis is active 

also in the crosstalk between angiogenesis and osteogenesis and investigated if the changes 
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in Sema3A expression and NEM recruitment translated in alterations of TGF-b1 signaling in 

osteogenic grafts. 

As shown in Fig. 10A, phospho-SMAD2/3 (in cyan) was translocated into the nuclei of both 

human progenitors (in red) and murine endothelial cells (nuclei within CD31+ structures, in 

green) in all conditions 1 week after in vivo implantation. However, quantification of the 

proportion of positive nuclei showed that SMAD2/3 activation was significantly reduced upon 

inhibition of Sema3A/NP1 signaling both in human progenitors (Fig. 10B and 10C) and in 

endothelial cells (Fig. 10D). Interestingly, inhibition of SMAD2/3 phosphorylation in the low-

VEGF condition was only mild in the core graft areas, which were not vascularized yet, but 

much more significant in the areas where blood vessels were already present. 

 

Figure 10. (A) Immunofluorescence staining for pSMAD2/3 (in cyan), human cells (HuNu, in red) and endothelium 

(CD31, in green)) on frozen section from constructs after 1 week of in vivo implantation. Scale bar=30µm; (B, C) 

Quantification of the percentage of human cells nuclei positive for pSMAD2/3 in the core (B) and in the invaded 

area (C); (D) Quantification of the percentage of endothelium nuclei positive for pSMAD2/3. **=p<0.01. 

***=p<0.001, ****=p<0.0001.  
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Sema3A delivered as single factor significantly improves both vascularization and bone 

formation in osteogenic grafts 

The previous data show that Sema3A/NP1 signaling is required in osteogenic grafts both 

for bone tissue formation and early blood vessel ingrowth, even in the presence of an optimal 

dose of VEGF. Based on these results, we asked whether Sema3A could be exploited as a 

therapeutic target for the generation of vascularized bone. An engineered version of Sema3A 

protein (TG-Sema3A) was incorporated into fibrin hydrogels at 0.1 and 10 µg/ml and the 

generated osteogenic constructs were implanted subcutaneously in nude mice for 1, 4 and 

10 weeks. As previously shown in Chapter 3, rapid vascular ingrowth is crucial to promote cell 

survival in the core of the graft. Conversely from the effects of blocking Sema3A/NP1 signaling 

in the presence of a low VEGF dose (Fig. 4), when Sema3A was delivered as a single factor, 

without VEGF, both doses induced significantly larger and deeper areas of blood vessels 

invasion after 1 week compared to the Naïve condition (Fig. 11A-B; Naïve=4.2±0.1% vs TG-

Sema3A 0.1=12.4±2.4%, p<0.05; vs TG-Sema3A 10=17.8±1.7%, p<0.01). 
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Figure 11. (A) Reconstruction of graft sections under fluorescent light to evidence the areas of blood vessel 

growth (in yellow) stained for CD31 (red) after 1 week in vivo); (B) Quantification of the areas invaded by blood 

vessels (expressed as % of total section area); scale bar= 300µm. Representative pictures of Masson's trichrome 

staining of constructs after 4 (C) and 8 (E) weeks of in vivo implantation (mineralized tissue in dark green); scale 

bar = 500µm; quantification of areas occupied by dense collagenous matrix after 4 weeks (D) (expressed as % of 

construct area, and by bone tissue after 10 weeks (F); *=p<0.05, **=p<0.01. 

 

After 4 weeks, initial bone formation was visible in all conditions, as shown by dense 

collagenous matrix in Masson’s trichrome staining (Fig. 11C). However, the quantity of dense 

matrix was increased by about two-fold by 0.1 µg/ml of Sema3A compared to naïve cells 

alone, but not by the higher Sema3A dose of 10 µg/ml (Fig. 11D; TG-Sema3A 0.1=5.7±0.5% vs 

Naïve=3.0±0.3% and TG-Sema3A 10=3.2±0.6%, p<0.05). After 10 weeks, frank bone tissue had 

developed, characterized by dense organized collagen fibers and the presence of osteocyte 

lacunae (Fig. 11E). Again, 0.1 µg/ml of Sema3A (but not 10 µg/ml) significantly increased bone 
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tissue formation compared to Naïve cells (Fig. 11F; TG-Sema3A 0.1=19.9±1.1% vs 

Naïve=12.2±1.4% and TG-Sema3A 10=15.5±0.6%, p<0.05), even though the fibrin-bound 

Sema3A was only present for about 4 weeks and was long exhausted by this time-point. 

Sema3A co-delivery prevents bone loss induced by high VEGF doses without impairing 

VEGF-induced vascularization 

Taken together, the studies reported here suggest that Sema3A may act downstream of 

VEGF to couple angiogenesis and osteogenesis, as: 1) its expression in osteoprogenitors is 

downregulated by increasing VEGF doses (Figs. 1-2); 2) it is required for both vascular invasion 

(Figs. 4-5) and osteogenesis (Fig. 6); and 3) it can stimulate both vascular invasion and 

osteogenesis in the absence of exogenous VEGF (Fig. 11). Therefore, we lastly sought to 

investigate if Sema3A co-delivery may rescue bone loss induced by high VEGF doses. TG-

Sema3A and TG-VEGF were combined at a ratio of 1:1 or 1:10 and the osteogenic constructs 

were analyzed 4 weeks after in vivo implantation in nude mice. Constructs containing both 1 

and 10 µg/ml of TG-VEGF displayed a significant reduction in dense collagenous matrix 

deposition compared to control grafts (Fig. 12A and 12D; Naïve=0.5±0.1% vs TG-VEGF 1 

=0.1±0.1%, p<0.05; vs TG-VEGF 10=0.02±0.01%, p<0.001). Instead, co-delivery of Sema3A at 

both ratios completely prevented bone loss and restored bone formation to the same or even 

higher level as Naïve cells alone (Fig 12A and 12D; V1/S0.1=0.8±0.1%, V10/S10=0.4±0.1%, 

p=n.s. vs Naïve). 

The prevention of bone loss by Sema3A correlated with a lower recruitment of osteoclasts 

(Fig. 12B). Quantification of multinucleated TRAP+ cells showed that, while VEGF alone 

significantly increased the number of osteoclasts compared to control grafts (Fig. 12E; 

Naïve=19.1±1.4 TRAP+ MNC cells/mm2 vs TG-VEGF 1=47.3±4.2, p<0.0001; vs 
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TG- VEGF 10=36.2±3.4, p<0.001) co-delivery of Sema3A completely prevented this increase, 

maintaining osteoclasts recruitment to a similar level as in the naïve condition (Fig. 12E; 

V1/S0.1=21.4±1.9 TRAP+ MNC cells/mm2, V10/S10=20.6±2.7, p=n.s. vs Naïve). Steady-state 

vascular density in the grafts was not affected by Sema3A co-delivery in the presence of VEGF, 

which was significantly increased compared to the naïve condition (Fig. 12F; Naïve=1.7±0.11 

mm/mm2 vs TG-VEGF 1=3.1±0.2, V1/S0.1=2.6±0.1, TG-VEGF 10=3.6±0.1, V10/S10=3.9±0.2; 

p<0.01). 

 

Figure 12. (A) Representative pictures of Masson's trichrome staining of constructs after 4 weeks of in vivo 

implantation (mineralized tissue in green); scale bar = 100 µm; (B) Histochemical stain for TRAP activity (red) and 

nuclear counterstaining with hematoxylin (blue) of constructs after 4 weeks of in vivo implantation; scale bar = 

100µm; (C) Immunostaining of endothelium (CD31,red) and nuclei (DAPI, blue) of osteogenic constructs after 4 

weeks of in vivo implantation; scale bar = 100 µm; (D) Quantification of areas occupied by mineralized tissue 

(expressed as % of construct area); (E)  Quantification of Trap+ multinucleated cells (MNC) per tissue area (mm2); 

(F) Quantification of vessels density vessel length density (VLD) expressed as millimeters of vessel length per 

square millimeter of tissue area (mm/mm2); **=p<0.01, ***=p<0.001. 



 
 

 192 

Discussion 

In this study we found that efficient coupling of angiogenesis and osteogenesis in tissue-

engineered grafts critically depends on Sema3A signaling downstream from VEGF. Delivery of 

high VEGF doses induced severe bone loss and caused a significant downregulation of 

Sema3A expression, while low doses preserved both bone formation and Sema3A expression. 

Blocking of Sema3A signaling significantly impaired both vascular invasion and bone tissue 

development, and increased osteoclasts recruitment. On the other hand, Sema3A delivered 

as a single factor was able to increase both vascular invasion and bone formation. 

Sema3A is involved in the physiological regulation of bone development and homeostasis. 

Already in 1996 Behar et al. have shown that Sema3A-deficient mice are characterized by 

fusion of cervical bones, partial duplication of ribs, and poor alignment of the rib-sternum 

junctions [9]. More recently, different studies showed that Sema3A regulates both bone 

resorption and bone deposition, by suppressing osteoclast differentiation and promoting 

osteoblastic differentiation [13-15]. Additionally, we have previously shown that, in skeletal 

muscle, increasing doses of VEGF impair blood vessel stabilization by inhibiting the 

endothelial Sema3A/Neuropilin-1 expressing monocytes (NEM)/TGF-b1 paracrine axis, thus 

providing a direct molecular link between VEGF and Sema3A expression in endothelium [18]. 

Although VEGF is a key molecular target for the generation of vascularized bone grafts, its 

therapeutic use is limited by its potential to induce aberrant angiogenesis [23], to impair bone 

formation through the inhibition of osteoprogenitor cells differentiation and the stimulation 

of osteoclast recruitment (Chapters 2-3). As we have previously shown, osteogenic constructs 

containing 100 µg/ml of VEGF displayed a severe loss of bone mass after 4 weeks in vivo. This 
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was due both to excessive osteoclast recruitment and to the downregulation of osteogenic 

differentiation of the implanted human BMSC (Chapter 3). 

Here, we identified Sema3A as a molecular mediator by which VEGF dose-dependently 

regulates bone formation in tissue-engineered constructs, as well as a key effector of 

angiogenesis-osteogenesis coupling. Low VEGF levels (0.1 µg/ml) attracted rapid vascular 

invasion of the grafts while also activating osteoprogenitors differentiation, and maintained 

robust Sema3A expression, with efficient intramembranous bone formation and balanced 

bone resorption. Instead, high VEGF levels (100 µg/ml) impaired Sema3A expression. 

inhibited human BMSC osteogenic differentiation and increased resorption, while also 

impairing initial vascular ingrowth (Chapter 3). These observations suggested a causal link 

between the effects of VEGF on Sema3A expression and the coupling of angiogenesis and 

osteogenesis. The mechanistic link was then proven by complementary loss-of-function and 

gain-of-function experiments. These results showed that specifically blocking Sema3A/NP1 

signaling phenocopied the effects of high VEGF doses on both angiogenesis and osteogenesis 

even in the presence of low VEGF or just under unstimulated conditions. Conversely, Sema3A 

delivery stimulated both angiogenesis and osteogenesis both in the presence of high VEGF 

doses and as a single factor. Since VEGFR2 is known to be expressed by osteoblasts in vivo [6, 

24] it is likely that VEGF directly regulates Sema3A expression by human implanted 

progenitors.  

In bone tissue, Sema3A expression was observed mainly in osteoblasts, while its receptor 

NP1 is expressed by osteoblasts and osteoclast precursors [14]. It has been shown that 

Sema3a-/- and NP1Sema3A- mice, which lack Sema3a and the Sema3A-binding domain of NP1 

respectively, display a severe osteopenic phenotype caused by a decrease in osteoblastic 

bone formation and an increase in osteoclast number during bone development through 
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endochondral ossification [14]. However, the role of Sema3A in intramembranous ossification 

within osteogenic grafts has never been investigated. Here we showed for the first time that 

also in BMSC bone grafts, Sema3A signaling is crucial to maintain efficient bone formation. In 

fact, inhibition of Sema3A binding to NP1 resulted in decreased bone mass and increased 

bone resorption (Fig. 6). 

Interestingly, the amount of endogenous Sema3A protein was also significantly reduced, 

although not completely abrogated, when its binding to NP1 was impaired. We also found 

that, after 4 weeks of treatment, downregulation of Sema3A correlated with a decreased 

number of human cells within the constructs (Fig. 7). Recently, an autoregulatory loop via 

Sema3A has been described to sustain osteocytes survival and Sema3A expression through 

the sGC-PKG pathway [15]. Therefore, this suggests that Sema3A expression might be self-

sustained by an autocrine loop, required not only for osteoprogenitor differentiation but also 

for their survival. 

Sema3A has been shown to recruit NEM during VEGF-induced angiogenesis, which release 

TGF-b1, causing on one hand the stabilization of blood vessels through Smad 2/3 signaling, 

and on the other sustaining a positive feed-back loop that stimulates further Sema3A 

expression by endothelium [18]. In agreement with these observations and with the pattern 

of expression of Sema3A at 1 week, we found that Sema3A regulates NEM recruitment also 

in osteogenic grafts and that its inhibition by NP1 blockade translates into a reduction in TGF-

b signaling, as shown by the significant impairment of SMAD 2/3 phosphorylation and nuclear 

translocation in both human progenitors and mouse endothelial cells (Fig. 10). However, 

further investigation is needed to elucidate the role of TGF-b1 and NEM recruitment in 

intramembranous ossification of osteogenic grafts, e.g. by TGF-b1 blockade experiments. 
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Sema3A has been described to exert anti-angiogenic functions by inhibiting sprouting 

angiogenesis. It has been shown that Sema3A impairs endothelial cell migration in vitro [12], 

and regulates tumor-induced angiogenesis in vivo [25]. Acevedo et al. described a role for 

Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and as a potent inducer 

of vascular permeability [17]. Recently it was shown that NP1 is more expressed in tip cells 

than in stalk cells [26],and that endothelial cell-derived Sema3A specifically exerts repelling 

functions on tip cell filopodia, via NP1 and probably Plexin-A1 [27]. Surprisingly, we did not 

observe any anti-angiogenic effects by Sema3A. Rather, blockade of Sema3A signaling, even 

in the presence of low VEGF levels, led to impaired vascular invasion, while conversely, 

Sema3A delivery significantly stimulated blood vessels in-growth in the absence of VEGF. The 

discrepancy between these data and previous findings, both with robust levels of evidence, 

suggest that Sema3A regulation of vascular growth is more complex than anticipated and may 

be context-, dose- or tissue-dependent. Further investigations are clearly warranted. 

The therapeutic potential of Sema3A in bone regeneration is currently under investigation. 

It has been shown that local administration of Sema3A into a cortical bone defect accelerates 

bone repair [14] and that treatment with Sema3A recombinant protein protects against bone 

loss even in aged and in estrogen-depleted mice [15]. Others showed that Sema3A treatment 

increases callus volume and density at 4 weeks post-fracture, and promotes ossification and 

remodeling at 8 weeks post-fracture compared to control [28]. However, to our knowledge, 

the data reported here show for the first time that Sema3A is a key mediator of angio-

osteogenesis coupling downstream of VEGF during intramembranous ossification. A further 

understanding of the underlying molecular mechanisms is necessary to further elucidate the 

role of Sema3A in bone angiogenesis. The unforeseen function of Sema3A signaling to 
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promote both the speed of vascular invasion into grafts and the efficiency of bone formation 

is very attractive for the therapeutic generation of vascularized bone grafts. 
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10. Summary and future perspectives 

Angiogenesis and osteogenesis are two intimately connected processes. Bone vasculature 

is crucial to supply oxygen and nutrients, as well as to provide angiocrine signals, which are 

required for the maintenance, differentiation and survival of stem and progenitor cells within 

the bone tissue [1]. Furthermore, a functional vasculature is extremely important during bone 

development and repair, as blood vessels serve as structural templates, around which bone 

formation takes place. Moreover, vessels bring together key components for bone 

regeneration, such as minerals, growth factors, immune cells and osteogenic progenitor cells, 

which all contribute to a correct bone homeostasis [2, 3]. 

Large bone tissue losses, caused by diseases or trauma, cannot fully heal and the current 

medical practice still faces significant challenges for their treatment. Bone tissue-engineering 

has emerged as a promising alternative to bone transplantation and many different strategies 

are currently being investigated to fulfil this unmet clinical need. Tissue engineered 

constructs, delivering progenitor cells and/or growth factors, have been widely tested to 

bridge large bone defects. However, in most cases lack of sufficient spontaneous vascular 

perfusion in the bone grafts results in inner necrosis, poor integration with the host tissue 

and insufficient bone healing. In fact, vascularization is a crucial aspect to consider for the 

design of tissue-engineering strategies and it is a major hurdle for the regenerative medicine 

field. 

Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis and is 

also critical for both bone development and regeneration. In these processes VEGF has 

multiple roles, both acting on endothelial cells to promote their migration and proliferation, 

and stimulating osteogenesis through the regulation of osteogenic growth factors [4, 5]. VEGF 
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is therefore a key molecular target for the generation of vascularized bone grafts, but a better 

understanding of the molecular cross-talk between angiogenesis and osteogenesis is needed 

in order to fully exploit its therapeutic potential. Therefore, here we have investigated 3 

aspects of how VEGF controls the coupling of angiogenesis and osteogenesis in bone 

generation by BMSC: 

1) Duration of VEGF delivery; 

2) VEGF dose; 

3) The underlying molecular mechanism and in particular the role of Sema3A/NP1 

signaling downstream of VEGF. 

VEGF protein delivery, in most cases, requires precise control of its release and spatial 

concentrations, which are critical for the stimulation of physiological angiogenesis and bone 

formation. Even though the initial growth of new vessels can be quite rapid, sustained VEGF 

signaling for about 4 weeks is required for their subsequent stabilization and ability to persist 

indefinitely. In fact, if delivery is too short, newly induced vessels regress promptly upon 

cessation of the VEGF stimulus [6]. VEGF in its free form has an extremely short half-life in 

vivo and therefore bolus injections and rapid passive release from scaffolds are inadequate 

to ensure new vessel persistence. However, if from one side a prolonged exposure to VEGF 

ensures a stable and persistent vasculature, from the other it might also affect important 

biological processes involved in bone homeostasis, causing for example excessive bone 

resorption [7]. We therefore hypothesized and showed that one of the key elements to 

efficiently stimulate both vascularization and osteogenesis is, in fact, the control of the timing 

of VEGF supply. 

As described in Chapter 2, we found that a transient delivery of VEGF protein for about 4 

weeks in vivo, controlled through a highly tunable fibrin-based platform, is more desirable 
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and efficient compared to genetic VEGF overexpression. In fact, delivery of 1 µg/ml of fibrin-

bound VEGF stimulated the early vascular invasion of the grafts, with improvement of both 

progenitor survival and bone formation in critical-size bone defects, while avoiding the 

detrimental effects caused by sustained exposure to the factor. 

The temporal control of VEGF delivery is not the only important aspect to be considered 

for the generation of vascularized bone grafts. We have shown that, depending on its 

concentration, VEGF has different effects on blood vessel migration into the graft and on the 

osteogenic differentiation of osteoprogenitors. We found that 0.1 µg/ml of VEGF significantly 

accelerated vascular invasion of the osteogenic grafts and maintained efficient bone 

formation. Conversely, increasing doses of VEGF limited vascular ingrowth on one hand, and 

also progressively impaired net bone formation by both increasing bone resorption and 

impairing osteoprogenitor differentiation. Taken together, these data indicate that VEGF 

signaling must be controlled to moderate levels, as prolonged expression and high doses are 

not only unnecessary for optimal angiogenesis, but also trigger multiple processes that 

negatively affect osteogenesis.  

Despite promoting vascular invasion, low VEGF doses did not increase the amount of bone 

in ectopic implants. This is due to the small size of these implants, for which spontaneous 

vascularization is sufficient. In fact, in a critical-size orthotopic defect, in which spontaneous 

angiogenesis is not sufficiently fast to sustain progenitor survival, the presence of VEGF did 

promote bone healing. Interestingly, we observed an increased degree of bone maturation in 

subcutaneous grafts containing a low dose of VEGF. Osteogenesis has a slow kinetics. In fact, 

the initial template of immature osteoid, which is deposited by BMSCs after about 4 weeks, 

requires further time to develop into mature bone tissue. A greater amount of organized 

mature bone at 8 weeks might suggest that, low VEGF could accelerate the deposition of 
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dense collagenous matrix. Since after 1 week gene expression analysis did not reveal any 

significant difference in the expression of osteogenic genes among all conditions, to test this 

hypothesis histological and gene expression analysis at 2 and 3 weeks after in vivo 

implantation should be performed. The formation of mature bone tissue characterized by 

physiological structural and mechanical properties is desirable for successful clinical 

outcomes. 

Our data indicate that VEGF delivery should be tightly controlled to achieve efficient bone 

formation, suggesting an explanation for why VEGF has been found to enhance bone healing 

and regeneration in many studies, but has failed to have positive effects in others  [8, 9]. 

Moreover, the expression of VEGF receptors in BMSCs and osteoblasts is quite variable, 

making direct effects of VEGF on this cell types complicated to study [4, 10]. For example, in 

murine osteoblastic MC3T3 cells, VEGF was shown to promote the expression of alkaline 

phosphatase and osteocalcin [11].However, other studies also showed that primary murine 

mesenchymal progenitors and osteoblasts failed to respond to exogenous VEGF [12]. The 

dose-dependent impairment of BMSC osteogenic in vivo differentiation that we reported in 

Chapter 3 (Fig. 8) suggests a possible direct effect of VEGF on osteoprogenitors. In order to 

test this hypothesis more experimental work is needed, such as in vitro stimulation of 

differentiating human BMSC with increasing VEGF doses. 

For clinical efficacy it is crucial to improve both angiogenesis and osteogenesis, i.e. angio-

osteogenic coupling. For this reason, different studies have been focusing on possible 

synergistic effects of VEGF with other growth factors. For example, it has been shown that 

VEGF and BMP2 within polymer scaffolds enhance bone regeneration in clinical-size defects 

[13]. In another study a sequential angiogenic and osteogenic growth factor release was 

beneficial for the enhancement of bone regeneration [14]. However, results were often 



 
 

 203 

controversial: for example, in the case of BMPs high doses of growth factor were associated 

with excessive amounts of ectopic bone formation and increased inflammation and 

neuropathies [15], and in the case of VEGF with the development of aberrant and leaky 

vasculature [16]. Therefore, it is important to control the release and presentation of growth 

factors, avoiding undesired effects and reducing the costs of therapy. 

On the other hand, a better understanding of the complex cross-talk between angiogenesis 

and osteogenesis could identify novel molecular targets to more precisely and safely 

stimulate bone formation and vascularization. As it has been extensively discussed in this 

thesis, osteogenesis requires a balance between bone deposition and bone resorption. 

Excessive VEGF delivery leads to both increased bone resorption and decreased osteogenic 

differentiation of progenitor cells. A few years ago, the neural guidance molecule Sema3A has 

been found to play a crucial role in bone homeostasis, by both inhibiting osteoclast 

recruitment/maturation and stimulating osteoblast differentiation [17]. On the other hand, 

we previously found that Sema3A is required for blood vessel stabilization and that VEGF 

dose-dependently inhibits its expression in muscle endothelium [18]. Therefore, here we 

hypothesized that Sema3A may mediate VEGF dose-dependent functions in vascularized 

bone formation. The data reported in Chapter 4 show that indeed Sema3A is fundamental for 

both efficient vascularization and bone formation in osteogenic grafts. In fact, we found that: 

1) high doses of VEGF decreased Sema3A expression, resulting in increased bone resorption 

and impaired osteogenic differentiation; 2) Sema3A signaling is required for efficient bone 

formation, as the blockade of its interaction with neuropilin-1 (NP1) led to the same 

outcomes; and 3) Sema3A delivered as a single factor could promote both vascular invasion 

and bone formation. 
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One of the most exciting results of this study is related to the pro-angiogenic properties of 

Sema3A. The inhibition of Sema3A signaling significantly limited vascular invasion of the 

osteogenic constructs at 1 week, even in the presence of the optimal dose (0.1 µg/ml) of 

VEGF. Conversely, when delivered as single factor, Sema3A stimulated blood vessels 

ingrowth. These two complementary observations show that Sema3A may act as a pro-

angiogenic factor, and not only as a crucial osteoprotective molecule. 

The role of Sema3A during angiogenesis is still unclear. For example, no vascular 

alterations were seen in Sema3a−/− embryos [19], or in mice expressing a mutated form of 

NP1 lacking the Sema-binding domain, but its VEGF-binding ability intact [20]. However, 

several lines of evidence suggest potent anti-angiogenic functions to Sema3A. It has been 

shown that Sema3A inhibits endothelial cell migration in vitro [21] and regulates tumor-

induced angiogenesis in vivo [22]. Others found that, within the cardiovascular system, 

Sema3A modulates vessel formation by inhibiting integrin activity [23]. Acevedo et al. 

described a role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and 

as a potent inducer of vascular permeability [24]. Interestingly, it has been recently shown 

that NP1 is more strongly expressed in tip cells than in stalk cells [25]. This would open the 

possibility that Sema3A may specifically have a role in regulating sprouting angiogenesis. 

Furthermore, Sema3A signaling relies on the interaction of NP1 with co-receptors of the 

Plexin family [26]. It has been recently shown that endothelial cell-derived Sema3A 

specifically exerts repelling functions on tip cell filopodia, probably via NP1 and plexin-A1 [27]. 

The role of Sema3A in angiogenesis is complex and likely context-, dose- and tissue-

dependent. The data reported here suggest that also during intramembranous bone 

formation Sema3A acts as a key angiogenic player. Whether Sema3A-induced angiogenesis is 
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due to the direct stimulation of endothelial cells sprouting or to other indirect mechanisms, 

is unclear and has not been investigated here. 

Importantly, the delivery of Sema3A improved not only vascularization but also 

significantly increased bone deposition compared to BMSCs alone. This dual and positive role 

of Sema3A on angiogenesis and osteogenesis could be clearly beneficial for a clinical 

translation. 

The co-delivery of Sema3A with high doses of VEGF prevented excessive osteoclast 

recruitment and promoted efficient bone formation, without impairing VEGF-induced 

vascularization. These observations, together with the evidence that Sema3A was dose-

dependently downregulated by VEGF, suggest that Sema3A acts as a downstream mediator 

of VEGF and therefore it may regulate a feed-back loop similar to the one that we have 

previously described in skeletal muscle [18]. In this tissue VEGF dose-dependently inhibits 

endothelial Sema3A expression, thereby impairing recruitment of Neuropilin-1-expressing 

monocytes (NEM), TGF-β1 production and endothelial SMAD2/3 activation. TGF-β1 further 

initiates a feedback loop stimulating further endothelial Sema3A expression, thereby 

amplifying the signaling cascade leading to stabilization of the newly formed blood vessels 

[18]. Here we have seen that NEM recruitment within the active angiogenic areas takes place 

also in osteogenic grafts and it is impaired by high doses of VEGF or by inhibition of 

Sema3A/NP1 signaling. Furthermore, the blocking experiment also showed that SMAD2/3 

nuclear translocation was reduced both in endothelial cells and human progenitors, indicating 

that TGF-β1 signaling was impaired. To more precisely investigate the role of TGF-β1 in this 

process, blocking of TGF-β1 signaling should be performed, e.g. by treatment with the small 

molecule inhibitor SB431542 [28]. Based on the hypothesis that TGF-β1 may be part of a 

positive feedback loop sustaining Sema3A expression, it would be expected that TGF-b1 



 
 

 206 

inhibition would cause a reduction in Sema3A expression and bone loss. It would also be 

important to test whether Sema3A can rescue the effects of TGF-β1 inhibition. This would 

prove that the Sema3A/NEM/TGF-β1 axis is active in osteogenic grafts and that it is required 

for efficient bone formation. Lastly, as it has been established that Sema3A can prevent bone 

loss induced by high doses of VEGF, future experiments will investigate whether co-delivery 

of the optimal low dose (0.1 µg/ml) of VEGF together with Sema3A might have synergistic 

effects and further improve vascular invasion and bone formation when compared to single 

factor delivery. 

As future perspective, development of preclinical proof-of-concept studies of the fibrin-

based platform used here is one of the main objectives. We have already seen that 1 µg/ml 

of TG-VEGF can improve bone healing in a clinical-size bone defect. However, in the 

subcutaneous grafts, we have later found that lower doses might provide a significant 

advantage in terms of vascular invasion and bone maturation. Therefore, it will be important 

to investigate the effect of 0.1 µg/ml of TG-VEGF in a critical-size model. 

The choice of the appropriate animal model has also to be carefully evaluated. Different 

animal models, such as mouse/rat, rabbit, goat, sheep, dog and pig have been applied to test 

bone substitute biomaterials. Several defect sites have been also explored in order to mimic 

various clinical situations. Among these calvaria, femur and ulna represent the most used for 

the generation of non-healing critical defects [29]. In the study reported here, we investigated 

the effects of VEGF, both delivered as fibrin-bound factor and overexpressed by human-

BMSC, in a rat calvaria critical-size bone defect. Despite the promising results, the calvaria 

environment differs from long bones in regard to mechanical stress, such as load and strain. 

In fact, mechanical forces are known to modulate stem cell behavior in development and 

regeneration and they also have to be considered in the design of biomaterials [30, 31]. 
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Therefore, it would be important to consider alternative orthotopic models, to further test 

the therapeutic potential of this approach. 

In bone tissue-engineering, osteoprogenitor cells have been used in combination with 

biomaterials to recapitulate both endochondral and intramembranous ossification. The 

potential of stem and progenitor cells has been demonstrated for the repair and regeneration 

of craniomaxillofacial and long bone defects. However, clinical use of bone tissue engineering 

protocols has been very limited due to some unsolved or intrinsic hurdles. For example, it has 

been shown that the osteogenic potential of human-derived MSC is donor-dependent and 

tends to decrease with age [32]. Cell-based therapies also require time-consuming and costly 

in vitro cell expansion procedures which limit their clinical application [33, 34]. 

Due to these limitations, in the past few decades research has focused on the stimulation 

of the intrinsic regenerative abilities of bone tissue [35, 36]. Skeletal stem cell recruitment is 

a critical step in bone healing and, for instance, failed regeneration has been associated to 

various clinical situation in which the BMSC pool was reduced [37]. We have also extensively 

discussed that a lack of vascularization leads to delayed or failed tissue regeneration. This 

highlights the importance of promoting the physiological occurrence of these two processes 

for efficient bone regeneration. A better understanding of the underlying molecular 

mechanisms involved in the homing, maintenance and differentiation of skeletal progenitors 

will be important for the design of cell-free therapies for enhancing bone healing. In this 

context, the data reported here provide useful insights regarding VEGF dose-dependent 

effects on both osteogenic differentiation and angiogenesis. It would be interesting to 

understand whether cell-free osteogenic constructs composed of fibrin matrices decorated 

with VEGF and/or Sema3A at optimal doses might stimulate endogenous bone repair. 
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Unpublished data from our group show evidence that Platelet-Derived Growth Factor-BB 

(PDGF-BB) can regulate the Sema3A/NEM/TGF-β1 signaling axis in skeletal muscle, which is 

disrupted by high VEGF levels. In this study, PDGF-BB has been found to restore Sema3A 

expression despite high concentrations of VEGF. PDGF-BB also has important roles in the 

proliferation, differentiation and chemoattraction of multiple cells of mesodermal origin, 

including BMSC [38, 39], as well as in bone regeneration [40, 41]. However, the therapeutic 

potential of PDGF-BB for bone repair has not yet been fully investigated. As a future 

perspective, it will be interesting to study the effect of fibrin-bound PDGF-BB on angiogenesis 

and osteogenesis in bone grafts. In particular we can hypothesize that PDGF-BB delivery might 

stimulate Sema3A expression thus coupling vascularization and bone formation. This would 

be relevant as an alternative strategy for the generation of vascularized bone grafts. 

In conclusion, here we demonstrated that VEGF promotes vascularization and bone 

formation in a dose-dependent manner. The coupling of the two processes requires a fine 

tuning of VEGF delivery, as excessive VEGF concentrations or prolonged stimulation delay 

early blood vessel ingrowth, progressively increase bone resorption and impair osteogenic 

differentiation of BMSC. Low VEGF doses, instead, ensure fast vascularization, improve 

osteoprogenitor survival and promote osteogenesis. 

We also described a crucial role of Sema3A in both intramembranous bone formation and 

vascularization, and found that it provides a direct molecular link with VEGF. In addition, to 

our knowledge, we described for the first time the angiogenic potential of Sema3A during 

bone formation. 

These results confirm the importance of both VEGF and Sema3A in bone biology and 

provide the basis for the design of novel rational strategies to generate vascularized bone 

grafts with the aim to improve the healing of clinical-size bone defects. 
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