
Factoring Primes to Factor Moduli: Backdooring and
Distributed Generation of Semiprimes⋆

Giuseppe Vitto

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
name.surname@uni.lu

January 11, 2022

Abstract. We describe a technique to backdoor a prime factor of a composite odd
integer N , so that an attacker knowing a possibly secret factor base B, can efficiently
retrieve it from N . Such method builds upon Complex Multiplication theory for
elliptic curves, by generating primes p associated to B-smooth order elliptic curves
over Fp. When such primes p divide an integer N , the latter can be efficiently factored
using a generalization of Lenstra’s Factorization Method over rings bigger than ZN ,
and with no knowledge other than N and B.
We then formalize semiprimality certificates that, based on a result by Goldwasser
and Kilian, allow to prove semiprimality of an integer with no need to reveal any of
its factors. We show how our prime generation procedure can be used to efficiently
produce semiprimality certificates, ultimately allowing us to sketch a multi-party
distributed protocol to generate semiprimes with unknown factorisation, particularly
relevant in the setting of distributed RSA modulus generation.
We provide and discuss implementations of all proposed protocols and we address
security of semiprimality certificates by showing that semiprimes generated within
our methods result at least as secure as random semiprimes of same size.

Keywords: elliptic curves · complex-multiplication · backdoor · semiprime · certifi-
cate · MPC · RSA · ECM

1 Introduction

In this paper, we will detail a technique to backdoor a prime factor of an odd composite
integer N so that third parties knowing some (secret) auxiliary information, i.e., a factor
base, can efficiently retrieve it from N .

More precisely, we will use the Complex Multiplication theory to build primes p and
elliptic curves over Fp, such that the orders of the latter are B-smooth (that is, factor
as products of elements in B), and can be explicitly represented as a function of the field
characteristic, i.e. #E(Fp) = p+1±a where 4p = a2+ |D|b2 with D a negative discriminant.
over a ring containing

In the following Sections, we will describe a generation procedure for such primes p so
that, with no knowledge of any of the factors of N , we will be able to construct a curve
equation E(ZN) along with multiple random points P on it, so that the order of E(Fp)

⋆ The work of Giuseppe Vitto was supported by the Luxembourg National Research Fund (FNR)
project FinCrypt (C17/IS/11684537).

(the modulo p component of E(ZN)) is B-smooth for a certain factor base B. This will
ultimately allow us to efficiently factor N by computing in projective coordinates some mul-
tiple [

∏
pi∈B pi] ·P of the point P , similarly as done in Lenstra’s Elliptic-Curve factorization

Method (ECM) [30]. While, in ECM, random curve equations E(ZN) and points P ∈ E(ZN)
are generated until a curve of smooth order is found, in our construction, we will be able
to deterministically construct from N a B-smooth order elliptic curve in short Weierstrass
form defined over a ring containing ZN , together with multiple points on it.

Although different backdooring techniques exist in literature within our attack model1,
our methods show that large semiprimes N , employed by the RSA encryption scheme [33],
can be maliciously generated to be still vulnerable to a generalization of Lenstra’s ECM,
an attack that is usually not considered of interest for cryptographically sized N due to its
negligible success probability. Furthermore, the insights provided by our prime generation
procedure will ultimately allow us to sketch a distributed protocol to generate semiprimes.

Recent protocols for the multi-party generation of semiprimes [10, 11, 34] build on the
seminal work of Boneh and Franklin [8], by extending it to different security assumptions
and adding several algorithmic optimizations. Informally, in these protocols, parties jointly
generate some (random) candidate primes p, q, securely multiply them as N = p · q and
run a distributed statistical semiprimality test until they are confident enough that N is a
semiprime.

In contrast to these, our sketched multi-party protocol outputs integers which are guaran-
teed to be a product of two unknown primes (and thus there is no need to run a semiprimality
test such as the one detailed in [8]), thanks to semiprimality certificates that can be publicly
verified.

Semiprimality certificates are based on a generalization of a theorem by Goldwasser and
Kilian [25], which provides a sufficient condition for an integer N to have at most m distinct
prime factors. Such a condition requires the existence of an elliptic curve over ZN so that
some points on it have particular small prime order. It follows that when we require an
integer N to be the product of two distinct primes, as happens for RSA moduli, such result
can be used to ensure semiprimality for N in case we find (or we construct) a semiprimality
certificate for it, with the latter consisting in an elliptic curve over ZN and some points on
it satisfying the theorem assumptions. Remarkably, such certificates prove semiprimality of
N with no need to publish nor know any of its factors.

Our semiprime generation protocol uses our prime backdooring procedure to construct
elliptic curves with (partially random) orders that satisfy the assumptions of the Goldwasser-
Kilian generalized criterion. We then retrieve N from this information, and we test if all
conditions of the theorem match: when this happens, N is a semiprime by construction and
its semiprimality can be publicly verified from the certificate.

We can then apply standard MPC arithmetic to perform all the computations involved
(mainly multiplications and additions, but also scalar-point multiplications that we address
with an ad-hoc technique) to make this protocol distributed, and we show its correctness
and feasibility by implementing it using state-of-the-art MPC libraries.

1 A standard one consists in fixing half of the bits of p to a certain secret value c and then use
Coppersmith’s method [15] to efficiently find a small root of the polynomial f(x) = 2log2(p)/2x+c
modulo a divisor of N = p · q.

2

Lastly, we analyze if and how knowledge of a semiprimality certificate for N generated
within our framework may reduce its bit-security with respect to factorization. We investi-
gate some possible attacks based on generic discrete-logarithm finding algorithms in groups
of unknown order, and attack variants that require just a few operations to compute a
factor of N if any multiple of the order of the curve provided in the certificate is known.
In all cases, semiprimality certificates generated according to our protocol are easier to at-
tack using generic factorization algorithms, and thus we don’t expect a decrease in terms of
bit-security unless other more specific attacks are found.

We were, however, able to factor a 3599-bits semiprime N , generated by Don Reble [21] in
2005 and which remained unfactored until now. Such semiprime comes with a semiprimality
certificate that, contrary to ours, includes an extra divisor of the full curve order that makes
it vulnerable to one of our attack variants that factors N in just a few operations.

Related Works In a later stage of the (independent) development of the results reported in
this paper, we found out that Aikawa et al. in [1] use similar observations to factor integers
N where one of its primes is of the form 4p = 1 + |D|b2. These primes, indeed, correspond
to anomalous elliptic curves modulo p for which a multiple of the order, i.e., N , is known,
thus allowing an attacker to factor N with just 1 scalar-point multiplication. Aikawa et al.
work extends the applicability of the methods described by Shirase [37], whose manuscript,
in turn, is based on Cheng’s [12,13] ideas, to a bigger class of discriminants D.

In addition to this, Aikawa et al. generalize their factoring method for anomalous curves
to allow p be of the form 4p = a2 + |D|b2, but requiring associated curves to have smooth
order rather than a multiple of N . In contrast to our results, however, they do not provide
an actual method to construct such vulnerable elliptic curves efficiently, and the probability
to randomly hit any of them exponentially decreases with the size of p. Furthermore, their
method works in multiple quotients of the ring ZN [x] to carry out arithmetic operations on
the constructed curve, while we use a more efficient approach based on XZ-arithmetic.

On a more practical side, Sedlacek et al. in [36] generated millions of RSA keys using
different software libraries and hardware and tested them against Cheng’s and Shirase’s
attacks, looking for prime factors p of the form 4p = 1 + |D|b2.

As regards semiprimality certificates, to our knowledge, Don Reble, with his short online
post [21], was the first one to publicly propose the idea of proving semiprimality of an
odd integer N , that he calls interesting semiprimes, using the Goldwasser-Kilian Theorem.
Except for another similar certificate generated by Broadhurst [19] soon after, we did not
find any formal treatment of these concepts.

1.1 Outline

In Section 2 we provide the necessary theoretical background to characterize orders of some
elliptic curves in terms of the field characteristic on which are defined, while in Section 3
we provide the first sketch of our prime generation procedure. In Section 4 we address some
technicalities related to the practical implementation of our idea, which we formalize in
Section 5 and Section 6, where we detail how it is possible to retrieve a factor of a backdoored
integer. In Section 7 we discuss implementations of both our prime generation procedure
and factorization attack, and we detail a full example on a 1024-bits modulus. In Section 8
we formalize the concept of a semiprimality certificate for an integer N by generalizing

3

the Goldwasser-Kilian Theorem, and we show how they can be efficiently computed by
properly generating the prime factors of N . In Section 9 we propose a distributed protocol
for generating certifiable semiprimes with unknown factorization, and we discuss how we
overcome some practical issues to implement it in practice. Lastly, in Section 10, we address
the security of semiprimality certificates generated according to our protocol, and we describe
how we factored a public 1084-digits semiprime.

2 Preliminaries

2.1 Curves of Prescribed Order

Our construction relies on the theory of Complex Multiplication (CM) to build elliptic
curves of a prescribed order. An elliptic curve E is said to have complex multiplication, if
its endomorphism ring End(E) is strictly larger than Z2: this is always the case for elliptic
curves defined over finite fields, where the endomorphism ring is isomorphic to an order in
either a quaternion algebra (in this case, the curve is said to be supersingular) or a quadratic
imaginary field (in this case, instead, the curve is said to be ordinary) [38, V - Theorem 3.1].

A field K is said quadratic field if [K : Q] = 2, and discriminants of quadratic fields are
said fundamental. An integer d ∈ Z is a fundamental discriminant if it satisfies either d ≡ 1
(mod 4) and d is square-free, or d = 4D with D square-free and D ≡ 2, 3 (mod 4).

Of interest for this paper are ordinary elliptic curves whose endomorphism rings are
isomorphic to orders in a quadratic imaginary field.

Definition 1 (Order). For a quadratic field K, let OK denote the ring of integers of K.
A subring O ⊂ OK is said to be an order, if it is a free Z-module of rank 2 containing an
integral basis of K.

In particular, given a quadratic field K of fundamental discriminant d, we will denote it

asK = Q(
√
d), and an integral basis for it is given by (1, ω) with ω = d+

√
d

2 , thus OK = Z[ω].
Every order of a quadratic field is associated to a discriminant, characterized by its

residuosity modulo 4.

Definition 2 (Discriminant). A D ∈ Z is said to be a discriminant if D is not a perfect
square and D ≡ 0, 1 (mod 4).

Fundamental discriminants of quadratic fields and discriminants of orders are related by
the following result.

Proposition 1 ([14, Proposition 5.1.3]). If K is a quadratic field of fundamental dis-
criminant d, then every order O of K has discriminant D = df2, where f ∈ N is the
conductor of O. Conversely, if D is a discriminant, then D can be written uniquely as
D = df2, with d a a fundamental discriminant, and there exists a unique order O of Q(

√
d)

of discriminant D.

2 The multiplication by [n] : E → E map which sends P 7→ nP , is an endomorphism of E for any
n ∈ Z.

4

The following result from CM-theory, also known as CM Algorithm, relates specific short
Weierstrass curve equations over Fp to their cardinality, thus providing a practical method
for computing elliptic curves over finite fields of a given order.

Theorem 1 ([9, Theorem 3.6]). Let D be a square-free negative discriminant not equal
to −3,−4, and let p be an odd prime so that 4p = a2 + |D|b2 for certain a, b ∈ Z. Then, the
elliptic curve

E(Fp) : y2 = x3 − 3kc2x+ 2kc3

where

– j is a root of the Hilbert Class Polynomial HD(x) ∈ Z[x] modulo p,
– k = j

j−1728 ,
– c is a random non-zero element in Fp

has either p + 1 + a or p + 1 − a points, depending on the residuosity of c modulo p, and
j-invariant equal to j.

Here the Hilbert Class Polynomial HD(x) is a polynomial with roots exactly the j-
invariants of elliptic curves over C whose endomorphism ring equals an order with discrimi-
nant D in a quadratic imaginary field. It can be proven that HD(x) is irreducible, is defined
over Z[x], and there exist efficient algorithms to compute it: we refer to [9, Section 3.3] for
more technical details on this.

We recall that given an elliptic curve E : y2 = x3 + ax+ b, a (quadratic) twist of E over
Fp is given by Ẽ : y2 = x3+c2ax+c3b, where c is a quadratic non-residue modulo p. If E(Fp)

has trace of Frobenius t, then Ẽ(Fp) has trace −t for any chosen quadratic non-residue c,

namely #E(Fp) = p + 1 − t and #Ẽ(Fp) = p + 1 + t. If instead, c is a square modulo

p, then E is isomorphic to Ẽ through the change of variable (x′, y′) = (x/c,
√
cy/c2) and

hence #E(Fp) = #Ẽ(Fp). It follows that in the statement of Theorem 1, the value c chosen
determines one of these two different curve twists.

It is possible to characterise the cases D = −3,−4 as well, which correspond to curves
with j-invariants j = 0, 1728, respectively.

Theorem 2 ([9, Theorem 3.6]). Let D ∈ {−3,−4} and let p be an odd prime so that
4p = a2 + |D|b2 for some a, b ∈ Z. Then, the elliptic curve

E(Fp) :

{
y2 = x3 + c3 if D = −3

y2 = x3 + c2x if D = −4

with c a random non-zero element in Fp, has either p+1+ a or p+1− a points, depending
on the residuosity of c modulo p, and j-invariant equal to 0 if D = −3, or 1728 if D = −4.

In the case D = −4, we have a more general result that completely characterize the
number of points of the curve E(Fp) : y2 = x3 − kx, regardless of −k being a square, as
required instead by Theorem 2.

We recall that, by Fermat’s Theorem on Sums of Two Squares [22, Lemma 18.4], an
odd prime p can be written as p = a2 + b2 if and only if p ≡ 1 (mod 4). It follows that
any decomposition of a prime p into a sum of two squares a2 + b2, is in bijection with a
decomposition of 4p as (2a)2+ |D| · b2 with D = −4: the following result, in fact, generalizes
Theorem 2 for the case D = −4.

5

Algorithm 1 Modified Cornacchia Algorithm ([14, Algorithm 1.5.3])

Input: an odd prime p, a negative discriminant D with |D| < 4p.
Output: if exists, an integer solution to x2 + |D|y2 = 4p, otherwise None.

1: Compute k =
(

D
p

)
. If k = −1, return None.

2: Compute, e.g. using Shank’s algorithm, an x0 so that x2
0 ≡ D (mod p) and 0 ≤ x0 < p. If

x0 ̸≡ D (mod 2), set x0 = p− x0. Set a = 2p, b = x0, l =
⌊
2
√
p
⌋
.

3: If b > l, set r = a mod b, a = b, b = r. Go to Step 3.
4: If |D| ∤ (4p − b2) or c = (4p − b2)/|D| is not a perfect square, return None. Otherwise, return

(x, y) = (b,
√
c).

Theorem 3 ([42, Theorem 4.23]). For an odd prime p, let k ̸≡ 0 (mod p) and consider
the elliptic curve E(Fp) : y2 = x3 − kx. Then

1. If p ≡ 3 (mod 4), E is supersingular and #E(Fp) = p+ 1.
2. If p ≡ 1 (mod 4), let p = a2 + b2 where a, b are integers with b even and a + b ≡ 1

(mod 4). Then

#E(Fp) =


p+ 1− 2a if k is a fourth power modulo p

p+ 1 + 2a if k is a square but not a fourth power modulo p

p+ 1± 2b if k is not a square modulo p

2.2 Cornacchia’s Algorithm

The above characterizations for the orders of elliptic curves over Fp require the knowledge
of a specific decomposition for 4p, namely 4p = a2 + |D|b2, with D a negative discriminant
and a, b ∈ Z.

In 1908, Giuseppe Cornacchia proposed an algorithm to solve the Diophantine equation
x2 + dy2 = p with p prime and 0 < d < p: a proof of correctness of his algorithm can be
found, for example, in [5]. It is possible to slightly modify the original Cornacchia’s algorithm
to find a solution to our case of interest as well, namely finding solutions to the equation
4p = x2 + |D|y2 for a negative D so that D ≡ 0, 1 (mod 4). For completeness, we report in
Algorithm 1 such modified version of his algorithm, taken from [14, Algorithm 1.5.3].

In the following Sections, we will often refer to a pair (a, b) satisfying 4p = a2 + |D|b2 as
the Cornacchia decomposition of p for the discriminant D.

3 The Idea

Given a square-free integer N that decomposes as a product of primes of approximately
the same size as N = p1 · . . . · pn, and an elliptic curve E defined over ZN , we clearly have
that E(ZN) = E(Fp1

)× . . .×E(Fpn
) as groups. We are interested in generating primes p so

that whenever they divide a square-free integer N as above, we can explicitly write a curve
equation E over ZN with no need to know any factor of N , and so that #E(Fp) is smooth
or factors in a chosen factor base B. We will do so using the results and the explicit curve
equations provided by Theorem 1, Theorem 2, Theorem 3.

6

It will then follow that, if we are able to get a (non-trivial) point P on one of such

E(ZN), by computing
(∏

pi∈B pℓi

)
· P for some fixed exponent l, we might reveal a factor

of N , similarly as happens in Lenstra’s elliptic-curve factorization method [30], with prob-
ability depending on the size of N and its prime factors. Such probability is high, if N is a
cryptographically-sized semiprime, which are of particular interest for this paper: for ease
of exposition, from this point on we will therefore assume N to be a semiprime.

Taking into account all the different sub-cases of the above results, we can sketch a
procedure to generate such primes p as follows:

1. Set a factor base B and a discriminant D.
2. Generate a random integer t (i.e., a candidate for the order of E(Fp)) which factors

completely in B.
3. Use Algorithm 1 to find a pair (a, b) so that’ 4t = a2 + |D|b2. If no solution exists go to

step Step 2.

4. Check if p = (a±2)2+|D|b2
4 is prime. If yes, output p. If p is not prime and D ̸= −4, go to

Step 2.

5. If D = −4 check if p = |D|a2+(b±2)2

4 is prime. If yes, output p, otherwise go to Step 2.

We note that Step 4 is justified from the fact that, from Theorem 1, Theorem 2, we
require the order of the curve E(Fp) to be t = p + 1 ± a: thus, if 4t = a2 + |D|b2, then
4p = (a±2)2+ |D|b2. Similarly, Step 5 addresses the simmetry induced for the case D = −4,
where for a prime p = a2 + b2 we can express 4p as either (2a)2 + |D| · b2 or |D| · a2 + (2b)2.

Although this procedure looks quite simple, it has however some not trivial aspects that
need to be addressed when implementing it in practice. In particular, the probability that
a random B-smooth integer t so that 4t admits a Cornacchia decomposition should not
be negligible, and such decomposition should allow to generate many candidate primes.
Furthermore, when we attack an integer N that has at least one of its factor generated as
above, to write a curve equation to work with, we should be able to extract roots of the
Hilbert Class Polynomial modulo N , and once we compute the full curve equation E(ZN),
we should be able to pick, for any choice of the curve twist, random points over it. All these
aspects will be addressed in next Section.

4 Addressing Technicalities

4.1 Cornacchia’s Decompositions for Random Curve Orders

From the Sum of Two Squares Theorem [22, Theorem 18.1], we know that an integer can
be written as the sum of two squares if it is not divisible by any factor pki , with pi prime,
pi ≡ 3 (mod 4) and k odd. For the case D = −4, this theorem provides an easy condition
to generate random curve candidate orders t, since if t = a2 + b2 then 4t = (2a)2 + |D|b2.
Unfortunately, this does not generalize straightforwardly to other values of D, and elements
in the factor base B needs to be chosen carefully if we wish to decompose with non-negligible
probability a random B-smooth t using Algorithm 1.

We will exploit the following observation to generate a factor base which will allow us to
efficiently generate curve candidate orders along with their Cornacchia’s decompositions.

7

Observation 41. If p1, . . . , pn are positive integers that split in Z[
√
D] as pi = πiπ̄i, then

p1 · . . . · pn splits as (π1 · . . . · πn) · (π̄1 · . . . · π̄n)
.
= π · π̄.

Its main insight is that, when we multiply by its conjugate a given πi = a+b
√
D ∈ Z[

√
D],

we get pi = πi ·π̄i = a2+|D|b2 ∈ Z, which automatically ensures a Cornacchia decomposition
for pi as 4pi = (2a)2 + |D|(2b)2.

In fact, we can efficiently compute Cornacchia’s decompositions for random B-smooth
values, without running Algorithm 1 every time. To show this, we define our factor base B
to contain tuples (pi, πi) ∈ Z×Z[

√
D] so that pi = πi · π̄i. If in Step 2 of our sketched prime

generation procedure we compute in parallel the products∏
j

pij = a2 + |D|b2 ,
∏
j

πij = a+ b
√
D

from the two coordinates of the latter, we immediately get a solution (a, b) to
∏

j pij =

x2 + |D|y2.
In our case of interest, however, we look for a B-smooth value t constrained to a Cor-

nacchia decomposition for 4p: by expanding their relations, if p = a2 + |D|b2, then 4p =
(2a)2+|D|(2b)2, and from t = p+1±2a we then have t = (a±1)2+|D|·b2. It follows, in turn,
that if the t generated in Step 2 are of the form t = a2+ |D|b2, the expression for p in Step 4
can be simplified by checking primality of p = (a± 1)2 + |D|b2 (and p = |D| · a2 + (b± 1)2

in Step 5). Since such p, t values are constrained by t = p + 1 ± 2a or t = p + 1 ± 2b, for p
to be prime we necessarily require t to be even.

To address this, we include in the factor base a pair (e, v) ∈ Z× Z[
√
D] where e is even

and decomposes in Z[
√
D] as v · v̄. We can set

e = (D mod 2) + |D| , v = (D mod 2) +
√
D

that is, e is equal to 1 + |D| if D is odd or to |D| otherwise.
We note that, regardless of the parity of D, when D is negative e ≡ 0 (mod 4) and the

minimum value for such e is 4: hence, for all negative discriminants D, by including such
tuple in the factor base B, and by requiring a random B-smooth value t̃ to always have (at
least) e as a factor, we can efficiently compute, as above, a Cornacchia’s decomposition for
the generated curve orders candidates.

In order to be able to exploit all the 4 orders characterization provided by Theorem 3,
we need to write p as a sum of two squares. If t is generated as above as t = a2+ |D|b2, then
t = a2+(2b)2 = a2+ b̃2, and p would then be of the form p = (a±1)2+ b̃2 or p = a2+(b̃±1)2.
Thus, in the case D = −4 we proceed as above, ensuring t to be even, but once t = a2+|D|b2
is generated, we absorb

√
|D| = 2 into the value b̃ = 2b and we check p accordingly.

4.2 Roots of the Hilbert Class Polynomial HD(x) modulo N

When D ̸= −3,−4, we need to compute a root of the Hilbert Class Polynomial HD(x)
modulo p, with p|N , in order to compute the j-invariant of a curve with desired order
(Theorem 1). Since, at this point, no factor of N is known, we lift the problem to ZN (using
the correspondence given by the Chinese Remainder Theorem) and we compute HD(x)
modulo N instead.

8

We have different possibilities for computing HD(x) ∈ ZN [x]: it is well known that
HD(x) can be expressed as an irreducible polynomial in Z[x] and we can thus compute it in
Z[x] first, using for example the techniques outlined in [6], and then reduce modulo N its
coefficients. Unfortunately, this approach quickly becomes infeasible as |D| increases, since
the sizes of the coefficients of HD(x) ∈ Z[x] would grow exponentially. Another possibility
consists in computing HD(x) directly with the coefficients reduced modulo N : Sutherland
in [40] describes a method to compute HD(x) mod N for any integer N , which runs in
O(|D|1+ϵ) time and requires O(|D|1/2+ϵ logN) space.

Once HD(x) ∈ ZN [x] is computed, in general, it is hard to find a root modulo N , without
knowing at least a factor of N .

Clearly, when the Hilbert Class Polynomial HD(x) ∈ Z[x] has degree 1, a root modulo
N can be trivially computed: there are only 13 negative discriminants D for which this is
the case [16, Theorem 7.30], namely

D ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}

When HD(x) has degree higher than 1, we can get around the problem of explicitly
finding a root j modulo N by simply defining our elliptic curve over the ring

ZN (j) ≃ ZN [x]/HD(x)

rather than ZN . Hence, when using Theorem 1, the coefficients of the resulting Weierstrass
curve can be easily computed by inverting j − 1728, and all arithmetic operations on the
curve can be carried on ZN (j) similarly as for ZN : if some inversions fail, then a root j (or
a factor of N) can be explicitly computed.

4.3 Picking Random Points on Curves over ZN(j)

Once we obtain a short Weierstrass curve equation E over ZN (j) ≃ ZN [x]/HD(x), computed
according to either Theorem 1, Theorem 2 or Theorem 3, we need at least one point on it
to be able to run our attack against the modulus N .

At first glance, this might look hard, since we need to be able to extract square roots mod-
ulo N in order to obtain the Y -coordinate corresponding to some (random) X-coordinate
on the curve. Indeed, an oracle returning square roots modulo N can be used to efficiently
factor N . We can however bypass this problem by adopting, instead, XZ-arithmetic: Bern-
stein and Lange collected in [7] many efficient XZ-arithmetic formulas, that work in our
ring ZN (j) as well.

More concretely, for a random X-coordinate PX ∈ ZN , we consider the XZ-point P =

(PX : 1), and we compute Q =
(∏

pi∈B pℓi

)
· P using XZ-arithmetic formulas. If P ∈

E(ZN (j)), and the order of E(Fp) is B-smooth, we can then attempt a factorization for N .
If, instead, P /∈ E(ZN (j)), the obtained point Q does not help in factoring N : we then need
to pick another PX ∈ ZN and try the above again, until we are confident enough to have
picked at least one point on the curve.3

3 We recall that if an X-coordinate does not lie on a curve, it then lies on its quadratic twist. So,
for a random PX ∈ ZN , the probability that the XZ-point P = (PX : 1) ∈ E(ZN (j)) is 1

2
.

9

When a point P lying on E(ZN (j)) is effectively picked, we need to check if the cor-
responding XZ-point Q = (QX , QZ) gives rise to a non-trivial factorization of N . Given
the canonical projection π : ZN (j) → Fp(j) × Fq(j), we have that if the order of E(Fp) is

B-smooth, then π(QZ) = (0, Q̃q), that is Q is projected to the identity element (0 : 0) (in

XZ-coordinates) of E(Fp(j)): if Q̃ ̸= 0, we can then reveal a factor for N as follows.
From the fact that ZN (j) ≃ ZN [x]/HD(x), we can see the Z-coordinate of Q as a

polynomial QZ(x) ∈ ZN [x] of degree less than deg(HD(x)): if j is the j-invariant of E(Fp),
it then must be a root of both HD(x) and QZ(x) modulo p, since, as we already saw,
π(QZ) = (0, Q̃)q. In other words the resultant4 over Fp of these two polynomials satisfies

Res(HD(x), QZ(x)) ≡ 0 (mod p)

If Q̃q ̸= 0, that is Q is not projected to the identity element of E(Fq(j)), we might then
reveal a factor for N as

gcd(Res(HD(x), QZ(x)), N) = p

Picking points in affine XY -coordinates It is possible to construct XY -points lying on
E(ZN (j)) with no need to extract square roots modulo N . By taking advantage of the free
choice of the twisting coefficient and, for D = −4, of the curve parameter, we can indeed
explicitly write a solution to the curve equation associated to a certain discriminant. The
drawback of this approach is that we will then be able to pick points on a particular curve
twist only (if D ̸= −4), and thus, to successfully backdoor semiprimes, we need to generate
primes associated to curves isomorphic only to such reachable twist.

On the other hand, the main advantage of using XY -arithmetic in place of XZ, is that
we can use standard formulas to compute points additions, rather than differential addition
formulas, the only available for XZ-points. Indeed, given two points P,Q in XZ-coordinate,
we can compute P + Q only if we know the XZ-coordinates of P,Q, P − Q (hence the
adjective differential), while scalar-point multiplications [k] · P , the only relevant for our
attacks, can be executed using Montgomery Ladder by only knowing the XZ-coordinates of
P . The possibility to execute additions between arbitrary points is of relevance for sketching
a distributed protocols to generate semiprimes, based on the prime backdooring idea detailed
in previous Sections: we will address this in Section 9.

Assuming N = p · q, where p is a backdoored prime, we can construct, for each possible
discriminant, points in affine XY -coordinates lying on the curves built according to the
above Theorems, as follows.

– D ̸= −3,−4. We have, for a given k, the curve E(ZN (j)) : y2 = x3 − 3kc2x + 2kc3.
We generate a random x ∈ ZN (j) and we consider the point P = (x2, x3): it lies on E
if 2c − 3x2 = 0, that is if we set c = 3

2x
2. It follows that with this approach, only one

twist can be selected, namely the one given by the residuosity of 3
2 modulo p.

– D = −3. In this case, we work with the curve E(ZN (j)) : y2 = x3 + c3. If we set c = 2,
then the points P = (1, 3) and Q = (2, 3) are both points on E. Again, only one twist
can be reached, depending on whether c = 2 is or is not a quadratic residue modulo p.
These two points seems to be all the non-trivial (i.e. points of order not equal 2, 3, 6)

solution to the Diophantine equation x3+c3

y2 = 1.

4 The resultant of two polynomials defined over an integral domain F[x] is zero if and only if they
share a common root in the closure F.

10

– D = −4. Here we have E(ZN (j)) : y2 = x3 − cx for an arbitrary c ∈ ZN (j): we
can iteratively hit all the 4 possible orders given by Theorem 3 by picking random
x,w ∈ ZN (j) and letting c = x2 − xw2. It follows that P = (x, xw) is on E.

An alternative approach, described in [1], allows to work with all discriminants and twists
by using standard formulas for XY -coordinates. Given an elliptic curve equation y2 = f(x),
with deg f = 3, we pick a random PX ∈ ZN and we set τ = f(PX). We then consider the
quotient of the polynomial ring ZN [x, y] given by

Rj,τ = ZN [x, y]/(HD(x), y2 − τ)

and the elliptic curve E(Rj,τ) : y2 = f(x). It follows that P = (PX , y) ∈ E(R) and we
can perform scalar-point multiplications and additions over E(Rj,τ) as usual, by working
with the point P . Indeed, if for a certain scalar k ∈ ZN we have [k] · P = O in E(Rj,τ),
then [k] · P = O in E(ZN) if

√
τ ∈ ZN and j is a root of HD(x) modulo N . As happens

for random points in XZ-coordinates, we cannot be sure that PX is the X-coordinate of
a point in E(ZN), and we then need to select multiple points (and thus work on different
rings Rj,τ) until we are confident enough to have picked one lying on E(ZN). Clearly, the
arithmetic in Rj,τ is slower than the one we have in ZN (j) or ZN .

5 The Prime Generation Procedure

In light of the considerations outlined in Section 4, we can now formally state our prime
generation procedure, previously sketched in Section 3.

Input: a negative discriminant D, the bitsize of the output prime p, the factor base size
n+ 1.
Output: a b-bits prime p, the factor base B.

1. Set B = ∅. Generate n tuples (pi, vi), where pi ∈ Z are prime odd integers decomposing
as pi = a2i + |D|b2i and vi = ai + bi

√
D ∈ Z[

√
D], and add them to the factor base B.

Only if D = −4, ensure that for all (pi, vi) ∈ B, pi ≡ 1 (mod 4).
2. Set p0 = (D (mod 2)) + |D| and v0 = (D (mod 2)) +

√
D, and add (p0, v0) to B.

3. Randomly pick elements (p1, v1), . . . , (pm, vm) from B, for some m > 0, so that

b− 2 < log2

(
p0 ·

m∏
i=1

pi

)
< b

Set t = p0 · p1 · . . . · pn and v = v0 · v1 · . . . · vn = a+ b
√
D ∈ Z[

√
D], for some a, b ∈ Z.

4. If D ̸= −4, check if p = (a± 1)2 + |D|b2 is prime. If yes, return (p,B). If p is not prime,
go to Step 3.

5. If D = −4, check if p = (a± 1)2 + (2b)2 or p = a2 + (2b± 1)2 is prime. If yes, return
(p,B), otherwise go to Step 3.

We note that, in Step 1, one can either use Algorithm 1 over some pi ∈ Z in order to
compute the corresponding vi, or we can generate random ai, bi ∈ Z, set pi = a2i + |D|b2i and
vi = ai + bi

√
D, and test if such pi are primes. Although primality for elements in B is, in

11

general, not required, we experimentally observed that backdoored primes p are generated
faster when B contains only odd primes and the even element p0, probably because this
choice reduces the probability that p is divisible by small factors, e.g. 2, 3: we therefore
generate B to contain, besides p0 = (D mod 2) + |D|, only odd primes which factors in
Z[
√
D].5

Since the factor base B, once generated, can be used to generate multiple primes p,
the running time of the above algorithm is dominated by the search for primes in Step 4.
Assuming that the computed values p behave like random b-bits odd integers, we then expect
to find a prime after O(b) loops.

6 Factoring Backdoored Integers

Let p be a prime generated with respect to a factor base B and a negative discriminant D,
using the prime generation procedure outlined in Section 5. If p is a factor of an integer N ,
we say that N is backdoored since, by knowing B and D, it would be then possible to recover
the (secret) factor p from N . We note that in case of semiprimes N = p · q, as in the case of
RSA moduli, we will obtain a full factorization for N , regardless of the choice of the other
prime q.

To recover p from B, D and N = p · q, we run the following attack.

Input: a backdoored N , a negative discriminant D, the factor base B = {p0, . . . , pn}.
Output: a factor p of N .

1. If D ̸= −3,−4:

(a) Compute the Hilbert Class PolynomialHD(x) ∈ Z[x] and let ZN (j) = ZN [x]/HD(x);

(b) Compute k = j
j−1728 ∈ ZN (j);

(c) Pick a random c ∈ ZN and consider the curve E : y2 = x3 − 3kc2x + 2kc3 over
ZN (j).

2. If D = −3, pick a random c ∈ ZN and consider the curve E : y2 = x3 + c3 over ZN .

3. If D = −4, pick a random c ∈ ZN and consider the curve E : y2 = x3 − cx over ZN .

4. Pick a random PX ∈ ZN and set the XZ-point P = (PX : 1). For i ∈ [0, n] compute,
using XZ-arithmetic formulas over the curve E(ZN (j)), the point

Q =

 ∏
pi∈B

pℓii

 · P

where ℓi =
⌊
logpi

N
⌋
or is a fixed constant.

5. Let Q = (QX : QZ) and consider QZ as a polynomial residue in ZN [x]/HD(x).
If degHD = 1 and p = gcd(QZ , N) ̸= 1, N , output p. If degHD > 1 and p =
gcd(Res(HD, QZ), N) ̸= 1, N , output p.

6. If D = −3 go to Step 2; if D = −4 go to Step 3, otherwise go to Step 1c.

5 This fact should explain the title of this paper.

12

We note that, if the factor base B used to backdoor such semiprimes N contains all
primes less than a certain bound B, then anyone would be able to factor such N , if correctly
guesses the discriminant D used. Indeed, as we already discussed in Subsection 4.2, D cannot
be too big, because, otherwise, the computation of HD(x) ∈ ZN (x) and the corresponding
induced arithmetic in ZN (j), would result too expensive to carry out. If, instead, the factor
base B is partially secret and contains, for example, many public small elements and few
secret big factors, when backdoored B-smooth curve orders are generated to be multiple of
at least one of such secret big factors, then N can be easily factored only by those who fully
know B.

Question 1. For a given discriminant D, are backdoored integers N distinguishible from
non-backdoored ones when the factor base is (partially) secret?

7 Implementation

We implemented both the prime generation procedure from Section 5 and the factorization
attack detailed in Section 6 in SageMath [41]. Our implementations is available on GitHub
at

https://github.com/cryptolu/primes-backdoor

The first script gen_prime.sage generates, for a given input negative discriminantD and
bitsize b, a random b-bits prime p admitting a Cornacchia’s decomposition with respect to
D, and so that one among the curve orders built according to either Theorem 1, Theorem 2,
Theorem 3 is B-smooth, with B containing the first suitable primes up to a certain (input)
bound. Optionally, this script can output safe primes rather than just primes.

The second script is attack.sage and takes as input an integer N and a discriminant D.
It attempts the attack from Section 6 on N , by building a proper elliptic curve E(ZN) and
by computing [

∏
pi∈B pℓi] · P for a random point P = (PX : 1) in XZ-coordinates. In order

to compute scalar-point multiplications, the implemented XZ-arithmetic uses Montgomery
Ladder [31], differential doubling xECDBL and differential addition xECADD formulas reported,
respectively, in [26, Algortihm 3, A.3, A.5]

We employed these two scripts to backdoor and later factor the modulus we report in
next Section to show an attack example.

7.1 A Full Attack Example

Suppose we have just generated the following 1024-bits RSA modulus

N = 10821805528622065889230568696679645000565609385356188057330375777987085
25027157508967173806014163322826354167515058707101795774644011936428240
27551121223839066820321283484303809645541513752756237536860056248506557
92830578845228701699881266834878524228204494605987230242486665425532888
7383184108204782014745221

13

https://github.com/cryptolu/primes-backdoor

using some shady closed-source software found online. We suspect it has been somehow
backdoored and we would like to check it against the attack outlined in Section 6. We start
iterating through all possible discriminants up to a certain bound, and we are now working
with D = −107. We then compute the Hilbert Class Polynomial

H−107(x) = x3 + 129783279616000 · x2 − 6764523159552000000 · x+
337618789203968000000000

we set ZN (j) ≃ ZN [x]/HD(x), and we obtain k = j
j−1728 ∈ ZN (j) as

k = 47261393247876666934096684427931319316999066122498309246886316416582630
76136993132803805737978847428706764681002200815383623942984844453032073
71515261890383308740374138417052518390519213493529749497051238720669707
58025857970843553342533938831658567835975762903719991735189385314911683
973277579929826214339265 · j2 +
25835374912392238924870492099413423818468423776666742508446578902594914
23980136846866193858910647641442977366590032461132868140632160013934433
34210956044247665422546554517302456749285442094780335747612448949416507
13068198490515859707114893819227937158395336053394777415390378101995856
411577845170181322448460 · j +
92125134089930143313309142296729942214451077571394200736485503819829429
40744529752320790062724028658140002586224293736924737278200516922201819
32959624105835644432609167110193260413277951994679542200751242365012754
31239613105729881637501761138130868725219833752831277333619845321557325
730801766122633293130521

We pick a random c ∈ ZN , and we define the curve E(ZN (j)) : y2 = x3 + Ax + B, where
A = −3kc2 and B = 2kc3. In our case, these values result to be

A = 32799513097842369594991177817882862119333562442861922667849405113187078
88740455245704848411357604734944161593606281972065826024365829184929499
05396314203212027061815963064338782746734177580622582232886810815056929
63660258103452968279551461036166530450746299534241540719385571206289276
833390071482099227029218 · j2 +
10724908307597824075127626391922046587875214796184560766417347514263839
70880749919957727022038577172281511589403643080797028145101666677903434
23279033188777287190801104917972949118291714832737203762143779784374706
24455491542918690525433651747553296505960238322506931903643799306056637
988949354676289576418014 · j +
81916097192214065035981903740007364156590266864371113166946252007078036
44523842017486121054179954063586430887451666546069932887052393404631530
87566698150625199250395141425416658589321540290967944489201432328127690
46866184222833044847025058029107071653601849966001872820219797287004469
03734598874041233975421

14

B = 37643281679908451518787240246983699788548039697396258693595972085905148
99938443403690095427983393285685315480827331067412102780873968392844583
97608707532457609382704422614143853293195820528050043962557041892207826
70921663270503590660363838807542796580830434422155103586357147978131797
490769219422563399764351 · j2 +
32626534476473067853864460804039952271142555656166723801964494031024106
90220980303345333246188191866771155608362353346142265495937928857247431
31088094681213733581292166083595187928876253687304909544272446933953143
70483605838297461241956398349370087815706020355607878266998770014036572
0355713277916839557377 · j +
20187952415027906389928913590443320149447964629255548845322188250621303
98301801288156033427731216315886543490632862896772443034233202131475860
43433031814108287949381589352802976017014977188595963194192471898706544
71654604057276712064018623814379425617988738224774811104681656315004660
545607528945470056490699

We then generate a random XZ-point P , such as

P = (8213386275212893523422589925016418544419737470205998350360334737080876
75343837772874769173897288321433887175513664433507107489728296742138840
55186744682533073101226469679418098641072829349126102914037432335818914
18089798305128319217013949654585856460461999703884598446829478890812625
7842582603983571770616926 : 1)

and we compute, using XZ-arithmetic, the point Q =
(∏

pi∈B pℓii

)
· P (we set ℓi = 2 for

all i), using a factor base B containing all primes pi of the form pi = a2i + |D|b2i , with
0 ≤ ai, bi < 28 for all i > 0, and the element p0 = 1+ |D| = 108, for a total of 3468 elements.
The point we obtained is

Q = (3334865467748334343639894300160440235886887518672853874459405696871929
01187112782588071993988090051581869480356207729617515633762706996270205
01762228657451819904121885847689656173650676028922222563354488037352054
05855804928111263260919442420055411327737604112320289061101226982531565
2821463899656889556404699 · j2 +
76899064963804553947100734765597160240602793157812297374592707576165068
33008583862582611334448071824599063655204175095973123384801205838140434
81344311982524250512505605731260851632209268820236257688149220279076838
91511832006389277862362492860443942877643243130905343548520132640854211
289509954654637153474435 · j +
43417397680346045496842107591102055998528639529347969490726893067887581
31453510690971259655887610317060352371378239469718379470199395383106806
75972092802552957068857743927536560104426449684823455184876742782247286
83524283318084102266565399244576196892371920484484129148865961043236956
468241684045930313667134 :

15

61821153956101711165126482286537169842990188096221634083234880223747963
73632812995398780367381750565749075802819168683372166826519855312796113
20317042940952094637566917286537698227463197105211985163815416150573121
98579604410190485869167369178476177586812373538524310238956155534423748
883822485996691191966528 · j2 +
64020092026413661844457163875478125034518003428320700858147821721045658
18099915491272074968012291963648399121125602177743509824254475666648162
38132859917296717348772694071282964657256505160564771911809202319075612
20531683357964007760952960102102932026611149676923234595697323298973117
308194412478184695042548 · j +
62842040000856625594753944109035053683586755256739692023222545165932319
07285845733613656164239022079675483953309265982187813651134963341392690
70887399905672636002062797294444432263179246792405534880417704007143474
15353020883868051179887770286381243799587295814437072069872663260291675
394395512596307506337294)

We let Q = (QX , QZ) and we consider QZ as an element in ZN [x]/HD(x), rather than
ZN (j). We then compute the resultant r = Res(QZ , HD(x)), corresponding to

r = 80935520987216377836648852624896769509107321804861843986134572778161130
52910181368256682771271632250041863572397842181395379909775550322540693
88900963857213765315555138571357726228685587307731320761487508424358064
79124179665460164828297949244069504173394101556250503142950724934058250
886283951545363758603886

Unexpectedly, by computing p = gcd(r,N) we obtain

p = 10069891168272853289682414533444101158961971160721810960425299727500040
85615539991040809791080655609508252915420491222187265608651502003491652
4535013055607

which confirms our suspicions! The attack leads to full factorization of N as

N = 10069891168272853289682414533444101158961971160721810960425299727500040
85615539991040809791080655609508252915420491222187265608651502003491652
4535013055607 · 91635850106302409143158545020798409604955067639849043130
22218586074134346260658498746192771596180175665775150505169330955024838
846917582563246839347729083

We note that both factors of N are safe primes.

8 Certifiable Semiprimes

We can use the prime backdooring procedure from Section 5 to sketch a multi-party compu-
tation (MPC) protocol which outputs semiprimes of unknown factorization, a particularly
useful application in the setting of distributed generation of RSA moduli. We will take

16

advantage of a generalization of a Theorem by Goldwasser and Kilian, which provides a
criterion for an integer N to be semiprime given partial knowledge of the order of an elliptic
curve modulo N . When we port this idea into the MPC setting, parties will jointly construct
a curve modulo N by backdooring part of its order according to this theorem, and where N ,
once revealed, can be certified to be semiprime, thanks to a semiprimality proof that can be
publicly checked without knowing any of the factors of N .

8.1 Preliminaries

In this Section we provide the theoretical results to formalize semiprimality certificates for
odd integers. We start by stating Goldwasser-Kilian Theorem, originally thought as a tool
to prove primality of a certain integer N .

Theorem 4 (Goldwasser-Kilian [25]). Let N > 1 and let E be an elliptic curve defined
over ZN . Suppose there exist distinct primes p1, . . . , pk and finite points P1, . . . , Pk ∈ E(ZN)

such that [pi] · Pi = O for all 1 ≤ i ≤ k and
∏k

i=1 pi > (4
√
N + 1)2. Then N is prime.

Proof. See [42, Theorem 7.3].

We can slightly restate Goldwasser-Kilian Theorem to provide a condition that, when
true, will ensure N has at most a certain number of distinct prime factors.

Theorem 5. Let N > 1 and let E be an elliptic curve defined over ZN . Suppose there exist
distinct primes p1, . . . , pk and finite points P1, . . . , Pk ∈ E(ZN) such that pi · Pi = O for all

1 ≤ i ≤ k and
∏k

i=1 pi >
(

2m
√
N + 1

)2
. Then N can have at most m − 1 distinct prime

factors.

Proof. We will adjust to our needs the proof of Theorem 4, that is [42, Theorem 7.3]. Let
q be a prime factor of N so that N = qs · d for some s > 0 and gcd(q, d) = 1. Since Pi is a
finite point in E(ZN) ≃ E(Zqs)×E(Zd) it is a finite point modulo qs and, in turn, modulo
q as well. Then pi ·Pi (mod q) = O ∈ E(Fq), which implies that Pi (mod q) has order pi in

E(Fq) for all 1 ≤ i ≤ k. It follows that
∏k

i=1 pi | #E(Fq) and by Hasse bound

(
2m
√
N + 1

)2
<

k∏
i=1

pi ≤ #E(Fq) < q + 1 + 2
√
q = (

√
q + 1)2

So q > m
√
N for any prime q dividing N , hence N cannot have more than m − 1 distinct

prime factors.

Corollary 1. Let N > 1 be a composite non-square integer and let E be an elliptic curve

defined over ZN . Suppose there exist a prime s >
(

6
√
N + 1

)2
and a finite point P ∈ E(ZN)

so that [s] · P = O in E(ZN). Then N is semiprime.

We note that in Corollary 1 we require s to be prime: its primality can be certified using
Theorem 4, factoring the orders of elliptic curves built over Zs and explicitly construct,
when possible, points of prime order satisfying the assumption of Theorem 4. It follows that

17

Theorem 4 can be used, in turn, to prove primality of the orders of the points employed to
prove primality of a certain integer: this process ultimately results in a chain of primality
proofs which reduces the problem of certifying primality of s to certifying primality of (much)
smaller integers. Such certificate chains are commonly known as Atkin-Goldwasser-Kilian-
Morain primality certificates [4, 25].

8.2 Certificates for Semiprimes for which a Factorization in Known

From Corollary 1 follows that, if we know (or we construct!) a tuple (N , E(ZN), P , s) whose
elements satisfy its assumptions, then such tuple is, in fact, a semiprimality certificate for
N .

A naive approach to compute such certificates when the factors of N = p · q are known,
consists in generating a random curve E(ZN) for which we can factor its order, in turn
obtained by computing the orders of the two curves E(Fp), E(Fq) using, for example, the
Schoof–Elkies–Atkin (SEA) algorithm [2,3,23,35]. Indeed, if |E(ZN)| is divisible by a prime
s > (6

√
N + 1)2, or by multiple primes pi so that

∏
i pi > (6

√
N + 1)2 (Theorem 5), we can

pick random points Q ∈ E(ZN)6 and check if P = [|E(ZN)|/s] ·Q ̸= O. When this holds, it
follows that [s] · P = O ∈ E(ZN) and thus (N , E(ZN), P , s) is a semiprimality certificate
for N .

This approach has two main drawbacks: the first is that partial factoring the order
|E(ZN)| until enough divisors {pi}i so that

∏
i pi > (6

√
N +1)2 are found, is often expensive

or even impractical depending on the size of N . Secondly, if a certain pi divides |E(Fp)| but
not |E(Fq)|, it cannot belong to a semiprimality certificate since any point Pi of order pi will
leak a factor of N , similarly as we describe in Section 6: from the condition [pi] · Pi = O ∈
E(ZN), we must have Pi to correspond to the identity element of E(Fq) when its projective
coordinates are reduced modulo q, and thus the Z-coordinate of Pi shares a factor with N .

In other words, each element pi published in a semiprimality certificate should divide
both orders |E(Fp)| and |E(Fq)|: on this regards, we note that to reduce certificate sizes, we
simply avoid publishing multiple points Pi, each of size at least 2 logN , along with their
order pi, and we publish instead a single point P of order s > (6

√
N + 1)2 with s prime, as

done in the formulation of Corollary 1. Indeed, if s is prime, by Cauchy’s Theorem we know
that both curves E(Fp) and E(Fq) have a point of order s, and thus, by Chinese Remainder
Theorem, it exists a point P in E(ZN) of order s. In fact, E(ZN) will contain a subgroup
isomorphic to Zs×Zs and, to avoid leaking factors of N as showed above, we look for points
P of order s in correspondence to elements (a, b) ∈ Zs × Zs with a, b ̸= 0.

How can we then efficiently generate big certifiable semiprimes? In [19,21], we found con-
crete instances of semiprimality certificates presumably generated according to observations
similar to the above7. In a private conversation, Reble confirmed us that his certificate [21]
for a semiprime N of 1084 digits was generated from its prime factors, and added, in regards
to its generation: “I knew the factors. I sought a pair of primes such that the Goldwasser-
Kilian test almost worked for that product”. Shortly after [21] become public, Broadhurst
generated a semiprimality certificate for a 5061-digits integer [19] consisting of a single el-
liptic curve point P and a 1690-digits prime s, for which a primality proof is known. We

6 Equivalently, we can work, thanks to the Chinese Remainder Theorem, over E(Fp)× E(Fq).
7 We were not able to find more details about how these certificates were generated, except a short
discussion on their validity with respect to (a generalization of) Goldwasser-Kilian Theorem.

18

note that both [19, 21] employ the elliptic curve E(ZN) : y2 = x3 + A · x, whose order is
characterized by Theorem 3.

In a more general fashion, we can efficiently compute semiprimality certificates for an
integer N by generating both its prime factors according to the backdooring procedure
of Section 5, and ensuring that the candidate curve orders are divisible by a prime s >
(6
√
N + 1)2 which admits a Cornacchia decomposition for the employed D. This can be

achieved by slightly change our prime generation procedure, adding such prime s to the
factor base B (Step 1), and requiring t to always be a multiple of s and the even element
p0 (Step 3). From the full knowledge of |E(Fp)| and |E(Fq)|, where the curve E is retrieved
from N as in Section 6, we can then randomly pick and re-scale points in E(ZN) as above,
until we find one of order s (and Z-coordinate not equal to 0 when seen modulo p and
modulo q).

9 Distributed Computation of Certifiable Semiprimes

In this Section we investigate how we can possible have a multi-party computation protocol
to jointly compute an integer N of unknown factorization and a semiprimality certificate
for it. Our goal is to port our prime generation procedure, slightly restated as described at
the end of Subsection 8.2, in a distributed setting, so that parties generate two candidate
prime curve orders tp, tq for E(Fp) and E(Fq), respectively, both divisible by a public prime

s > (6
√
N +1)2. Parties then opens N = p · q and multiple points Qi = [

tptq
s2] ·Pi for random

Pi ∈ E(ZN). If for some i, we have Qi ̸= O and [s] · Qi = O, we then output N and the
semiprimality certificate (N,E, s,Qi).

The whole procedure is sketched as follows, where we employed the notation [·] to denote
secret values.

Input. The bitsize bits, a negative discriminant D.
Output. A semiprimality certificate for a bits-bits integer N .

1. Parties publicly agree on two integers sa, sb so that s = s2a+ |D| ·s2b is a prime of bits/3
bits.

2. Each party i randomly picks 4 values [ai,1], [bi,1], [ai,2], [bi,2] of bits/12 bits each.
3. Parties jointly compute the 4 values:

[a1] =
∑
i

[a1,i] , [b1] =
∑
i

[b1,i] , [a2] =
∑
i

[a2,i] , [b2] =
∑
i

[b2,i]

4. Parties compute the 4 values

[pa] = sa · [a1] +D · sb · [b1]
[pb] = sa · [b1] + sb · [a1]
[qa] = sa · [a2] +D · sb · [b2]
[qb] = sa · [b2] + sb · [a2]

5. If D ̸= −4, for each choice of v1, v2 ∈ [−1, 1], parties jointly open the 4 values

Nv1,v2,0 =
(
([pa] + v1)

2 + |D| · [pb]2
)
·
(
([qa] + v2)

2 + |D| · [qb]2
)

19

6. For each choice of v1, v2 ∈ [−1, 1], parties may8 further open the values

Nv1,v2,0 =
(
[pa]

2 + (2 · [pb] + v1))
2
)
·
(
[qa]

2 + (2 · [qb] + v2)
2
)

Nv1,v2,1 =
(
([pa] + v1)

2 + |D| · [pb]2
)
·
(
[qa]

2 + (2 · [qb] + v2)
2
)

Nv1,v2,1 =
(
[pa]

2 + (2 · [pb] + v1))
2
)
·
(
([qa] + v2)

2 + |D| · [qb]2
)

7. For each opened value Nv1,v2,v3 :

7.1. Let Nv1,v2,v3 = N . If either N is a perfect square, has small prime factors or

s < (6
√
N + 1)2, parties skip to the next choice of Nv1,v2,v3 .

7.2. Depending on the discriminant D, parties publicly agree on one or multiple curves
{Eℓ(ZN [x]/HD(x))} along with a point Pℓ ∈ Eℓ on it9, until are confident enough
to have picked a curve representative for each reachable order (cf. Theorem 1, The-
orem 2, Theorem 3).

7.3. For each Pℓ ∈ Eℓ, parties jointly compute and open the point

Qℓ =
[
([a1]

2 + |D| · [b1]2) · ([a2]2 + |D| · [b2]2)
]
· Pℓ

If Qℓ ̸= O and [s] ·Qℓ = O ∈ Eℓ, return the semiprimality certificate {N,Eℓ, Qℓ, s}.
8. Go to Step 2.

9.1 Practical Considerations

Although there exist many protocols that, depending on the most suitable security scenario,
can efficiently perform in MPC the standard arithmetic operations needed in the first part
of our sketched protocol, execution of Step 7 is not trivial and may represent the main
bottleneck for implementing it in full. Difficulties mainly reside in the opening of the points
Qℓ, which involves a scalar-point multiplication [k] ·Pℓ, for a secret k shared among parties.

Although protocols like [24,39] allow distributed computation of [k] ·Pℓ when Pℓ belongs
to a curve defined over a finite field of known characteristic, in our case we work, instead,
over a ring (either ZN or ZN (j) ≃ ZN [x]/HD(x)) and the order of Pℓ is (and should remain!)
unknown. In other words, these protocols cannot be employed, at least not straightforwardly,
and we are not aware of designs that can be used in our case of interest (and which are
eventually able to work with XZ-coordinates).

We can however bypass this limitation: instead of directly opening the point Qℓ = [k] ·Pℓ,
where k = ([a1]

2+ |D| · [b1]2) · ([a2]2+ |D| · [b2]2), we additively secret share among all parties
the secret [k] over a field Fr, with r a public prime much greater than the expected value
for k.

Once [k] is additively shared, each party i possesses a share ki ∈ Fr satisfying (
∑

i ki)

(mod r) = k. Thus, for each publicly agreed point Pℓ, party i locally computes P̃ℓ = [ki] ·Pℓ

and publishes this point to other parties. Assuming n parties are involved in the distributed

8 Different trade-offs are possible depending on the employed MPC arithmetic protocol, the overall
network communication and the number of openings parties execute out of the 16 available.

9 It may be needed to test multiple random points Pℓ, depending on the curve arithmetic used,
before being sure to have picked at least one point on Eℓ.

20

computation, they can then compute in clear Q̃ℓ =
∑n

i=1 P̃ℓ and the set of elliptic curve
points

Qℓ = { Q̃ℓ, Q̃ℓ − [r] · Pℓ, Q̃ℓ − [2 · r] · Pℓ, . . . , Q̃ℓ − [n · r] · Pℓ }

It follows that the point Qℓ = [k] · Pℓ is in Qℓ, and parties can then check the condition
[s]·Qℓ = O ∈ Eℓ at the end of Step 7, by checking ifO is in the the set of points { [s]·Q̃ | Q̃ ∈
Qℓ }.

There is one last subtlety we need to address: the public computation of the point
Q̃ℓ =

∑n
i=1 P̃ℓ cannot be done in XZ-coordinates, since addition formulas are defined in

terms of differential addition and to compute any sum P +Q we need the X-coordinate of
the point P −Q, which in our case is unknown.

We can address this problem mainly in two ways. The first approach consists in working
over the rings Rj,τ we defined at the end of Section 4.3, that, regardless of the discriminant
D chosen, allows us to pick random points Pℓ ∈ E(Rj,τ) in XY -coordinates and thus use
standard formulas for points addition. Unfortunately, although this approach allows us to
generalize the construction to all possible curve twists and negative discriminant D, in
practice it results expensive in terms of ring arithmetic and parties need to work on a
different ring Rj,τ for each choice of the point Pℓ in Step 7.

Alternatively, we can explicitly construct random XY -points Pℓ with coordinates in ZN

as we detail in Section 4.3: although the arithmetic would result faster, within this approach
we will be able to work only with one curve twist for each factor of N when D ̸= −4, and
thus we need, on average, four times as many iterations of the protocol before returning a
semiprime certificate. However the case D = −4 suits best our needs: first, the corresponding
Hilbert Class Polynomial has degree 1, thus a root j forHD(x) can be easily obtained modulo
N ; secondly, in Section 4.3, we show how it is possible to explicitly construct points in XY -
coordinates over ZN for all the curve orders characterised by Theorem 3. It follows that
when D = −4, we can work exclusively over ZN and perform point additions with standard
affine XY -coordinates formulas.

Assuming the inputs from parties to be random, the algorithm terminates when: i) N is
a product of two primes; ii) the random curve modulo N selected matches the curve twists
with orders divisible by s; iii) the elliptic curve arithmetic does not fail modulo N . If at each
round of the protocol, in Step 5 and Step 6 m different integers are opened in total, then a
semiprime is returned in approximately 1

m · (bits2)2 = O(bits2) rounds execution.

9.2 Implementation

To show its practicality, we implemented the protocol outlined in Section 9 for the case
D = −4 in SageMath [41] and MP-SPDZ [27], a multi-protocol framework for multi-party
computations based on SPDZ [17,18]. Our implementation can be found at

https://github.com/cryptolu/semiprimes

and further algorithmic optimizations are left as future work.
In order to allow parties to open points Qℓ in Step 7, we additively secret share the value

k = ([a1]
2 + |D| · [b1]2) · ([a2]2 + |D| · [b2]2) over a prime order field Fr of bit-size double as

N , we compute the set Qℓ, and we check the value of [s] ·Qℓ as detailed in previous Section.

21

https://github.com/cryptolu/semiprimes

The SageMath script generateN.sage automates the execution of the MP-SPDZ multi-
party computation script semiprimes.mpc, which performs the required distributed arith-
metic operations over parties’ secret values, the retrieval of the opened moduli and parties’
additive shares, the elliptic curve arithmetic and the final checks on the returned semipri-
mality certificate.

As a proof of concept, we report a 128-bits semiprime generated, using our implemen-

tation, in 1300 ≈ 642

4 rounds (to reduce communication, we didn’t implement Step 6). The
generation involved two parties both running on a standard desktop, who communicated
using the MP-SPDZ semi protocol for semi-honest Oblvious Transfer based computations
modulo a prime. The semiprimality certificate returned is

N = 4612132704453273089086099686651695598292733

E(ZN) : y2 = x3 + 2092114744917372487215365929537329924536903 · x
Q = (3579289806919941214432256472872861931429711 :

1415443712262662994926349760625171068664853)

s = 538606233865081

where, in fact, N = 556886529430039208669 · 8281997248476609399457.

10 Security of Semiprimes Certificates

In this Section we briefly investigate security of semiprimality certificates for integers N
generated according to Subsection 8.2 or Section 9, that is containing elliptic curves whose
orders modulo each prime factor of N are characterized by either Theorem 1, Theorem 2
or Theorem 310. We will detail and compare three kind of attacks: a generic point order-
finding algorithm based on Baby-step Giant-step algorithm combined with a twisting attack,
a brute-forcing approach exploiting some leakage provided by semiprimality certificates, and
factorization.

10.1 Baby-step Giant-step and the Twisting Attack

Since semiprimality certificates (N,E,Q, s) are generated using a variant of the prime gen-
eration procedure of Section 5, our factorization attack detailed in Section 6 will retrieve a
factor of N = p · q with high probability, as soon as we compute (a multiple of) the order of
a random point P in either E(Fp) or E(Fq). While in Section 6, we assume the order of at
least one of the curves E(Fp), E(Fq) to be B-smooth for a certain factor base B, in the case
of semiprimality certificates we have that |E(Fp)| = s · kp and |E(Fq)| = s · kq for certain
random integers kp, kq.

Thus, as we already discussed in Subsection 4.3, given a curve E(ZN) = E(Fp)×E(Fq)

and a random P ∈ E(ZN) (in XZ-coordinates) on it, the point P̃ = [s] · P ∈ E(ZN) would
be such that [kp] · P̃ = (Op, P̃q) and [kq] · P̃ = (P̃p,Oq), where Op and Oq represents the
identity elements of E(Fp) and E(Fq), respectively. In other words, if we are able to find a

10 There might exists, indeed, other curve equations for which the order can be characterised in a
way that allow efficient generation of semiprimality certificates.

22

multiple of either kp or kq, we will be able to factor N as long as P̃q or P̃p, respectively, are
non-trivial.

To find such multiple, we can apply the Baby-step Giant-step algorithm to find the order
of P̃ = [s] · P , where P ̸= Q is a random point in E(ZN) expressed in XZ-coordinates (as
usual, we compute the orders of different points P̃ , until we are confident enough to have
picked one lying on E(ZN)).

Assuming p ≈ q, we have ln(kp) ≈ ln(kq) ≈ lnN
6 : since P̃ generates a group of order at

most kpkq, we have that a successful execution of the Baby-step Giant-step algorithm would
require on average exp

(
lnN
6

)
scalar-point multiplications and exp

(
lnN
6

)
space to return a

(big) divisor k of kpkq which, for simplicity, we can safely assume to be k = kpkq.

However, when we try to compute, for multiple P ∈ E(ZN) = E(Fp)×E(Fq), the point
[k · s] · P , we obtain [k · s] · P = (Op,Oq), which does not help us in factoring N , unless we

factor k itself. Indeed, by factoring k, we will be able to find a multiple k̃ of kp which is not

a multiple of kq, or vice-versa, and so that [k̃ · s] · P ̸= (Op,Oq).

Although factoring k is asymptotically easier than running the Baby-step Giant-step
algorithm to find it, we now show a technique which finds with overwhelming probability
a factor of N knowing only such k and none of its factors. We call this method “twisting
attack”. Let c ∈ ZN a random integer so that its Jacobi symbol

(
c
N

)
= −1: since N = p · q

is a semiprime, it follows that c is a quadratic residue in Fp and not in Fq, or the opposite.

Hence, the quadratic twist Ẽ(ZN) = Ẽ(Fp)×Ẽ(Fq) of E(ZN) through c would be isomorphic

to either E(Fp) × Ẽ(Fq) or Ẽ(Fp) × E(Fq). It follows that, given its size, s will not divide

|Ẽ(Fp)| and |Ẽ(Fq)| with overwhelming probability and thus, when we pick a random point

P ∈ Ẽ(ZN), we will have that [s · k] · P is not equal to O ∈ Ẽ(ZN) but decomposes either
as (Op, ·) or (·,Oq). We can then easily retrieve a non-trivial factor of N by applying the
greatest common divisor to the Z-coordinate of [s · k] · P .

As a side note, we observe that the twisting attack can be applied to target either pseudo
super anomalous curves or super anomalous curves [28], that is elliptic curves E(ZN) with
order equal N (super anomalous curves further require that if N =

∏
i pi, then each curve

E(Fpi
) has order pi, that is anomalous). For these curves, indeed, the ring characteristic

trivially reveals the full curve order modulo N and hence, by working with twists of E(ZN)
as above, we can factor N , and directly work over the corresponding sub-curves.

Another example of applicability of this method is given by [32], where a class of pa-
rameters for Demytko’s Elliptic Curve Cryptosystem [20] is shown to be weak, allowing an
attacker to ultimately factor a public RSA modulus N . Here, the authors recover the order
of an elliptic curve modulo N , which is factored with Lenstra’s ECM to ultimately factor
N and break the cryptosystem. With a twisting attack, instead, the knowledge of the curve
order would suffice to factor N , allowing the attacks by [32] to remain feasible even with
bigger key-sizes where the ECM approach becomes unpractical.

10.2 Curve Order Leakage Exploitation

Even though the methods of Subsection 10.1 will be used in Subsection 10.4 to quickly factor
Reble’s semiprimality certificate [21], much better asymptotic alternatives to the Baby-step
Giant-step approach are possible for recovering the curve order.

23

We note, indeed, that a semiprimality certificate (N,E,Q, s) leaks 11
12 of the bits of the

order of the curve E(ZN). This immediately follows from Hasse’s bound [38, V.I - Theorem
1.1]: by denoting with #E(ZN) the order of E(ZN) ≃ E(Fp)× E(Fq), we have that

|#E(ZN)−N − 4
√
N − p− q − 1| ≤ 2p

√
q + 2q

√
p+ 2(

√
p+

√
q)

Since s ≈ 3
√
N , and s2 divides #E(ZN) by construction, we obtain∣∣∣∣∣#E(ZN)

s2
− N − 4

√
N

s2

∣∣∣∣∣ ≤ 2p
√
q + 2q

√
p

s2
≈ 12

√
N

Thus, using the above notation, we have kpkq = N−4
√
N

s2 + t with |t| ≈ 12
√
N .

In this setting, such t can be found, to the best of our knowledge, either memory-less
using a brute-forcing approach or with a time-space trade-off using Baby-step Giant-step.
In the case of brute-force, each guess of t is verified by picking multiple points P ∈ E(ZN)

and checking if
[
N − 4

√
N + s2 · t

]
·P = O ∈ E(ZN). To use Baby-step Giant-step, instead,

we set R = [4
√
N −N] · P and Q = [s2] · P , constrained by the relation [t] ·Q = R, and we

then search for the discrete-logarithm of R in base Q. Once t is correctly retrieved, we can
compute the full order of E(ZN) and factor N , similarly as we do in Subsection 10.1.

It follows that the average time complexity of brute-force consists of exp
(
lnN
12

)
guesses

for t, while the Baby-step Giant-step would require exp
(
lnN
24

)
time given exp

(
lnN
24

)
space.

10.3 Comparison to Factorization

How do these two attacks compare with respect to directly factoring N? The fastest known
general-purpose factoring algorithm is the General Number Field Sieve (GNFS) [29] which
allows to factor an integer N with complexity

exp

((
3

√
64

9
+ o(1)

)
(lnN)

1
3 (ln lnN)

2
3

)
A semiprimality certificate (N,E(ZN), Q, s) generated as in Subsection 8.2 or Section 9,

will have s ≈ lnN
3 .

The Baby-step Giant-step attack outlined in Subsection 10.1 would require, on average,
exp

(
lnN
6

)
time (assuming constant table look-ups) to find the order of the point [s] · P ,

where P is randomly picked from E(ZN). Instead, the curve-order finding method of Sub-
section 10.2 which exploits the leakage provided by the certificate requires a time-space
trade-off of exp

(
lnN
12

)
.

It follows that factoring N using the GNFS factorization algorithm is easier in terms of
asymptotic time complexity as long as N > ≈ 23550 (under the unrealistic assumption to
have access to ≈ 2148 memory units with constant-time look-ups). Thus, at least with respect
to the two attacks outlined above, the structure induced by our semiprimality certificate
generation methods does not seem to decrease the bit-security of returned semiprimes when
these are of cryptographic size.

24

10.4 Cryptanalysis of Reble’s Semiprimality Certificate

As we already briefly discussed in Subsection 8.2, in 2005 Don Reble published a semiprimal-
ity certificate for a 1084-digits integer N [21]. His certificate consists of a tuple (N,A, s, t, Z)
where: i) s is a prime greater than (6

√
N + 1)2; ii) t is an integer of size approximately 3

√
N ;

iii) A ∈ ZN and E(ZN) : y2 = x3 + A · x; iv) Z ∈ E(ZN) is so that [2st] · Z = O ∈ E(ZN);
v) [2t] · Z and [st] · Z are both not equal to O.

It follows that Q = [2t] · Z is such that [s] · Q = O, and thus N is semiprime. For
completeness, we report the relevant values of such certificate:

N = 23540246381953690964846159708843398203644561475436197580787910366016835
50549457307734250132091348237679138365175431052395367197785226305983060
91311778015170184734195517820836859704827368514883246698096782642412942
69187038375543653819872025816440552072944392812834659892991483861033331
19266471392173618443929665694168419491445893554508312145211159678272609
63610250123042880750137421428794820948992279404917456873527789808912332
85140985594879957751095300647425162891558424879373241151669954799924038
44568229440067774588249691771929122269676355283078764925818544665476875
56545067712253324080119169199385053706926681481142130313897807771147801
77004871146513516017647370512958483733151403979970908037943150798569535
46188491644172521427470951375250077003634182703827942144576309122358369
45649158842746771077588428040839475449415159451169198340425663899961356
70147270228034728379156641389487953023534102015410576819703308415147317
93742263071861503079347455028937566794023056085249684891705541856417002
50294573975291876838792342640256781629122251146575882894497334501318436
3023296235457948241

A = 54215605853661760575365176565408275413482806064633150544493983184301833
63513621001659876093872231181164718281783580481362500810577739546333144
43563489145697020716748588555381562127528942341868696534950141729276402
55225042829059397250779899406378069552373178674315151381910120677670928
10223821325768404974577397764482720696450081666771429604597887181626594
36622279702820662483265681021803002349053246019529270333771069495383071
71616848102159987024513518430482442521180768217033043668300078406219820
84308544042382476767429467054237581896316781460722765264597549719474916
83633684669669612703098311922716959616726671205553228774455898368573749
40944134005538676908227180504504115642839824594982481783096906620416202
30683821122824987196291956181823881845590515032563676640665799529828756
71953249271919296931173484190033840593443675331304060398813947108063595
72947380521405825006200952774556404488943147425587299470252069943347901
31727875489866483238383370271553876588656939010395067827348354880845222
97571537524326993623405570286359414942260683044570070721448137577484661
026699816478612597

25

s = 28928434216210803690615246524734063145625591441015675162985567756555278
47475254643269219998751288122386460675073169360611359943088760646061779
63915153101486156446026954889034721931204780489345443377835050099341337
67946616448576209133289712559206785258051616195330150089251887798277052
46804480305755386032561335776618914909668933096505500715518252514951552
5889989

t = 70323610117989232939059249931645122359843269434492413277191595877834782
37835918161785248366689469809564684201210711877500244334224388017710878
52206517746924932705142830765836952506541400693749501498564556129745067
76852952721623063218610555085789467640877803479093810669778258714223797
26559797542141718817576541825421567562917573366046873030803485890583206
21801

Unfortunately, this certificate is vulnerable to the twisting attack outlined in Subsec-
tion 10.1, since k = 4 · t, due to its size, seems to correspond to |E(ZN)|/s2. In fact, if we
attempt to compute [k · s] · P for some random point P on the curve twist ∈ Ẽ(Zn) given
by a c so that

(
c
N

)
= −1, we quickly obtain the factors p, q of N as:

p = 11720990044176604485656482285369732810060846386219272085536405872537609
48011511585395454559143032247641663618272332076279747485555807859184694
06861654147386441510559363392715817728672245699385222089747094454406981
21693586713136011742194739741899723138624842602143272810739524721078379
48499063449221486753727501531543239917595871282902624150630909694396150
92699624981254513801117217086814181188742680766873054766809210661150719
42491901610394578884716528402831014158285785393084402661789426579443047
0237075098737394801950735228563440292113831261

q = 20083837878225401365247454652399288511943664897737051292330162045380798
47047967553624738053694816692363354958717219555398238278456569714076351
99873386941295582613528886860458159891305742279812772280504959629204641
12804540856578175224873773598186424150500091924032169570267927231676027
46296336758526213630623424953236880409237682617595943424384640820844771
70767532502558171140259680357885849656918196880508244291275258005435663
46284978929191779811241094865466976201603650414220042746338725436438268
060349137796843612740293263057965991981090181

By computing Cornacchia’s decomposition for p, q with respect to D = −4 (since E has
j-invariant equal to 1728) we can quickly identify, using Theorem 3, the correct orders of
Z ∈ E(Fp) and Z ∈ E(Fq), and thus further factor t as t = tp · tq with

tp = 20258597400353665832991488672810613896938092755725221711196244287139044
03793176567743497667059136838707693549460158024833330378138966164902722
910241116345513026043355952676540270569

26

tq = 34712970857874668936188691097154723180647484712027869327858850223000688
83769170818334339310705088410519966105964664180969414727882872153221275
63236918821757826297680215636403433729

11 Conclusions

In this paper we described a technique to construct primes p for which we can explicitly
construct an elliptic curve E(Fp) such that its order completely factors over a certain factor
base. We showed how this method could be used to backdoor one or more factors of an
integer N so that an attacker can quickly factor it. To show the practicality of our methods,
we implemented our procedures, and we detailed a complete attack example on a 1024-bits
RSA modulus, previously backdoored with our implementation and factored in just a few
seconds.

We then formalized semiprimality certificates that, based on a result by Goldwasser and
Kilian, allow proving semiprimality of an integer with no need to share any of its factors,
and we discussed how such certificates can be possibly computed. We described how our
prime backdooring procedure could be used to construct prime factors of a semiprime N so
that it is easy to compute semiprimality certificates for it, and we ported this construction
in the MPC setting by sketching a protocol that allows distributed generation of certifiable
semiprimes.

Lastly, we analyzed the security of semiprimality certificates, and we provided different
attacks. We concluded that, compared to generic factorization algorithms, the expected bit-
security of semiprimes built according to our protocols is the same as the security provided
by random semiprimes of the same size.

12 Acknowledgements

The authors are grateful to Aleksei Udovenko, Alex Biryukov, Alice Silverberg, Cyprien
Delpech de Saint Guilhem, Dan Boneh, Nadia Heninger and Younes Talibi Alaoui for the
valuable discussions, their insights and meaningful suggestions during the writing of the first
draft of this paper.

References

1. Aikawa, Y., Nuida, K., Shirase, M.: Elliptic curve method using complex multiplication method.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
102(1), 74–80 (2019). https://doi.org/10.1587/transfun.E102.A.74 3, 11

2. Atkin, A.O.L.: The number of points on an elliptic curve modulo a prime (i). Draft (1988) 18
3. Atkin, A.O.L.: The number of points on an elliptic curve modulo a prime (ii). Draft (1999) 18
4. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of computation

61(203), 29–68 (1993). https://doi.org/10.1090/S0025-5718-1993-1199989-X 18
5. Basilla, J.M.: On the solution of x2 + dy2 = m. Proceedings of the Japan Academy, Series A,

Mathematical Sciences 80(5), 40 – 41 (2004). https://doi.org/10.3792/pjaa.80.40 6
6. Belding, J., Bröker, R.M., Enge, A., Lauter, K.: Computing hilbert class polynomials. In: van der

Poorten, A.J., Stein, A. (eds.) Algorithmic Number Theory. pp. 282–295. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79456-1 19 9

27

https://doi.org/10.1587/transfun.E102.A.74
https://doi.org/10.1090/S0025-5718-1993-1199989-X
https://doi.org/10.3792/pjaa.80.40
https://doi.org/10.1007/978-3-540-79456-1_19

7. Bernstein, D.J., Lange, T.: XZ coordinates for short Weierstrass curves. https://

hyperelliptic.org/EFD/g1p/auto-shortw-xz.html 9
8. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys (extended abstract). In:

Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (Aug
1997). https://doi.org/10.1007/BFb0052253 2

9. Broker, R.M.: Constructing elliptic curves of prescribed order. Ph.D. thesis (2006), https:
//www.math.leidenuniv.nl/scripties/Broker.pdf 5

10. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., Shelat, A.,
Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight scalable rsa modulus genera-
tion with a dishonest majority. In: 2021 2021 IEEE Symposium on Security and Pri-
vacy (SP). pp. 590–607. IEEE Computer Society, Los Alamitos, CA, USA (5 2021).
https://doi.org/10.1109/SP40001.2021.00025 2

11. Chen, M., Cohen, R., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., shelat, a.: Multiparty gen-
eration of an RSA modulus. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III.
LNCS, vol. 12172, pp. 64–93. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-
030-56877-1 3 2

12. Cheng, Q.: A new class of unsafe primes. Cryptology ePrint Archive, Report 2002/109 (2002),
https://eprint.iacr.org/2002/109 3

13. Cheng, Q.: A new special-purpose factorization algorithm (2002) 3
14. Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts in Mathe-

matics Ser., vol. 138. Springer Berlin / Heidelberg (2000). https://doi.org/10.1007/978-3-662-
02945-9 4, 6

15. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M.
(ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (May 1996).
https://doi.org/10.1007/3-540-68339-9 14 2

16. Cox, D.A.: Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multipli-
cation: Second Edition (01 2013). https://doi.org/10.1002/9781118400722 9

17. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly
secure MPC for dishonest majority - or: Breaking the SPDZ limits. In: Crampton, J., Jajodia,
S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (Sep
2013). https://doi.org/10.1007/978-3-642-40203-6 1 21

18. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat ho-
momorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 643–662. Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5 38
21

19. David Broadhurst: A 5061-digit semiprime (2005), https://web.archive.org/web/

20190827000752/http://physics.open.ac.uk/~dbroadhu/cert/semgpch.gp 3, 18, 19
20. Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T.

(ed.) EUROCRYPT’93. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (May 1994).
https://doi.org/10.1007/3-540-48285-7 4 23

21. Don Reble: Interesting Semiprimes (2005), http://www.graysage.com/djr/isp.txt 3, 18, 19,
23, 25

22. Dudley, U.: Elementary Number Theory: Second Edition. Dover Books on Mathematics, Dover
Publications (1978) 5, 7

23. Elkies, N.D.: Elliptic and modular curves over finite fields and related computational issues. In:
Buell, D.A., J. T. Teitelbaum, e. (eds.) Computational Perspectives on Number Theory: Pro-
ceedings of a Conference in Honor of A. O. L. Atkin. vol. 7, pp. 21–76. American Mathematical
Society (1998). https://doi.org/10.1090/amsip/007/03 18

24. Falk, B.H., Noble, D.: Secure computation over lattices and elliptic curves. Cryptology ePrint
Archive, Report 2020/926 (2020), https://eprint.iacr.org/2020/926 20

28

https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html
https://doi.org/10.1007/BFb0052253
https://www.math.leidenuniv.nl/scripties/Broker.pdf
https://www.math.leidenuniv.nl/scripties/Broker.pdf
https://doi.org/10.1109/SP40001.2021.00025
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-030-56877-1_3
https://eprint.iacr.org/2002/109
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1002/9781118400722
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://web.archive.org/web/20190827000752/http://physics.open.ac.uk/~dbroadhu/cert/semgpch.gp
https://web.archive.org/web/20190827000752/http://physics.open.ac.uk/~dbroadhu/cert/semgpch.gp
https://doi.org/10.1007/3-540-48285-7_4
http://www.graysage.com/djr/isp.txt
https://doi.org/10.1090/amsip/007/03
https://eprint.iacr.org/2020/926

25. Goldwasser, S., Kilian, J.: Almost all primes can be quickly certified. In: Proceedings of the Eigh-
teenth Annual ACM Symposium on Theory of Computing. p. 316–329. STOC ’86, Association
for Computing Machinery, New York, NY, USA (1986). https://doi.org/10.1145/12130.12162
2, 17, 18

26. Izu, T., Takagi, T.: Fast elliptic curve multiplications resistant against side channel at-
tacks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88-A(1), 161–171 (2005).
https://doi.org/10.1093/ietfec/E88-A.1.161 13

27. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security (2020).
https://doi.org/10.1145/3372297.3417872 21

28. Kunihiro, N., Koyama, K.: Two discrete log algorithms for super-anomalous elliptic curves and
their applications. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences 83, 10–16 (2000) 23

29. Lenstra, A.K., Lenstra, H.W.: The Development of the Number Field Sieve. Lecture Notes in
Mathematics, Springer (1993). https://doi.org/10.1007/BFb0091534 24

30. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126(3), 649–673
(1987). https://doi.org/10.2307/1971363 2, 7

31. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathemat-
ics of Computation 48, 243–264 (1987). https://doi.org/10.1090/S0025-5718-1987-0866113-7 13

32. Nitaj, A., Fouotsa, E.: A new attack on rsa and demytko’s elliptic curve cryptosys-
tem. Journal of Discrete Mathematical Sciences and Cryptography 22(3), 391–409 (2019).
https://doi.org/10.1080/09720529.2019.1587827 23

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-
key cryptosystems. Communications of the Association for Computing Machinery 21(2), 120–
126 (1978). https://doi.org/10.1145/359340.359342 2

34. Delpech de Saint Guilhem, C., Makri, E., Rotaru, D., Tanguy, T.: The return of er-
atosthenes: Secure generation of rsa moduli using distributed sieving. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security. p.
594–609. CCS ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484754 2

35. Schoof, R.: Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres
de Bordeaux 7(1), 219–254 (1995). https://doi.org/doi.org/10.5802/jtnb.142 18

36. Sedlacek, V., Klinec, D., Sys, M., Svenda, P., Matyas., V.: I want to break square-free: The 4p−1
factorization method and its rsa backdoor viability. In: Proceedings of the 16th International
Joint Conference on e-Business and Telecommunications (ICETE 2019) - Volume 2: SECRYPT,.
pp. 25–36. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007786600250036 3

37. Shirase, M.: Condition on composite numbers easily factored with elliptic curve method. Cryp-
tology ePrint Archive, Report 2017/403 (2017), https://eprint.iacr.org/2017/403 3

38. Silverman, J.: The Arithmetic of Elliptic Curves, vol. 106 (1 2009). https://doi.org/10.1007/978-
0-387-09494-6 4, 24

39. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol. In: Albrecht, M.
(ed.) 17th IMA International Conference on Cryptography and Coding. LNCS, vol. 11929, pp.
342–366. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-35199-1 17 20

40. Sutherland, A.V.: Computing hilbert class polynomials with the chinese remainder theorem.
Mathematics of Computation 80(273), 501–538 (2011). https://doi.org/10.1090/S0025-5718-
2010-02373-7 9

41. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.4) (2021),
https://www.sagemath.org 13, 21

42. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, Second Edition. Chap-
man and Hall/CRC, 2 edn. (2008) 6, 17

29

https://doi.org/10.1145/12130.12162
https://doi.org/10.1093/ietfec/E88-A.1.161
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/BFb0091534
https://doi.org/10.2307/1971363
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1080/09720529.2019.1587827
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/3460120.3484754
https://doi.org/doi.org/10.5802/jtnb.142
https://doi.org/10.5220/0007786600250036
https://eprint.iacr.org/2017/403
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1090/S0025-5718-2010-02373-7
https://doi.org/10.1090/S0025-5718-2010-02373-7

	Factoring Primes to Factor Moduli: Backdooring and Distributed Generation of Semiprimes

