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ABSTRACT
The training set of atomic configurations is key to the performance of any Machine Learning Force Field (MLFF) and, as such, the training set
selection determines the applicability of the MLFF model for predictive molecular simulations. However, most atomistic reference datasets are
inhomogeneously distributed across configurational space (CS), and thus, choosing the training set randomly or according to the probability
distribution of the data leads to models whose accuracy is mainly defined by the most common close-to-equilibrium configurations in the
reference data. In this work, we combine unsupervised and supervised ML methods to bypass the inherent bias of the data for common
configurations, effectively widening the applicability range of the MLFF to the fullest capabilities of the dataset. To achieve this goal, we first
cluster the CS into subregions similar in terms of geometry and energetics. We iteratively test a given MLFF performance on each subregion
and fill the training set of the model with the representatives of the most inaccurate parts of the CS. The proposed approach has been applied
to a set of small organic molecules and alanine tetrapeptide, demonstrating an up to twofold decrease in the root mean squared errors for
force predictions on non-equilibrium geometries of these molecules. Furthermore, our ML models demonstrate superior stability over the
default training approaches, allowing reliable study of processes involving highly out-of-equilibrium molecular configurations. These results
hold for both kernel-based methods (sGDML and GAP/SOAP models) and deep neural networks (SchNet model).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035530., s

I. INTRODUCTION

With the enormous rise in computational power and the num-
ber of molecular simulation methods in the past decades, atomistic
modeling is increasingly becoming the method of choice.1–9 Appli-
cations range from the study and prevention of corrosion10–12 to
protein folding,13 unfolding,14 and self-assembly.15

For many applications, machine learning force fields (MLFFs)
are becoming the method of choice, as they can potentially repro-
duce any functional form of interatomic and intermolecular inter-
actions, leading to reliable descriptions of potential energy surfaces
(PESs) of arbitrary complexity. Many successes have been found in
this domain in the recent years, with a multitude of methods being
able to predict the behavior of small to medium sized molecules
and more.16–23 These methods were used to calculate the stabil-
ity of molecules with chemical accuracy,24 predict the formation

energy of crystals at the level of density functional theory,25 or even
reconstruct phase diagrams,26 to name a few examples.

Despite these achievements, the data-driven nature of ML has
its downsides: collecting data and choosing training points is a
nontrivial problem that requires a deep understanding of the nature
of the data, which relies on human intuition. This puts into ques-
tion the unbiased nature of the ML approaches, eliminating one of
their main advantages over the human-designed FFs. For instance,
for applications in molecular dynamics (MD) simulations, the
training data are generally parts of molecular trajectories extracted
from a reference ab initio simulation with the desired level of
accuracy. ML models are then frequently trained to have the best
overall prediction across the entire dataset. This, however, skews the
ML models toward more common (close-to-equilibrium) molecu-
lar configurations, as poorly predicted but rare (out-of-equilibrium)
configurations hardly impact overall statistics.
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The performance of such ML models can be unpredictable in
long MD simulations where small regions of configurational space
(CS) with poor predictions can act as an escape way toward the
extrapolation regime. Specific examples include studying nuclear
quantum effects (such as proton transport) using the MLFF trained
on classical MD trajectories or simulating phase transitions based
on the information collected only in stable phases. In all these
cases, minimizing the prediction error on the reference dataset does
not guarantee good predictions across all important configurations,
making the results of the simulations questionable.

In this work, we address the issue outlined above by “flattening
the error” of ML models: i.e., we ensure that the predictive accuracy
of the MLFF is equally reliable for out-of-equilibrium structures or
rare events as for common configurations, thus enhancing the sta-
bility of the model regardless of its use case. To accomplish this, we
propose a novel method to optimize the training of ML models, lead-
ing to unbiased molecular FFs with almost constant accuracy across
the entire reference dataset. This method is equally applicable to any
ML model and is available in our free open-source MLFF package.27

We showcase its application on small organic molecules (uracil, sali-
cylic acid, ethanol, and toluene) as well as a larger molecule (alanine
tetrapeptide) using GAP28 models with the SOAP29 descriptor and
sGDML17 as representative kernel-based approaches, and SchNet18

as a representative neural-network-based approach. Those models
were chosen in order to cover a large variety of ML methods (kernel
with cutoff, kernel without cutoff, neural network); it is important
to note, however, that the exact model choice is not important as
our methods do not affect the model itself but merely influence its
training set. Comparing our improved models to default ones of
equal training set size reveals an error reduction on rare/out-of-
equilibrium configurations by a factor of up to 2 for a negligible
sacrifice in mean error. The proposed training scheme improves the
reliability of the ML models, substantially widening their application
range. Furthermore, our methods highlight how common metrics
to determine the accuracy of an ML model (e.g., root-mean-squared
errors on a test set) are incomplete and unable to capture the true
reliability of the model.

This article is organized as follows: in Sec. II, we explain and
justify the importance of our work in the current state of research.
Section III contains the details of the developed methodology for
outlier detection and improved training technique. In Sec. IV, we
apply our method to reconstruct the FF of small organic molecules
and alanine tetrapeptide, which serves as a representative case for
how the method performs on larger molecules. Section V presents a
summary and an outlook.

II. MOTIVATION
At the core of every ML model lie the reference data. In

the case of reproducing molecular FFs, generating reliable data is
quite challenging, and thus, many different sampling techniques
exist (e.g., MD and normal mode sampling), with a lot of work
being done to improve them.30–34 In practice, we are ultimately
always forced to generate large amounts of data using quantum
chemical methods that are as cheap as possible while still qualita-
tively reproducing the underlying physics. However, as training sets
of ML models are usually significantly smaller than the reference

datasets, the points inside them can be recalculated using higher-
accuracy quantum chemistry methods. This effectively increases
the accuracy of the MLFF model to that of the chosen method
without the need to recompute the entire reference data. Nev-
ertheless, this still represents the most computationally expen-
sive step in the process of MLFF construction solely due to the
excessive costs associated with highly accurate quantum-mechanical
methods.

This motivates the creation of data-efficient MLFFs, i.e., mod-
els able to reproduce the PES of a molecule with a training set as
small as possible. In that setting, the specific choice of training points
becomes essential. In particular, this promotes avoiding redundant
points in the training set and ensuring that all CS regions visited
during the generation of the reference data have adequate repre-
sentation in the training set. Performing the selection of training
points randomly or along the reference data’s inherent distributions
(for example energy) does not guarantee that those conditions are
met. The methods presented in this work aim to create the best
possible training set for a given reference dataset and a given ML
model.

It is important to note that our methods only change the choice
of training points and are, in principle, independent of the choice
of the ML model, the tuning of its hyperparameters, and its com-
putational costs for prediction. As a result, our method can be used
as a complementary approach to other ML techniques at an initial,
intermediate, or final step of training highly accurate and reliable
ML models. The proposed technique leads to increased training time
(usually by a factor of 4–5), as the chosen model will need to be
trained multiple times on a training set with iteratively increasing
size. However, the computational costs of the training process are
still very small compared to that of recalculating the training set
using accurate quantum-mechanical methods.

For large enough training sets, any reliable ML model should,
in principle, be able to reproduce the PES with arbitrary accuracy. In
contrast, in the limit of small datasets, simple interpolation between
reference points is not enough for accurate predictions; instead,
models have to learn the underlying physics. Our method is able
to find an optimal training set of a given size for each dataset and
model combination. This allows even small training sets to fully
and accurately represent the PES. As such, we can now compare the
inherent ability of a given MLFF model to learn complex interatomic
forces. Thus, the developed method allows us to assess the expressive
power of ML models for reproducing molecular PESs in an unbiased
way.

III. METHODS
A. Overview

The methods described in this section allow for an in-depth
error analysis of a ML model, outlier detection, as well as an
improved training technique resulting in “equally” reliable predic-
tions for all parts of the entire reference dataset. We apply the
developed approach for constructing accurate MLFFs for molecules
consisting of a few tens of atoms, but it can be generalized for any
regression problem. An overview of the methodology can be found
in Fig. 1.
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FIG. 1. Overview of the improved learn-
ing method. A dataset is clustered into
subsets, and the error of an initial
ML model is assessed on each indi-
vidual cluster. High-error clusters are
reclustered finely, and representative
configurations are extracted from each
and added to the training set. This is
repeated until a given number of training
points is reached.

The method can be subdivided into three main steps. In
the “initial clustering” step, we split molecular configurations into
groups based on the similarities in geometric and energetic proper-
ties. We then apply a given ML model to each individual subset and
compute the respective mean prediction error, identifying the worst
predicted subsets as “outliers.” Finally, to create “improved models,”
we more finely subdivide poorly predicted groups and extract rep-
resentative geometries from each fine cluster. These representatives
are added to the training set. Repeating the described procedure with
retrained models results in a final model with an optimized training
set. The details of every step are in the following.

B. Details
In the “initial clustering” step, we subdivide tens of thousands

of unlabeled data points into 50 initial clusters. In the general case,
the number of initial clusters is an adjustable parameter requiring
some intuition about the complexity of the PES and the knowl-
edge about the reference dataset size. The specific number should
be adjusted to create clusters broad enough to represent subregions
of CS but not so large to mix largely different configurations. For the
datasets and molecules used in this work, 50 was found to be a reli-
able value, meaning that a specific choice of this value allows some
flexibility, and one should not optimize it too much for every single
problem.

In this paper, pairwise atomic distances are the descriptor of
choice for molecular geometries, and differences between configu-
rations were defined using the Euclidean distance in this descriptor
space. For the applications in this paper, molecules are small enough
for such a simple metric to adequately represent the configurational
space. An agglomerative approach with Ward linkage35 was cho-
sen to cluster the dataset into configurations with similar geometries
(ten clusters), as the algorithm avoids merging rare but geometrically
unique configurations with large groups of common ones. Note that
this clustering method has a time complexity of O(n3) and memory
requirement of O(n2) (with n being the number of points to cluster),
making it inadequate for handling large datasets in one go; instead,
in a first step, a subset of the data (20 000 points) is chosen and clus-
tered. The remaining (unclustered) data points are then iteratively
added to an existing cluster based on the smallest average distance,
mimicking agglomerative clustering while bypassing computational
limitations.

With x⃗ai being the Euclidean position of atom i ∈ [1, N] of data
point a ∈ [1, M], the descriptor z⃗a is given by

z⃗a = [. . . , zai,j, . . .], j < i, (1)

zai,j = ∥x⃗ai − x⃗
a
j ∥2, (2)
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with ∥⋅∥2 being a simple Euclidean distance. Distances in the
descriptor space are then

d(z⃗a, z⃗b) = ∥z⃗a − z⃗b∥2. (3)

Despite the similar geometry, clusters produced this way
may contain large variations in the potential energy. To avoid
this problem, a further distinction between different energy lev-
els was done by further splitting each cluster into five using a
KMeans method with kmeans++ initialization36,37 on the potential
energies. The combination of both clustering techniques helped
distinguish between possible degenerate states and geometrically
“similar” configurations with significant energy differences. All clus-
tering algorithms in this work were implemented using the Scikit-
learn library.38

After successfully splitting the dataset both by geometries and
energies, an initial ML model was applied to every individual
cluster—the “outlier detection” step. The training set of the initial
model should be small enough to allow for further training points
to be added but large enough for predictions to be qualitatively cor-
rect. For this work, initial training set sizes were 20% that of the final
improved models (i.e., 200 training points). The choice of points
for this set was left unaltered from the default methods used by
respective ML models.

The average prediction error on all configurations was com-
puted between the predicted and actual forces. The root-mean-
squared error (RMSE) was chosen as a way to emphasize large dif-
ferences. Ordering the clusters by their average prediction error led
to a simple way to identify outliers for the given dataset and model.
Furthermore, as similar individual clusters contain similar config-
urations, prediction errors within clusters do not vary by a signif-
icant amount. For large datasets or models with computationally
expensive predictions, this allows us to only predict a fraction of
the cluster points rather than its entirety. In this work, we applied
this to the most computationally expensive model of our selection
(GAP/SOAP28,29), where only 1% of each cluster’s points is predicted
(for a minimum of 100 per cluster).

Poor predictions on specific clusters were commonly caused by
the training set containing too few examples from the relevant region
of CS. Often, this arose as a simple consequence of a non-optimal
training set choice: out-of-equilibrium geometries are naturally rarer
and thus less represented in datasets born from physical simula-
tions. As such, a random choice of training points—even according
to some statistical distribution—is very unlikely to contain those
important out-of-equilibrium points. In other cases, poor predicted
clusters contained configurations whose physiochemical properties
deviate from the rest of the dataset. In such cases, even small changes
in the geometry can lead to large differences in forces, hence the need
to include a sizable contribution of outlying configurations to the
training set for accurate predictions.

In the “improved model” step, all clusters with higher than
average cluster prediction errors were recombined and reclustered
more finely by applying the same agglomerative approach as before
but with a larger number of clusters. This increased the resolution
in which problematic regions of CS were identified, allowing for
(a) filtering out of well-predicted configurations, previously buried
in overly broad clusters, and (b) a finer distinction between all

subregions of CS that include the configurations problematic for
our initial model. Generally speaking, this step benefits from finer
clusters, but those benefits quickly hit diminishing returns once the
number of fine clusters exceeds the number of training points added
at each step. As such, we chose both numbers to be equal for this
work (100 points each).

From those fine clusters, we extracted their worst-predicted
configurations to add to the training set. For this work, the num-
ber of training points added each step (“step size”) is 100. Choosing
the step size is largely a balance between increased training times
(half the step size means roughly double the training time) and bet-
ter final models. As always, decreasing the step size past a certain
point provides negligible benefits, and as such, it was chosen to be
10% of the final model training set size in this work. For a given
step size, the number of training points to extract from each indi-
vidual fine cluster was proportional to the cluster’s size as well as its
prediction error. A weight was given to each fine cluster equal to the
product of its total size and prediction error. Weights were then nor-
malized such that the total weight across all clusters equaled the step
size. Each cluster was given a number of points equal to the inte-
ger part of its weight; then, the remaining points were distributed
one-by-one in the order of descending fractional part of the weights.
Prioritizing larger clusters as well as outliers in terms of prediction
accuracy meant that the method was able to fine-tune the training set
earlier.

The complete training set for given data was created in an iter-
ative manner, successively computing prediction errors, targeting
problematic configurations to add to the training set, and retraining
ML models. In the end, resulting models were trained on all the nec-
essary data points to produce comparable prediction errors across
all of CS within a dataset.

C. Alternatives
This subsection discusses some possible alternatives to the

aforementioned approach and explains how they would affect the
proposed method.

1. One could think of skipping the initial clustering and sim-
ply continue with the process using all configurations whose
prediction error exceeds some minimum value. However, this
would require calculating the prediction for every single data
point, whereas our method allows calculating only a subset
of each cluster as a representative error for the whole, saving
the computational cost. For example, this is used for training
the GAP/SOAP models in this work. This leads to two orders
of magnitude reduced computational cost of the proposed
method, saving hundreds of central processing unit (CPU)
hours. Furthermore, the clusters and their prediction errors
provide useful insight into the model’s problematic regions of
CS in a broad sense.

In addition, many well-predicted clusters still contain sin-
gular configurations associated with high errors. As opposed to
poorly predicted configurations inside poorly predicted clus-
ters, the former are victims to the limitations of the ML model
rather than those of the training set. Including those in the
training set in an attempt to improve their prediction comes at
a significant cost in accuracy in their otherwise well-predicted
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cluster. Including entire clusters rather than singular points
of high error anchors the aforementioned exceptions to their
respective low-error cluster, thus allowing the algorithm to
favor configurations that are representative of entire poorly
predicted subregions of the CS.

2. One could also think of skipping the initial clustering step and
immediately proceed to creating fine clusters from which we
extract new training points. However, as previously explained,
our clustering method of choice—agglomerative clustering—
is not able to handle large datasets at once, and thus, a lower
quality “approximation” of the method is used in the initial
clustering step. The combination of all high-error clusters in
the fine clustering step represent a subset much smaller than
the original dataset, and thus, most, if not all, of the remaining
data points can now be clustered in a single agglomerative step,
leading to fine clusters of high quality.

3. Simple pairwise atomic distances were chosen as a descrip-
tor over alternatives (e.g., Coulomb matrix) since our focus
at the moment is still mostly on smaller molecules, where all
atoms are important and can be handled at the same time
without cutoffs. This choice, however, could be revised if
needed when scaling to larger molecules, with dimensionality
reduction techniques being of particular interest.

4. Finally, several methods were explored to choose which data
points to extract from a fine cluster to the training set (for
a given number of points). Selecting random points from
the clusters already leads to improvements, but to a lesser
extent than centroids (in the descriptor space) or points
with the highest prediction error within their cluster. Both
the latter methods performed similarly, however, as the out-
lier detection step already required the computation of pre-
diction errors, the highest-prediction error criterion proved
to be more efficient and is the default method for this
paper.

IV. RESULTS AND DISCUSSION
The developed methodology was used to perform a detailed

error analysis of three state-of-the-art MLFF models, namely,
sGDML,17 GAP28 using the SOAP29 descriptor, and SchNet.18 For
all models used, only the training set of the models was influenced:
the training procedure itself is unaltered from the default. Unless
otherwise specified, the settings for the models are the following: for
SchNet, we use 128 features, a cutoff distance of 5 Å, four inter-
action blocks, 25 Gaussians, and a learning rate of 5 × 10−4, and
for GAP/SOAP, we use 12 radial and six angular functions and a
cutoff of 5 Å (except for the uracil dataset, where eight radial and
four angular functions were used for technical reasons). All sGDML
models were trained on forces, SOAP/GAP models were trained
on energies, and SchNet models were trained on both forces and
energies.

The reference datasets used are of ethanol, salicylic acid,
toluene, and uracil39 for a total of 550k, 320k, 442k, and 133k num-
ber of points, respectively. In Sec. IV A, it will become clear that
different ML models show varying performance on those molecular
datasets; however, all of them are consistently inaccurate for out-
of-equilibrium geometries (see Fig. 2). We show that by employing

default training techniques, the prediction error on some physically
relevant configurations can exceed the overall root mean squared
error (RMSE) by up to a factor of 3. On the flip side, our improved
training method alleviates the problem by creating models with sig-
nificantly flattened errors across all configurations. This was applied
to the previously mentioned datasets and an alanine tetrapeptide
dataset generated in this work. In all cases, the ML models trained on
the optimized training set are found to be significantly more reliable
and stable for practical applications.

A. Outlier detection
In this subsection, we present the results of our outlier detection

methods on uracil, salicylic acid, toluene, and ethanol molecules.
The MLFF models of choice were sGDML, SchNet, and GAP/SOAP:
we applied each model to the same molecular datasets. We clus-
ter the datasets into 50 different regions of CS and compute the
force prediction RMSE for every cluster. The results are plotted in
Fig. 2. A very large disparity between the errors in clusters and the
mean squared error can be observed, with some clusters presenting
an error three times higher than the mean. The difference between
them and the cluster of lowest error is of course even higher. It is
clear that in these cases, a single MSE is not an appropriate met-
ric to fully quantify how good the ML model works for the entire
reference dataset. This is in direct contradiction with the idea of
the MLFF being comparable to the underlying ab initio method, as
entire regions of CS present an accuracy significantly worse than that
of the reference calculations.

It is worth noting that each cluster corresponds to a different
set of configurations. Hence, the proposed scheme detects poorly
predicted regions of CS for a given model. An example geometry
from the worst-predicted cluster is shown for salicylic acid: this
configuration has a clear fingerprint of shared hydrogen between
the carboxylic and hydroxyl groups. This process is a rare event in
the reference database obtained by employing classical MD simu-
lations and can be easily missed by the visualization of the trajec-
tory or other human analyses. In contrast, the proposed clustering
approach can easily separate such nontrivial configurations (a few
hundred) from the overwhelming number (above 300k) of simple
fluctuations around the equilibrium geometry. For the most part,
however, clusters simply represent a subset of points whose geom-
etry differs from the common (equilibrium) structures in various
hard-to-interpret ways, which lead to them being under-represented
in the dataset.

There are two possible reasons for the large prediction differ-
ences between clusters. First, poorly predicted regions can contain
large fluctuations of molecular geometries, which are not well repre-
sented in the training set. This lack of information then hinders the
ML models from learning those particular regions.

The second reason is non-trivial and can have significant
impact on the reliability of the MLFF. The poorly predicted areas
of the CS can represent physics or chemistry missing in the major-
ity of the configurations in the reference dataset. This is showcased
in our previous example of salicylic acid, where the cluster with the
most significant error corresponds to a “shared” proton between the
carboxylic and hydroxyl group. An accurate simulation of this pro-
cess would require proper account of nuclear quantum effects, and
hence, the corresponding configurations are a negligible minority
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FIG. 2. Force prediction RMSE for
sGDML, SchNet, and GAP/SOAP mod-
els on the ethanol, uracil, toluene, and
salicylic acid datasets (y-axis, scale
adapted for each model for better visibil-
ity) split into 50 clusters of similar con-
figurations (x-axis) ordered by ascending
error. RMSE (bars) is given on a per-
cluster basis in contrast to the RMSE
over the entire dataset (horizontal black
solid line). Relative cluster populations
are also indicated (blue solid line, arbi-
trary units).

(a few hundred) in the salicylic acid dataset containing over 320k
molecular geometries of a classical MD run. Even if correspond-
ing reference data were added to the MD dataset, those would be
mainly ignored within the standard training schemes due to their
relatively high energies. All in all, this points to the default MLFF
being inapplicable for studying the proton sharing effect for our
given dataset. In contrast, the developed method is designed to
alleviate this problem by widening the model’s applicability range
to the fullest capability of the dataset. This is further expanded in
Subsection IV D.

B. Optimizing the training set
We applied the improved training techniques developed in this

work using sGDML, SchNet, and GAP/SOAP as our MLFF mod-
els. First, we performed the outlier detection by computing the root
mean squared force prediction error on 50 clusters for an initial
model with 200 training points. Note that for the GAP/SOAP model,

only 1% of points of each cluster (minimum of 100) contributed to
the error calculations. After that, 100 training points were added at
every step for a total of eight steps, resulting in models of a total of
1000 training points each. All the details of the improved training
procedure can be found in Sec. III. Specifically, the number of initial
clusters (50) was empirically found to be appropriate for the datasets
in this work: it is high enough to not mix largely different config-
urations while still avoiding the creation of clusters with extremely
small population. The number of fine clusters was set to be equal
to the step size (100), as benefits past this point show diminishing
returns.

The main results of the developed improved training tech-
nique are shown in Fig. 3, representing the quality of MD simu-
lations performed with the default and the improved models with
respect to the reference method. Since forces are the variables enter-
ing the equations of motion, their errors are directly related to
the deviations between the reference and ML trajectories (more so
than the energies). While properties defined by the most common
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FIG. 3. Force prediction RMSE for
sGDML, SchNet, and GAP/SOAP default
models compared to the improved mod-
els (orange/blue bars, y-axis scale
adapted for each model for better vis-
ibility). RMSE is computed on a per-
cluster basis on ethanol, uracil, and sal-
icylic acid datasets, split into 50 clusters
of similar configurations (x-axis) ordered
by ascending error.

configurations in the reference dataset—such as average energies
at reasonably low temperatures—would be well represented by the
default models, processes involving broad parts of the PES or regions
under-represented in the reference dataset would be much better
described using the proposed improved ML models.

The gradual increase in prediction accuracy throughout the
iterative learning process can be seen on the example of salicylic
acid in Fig. 4. The improved models are put side-to-side with default
models of equal training set sizes for comparison.

It is important to note that the goal of the improved
models is to present a more stable prediction error across all of
the configurational space. They do so by explicitly including more

out-of-equilibrium/rare configurations in their training set at the
expense of the more common/in-equilibrium configurations in the
dataset. As such, improvements in overall RMSE—which are mainly
determined by accuracy on common configurations—are not the
aim of this work. Nevertheless, while the overall RMSE on forces
across the entire dataset does not change significantly, it sees some
decrease for many of the molecules shown (see Table I).

C. Application to alanine tetrapeptide
So far, we applied the developed methods only on rather

small molecules, demonstrating significant improvements in the
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FIG. 4. Force prediction root mean squared error (solid lines) on all 50 clusters
(x-axis) of the salicylic acid dataset ordered by ascending error. Different colors
correspond to varying sizes of the training set, using the default sGDML training
method (left) and the improved method (right).

TABLE I. Overall force RMSE for sGDML, SchNet, and GAP/SOAP models compar-
ing default and improved versions. All numbers are given in kcal/(mol Å).

Def. Imp. Def. Imp. Def. Imp.
Molecule sGDML sGDML SchNet SchNet GAP GAP

Uracil 0.38 0.32 0.77 0.65 2.71 2.17
Salicylic acid 0.44 0.39 0.99 1.03 1.80 1.54
Toluene 0.21 0.20 0.78 0.67 1.32 1.09
Ethanol 0.51 0.50 0.57 0.47 1.62 1.35

resulting MLFFs. In this subsection, we extend the applications to
a noticeably larger molecule using an alanine tetrapeptide dataset.
This peptide is large enough to exhibit several incipient secondary
structure motifs akin to biological peptides and proteins. Our ref-
erence dataset was constructed via ab initio molecular dynam-
ics at 500 K with the FHI-aims software40 wrapped with the i-
PI package41 using the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional42 with tight settings and the Many-Body Dis-
persion (MBD) method43,44 to account for van der Waals interac-
tions. The time step was set to 1 fs, and a global Langevin ther-
mostat was used with a friction coefficient of 2 fs. In total, the
dataset contains over 80k data points and covers at least three energy
minima.

It is important to note that, especially for larger molecules, our
training method can only lead to improvements if the base model
has acceptable accuracy in the first place. Thus, we require a higher
initial (also final) number of training points compared to previous
datasets, as, here, we are trying to learn the PES of a much higher-
dimensional and significantly more complex molecule. For the same
reason, we use SchNet as our model in this subsection, since SchNet
can be easily employed with much larger datasets than kernel-based
methods (sGDML or GAP). For the improved model in this section,
the initial training set size was set to 2000 points, with a step size of
500 for a final model of 6000 training points after eight total steps.
The number of fine clusters was adjusted to 150 points to make up
for the increased step size.

FIG. 5. Energy (left) and force (right) prediction RMSE for AcAla3NHMe SchNet
default models on different clusters: default model (orange bars) compared to the
improved model (blue bars). Each model consists of 6000 training points with
identical training procedures and architecture.

Figure 5 shows the performance of two equal-size well-
converged SchNet models trained using the default and improved
training schemes for identical SchNet architectures. Significant
improvement can be found when applying our training methods
to alanine tetrapeptide: both energy and force prediction errors are
reduced for almost every cluster. Importantly, achieving the same
improvement within the default training scheme would require
adding more reference data to the training set. To highlight this,
Fig. 6 shows the energy and force prediction accuracy of the SchNet
models trained with different sizes of the training set.

Our method concentrates only on the improvement of the force
predictions, where the RMSE of the default model for the worst
clusters is about twice as large as that for the best one. The minor
improvement in energy demonstrated in Fig. 5 is an accompanying
effect, which we were not aiming for. RMSE for forces and energy
drops only from 0.89 to 0.80 kcal/(mol Å) and 0.54 to 0.49 kcal/mol,
respectively (Table II), but the flattening of the errors for the force
prediction can have significant results in practice. See Subsection IV
D for more details.

Improving the force predictions along with learning the energy
within the SchNet model (or any other ML model) requires the
employment of mixed loss functions, where the errors for energy
and forces are minimized together. While this has proved to be a

FIG. 6. Energy (left) and force (right) prediction RMSE for AcAla3NHMe SchNet
default (orange) and improved (blue) models on different clusters. Comparing
different sizes of training sets: 3000, 6000, and 9000 for default and 6000 for
improved.
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TABLE II. Overall force/energy RMSE for SchNet models of different training set
sizes, comparing the default and improved versions.

Default Default Improved Default
RMSE 3000 6000 6000 9000

Forces [kcal/(molÅ)] 1.34 0.89 0.79 0.71
Energy (kcal/mol) 0.70 0.54 0.48 0.46

successful method for various applications,45–48 it is not the opti-
mal choice when trying to create the best model for a given dataset.
There, mixed loss functions are less efficient since optimizing two
competing functions leads to sub-optimal results for each compo-
nent, as both the energy and the force parts of the loss function are
minimized by a different set of model parameters.49 Our proposed
method allows us to further improve energy or force predictions
independently, merely by manipulating the training set.

In Fig. 5, we see that the cluster force predictions of the default
model do not present a variance quite as large as the previously
explored molecules. The main reason is that high-dimensional space
(AcAla3NHMe has 42 atoms, i.e., 861 pairwise atomic distances)
makes our clustering algorithms significantly weaker. Any distance
metric loses meaning as the dimensionality increases, and cluster-
ing algorithms rely on the latter to subdivide datasets. As a con-
sequence, our clusters are less well-defined and contain overlaps
between qualitatively different configurations. This reduces the reso-
lution between well and poorly predicted parts of CS, decreasing the
efficiency of the proposed method. We expect that reducing the size
of descriptors by making use of dimensionality reduction techniques
(such as kernel principal component analysis) would improve the
efficiency of the clustering schemes and, in turn, make the developed
approach reliable for systems containing hundreds and thousands of
atoms. A systematic extension of the developed approach to increas-
ingly large systems will be the target of our future research and is
beyond the scope of the current work.

In Fig. 6, one can observe three qualitatively different behav-
iors of the resulting SchNet models depending on the size of the
training set: (a) Whenever the training set contains insufficient data
(the model with 3k points), the constructed MLFF demonstrates
low accuracy across the entire CS for both energy and forces. In
this limit, the force-based improved training method proposed in
this work does little to improve the FF since the starting model
cannot distinguish between poorly and well-predicted areas of the
CS. Without a robust initial model to base the iterations steps
where training points are added, our methods fail to significantly
improve the performance of an MLFF. (b) The training set con-
tains enough data for the ML model to accurately learn the PES,
but the forces are poorly predicted across CS (the model with 6k
points), akin to previous examples (see Subsection IV B). This is pre-
cisely the scenario for which the proposed improved training tech-
nique has been developed. By comparing the default and improved
models with 6k training points, one can see a significant boost in
accuracy for forces accompanied by a slight improvement of the
PES reconstruction (here, an improved model of 6k points is com-
parable to a default model of 7.5–8k points). As such, the pro-
posed training method gives an optimal compromise between data

efficiency and accuracy of ML models. (c) Finally, a training set
overloaded with reference data (the model with 9k points) leaves
little room for improvement. Indeed in this case, the training set
contains all relevant configurations in the dataset (also, by extension,
the validation set) such that the choice of training points becomes
insignificant.

D. Practical benefits
1. MD of alanine tetrapeptide

To compare the performance of the improved and default pep-
tide models, we ran constant-temperature MD simulations at 300 K
and 400 K using the SchNet FF model. A Langevin thermostat with
a friction coefficient of 100 fs was used and the time step was set to
0.5 fs to accurately reproduce fast hydrogen fluctuations in the
molecule. Due to the size and high flexibility of the peptide, obtain-
ing well-converged average energies requires MD trajectories of
almost 2 × 106 steps, equivalent to 0.9 ns. Simulations of this size
come at prohibitively expensive computational costs for any accu-
rate ab initio method; MLFFs are the only way to perform them
in practice. Note that our improved training procedure does come
with higher computational costs (due to training the model multiple
times), but the time spent on training is still very low compared to
that of actually running the MD.

At 300 K, both models converge without any issues with a dif-
ference in average total energies of only 0.5 kcal/mol. The latter is
within the accuracy of the ML models (see Fig. 6), meaning that
both simulations give identical results. This is exactly what should
be expected for a well-trained ML model in its zone of comfort. At
400 K, the situation changes drastically: the average total energy as a
function of simulation time is shown in Fig. 7.

One can see that the default 6k model fails to reproduce the
dynamics of the molecule at 400 K (as a zero energy level, we use
the lowest potential energy in the reference dataset). The growth fol-
lowed by an abrupt monotonic decay of the red curve advocates for
the unreliability of the default training scheme for high-temperature
simulations. As a result of wrong predictions, the molecule escapes

FIG. 7. Average total energy as a function of simulation time of the AcAla3NHMe
molecule for the default/improved SchNet models with 6000 training points
(blue/red) and a default SchNet model with 9000 training points (purple) for com-
parison. The constant-temperature MD simulations have been done at 400 K with
0.5 fs time step.
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the applicability range of the MLFF and we observe nonphysical
results. On the flip side, the improved 6k model remains stable all
throughout the simulation, mimicking the results of the default 9k
model despite its smaller training set size.

Note that the training set of all models was generated at 500 K
and thus contain all the information needed for 400 K MD sim-
ulations. Importantly, increasing the temperature to generate new
reference data would require broader sampling of parts of CS with
computationally expensive ab initio methods—an unacceptable sce-
nario for growing molecule sizes. Hence, the developed improved
training scheme not only leads to quantitatively better predictions
but also qualitatively increases the applicability range of the ML
models by boosting their reliability.

2. Proton exchange in salicylic acid
To illustrate the usefulness of the improved models in out-of-

equilibrium regions of CS, we created an artificial dataset of salicylic
acid to act as a benchmark. The dataset was created by manu-
ally moving the hydrogen belonging to alcohol group between its
bonded oxygen and the oxygen of the carboxylic group. The energy
of the new configurations was computed using FHI-aims with equiv-
alent settings to those of the original salicylic acid dataset.39 The
energy was then verified using the default and improved sGDML
and SchNet models introduced in Sec. IV B, i.e., models trained on
the original dataset with a training set size of 1000 points.

Figure 8 shows the predicted energies for the various models
compared to the reference values as computed by FHI-aims. Note
that for the most part, all values past 0.45 can be considered inside
the extrapolation region of the models, as very few if any similar data
points can be found inside the dataset on which the models were
trained.

The default SchNet model very quickly deviates from the cor-
rect behavior by showing a shallow second minimum, followed
by a weak energy barrier and finally a very unphysical drop in

FIG. 8. Energy of salicylic acid (y-axis) for different positions of a shared hydro-
gen between the oxygen of the hydroxyl and carboxyl group (x-axis, 0 = on
top of hydroxyl oxygen and 1 = on top of carboxyl oxygen). Several models
are compared to the reference values (black solid curve): default sGDML (blue
dashed curve), improved sGDML (blue solid curve), default SchNet (red dashed
curve), and improved SchNet (red solid curve). Reference DFT values computed
with FHI-aims with the equivalent settings to those of the original salicylic acid
dataset.39

energy as the hydrogen atom gets closer to the hydroxyl group.
The improved SchNet model completely avoids the second min-
imum and provides a stronger energy barrier before starting the
unphysical drop in energy. The default sGDML model also shows
a second minimum, which the improved sGDML model once again
completely (and correctly) avoids, while also more closely matching
the reference energy curve. Hence, in this extrapolation region, our
improved training set selection procedure provides models whose
behavior more qualitatively matches that of the reference method,
which could have noticeable consequences in real applications. In
particular, both default SchNet and sGDML models claim the
existence of a proton sharing process between the alcohol and
carboxylic groups. This would result in qualitatively wrong
predictions when performing imaginary time path-integral MD
simulations. In contrast, the improved training method proposed in
this work removes this artifact on the PES, making such simulations
reliable.

V. CONCLUSIONS
By leveraging supervised and unsupervised ML, we proposed

a new strategy for improved training set selection for the con-
struction of molecular machine learning force fields. We devel-
oped an automatic outlier detection method that exposed a notice-
able bias in the predictive accuracy of the ML models toward
common/in-equilibrium configurations at the expense of rarer/out-
of-equilibrium ones, leading to entire regions of CS with signifi-
cantly higher-than-average prediction errors. Our procedure is able
to extract tiny subsets of molecular configurations representing non-
trivial physical or chemical processes from an overwhelming amount
of reference data. For example, a few hundred configurations with
fingerprints of a shared proton in the salicylic acid molecule were
found within more than 300k classical fluctuations around the
equilibrium state.

The developed error analysis helped optimize the training set
choice, resulting in the largely improved accuracy of ML mod-
els across all of CS—effectively “flattening” the prediction error
curve throughout the input space. During the training process, we
iteratively selected poorly predicted training points from different
parts of CS to add to the training set. This ensured that it con-
tained sufficient representation from every qualitatively different
type of the configurations in the reference dataset. Models born from
this approach proved to be more reliable than those with training
sets in line with the dataset’s inherent distributions and guaran-
tee “chemical accuracy” for the entire sampled CS. Among other
things, this enables making fair and unbiased comparisons between
the expressive power of different ML models for reproducing
PESs.

With the examples of small organic molecules and an alanine
tetrapeptide, we demonstrated that the developed training method
leads to an optimal compromise between the data efficiency and
accuracy of MLFFs, avoiding the need to generate extensive amounts
of computationally expensive highly accurate reference data for
training sets. Along with quantitative reductions in prediction
errors, the ML models trained on the optimized training sets offer
qualitative improvements in reliability for practical applications.
This is demonstrated in the example of high-temperature MD
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simulations for alanine tetrapeptide and in a hydrogen exchange
mechanism for salicylic acid. Future plans include combining the
developed approach to dimensionality reduction techniques to
extend the applicability range to systems consisting of hundreds and
thousands of atoms.

While this paper focused on improving three specific ML
models (GAP with SOAP descriptors and sGDML as kernel based
approaches and SchNet as a neural network), all methods can be eas-
ily extended to any ML field presenting similar training problems.
The code for the outlier detection and improved training is available
in the open-source software MLFF on GitHub.27

SUPPLEMENTARY MATERIAL

See the supplementary material for the dataset introduced and
used in Sec. IV C constructed via ab initio molecular dynamics at
500 K with the FHI-aims software40 wrapped with the i-PI package41

using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation
functional42 with tight settings and the Many-Body Dispersion
(MBD) method43,44 to account for van der Waals interactions. The
timestep was set to 1 fs and a global Langevin thermostat was used
with a friction coefficient of 2 fs. In total, the dataset contains over
80k data points and covers at least three energy minima.
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