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ABSTRACT

Cholesteric Spherical Reflectors (CSRs) are made of droplets of
cholesteric liquid crystals (the same material under the screen of
our mobile phones) but molded in a spherical shape and hardened
into a solid. CSRs have a peculiar behavior when illuminated: they
reflect light and produce unique optical patterns whose full display
is hardly predictable. They have been argued to behave like an
optical Physical Unclonable Function (PUF), therefore finding appli-
cation in anti-counterfeiting, in particular for object authentication.
However, a fundamental challenge remains open: to understand
what makes each optical response unique and how to extract this
identifying information reliably and repeatedly. We study the prob-
lem, and we design and discuss two pivotal procedures to build
authentication protocols for objects coated with CSRs. We test the
quality of our procedures against large data sets of pattern images:
images from CSRs are used to calculate inter- and intra-distance;
simulated patterns created artificially are used to measure security
in terms of false positive ratio. Our procedures successfully clus-
ter images coming from the same CSR, distinguishing them from
images of different CSRs and decoys. Our work is one of the few
that has studied procedures of information extraction for materials
derived from CSRs. It advances the state of the art in this area,
closing the gap between the research on optical PUFs and practical
applications.
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1 INTRODUCTION

To check whether a good (e.g., artworks, luxury objects, spare
parts, drugs) is original, the good should carry some inimitable fea-
tures that make it clearly distinguishable from fakes and imitations.
This is what tamper-evident seals, special coatings, brand-carrying
marks applied or hidden in the originals and easily verifiable by
eye or with the help of simple machines are supposed to achieve.

With the right technology and know-how, however, such mea-
sures can be replicated well enough to fool a human verifier. Strong
anti-counterfeiting elements must therefore be unclonable, and
their uniqueness and integrity verifiable without ambiguity. Novel
materials are constantly proposed for this purpose, for instance,
microscopic particles or special inks that, when applied or sprayed
on packages, leave non-reproducible detectable spots with UV light,
IR laser, or magnetic field (e.g., see [6, 22, 29]). QR codes or RFIDs
can be added to provide identifiers with higher security guarantees
and to enable track-and-trace (e.g., see [28]).

Particularly demanded in this business are materials that be-
have as Physical Unclonable Functions (PUFs) (e.g., just a matter
for example since the literature on PUFs for anti-counterfeiting is
extremely large, see [3, 4, 12, 16, 18]). They respond to a certain set
of stimuli as if they were one-way functions. The responses cannot
be reproduced since a PUF is physically unclonable. Existing PUFs
are quite different from one another and offer varying guarantees of
security, for instance, robustness, unsimulability, unpredictability
(e.g., see the survey on PUFs [14]). Their applicability in a specific
market sector depends on their nature (e.g., electronic, optical, mag-
netic, etc.) and here we are interested in those which are optical:
they respond to light and this response can be captured by a digital
camera. Once rare, optical PUFs are becoming common but for
each of them remains the problem of determining what identifying
information is contained in their responses, how to extract it, and
how to use it in a secure authentication procedure. The material
and its readout and information extraction procedures constitute a
PUF System [1] whose robustness, reliability, and security have to
be assessed to rightly decide for which anti-counterfeiting sector
the system is more suitable: more expensive goods require stronger
guarantees [4].

We study these issues and propose solutions for a relatively
new optical PUF: spherical droplets of cholesteric liquid crystals
hardened into a solid, called Cholesteric Spherical Reflectors (CSRs).
Arrays of them can be incorporated in a transparent tag! as the one
in Figure 1-a. Each array of CSRs in unclonable. When illuminated,
CSRs produce peculiar optical patterns detectable in visible and/or

1CSRs can be also dispersed into a coating, for instance, a transparent nail polish, but
how to apply CSRs is not relevant in the scope of this paper, although it makes the
difference in terms of marketing applicability.
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invisible spectra [8] which have been argued to be unique and
hardly replicable [12] and, for this reason, suggested as a technology
for anti-counterfeiting [9, 16, 20].

2 BACKGROUND AND STATE OF THE ART

This work relates to previous research on PUF, in particular to op-
tical PUFs. PUF-based technologies exist in great variety, e.g., there
are silicon-, chemical-, magnetic-, and optical-based constructions,
to cite a few. Making a full account goes beyond our scope but
recent surveys could give a broad overview of existing technologies
[16].

While most of the PUF (e.g., silicon-based) are embedded into
their hosts at the fabrication process—they are called intrinsic—
optical PUFs are not. They are categorized as non-intrinsic and
have the advantage of being externally observable [14]. They find a
natural application in anti-counterfeiting since Pappu et al. [18] in-
troduced the concept of optical PUFs as a physical one-way function.
They proposed the use of tokens composed of particles randomly
distributed on a transparent surface which produce a highly random
and unpredictable response when interacting with emitted light
(e.g., laser). Due to the unique patterns obtained through complex in-
teractions between light and particles, other authors have proposed
optical PUFs under different constructions [3, 4, 8, 9, 12, 16].

CSR tags emerged as potential optical PUFs due to the diverse
and unpredictable responses in different wavelengths, ranging from
infrared, passing through the visible light until the ultraviolet spec-
trum, which allows use cases in a variety of applications. One of
the potential applications is in anti-counterfeiting technologies,
in which the read-out can be smartphone cameras (for overt tags)
or low-cost optical components for reading covert tags; but other
applications have been proposed, e.g., for robot navigation and in
relation to digital twin models [19].

A single CSR tag can generate a wide set of responses that depend
on the wavelength, incidence angle, and illumination conditions.
The raw materials used in CSR tag production have low costs,
allowing to produce a massive amount of tags at affordable prices.
The large information coding capacity of CSR tag enables to label
a large number of different objects and potentially to identify one
from another. There is only one work that attempted to quantify the
intra- or inter-distance, giving first evidence that responses from
CSR tags can be distinguished [12]. The present work advances that
preliminary research with more efficient algorithms, larger data
sets and experiments, and far better results, as shown in Section
5.1. It improves the know-how about CSRs and their use in object
identification and anti-counterfeiting.

2.1 CSRs in a Nutshell

Details about the material science aspects of CSRs are given in [9].
Here we recall the essential facts relevant in this work. The liquid
crystal molecules in a CSR are spontaneously organized in a helical
arrangement, with the helix axis along the sphere’s radius. The
interactions between the incident light and the CSR arrays thus
render intricate colorful patterns, the features of which depend
on the properties of the CSRs, their arrangements, as well as the
illumination and viewing conditions [9]. The selective reflection
coming from CSRs can be controlled by adjusting the chemical
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composition of the liquid crystals, and so can be the size of the
droplets during the production process; but the positions of CSRs
and the distribution of different CSR types, optimized for main
reflections in different parts of the spectrum, e.g., for red (R), green
(G) and blue (B), are uncontrollable factors.

Figure 1 (b-d) shows examples of patterns photographed under
different illumination conditions with a USB Dino-Lite digital mi-
croscope over a CSR’s sample. In Figure 1-b, taken with the 4 LEDs
of the microscope switched on, the patterns show red spots as many
as the active LEDs and blue- and red-reflecting patterns due to the
photonic cross-communication between the neighbor shells [17, 20].
Figure 1-c shows the response with 8 LEDs switched on, whereas
Figure 1-d is the response with an external lateral illumination.

3 DEFINITION AND REQUIREMENTS

The problem of using a material to tag an object, say i, for the pur-
pose of anti-counterfeiting, is subsumed into an apparently simple
authentication problem. Let us call w; object i tagged with w. When
Alice acquires a tagged object w claimed to be the original i and
wishes verify that w == w; (here’==" denotes physical identity),
she has to probe w, reading out from it some piece of identifying
information, t = ReadOut[w]. In case of a tag made of CSRs (let us
call it, a CSR tag), the t will be a picture of the tag’s optical response
as one of those reported in Figure 2. To verify w’s originality, Alice
has also to process t to extract some unique identifying feature,
say z, that is z = Extract[t]. For instance, z can be obtained by
applying Gabor filters [25], fuzzy extractors [7], or some feature
extraction methods (e.g., see [11]). Then, Alice authenticates w by
retrieving the safely stored z; = Extract[ReadOut[w;]] of the orig-
inal object and by comparing against it her z. Figure 2, adapted
from [2] and from [12], visualizes the workflow and its steps, where
IsMatching[z, z;] is the final matching test?.

A full authentication protocol will be more elaborated than just
matching z and z;, but disregarding this aspect at the moment, to
solve which we can refer to the literature in PUFs and biometric
authentication (e.g., see [5]), what matters is that the robustness
and security of the authentication procedure depends on w, on the
readout/extraction procedures, and on the algorithm used for the
matching. These procedures should be designed, implemented, and
combined to satisfy that IsMatching|z, z;] &= (w == w;).

When w is a PUF, as it is for a CSR tag, each reading out depends
on a challenge x € X, that is t(x) = ReadOut[w(x)]. The PUF
system should then satisfy the following requirement:

Vx € X : IsMatching[z(x), zi(x)] & (w == w;) (1)

3.1 Reliability, Robustness, and Security

In practice, assessing whether requirement (1) holds for a certain
PUF system design has to be quantified experimentally and requires
the availability of a large set of golden data made of different pro-
ductions and readouts. This is necessary even if there is a vast
literature on image processing and information extraction for PUFs

2The figure shows also the process for the production of CSRs: here, parameters «
can enhance the entropy carried by a CSR, for instance by varying the density, size,
and polarization of the droplets.
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Figure 1: (a) Overview of a 7x7x2 mm CSR tag. Optical images of CSRs taken in the same area under different illumination con-
ditions with a USB Dino-Lite digital microscope with a perpendicular illumination to the sample with (b) 4 LEDs illumination;
(c) 8 LEDs illumination; (d) illumination with an external source non-perpendicular to the sample.

Challenges, ¥

Extraction
Parameters, 8

Creation
Parameters, o

Production
variability

Phase

Phase

Accept/Reject

PUF System

Figure 2: Readout, Extraction and Matching: three phases for object authentication relying on PUF-like coating or tags.

(e.g., see [14]) because any material is different and has its own
physical features, different responses, and ways to be analyzed.

Robustness. A robust authentication process should, for a spe-
cific CSR tag, accept any image of an optical response of that tag,
despite the inevitable presence of noise during the readout. In fact,
any retake (i.e., any optical response taken from the same tag in
another moment in time) is quite likely not the same because of
the presence of, for instance, different ambient light and position
of the physical tag under the camera. If ) = ReadOut[wp(x)] is a
reference readout of wy, if ’ = ReadOut’[wy(x)] is any retake of
wo, and if z’(x) = Extract[ReadOut’[wy(x)]] is the corresponding
identifying information, then robustness is formalized as follows:

Definition 3.1 (Robustness).

(w==w;) = V¥x € X A VZ/(x) : IsMatching[z’(x), zo(x)] (2)

As we will see in the next section, robustness is assessed in
terms of false negative ratio and intra-distance between a refer-
ence readout and all its retakes. We stress that Definition 3.1 does
not suggest how to implement Extract or IsMatching. However, it
suggests that the chosen implementation should work for all the
different challenges x, i.e., it should be independent of any specific
x. This is advisable: we do not wish to have a family of Extract and
IsMatching each for a different x. It would be impractical because of
the great number of conditions in X (e.g., size, polarization, number,
and density of droplets, angle of readout). A CSR tag can respond
differently to each of them. We also seek for an implementation
that is as much as possible independent from readout settings (e.g.,
type of microscope, magnification of the readout), because this is
what we expect in realistic anti-counterfeiting scenarios. Figure 3
shows the variability of the readout images for the CSR tags we
used in our experiments.
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Figure 3: The set of images that we have from our CSR tags, showing great variability in the Read-out Phase.

Reliability. A PUF system for CSRs should also be reliable. Mean-
ing that it should reject any other image of responses generated by
any other CSR tag.

Definition 3.2 (Reliability).
w =£ w; = Vx € X A VZ'(x) : =(IsMatching[z’(x), zo(x)]) (3)

We will measure reliability in terms of false positive ratio and
inter-distance between readout from a CSR tag and the set of retakes
from other CSR tags.

Security. Secure extraction and matching algorithms should dis-
tinguish and reject images that are not taken from any real CSR
tag, for instance images that have been artificially constructed. We
will measure the security in terms of false positive ratio and inter-
distance between readout from a CSR tag and a set of fake readout
images that we have artificially and systematically generated.

3.2 Algorithms Design

We discuss two algorithm designs for our Extract and IsMatching;:
Image Subtraction and Blob Extraction.

Image Subtraction. This design compares two images directly,
without extracting any particular feature from them. Extract does
not change the readout, while IsMatching will process the images
and compare them taking into account that even if w is authentic
(i.e, any t(x) is a retake of the original wy(x)) there will be noise.
That is, t(x) can be, with respect to wy(x), blurred, rotated, shifted,
slightly magnified, or affected by other variations, e.g., different
background colour due to ambient light and the illumination from
the microscope. The noise has to be removed, and #(x) and ty(x)
must be aligned.

Two aligned images are subtracted one from the other, and the
Image Subtraction score is calculated as the ratio between the num-
ber of zeroed pixels over the number of all pixels. Section 4.2 de-
scribes the implementation of this design idea.

Blob Extraction. This second design is inspired by a technique
that is called minutiee detection, in fingerprint analysis, or feature
extraction in general biometric analysis (e.g., [27]). The technique
consists in extracting from an image specific elements that are
argued to be identifying features.

What are those features and minutize in a CSR tag’s response?
CSRs droplets are spherical so their center is a concept geometri-
cally well defined. In a CSR tag’s response, centers reflect light, i.e.,
observation along the direction of illumination yields a circular re-
flection spot at the center of every CSR. These colored elements are
present across all different responses. There are also other colored
features in the patterns, with certain radial and azimuthal distribu-
tions in reference to the centers of each CSR. They are visible on
some images in Figure 3 and in Figure 1-(b-d).

These observations suggest that we can consider as primaries
minutize the colored circles of different sizes and position that can be
recognized in a response taken from a CSR tag. Some minutiee will
be aligned with a droplet physical center, others will have a specific
geometrical relationship with the overall arrangement of CSRs
within the tag. We call these primaries minutiee blobs and they can
be detected with customized techniques of image processing. In
addition, the colors generated by CSR droplets due to their “cross-
communication” constitute a secondary set of minutige. Some of
them also have blob-like shape?.

30ur current implementation works with these secondary minutiae when they pro-
duce blob-shaped color spots (see image in column 2 row 3 in Figure 3). Some cross-
communications, instead, are colored segments. Considering them in the matching, as
well as extracting them, is future work.
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We stress that here we analyze the minutiee/blobs in images ob-
tained from a single challenge-response combination. Significantly,
this procedure must be repeated for multiple images, correspond-
ing to difference challenges, and different responses from the CSR
tag to exploit the PUF-characteristics of CSR-based authentication.
While we thus do not fully probe the PUF aspects of the tags in
this paper, the procedures that we develop here will form the basic
algorithmic building blocks for the full implementation of CSR tag
authentication.

In Section 4.2, we describe the implementation for Extract and
IsMatching of this design idea. The matching relies on a Blob Ex-
traction score built as follows: let Blobs[t(x)] = {b1,--- ,br} bea
list of blobs extracted from a read-out t(x), and b.circle and b.color
be, respectively, the circle (i.e., centre position and radius) of b and
its colour e.g., in RGB.

We call (x) the processed version of t which has been aligned
with #p(x). Our implementation of Blob Extraction score depends on
an equivalence relation, =, that defines when two blobs do match
according to the relative positions of their circles and their colours.
Using them, we can construct local matching structures [10, 15],
MatchingBlobs[#(x), to(x)] as the set of minutiz in Blobs[#(x)] and
Blobs[to(x)] in relation with one another according to =;. After the
image alignment, given a local structure, we can calculate a global
matching score (i.e., our Blob Extraction score) as follows:

2 X |MatchingBlobs[#(x); to(x)]|
|Blobs[£(x)]| + |Blobs[t(x)]

Whether IsMatching will depend on this score. More elaborated
scores will be studied in future work.

©

4 MATERIALS AND METHODS
4.1 Data Set

We used an extensive number of read-outs in this research: 12 ref-
erence images taken from 12 physical CSR tags; 4800 retake images
simulating different conditions of noise during retake, the bench-
mark set for our implementation; 2000 additional retake images, for
validation of robustness and reliability; 1000 fake CSR tag’s readout
images, for the evaluation of security. Data sets are explained below.

Physical CSR tags. We used 12 tags which CSRs have a diameter
ranging from 50 pm, to 100 ym coming from different productions.
These CSR tags were given by the Experimental Soft Matter Physics
(ESMP) group, from the Department of Physics and Materials Sci-
ence at the University of Luxembourg. Producing a CSR tag is still
a time-consuming process, so 12 is indeed a reasonable number of
tags to work with.

Reference images. From each CSR tag an optical image was ac-
quired with a polarizing microscope and assumed as the reference
image. In total, 12 reference images were used in this manuscript,
in our notation t1(x), . . ., t12(x). The images were acquired with an
optical microscope, equipped with a digital camera and illumination
perpendicular to the sample. The reference images were taken by
the ESMP group and for simplicity we kept the same labels as pro-
vided by them: Img228, Img618, Img852, Img972, Img974, Img975,
Img997, Img1060, Img1079, Img1103 , Img1104, and Img2366.
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Retakes images for testing and tuning. In a real scenario, a retake
image of a CSR tag response is affected by noise factors such as
positioning a tag under the camera, lighting conditions, magnifi-
cation, and poor focus. Robust evaluation methods are required to
work under such noise-affected imaging conditions.

We created a set of noisy retakes by applying to the reference
images the operations listed in Table 1. Each of the 12 reference
images was resized, rotated?, and blurred to simulate various end-
user factors such as tag positioning, lighting conditions, and out-
of-focus images. The rationale of our choices for ‘Range’ as in
Table 1 is to keep the noise within realistic conditions of a user
reading out from a CSR tag. Our choice of range in resizing and
rotating simulate reasonable differences in positioning a tag under
the camera, while blurring simulates images that are reasonably
out-of-focus. This blurring limited up to a 5 X 5 pixel window. This
is still considerable noise, capable of making fail image recognition
in artificial intelligence”.

Figure 4-(b) shows one of the mutated images which was resized
110%, rotated 10° anticlockwise and blurred (this latter not fully
appreciated due to the low definition of the printed picture). Figure 5
shows the effect of noise on our Image Subtraction score when we
consider larger ranges of noise: blur is the only noise that is capable
of great disruption, as expected. From an engineering viewpoint, we
can attempt to control the noise operating on the readout setting, for
instance, by using a special holder for positioning the tag, patterns
drawn on the tag for image alignment like those we find in QR
codes, and auto-focus cameras.

Note: Simulating possible noise is a standard procedure since it
would be an extremely time-consuming and quite uncontrollable
strategy to generate noise by hand. We tried for instance to switch
on and off the light, to slightly move a CSR tag under the microscope,
to remove and re-position a CSR tag. The produced images were
not different from those we have obtained by simulating the noise
directly by image manipulation. In this latter case, we have the
advantage of a finer control over the noise (e.g., in the angle of
rotation), and the ability to create a large number of images: for
each of the 12 reference images, we generated 400 retakes, for a total
of 4800 retakes. This number would have been hardly achievable if
we had taken the images by hand.

Table 1: Operations applied to each reference image for ob-
taining the set of mutated images.

Sequence || Operation Range
1 Resizing 101 - 110%
2,3 Rotation 1 - 10° (anticlockwise/clockwise)
4 Blurring (2x2)=(5%05)

Fake CSR tag’s readout images. We generated 1000 sirmulated
images of response. They are meant to represent the responses
of unauthentic tags, or tampered images of responses. This set is
generated from three “seeds” of 3-colored blobs, copied, and pasted

4The function was imutils.rotate, which rotates the center of the image according
to the number of angle degrees. However, for non-squared images, this function crops
the edges of the image: thus, rotation is actually rotation and cropping.

SFor instance, a 5 X 5 pixel window blurring fools Wolfram Language’s Al to identify
an image of a tiger as a fish: ImageIdentify[Blur[=tiger["Image"],5]].
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Figure 4: (a) Reference microscope image of a CSR-droplet tag, composed of multicolored blobs. (b) Retake image, i.e., the
reference image was resized, rotated, and blurred. (c) Tampered image (generated computationally) composed of random 3-

colored blobs.

Similarity score for single noise
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Figure 5: Image Subtraction score for different noise sources.

randomly on a background so to create new images which, despite
looking similar, were not generated by reading out from any of our
12 CSR tag. Figure 4-c depicts an example of a fake readout image.

Retakes images for validation. We have further generated one
independent set of 2000 mutated and one of 1000 simulated images
for further independent validation of our methodology.

4.2 Implementation

Image Subtraction Score and Blob Extraction Score are both meant
to measure the level of similarity between t (the image supposed
to be a retake of wy(x)) and ty(x) (the reference readout of wy(x)
stored for authentication). Both implementations rely on a common
step: aligning ¢t and #y(x).

Alignment. We use the Scale-Invariant Feature Transform (SIFT)
algorithm (OpenCV® library) that enables to detect the features of
different transformation operations, i.e., translation, re-scaling, ro-
tation, and illumination changes [13]. We used the Random Sample
Consensus (RANSAC) method to extract key points representing

®Open Source Computer Vision Library - opencv.org

the features of images and compute the homography matrix which
represents the transformation for the alignment. The quality of the
computed homography relies on the number of inliers. Once the
homography matrix is obtained, we calculate the aligned image, t.

Depending on how ‘far’ or ‘close’ the images are the alignment
fails or succeeds, respectively. Figure 6 shows an aligned image
in case of success (a), and an aligned image in case of failure (b).
According to our observation, the alignment fails (thus, the aligned
image is not meaningful) when the number of matching key points
found (MIN_MATCH_COUNT) is less than 10.

Figure 6: (a) Aligned image between a reference image and
a mutated image. (b) The colored (gray) area correspond to
the regions where the alignment was attempted.

Image Subtraction Score. If the alignment fails, the score is set
to 0. Otherwise, we analyze the difference between t and t(x) as
images. The score, which we indicate with Scoreg;n, is calculated as
the fraction of zero-content pixels in the difference matrix: the score
measures the ratio of perfect matching at pixel level:

0, if MIN_MATCH_COUNT < 10
Scoresim = |ZeroPixels[ImageDiff[Z, t,]] |

|Pixels[ImageDiff[Z, £]]| ’ otherwise

Blob Extraction Score. If the alignment fails, the score is set to 0.
Otherwise, we first select and then count the number of blobs that
match across the  and ty(x). The fundamental tool used in this part
is the blob detection algorithm from the scikit-image library [24].
First, we convert the images into gray-scale, then we compute the
histogram matching. This transformation adjusts the pixel intensity
of the aligned images according to the illumination and contrast of
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the reference image. Once performed this matching distribution,
we extract the positions and radii of blobs of the reference image
(gray-scale) and the aligned image (after histogram matching) using
the blob detection algorithm. We then extract the colors of the blobs,
using the found blobs as a mask. To calculate the color code, we
consider a 4 X 4 window of pixels and obtain the average of pixel
values over the window for each blob, and then find the index of
the maximum value for this window. Therefore, the color index is
encoded as 0, 1 and 2 for red, green, and blue, respectively. Figure 7
shows this process in images, but the blobs features and colors are
also explicitly stored internally as lists of circles and RGB codes,
respectively.

We compare the blobs found in the reference image with the
blobs found in the second image. If the Euclidean distance between
two blobs is smaller than a threshold distance (enough to conclude
that the two blobs’ centers are geometrically close) and if the color
code of the blob regions are the same, we count these blobs as a
match. In this way, we implement MatchingBlobs, the set of match-
ing blobs. The implementation can be designed to run in O(nlog n)
time, n being the number of blobs. We calculate Blob Extraction
Score, here called Score,, 441, according to the formula (4).

5 EXPERIMENTS AND EVALUATION

We used an Alienware Aurora R11 desktop with Intel(R) Core(TM)
i3-10100 CPU @ 3.60GHz (8 Cores), 32 GB RAM with 64-bits Ubuntu
20.04 LTS Operating System. The computational environment used
was PyCharm 2020.3.3 (Professional Edition), Runtime version:
11.0.9.1+11-b1145.77 AMDG64. We used Python 3.8.7 as a language
of choice, the dataset and source code are available at: https://
gitlab.unilu/irisc-open-data/2021-nofakes. One of the authors im-
plemented the algorithms, also using Wolfram Language (in Wol-
fram Language Lab 12.2 on a laptop with Intel Core i7-8550U CPU,
running MS windows 10) for validation and control. The results of
both implementations are consistent”.

To evaluate reliability and robustness (section 3), we set the
following experiment: we compared each reference image first
against its 400 retake images, then against the 800 other retakes,
and then against the 1000 simulated images (i.e., the fakes), for a
total comparisons as reported in Table 2.

In a non-optimized implementation, calculating ImageSubtraction
takes approximately 0.295 + 0.09 seconds, whereas calculating
Scoreyqich takes around 20 + 4.6 seconds. The execution time for
calculating Score,, ., has large variance since the complexity of
extracting the blobs depends on the structure of the image (i.e., its
blob density). However, in a parallel implementation, the execution
time was reduced to approximately 2.60 seconds using 6 cores.

For each pair in the comparison, we calculated Scores;r, and
Scoreatch- From the scores distribution of each reference image
compared with its retakes, we estimated the robustness of our al-
gorithm in terms of intra-distance and false negative ratio; from
the score distribution of each reference image compared with the
set of references and retakes from other images, we estimate the
reliability, in terms of inter-distance and false positive ratio; from
the score distribution of each reference image compared with the

"The code is available on demand.
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Table 2: Summary of the dataset.

Number of

Operation Type Group comparisons

Blurring Intra-distance Begchrpark 2809

Rotation Validation 2 000

Scale Inter-distance Benchmark 21 000
Validation 12 000

simulated fakes, we estimate the security, in terms of false posi-
tive ratio. Here, we intended to play an adversary challenging the
authentication procedure.

As explained in the previous section, a proper alignment is nec-
essary for both implementations to work. To see why this is nec-
essary, let us consider Figure 6 which shows the results of two
alignments. Figure 6-a shows the aligned form of Figure 4-a and
Figure 4-b. In contrast, Figure 6-b shows the inability to achieve a
proper alignment between the same reference image and the fake
image (Figure 4-c). In case of alignment failure, there are none or
very few matching blobs, and this should happen only when the
pictures are in fact non-correlated i.e., when they are not retakes of
the same CSR tag.

5.1 Benchmark Assessments

In addition to false positive and negative ratios, a benchmark for
robustness and reliability is to assess that minimum value of the
matching score for images that are retakes (with noise) of the same
CSR tag (intra-distance) is higher than the maximum matching
score obtain by comparing a reference image and the images of
retakes of different CSR tags (inter-distance), Equation 5. That is:

miin (Diﬁf’ “(x)) > max (Dfﬁiter (x)) (5)
where
Dyi™(x) = {Score[t;(x), t{(x)]| Y]}
DI (x) = {Score[ti(x), t.(x)]| Vk # i, t; }

A score that satisfies (5), neatly separates what is recognized as
an original from what is rejected as something different. Statistics
on intra-distance also are functional to assess the robustness of our
score functions.

5.1.1 Results. Figure 8 shows the number of detected blobs as a
function of the matching score. It is observed a clear separation be-
tween the intra- and inter-distance clusters, fulfilling the condition
given in Equation 5.

Figure 9-a shows the number of detected blobs of each reference
image after alignment with its respective retake images.

Figure 9-(b-c) depict the result of a classical statistical analysis on
the scores. Figure 9-b shows the means and standard deviations (and
outliers) for Scoresim, while Figure 9-c shows them for Score, g,
which is constantly better than Scoregjy,.

This suggests the hypothesis that the design based on minu-
tiee recognition (i.e., Blob Extraction) is more insightful and robust
than the design based on image processing (i.e., Image Subtraction).
This argument holds even if the absolute values that we obtain
for the scores are based on a scoring function which is linear on
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Figure 7: (Left) Reference CSR image: it is observed the central spot of light in each shell and the photonic cross-communication
between the neighbors spheres. (Middle) Blobs detection of the reference image. (Right) Masked image between the detected

blobs and the reference image.
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the number of matching, mainly mirroring the ratio of matching
pixels and of matching blobs, respectively. Using a linear function
as a score means that small differences still can cause significant
variations in the resulting score values although this do not seem to
affect our benchmark negatively, as Figure 8 demonstrates. We are
currently looking at using different function scores, for instance,
sigmoidal or logit functions commonly used in data science [21],
but this research is till ongoing.

In Figure 9-c, we observe that Img 1103 presents a higher vari-
ance. This is justifiable because of the blob size, which are larger in
this particular image. Our distance between blobs’ centers works
for most of the images, but for larger blobs can present a noticeable
variance. If we decide that two blobs match when their centers
are at, say § number of pixels one from the other, very large blobs

that geometrically intersect can be discarded. We can, in this case,
change the implementation that decides when two blobs matches on
the basis of the percentage of their overlapping as circles. We tested
this variant in our Wolfram Language implementation, proving
the concepts that indeed this new blobs matching method removes
the outliers in Img 1103. Implementing this new algorithm in the
Python code and making new experiments with it is a future work.

We also observed that for high blurring values, the scores may
also present high variance, since the current blob detection imple-
mentation relies on corner detection methods, where pixel discrep-
ancy becomes important. Therefore, whenever the original blobs
are not sharp and dense, blurring amplifies the effect, reduces the
image quality, and produces misalignment when the window size
of the blurring is increased, as shown in Figure 5 (blue line).

5.1.2  Matching. On the ground of the experimental results, we
tuned our implementation for IsMatching on the basis of the re-
sults obtained for Scoresim, ad Scorep,qscr, and upon a threshold (i.e.,
an acceptance interval). Figure 10 depicts that there is a trade-off
between the correct authentication probability and false positives
according to the choice of a threshold.

Choosing the threshold value to 5%, the expected authentication
probability for correctly identifying a retake image is 1.0 for both
similarity score and matching score. In contrast, the corresponding
expected probability for incorrectly flagging a simulated image as
identical to a reference image is 0.00009 and 0.0002, respectively.
For threshold values equal to or higher than 7%, the false-positive
ratio drops to 0.0, for both scores. Therefore, assuming a reliable
alignment, the choice threshold of 5% is a reasonable choice as
the threshold for our authentication decision making. We set the
threshold to this value for the validation.

5.2 Validation

We have further generated an independent set of 2000 mutated and
1000 simulated images for the validation, by randomly choosing
the noise to apply within our set of noise ranges.

We calculated Scoregim and Score,,;q;.p, for the pairwise compari-
son of the images. We set the threshold value to 5% and counted the
number of authenticated tags for this value. Table 3 summarizes
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Figure 9: (a) Number of detected blobs after the alignment.
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Figure 10: Threshold (%) vs. Authentication probability for (a) Scores;,, and (b) Scorepqsch-

the results of this experiment. We observe that the mutated images
present the highest authentication scores for all images.

We observe that none of the simulated tags have been incorrectly
authenticated (i.e., no false positive) even though for image 972 we
get some non-zero score. The tampered tag used as a fake is inspired
by this image (as seen in Figure 1-c); thus, the alignment algorithm
attempted to identify some related regions to the reference image,
but both scores performed very low (as seen in Figure 8). This
suggests that to beat an adversary that knows how the responses of
a particular CSR tag look like, we should indeed use the full fledged
PUF features of CSRs, for instance by having more runs of challenge-
response in the authentication protocol, an improvement that we
leave as future work. Nevertheless, if we increase the threshold to
7%, none of the simulated images is authenticated. These results
are compatible with the findings discussed in Section 5.1.2.

5.3 Limitation

We used real CSR tags, but we simulated the possible retakes. As
we explained, simulating noisy images is a standard procedure and
allows us to control the noise better. We have generated much larger

Table 3: Authentication scores for retakes and simulated im-

ages for a threshold equal or lower than 5%.
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Retakes Faked
Image
Scoresim | Scoremarcn | Scoresim | Scorepmarch
228 1.0 1.0 0 0
618 1.0 1.0 0 0
852 1.0 1.0 0 0
972 1.0 1.0 0.016 0.013
974 1.0 1.0 0 0
975 1.0 1.0 0 0
997 1.0 1.0 0 0
1060 1.0 1.0 0 0
1079 1.0 1.0 0 0
1103 1.0 1.0 0 0
1104 1.0 1.0 0 0
2366 1.0 1.0 0 0

data sets than we could achieve if we had taken retakes by hand.

Another limitation is that, in generating the simulated images, we

have not simulated an adversary trying hard to subvert our scores,
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for instance, by using generative adversarial neural networks. This
is left for future work. The validation data set is different from the
one we have used to tune the threshold, but it is not unrelated:
we randomly created the mutated and simulated from the same
reference set. Ideally, we should have used a fresh set of CSR tags,
but they were not available: producing new tags is not a streamlined
process and requires time. We plan to overcome these limitations
in future work. There is surely a larger set of metrics that we could
have applied to test the security of CSR tags in anti-counterfeiting,
for instance, those aiming to assess the space dimension of the
extracted features, and their randomness. Before this is possible, we
need reliable and robust procedures for features extraction, which
is what we achieved so far.

6 CONCLUSIONS AND FUTURE WORK

We have studied how to extract information from tags made of
Cholesteric Spherical Reflectors (CSRs) in the prospect to use them
as anti-counterfeiting technology. CSR tags have been argued to be
optical Physical Unclonable Functions (PUFs), but there is almost
no implementation for concrete authentication procedure with the
exception of [12], which contains only preliminary results and with
a matching algorithm based on histogram analysis. Here, we have
discussed two advanced solution designs, whose working principles
rely on a CSR tag response’s peculiarities. We implemented, tuned,
and tested the procedures for accuracy, performance, and false
negative rate on a data set of thousands of realistic and simulated
responses generated from 12 real CSR tags. One authentication
solution works by image matching; the other by extracting and
matching colored circles (called blobs) that are recognizable in a
CSR tag’s optical response.

We used thousands of other mutated and simulated images for
our method’s validation. Image quality as well as the number and
distribution of the droplets are factors that affect the overall authen-
tication performance, but our results confirm that our procedure
is able to distinguish authentic from unauthentic retakes of an
original tag. Considering other intrinsic properties of CSRs such
as cheapness, unclonability, and the ability to shape them in any
desired way, this work brings further evidence for a successful use
of CSR tags in anti-counterfeiting.

Future work. Our scores are simple linear functions. This means
that the score starts growing even when the percentage of match-
ing is small and this is counter intuitive. A matching score that
reflects a degree of likelihood should remain very low until the
matching reaches an observed mean value and with an increment
that depends on the standard deviation experimentally observed.
Scores based on sigmoid or logit functions seem capture better this
intuition.

The work for tuning the authentication decision threshold will
also require a few iterations, and needs further experiments before
being set to a stable value or interval.

Additionally, it will be important to assess the security of the
authentication, e.g., testing the authentication quality assuming an
adversary that deliberately tries to use the best possible fake physi-
cal tags (e.g., holograms) in attempts to fool authentication. Against
such an adversary, it will be critical to extend the authentication
process with an authentication protocol taking advantage of the
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capability of CSR tags’s acting as a PUF, i.e., that requires successful
authentications for multiple, randomly chosen, challenge-response
combinations, as mentioned above. While each challenge-response
combination needs to be implemented, the algorithms and proce-
dures developed here are pivotal elements for authentication. In a
real-world implementation, we need to control the read-out for the
different challenges: for instance, if one of the challenges is polar-
ization, we need to control this variable when we take a picture.
These challenges may require engineering efforts but represent no
fundamental roadblocks.

An additional challenge-response combination that is much eas-
ier to implement technically than illumination angle variation is
to probe the response to different light polarization. This can be
done by inserting or removing simple circular polarizers, such as
those used in 3D cinema goggles, a task that can easily be automa-
tized in a device with a small physical footprint. While the CSRs
used in this study had different colors but identical polarization
of the reflected light, it is easy to combine CSRs reflecting with
right- and left-handed circular polarization, respectively, in the
same tag. Since the difference in polarization is not detectable with-
out polarizers, incorporating polarization as a challenge may be
very efficient in distinguishing fake tags that attempt simulating a
particular response.

Another future work is to use Deep Neural Networks (DNN).
They have been one of the major environments for image process-
ing applications, showing ability to represent images efficiently
under various conditions. Recent techniques, such as Residual Net-
works (ResNet), particularly outperform when applied for image
classification [26] although they are only as good as the training
input. How they will perform with CSR tag images is an open ques-
tion, while would be interesting to compare a DNN based matching
implementation with the solution presented in this paper.

The last future work, indeed on-going, is to study the use of fuzzy
extractors and of secure sketches on our CSR tag’s readout images
or blob structures. These techniques, the first aiming at extracting
nearly uniform binary data from potentially noisy inputs and the
second employed to produce public keys from a datum which has
to remain secret, have been successfully applied in the processing
PUFs for user authentication e.g., see [23]. This is also a key step for
the set up of cryptographic protocols based on challenge-response
pairs coming from PUF outputs of CSR tags under different illumi-
nation conditions which we plan a next step study.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the Luxem-
bourg National Research Fund (FNR) projects Security in the Shell
“SSh” (C17/MS/11688643), and No more Fakes “NoFakes”: (PoC20 /
15299666 / NOFAKES-PoC). The authors acknowledge Prof. J. Lager-
wall, Dr. Y. Geng, and Dr. H. Agha for their valuable comments and
feedback on the manuscript.

REFERENCES

[1] Frederik Armknecht, Roel Maes, Ahmad Reza Sadeghi, Francois Xavier Standaert,
and Christian Wachsmann. 2011. A formal foundation for the security features
of physical functions. In Proceedings - IEEE Symposium on Security and Privacy.
IEEE, Oakland, CA, USA, 397-412. https://doi.org/10.1109/SP.2011.10

[2] Frederik Armknecht, Roel Maes, Ahmad Reza Sadeghi, Berk Sunar, and Pim
Tuyls. 2009. Memory leakage-resilient encryption based on physically unclonable


https://doi.org/10.1109/SP.2011.10

=

Cholesteric Spherical Reflectors as Physical Unclonable Identifiers in Anti-counterfeiting

functions. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5912 LNCS.
Springer, Berlin, Heidelberg, Tokyo, Japan, 685-702. https://doi.org/10.1007/978-
3-642-10366-7_40

Riikka Arppe and Thomas Just Serensen. 2017. Physical unclonable functions
generated through chemical methods for anti-counterfeiting. Nature Reviews
Chemistry 1 (2017), 1-13. https://doi.org/10.1038/541570-017-0031

Riikka Arppe-Tabbara, Mohammad Tabbara, and Thomas Just Serensen. 2019.
Versatile and Validated Optical Authentication System Based on Physical Un-
clonable Functions. ACS Applied Materials and Interfaces 11, January (2019),
6475-6482. https://doi.org/10.1021/acsami.8b17403

Hyung Jong Bae, Sangwook Bae, Cheolheon Park, Sangkwon Han, Junhoi Kim,
Lily Nari Kim, Kibeom Kim, Suk Heung Song, Wook Park, and Sunghoon Kwon.
2015. Biomimetic microfingerprints for anti-counterfeiting strategies. Advanced
Materials 27, 12 (2015), 2083-2089. https://doi.org/10.1002/adma.201405483
Qifeng Chen, Xue Li, and Guangxue Chen. 2021. Vegetable oils based UV-
luminescent ink for screen printed anti-counterfeiting marking. Progress in
Organic Coatings 151 (2021), 106009.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. 2008. Fuzzy
Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data.
SIAM 3. Comput. 38, 1 (jan 2008), 97-139. https://doi.org/10.1137/060651380
arXiv:0602007 [cs]

Yong Geng, JungHyun Noh, Irena Drevensek-Olenik, Romano Rupp, and Jan
Lagerwall. 2017. Elucidating the fine details of cholesteric liquid crystal shell
reflection patterns. Liquid Crystals 44, 12-13 (2017), 1948-1959.

Yong Geng, Junghyun Noh, Irena Drevensek-Olenik, Romano Rupp, Gabriele
Lenzini, and Jan P.F. Lagerwall. 2016. High-fidelity spherical cholesteric liquid
crystal Bragg reflectors generating unclonable patterns for secure authentication.
Scientific Reports 6 (may 2016), 1-9. https://doi.org/10.1038/srep26840

Xudong Jiang and Wei-Yun Yau. 2000. Fingerprint minutiae matching based
on the local and global structures. In Proc. of the IEEE 15th Int. Conf. on Pattern
Recognition (ICPR-2000), Barcelona, Spain, September 3 - 7, 2000. IEEE, Barcelona,
1038-1041.

[11] Ji Lee, Hyung Hong, Ki Kim, and Kang Park. 2017. A Survey on Banknote

Recognition Methods by Various Sensors. Sensors 17, 2 (feb 2017), 34. https:
//doi.org/10.3390/s17020313

Gabriele Lenzini, Samir Ouchani, Peter Roenne, Peter Y.A. Ryan, Yong Geng, Jan
Lagerwall, and Jung Hyun Noh. 2017. Security in the shell: An optical physical
unclonable function made of shells of cholesteric liquid crystals. 2017 IEEE
Workshop on Information Forensics and Security, WIFS 2017 2018-Janua (2017),
1-6. https://doi.org/10.1109/WIFS.2017.8267644

David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60, 2 (nov 2004), 91-110. https://doi.
org/10.1023/B:VISL.0000029664.99615.94

Roel Maes. 2013. Physically Unclonable Functions: Constructions, Properties and
Applications. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.
1007/978-3-642-41395-7

Kalyani Mali and Samayita Bhattacharya. 2001. Fingerprint Recognition Us-
ing Global and Local Structure. Int. J. of Ad. Trends in Computer Science and
Engineering 15 (2001), 1952 — 1964.

ARES 2021, August 17-20, 2021, Vienna, Austria

[16] Thomas McGrath, Ibrahim E. Bagci, Zhiming M. Wang, Utz Roedig, and Robert J.

Young. 2019. A PUF taxonomy. Applied Physics Reviews 6, 1 (2019), 011303—(1-25).
https://doi.org/10.1063/1.5079407

Junghyun Noh, Hsin Ling Liang, Irena Drevensek-Olenik, and Jan P.F. Lagerwall.
2014. Tuneable multicoloured patterns from photonic cross-communication
between cholesteric liquid crystal droplets. Journal of Materials Chemistry C 2, 5
(feb 2014), 806-810. https://doi.org/10.1039/c3tc32055¢

Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. 2002. Physical
One-Way Functions. Science 297, September (2002), 2026-2031. https://doi.org/
10.1126/science.1074376

Mathew Schwartz, Yong Geng, Hakam Agha, Rijeesh Kizhakidathazhath, Danging
Liu, Gabriele Lenzini, and Jan P F Lagerwall. 2021. Linking physical objects
to their digital twins via fiducial markers designed for invisibility to humans.
Multifunctional Materials 4, 2 (jun 2021), 1-19. https://doi.org/10.1088/2399-
7532/ac0060

Mathew Schwartz, Gabriele Lenzini, Yong Geng, Peter B. Ronne, Peter Y.A. Ryan,
and Jan P.F. Lagerwall. 2018. Cholesteric Liquid Crystal Shells as Enabling
Material for Information-Rich Design and Architecture. Advanced Materials 30,
30 (2018), 1-19. https://doi.org/10.1002/adma.201707382

Steven S. Skiena. 2017. The Data Science Design: Manual. Springer, Stony Brook,
NY - USA.

Bin Song, Houyu Wang, Yiling Zhong, Binbin Chu, Yuanyuan Su, and Yao He.
2018. Fluorescent and magnetic anti-counterfeiting realized by biocompatible
multifunctional silicon nanoshuttle-based security ink. Nanoscale 10, 4 (2018),
1617-1621.

D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli. 2017. User Authentication via
PRNU-Based Physical Unclonable Functions. IEEE Transactions on Information

Forensics and Security 12, 8 (2017), 1941-1956. https://doi.org/10.1109/TIFS.2017.
2697402

Stefan Van der Walt, Johannes L Schonberger, Juan Nunez-Iglesias, Frangois
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.
2014. scikit-image: image processing in Python. Peer} 2 (2014), e453.

Shen Wang, Ehsan Toreini, and Feng Hao. 2021. Anti-Counterfeiting for Polymer
Banknotes Based on Polymer Substrate Fingerprinting. IEEE Transactions on
Information Forensics and Security 16 (2021), 2823-2835. https://doi.org/10.1109/
TIFS.2021.3067440

Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. 2019. Wider or deeper:
Revisiting the resnet model for visual recognition. Pattern Recognition 90 (2019),
119-133.

Yong Xu, David Zhang, and Jing-Yu Yang. 2010. A feature extraction method
for use with bimodal biometrics. Pattern Recognition 43, 3 (2010), 1106-1115.
https://doi.org/10.1016/j.patcog.2009.09.013

Yijing Xun, Zhijiang Li, Xiaolu Zhong, Sheng Li, Jiawang Su, and Ke Zhang.
2019. Dual Anti-counterfeiting of QR Code Based on Information Encryption
and Digital Watermarking. In Lecture Notes in Electrical Engineering, Vol. 543.
Springer Verlag, Shandong, China, 187-196. https://doi.org/10.1007/978-981-13-
3663-8_27

Minli You, Junjie Zhong, Yuan Hong, Zhenfeng Duan, Min Lin, and Feng Xu. 2015.
Inkjet printing of upconversion nanoparticles for anti-counterfeit applications.
Nanoscale 7, 10 (2015), 4423-4431.


https://doi.org/10.1007/978-3-642-10366-7_40
https://doi.org/10.1007/978-3-642-10366-7_40
https://doi.org/10.1038/s41570-017-0031
https://doi.org/10.1021/acsami.8b17403
https://doi.org/10.1002/adma.201405483
https://doi.org/10.1137/060651380
https://arxiv.org/abs/0602007
https://doi.org/10.1038/srep26840
https://doi.org/10.3390/s17020313
https://doi.org/10.3390/s17020313
https://doi.org/10.1109/WIFS.2017.8267644
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/978-3-642-41395-7
https://doi.org/10.1007/978-3-642-41395-7
https://doi.org/10.1063/1.5079407
https://doi.org/10.1039/c3tc32055c
https://doi.org/10.1126/science.1074376
https://doi.org/10.1126/science.1074376
https://doi.org/10.1088/2399-7532/ac0060
https://doi.org/10.1088/2399-7532/ac0060
https://doi.org/10.1002/adma.201707382
https://doi.org/10.1109/TIFS.2017.2697402
https://doi.org/10.1109/TIFS.2017.2697402
https://doi.org/10.1109/TIFS.2021.3067440
https://doi.org/10.1109/TIFS.2021.3067440
https://doi.org/10.1016/j.patcog.2009.09.013
https://doi.org/10.1007/978-981-13-3663-8_27
https://doi.org/10.1007/978-981-13-3663-8_27

	Abstract
	1 Introduction
	2 Background and State of the Art
	2.1 CSRs in a Nutshell

	3 Definition and Requirements
	3.1 Reliability, Robustness, and Security
	3.2 Algorithms Design

	4 Materials and Methods
	4.1 Data Set
	4.2 Implementation

	5 Experiments and Evaluation
	5.1 Benchmark Assessments
	5.2 Validation
	5.3 Limitation

	6 Conclusions and Future Work
	Acknowledgments
	References

