
Bridging the space systems performancereliability gap for future deep space resources exploration and exploitation.

Inês Pinto Gouveia, Rafał Graczyk, Marcus Völp, SnT, University of Luxembourg

Performance-Reliability Gap

The performance gap between state-of-the-art (COTS) processors and space grade (hi-rel) processors remains a challenge to bridge. Space-grade equipment can be either:

- reliable, based on rad-hard components, but power hungry and limited in processing capabilities; or
- highly performant (desktop) or performant and power-efficient (mobile), but susceptible to faults, in particular radiation

How to bridge the gap?

- start from powerful/efficient, but inherently susceptible components
- · embrace and accept failures:
 - leverage redundancy of multi-/manycore Systems-on-Chips (SoC)
 - screen out permanently failing cores
 - cope with reversible failures
- mix components of different failure modes and assumptions
- rejuvenate periodically
- build middleware to cope with failures transparently

Solution: Midir

- augment existing SoC architectures with trusted trustworthy components featuring:
 - voting
 - consensually updated access control
- eliminate software Single-Points-of-Failure by:
 - consensual privilege
 management
 - consensual access to critical resources

Solution: SHARCS & HERA

SNT

- hardware-software mechanism for SoC fault tolerance:
 - react to fault manifestations
 - proactively remove dormant faults
- semi-autonomous operation by collective decision making
- adaptive to varying fault rates
- transparent to operating systems and applications
- hardware- and softwareagnostic techniques