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Abstract
1. Collection and preparation of empirical data still represent one of the most im-

portant, but also expensive steps in ecological and evolutionary/systematic re-
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search. Modern machine learning approaches, however, have the potential to
automate a variety of tasks, which until recently could only be performed manu-

L . ally. Unfortunately, the application of such methods by researchers outside the
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field is hampered by technical difficulties.

. Here, we present GinJinn2, a user-friendly toolbox for deep learning-based ob-

Handling Editor: Arthur Porto ject detection and instance segmentation on image data. Besides providing a
convenient command-line interface to existing software libraries, it comprises
several additional tools for data handling, pre- and postprocessing, and building
advanced analysis pipelines.

3. We demonstrate the application of GinJinn2 for biological purposes using four
exemplary analyses, namely the evaluation of seed mixtures, detection of in-
sects on glue traps, segmentation of stomata and extraction of leaf silhouettes
from herbarium specimens.

4. GinJinn2, by providing a coding-free environment, will enable users with a pri-
mary background in biology to apply deep learning-based methods for object
detection and segmentation in order to automate feature extraction from image
data.
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1 | INTRODUCTION

for example, using programming languages like Python or R, can

not only increase productivity, but also allow otherwise infeasible

Leveraging image data for ecological and evolutionary/systematic
research typically requires substantial effort for data collection
and preparation. The ability to automate time-consuming steps
of this process, possibly along with further downstream analyses,

large-scale analyses. Recent advances in machine learning (ML), both
on the soft- and hardware side, make it even possible to automate
tasks that are difficult to solve by means of classically designed algo-
rithms. Computer vision, in particular, has largely profited from deep
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learning, which increasingly influences even the more traditional
branches of organismic biology. Species identification tools running
on smartphone devices (for an overview, see Jones, 2020; Waldchen
& Mader, 2018) are prominent examples for this trend. Beyond pure
classification tasks, a technically even more challenging problem
consists in localizing objects like cells, organs or individuals on im-
ages. Specialized tools address this problem for various areas of ap-
plication, such as crop or weed detection (e.g. Afonso et al., 2020;
Buddha et al., 2019), detection of leaves and other plant organs on
herbarium specimens (e.g. Ott et al., 2020; Weaver et al., 2020;
Younis et al., 2020), stomata counting using microscopic leaf im-
ages (e.g. Fetter et al., 2019), animal counting using camera traps
(Norouzzadeh et al., 2021) and many more. Moreover, Deeplmage)
(Gémez-de-Mariscal et al., 2021), an optional plugin for the popular
ImageJ program (Schneider et al., 2012; Schroeder et al., 2020), pro-
vides easy access to a number of trained deep learning models for
pre-defined tasks via a graphical user interface.

Despite the availability of increasingly convenient frameworks,
adapting well-established ML methods to new areas of applica-
tion typically requires an amount of technical knowledge that may
discourage potential users. GinJinn2, whose core functionality is
based on Detectron2 (Wu et al., 2019), aims at lowering this hur-
dle by providing an easy-to-use command-line interface to the lat-
ter, augmented by a number of utility functions, designed to help
the user with building custom analysis pipelines. While GinJinn (Ott
et al., 2020) focused on extracting leaves from digitized herbarium
specimens, GinJinn2 aims at a wider scope of application. Unlike the
former, which was based on the Tensorflow object detection API, it
is not restricted to bounding-box object detection, but also incorpo-
rates functionality for instance segmentation, that is, pixel-precise
detection and classification of individual objects.

In the present contribution, a number of example analyses
demonstrate how ecological, agricultural or evolutionary/systematic
studies may benefit from GinJinn2. Those include pest monitoring
using yellow glue traps, leaf shape extraction from herbarium spec-
imens, stomata segmentation and the evaluation of seed mixtures.
We hope to encourage interested researchers to consider deep
learning-based object detection or segmentation when faced with
similar tasks. Using GinJinn2 together with pretrained models from
Detectron2's model zoo, new applications can be explored with a
minimum of invested time and effort, which makes it a potentially
useful tool for both beginners and advanced users.

2 | SOFTWARE

2.1 | Overview

GinlJinn2 is a toolbox for deep learning-based bounding-box ob-
ject detection and instance segmentation. As such, it provides
functionality for model training, evaluation and application
based on the Detectron2 framework, segmentation refinement
based on CascadePSP (Cheng et al., 2020), a set of data pre- and

postprocessing tools for handling annotated image datasets, and ca-
pabilities for data insight and visualization. GinJinn2 is not meant
to be a replacement for existing frameworks like Detectron2 or the
Tensorflow Object Detection API (Huang et al., 2017), but rather a
toolkit enabling code-free access to deep learning-based object de-
tection technologies. All of GinJinn2's functionality is accessible via

an easy-to-use command-line interface (CLI).

2.2 | Dataset splitting

Besides the data used to train the model, it is generally advisable to
use a so-called validation dataset in order to detect overfitting and
to optimize model choice and training parameters. Using a separate
dataset for those purposes is necessary because the model's fit to
the training data does not provide information about its generaliza-
tion capability. In other words, a trained model may accurately re-
produce the training data, but perform poorly on images that have
not been presented to it before. However, as soon as any optimizing
decision has been made based on the validation data (e.g. when to
stop the training process), the model may again show overly opti-
mistic performance for this particular dataset. To obtain an unbiased
evaluation of the final model, it is therefore necessary to provide
an additional test dataset, which should not have been used for any
other task beforehand. The ginjinn split command partitions an input
dataset in such a way that each image along with its annotated ob-
jectsis assigned to one of the resulting subsets. To be representative
for the original dataset, each of the latter should comprise similar
proportions of objects from each category. Aiming at a high level of
homogeneity, the proposed splits are generated by a greedy optimi-
zation algorithm (see Appendix S1). Despite being a relatively rough
heuristic, this approach is often sufficient to create acceptable splits

and can even be applied to large datasets.

2.3 | Object detection and instance segmentation
GinlJinn2, by leveraging Detectron2's model zoo, offers several
Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017)
models for bounding-box detection and instance segmentation re-
spectively. These are used in a supervised manner, that is, before
being able to predict objects on new images in a meaningful way,
their parameters (‘weights’) have to be fitted to images with known
object occurrences (‘training’). While training such models de novo
can be highly GPU intensive, this process can be considerably abbre-
viated by starting from pretrained rather than randomly initialized
weights (‘transfer learning’). Accordingly, all available Detectron2
models have already been trained on a large image dataset. Using
those pretrained networks reduces the training time for new, cus-
tom datasets as well.

Once the user has prepared datasets for training, and, option-
ally, validation and test (see Dataset splitting), a GinJinn2 project
can be initialized using ginjinn new. Training models using ginjinn train
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constitutes the computationally most demanding part of a typical
GinlJinn2 pipeline. This process consists of a prespecified number of
iterations, at each of which one or multiple images from the training
dataset are presented to the model. The objects predicted by the
latter are then compared to the known annotations and the model
weights are adjusted to reduce deviations (‘loss’) from the desired
output. While minimizing the loss with respect to the training data-
set, at some point, the model's generalization capability may begin
to degrade. This so-called overfitting can be recognized by an in-
creasing loss for the validation dataset. The latter is therefore eval-
uated at predefined intervals. To enable a better assessment of the
learning progress, COCO (Lin et al., 2014) evaluation metrics (AP,
AP50, AP75, APs, APm and API; for details see https://cocodataset.
org) for the validation dataset are calculated as well. Since the model
weights are stored periodically, in case of overfitting, the user can go
back to an earlier checkpoint without having to discard the complete
training. Since GinJinn2 is using Detectron2 as modelling backend,
all models that are trained in the context of a GinJinn2 project can
be used with Detectron2's Python interface without modification.

The quality of the final, trained model is best assessed based on
a hitherto unused dataset with known object occurrences. This can
be done using ginjinn evaluate, which calculates COCO evaluation
metrics for the specified test dataset.

The ginjinn predict command allows applying a trained model
to predict object occurrences for arbitrary images. Instance seg-
mentations can optionally be refined using CascadePSP (Cheng
et al., 2020); while slowing down the predictions, this may consid-
erably improve the quality of the object outlines, especially in case
of clear object boundaries. To facilitate the further use of the pre-
dictions, GinJinn2 provides various output options: (a) visualization
of the predictions on the original images, (b) writing a new COCO
annotation file and (c) saving a cropped image and, if applicable, seg-

mentation mask for each predicted object.

2.4 | Further functionality
GinJinn2 offers several utilities for data pre- and
postprocessing

As a counterpart to the already described splitting command (ginjinn
split), datasets can also be merged (ginjinn utils merge), which is par-
ticularly useful when using COCO's annotation format. In doing so,
the input datasets are also checked for duplicated images.

Object annotations can be filtered by either category or size
using ginjinn utils filter_cat or ginjinn utils filter_size respectively. The
latter command is also capable of removing only small disjunct frag-
ments from existing objects.

To simplify existing data, nested image directories can be sum-
marized, making them compatible with GinJinn2 and other tools. gin-
jinn utils flatten recursively collects all images from a given directory
and its sub-directories, renames and copies them into a single direc-
tory, and modifies associated annotations accordingly.

Due to the limited spatial resolution of common object detection
models, detecting or segmenting objects that are small in relation
to the image size can be difficult. To mitigate this problem, a slid-
ing window approach can be used to split the original images into
smaller sub-images (ginjinn utils sw_split), preserving annotated ob-
jects, if available. Conversely, predictions based on such fragmented
images can be merged again (ginjinn utils sw_merge) in order to gen-
erate an annotation of the original image.

The ginjinn utils crop command creates an annotated sub-image
for each annotated object from a given dataset. Similar to the sliding
window approach, this can be utilized to increase objects sizes rel-
ative to the images. Specifically, performing instance segmentation
based on previously cropped bounding boxes may lead to improved
results.

Besides the aforementioned data processing
features, the following commands aim to provide
additional convenience

The contents of a dataset can be briefly summarized using ginjinn
info. More detailed information is provided by ginjinn utils count,
which lists object occurrences individually for each image in a
given dataset. Object annotations can be visualized with ginjinn
visualize, which produces images overlaid by bounding boxes
and, if available, segmentation polygons. Moreover, Ginjinn2 al-
lows to generate artificial datasets for testing purposes (ginjinn
simulate).

2.5 | Installation and usage

GinJinn2 is implemented in Python3 and can be installed using the
CoNpa package manager, which also takes care of most of its de-
pendencies. ginjinn and all its subcommands provide a help option
to list available parameters along with a short description. Further
guidelines regarding installation and usage, along with an introduc-
tory tutorial and exemplary applications, are provided at https://ginji
nn2.readthedocs.io.

3 | EXAMPLE ANALYSES

3.1 | Seed counting

In this section, we demonstrate how GinJinn2 can be applied for
seed mixture analysis, an illustrative use case for bounding-box
detection with subsequent counting. This approach could, for in-
stance, be used to examine commercial seed mixtures or be applied
to ecological samples (e.g. from seed traps). The presented analysis
is based on a dataset consisting of 284 microscopic images of sand-
contaminated seed mixtures of the two plant genera Sedum L. and
Arabidopsis (DC.) Heynh.
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For all images, intact seeds were annotated with bounding
boxes using the Computer Vision Annotation Tool (CVAT, https://
github.com/openvinotoolkit/cvat), resulting in 6,732 and 1,964
annotated seeds for Arabidopsis and Sedum respectively. The an-
notated images were exported as COCO dataset, which was then

flattened (ginjinn utils flatten), and split into sub-datasets for train-
ing, validation and testing. A Faster R-CNN model was simultane-
ously trained and validated (Figure 1a). The quality of the fit model
was assessed using COCO evaluation metrics for bounding-box de-
tection. In addition, instances predicted for the test dataset were
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FIGURE 1 Seeds (a)and Leucanthemum (b) analysis workflows. The seeds dataset is split into training, validation and test datasets, which
are used to train and evaluate a bounding-box model (a, Training). The trained model is applied to new data for seed counting (a, Prediction).
The Leucanthemum dataset is also split into training, validation and test datasets, but the workflow comprises training and evaluation of two
separate models (b, Training). The blue branch refers to a bounding-box model for the detection of leaves on sliding window crops of the

split dataset. The orange branch depicts the training and evaluation of an

instance segmentation model on padded bounding boxes cropped

from the split datasets. Leaf segmentations for new data are predicted by combining both models (b, Prediction)
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counted (ginjinn utils count) and compared with the manually ob-
tained counts.

After training, the AP50 was 98.6 and 98.9 for the validation
and test dataset, respectively, which indicates that no overfitting
occurred. The mean absolute error (MAE) of the class counts for the
training dataset was 0.77 for Arabidopsis and 0.58 for Sedum, mean-
ing that on average, less than a single object per image was misclas-
sified, missed or falsely detected. The MAE of the seed proportions
was 0.01, that is, only 1% deviation from the true seed proportions.

Exemplary predictions are shown in Figure S1a (Appendix S2).

3.2 | Yellow-sticky-traps insect
detection and counting

As an example project for counting small, low-contrast objects on large
images, the yellow-sticky-traps dataset (Nieuwenhuizen et al., 2018)
was analysed. This dataset consists of images of yellow glue traps that
were placed in greenhouses to monitor insect abundance. Three cat-
egories of insects (true bugs) were annotated with bounding boxes:
Whitefly (WF), Macrolophus (MR) and Nesidiocoris (NC).

After removing redundant images and correcting erroneous or
missing annotations using CVAT, a cleaned sub-dataset comprising
120 images along with 4,913 bounding-box annotations (WF: 3,660,
MR: 1,069, NC: 184) was exported in COCO format. In contrast to
the seeds dataset, these bounding-box annotations are of consider-
ably lower quality, often enclosing the insects only loosely.

The cleaned dataset was split into training, validation and test
datasets using ginjinn split. Since the insects are relatively small com-
pared to the total image size, a sliding window approach was applied
(ginjinn utils sw_split) to crop sub-images along with corresponding
object (sub-)annotations. The cropped datasets were used to train
and evaluate a Faster R-CNN model for bounding-box detection.
Finally, object instances predicted for the test dataset were counted
(ginjinn untils count) and compared with true object counts.

The trained model achieved a validation and test AP50 of 90.12
and 92.4 respectively. The mean absolute error (MAE) of the in-
stance counts was 1.67 for WF, 0.21 for NC and 0.79 for MR at an
average of 27.1, 1.67 and 7.41 annotated instances per image for
the respective object categories. The former amounts to a rela-
tive counting error of 6% for WF, 12.5% for NC and 10.6% for MR
(weighted average: 7.24%). Exemplary predictions are illustrated in
Figure S1b (Appendix S2).

3.3 | Stomatasegmentation

To demonstrate basic instance segmentation with the aim of de-
tecting stomata, we applied GinlJinn2 to microscopic images of epi-
dermal plant material, retrieved from the Cuticle Database Project
(Barclay et al., 2012). Results of such a segmentation can be used in
downstream analyses for counting, measuring density or examining

size and shape of the stomata.

Using CVAT, 147 images were annotated with 2,314 polygons,
each enclosing the guard cells of a stoma. The annotated images
were exported as COCO dataset and split into training, validation
and test datasets used to train and evaluate a Mask R-CNN model.

The trained model achieved an AP of 49.46 and 51.32 for the
validation and test dataset respectively. The mean absolute counting
error amounts to 2.34 at an average of 14.69 stomata per image. An

exemplary prediction is shown in Figure 2a.

3.4 | Leucanthemum leaf segmentation

Morphometric studies often rely on outline data of specific animal
or plant organs like, for example, leaves in the latter organism group.
A common workflow to generate such data is to manually remove
leaves from a living or herborized plant, fixate them on a contrast-
ing surface, capture digital images and finally apply semi-automatic
thresholding methods (e.g. OTSU-thresholding) to construct binary
segmentation masks. In this exemplary application of GinJinn2, we
show an alternative way to segment individual leaves from digitized
herbarium specimens based on a two-step approach involving sepa-
rate models for bounding-box detection and segmentation.

For this purpose, the Botanic Garden and Botanical Museum
Berlin provided us with 303 digitized herbarium specimens from 12
different Leucanthemum Mill. (ox-eye daisy) species. Using CVAT, the
specimen images were annotated with polygons of the single object
category ‘leaf’. This category represents largely intact leaves, which
are a prerequisite for reliable morphometric analyses. The annotated
images, comprising 950 ‘leaf’ instances, were exported from CVAT
as COCO dataset, flattened (ginjinn utils flatten) and split into train-
ing, validation and test datasets.

A two-step pipeline (Figure 1b) was applied, consisting of (a) a
Faster R-CNN bounding-box detection model that allows to extract
individual leaves, and (b) a Mask R-CNN model to segment the leaves
on those image parts. The Faster R-CNN was trained and evaluated
on sliding window crops (ginjinn utils sw_split) of the three datasets.
For the Mask R-CNN, sub-images (ginjinn utils crop) were cropped
from the original annotated images, each containing a single anno-
tated leaf. Based on those cropped datasets, the Mask R-CNN was
trained and evaluated. In addition, segmentation refinement was ap-
plied to the predictions for the test dataset.

After training, the Faster R-CNN achieved an AP of 30.57 and
25.85 for the validation and test dataset respectively. The Mask
R-CNN's AP scores were 76.44 and 74.54. Figure 2b illustrates an
exemplary prediction. For new image data, the complete predic-
tion process also involves sliding window merging as illustrated in

Figure 1b in order to remove duplicated objects.

4 | DISCUSSION

The GinlJinn2 toolkit advances the original GinJinn by reimplement-
ing its ideas on the basis of Detectron2, while also introducing new
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features like segmentation models including mask refinement, as
well as several data pre- and postprocessing capabilities.

Based on four exemplary datasets we have shown applications of
varying complexity. The seeds and yellow-sticky-traps analyses ad-
dress multi-category object counting problems using bounding-box
detection. We were able to predict the seed ratios with an absolute
error of only 1%, proving the potential of our software for the automa-
tion of such counting tasks. Considering the similar problem of count-
ing insects on yellow glue traps, with an error of 7.2%, the accuracy
of the trained model may appear less convincing. There are two likely
causes for this difference in accuracy: (a) low contrast between objects
(insects) and background (glue trap) and (b) low quality of annotations.
The latter could easily be solved by a more careful annotation scheme.
Nevertheless, the achieved accuracy might be sufficient for practical
applications, for example, to measure the response to insecticide treat-
ments or released beneficials in greenhouses.

The stomata analysis serves as a basic example of instance
segmentation. Despite several previous works on the automated
examination of stomata (Carrasco et al., 2020; Casado-Garcia
et al,, 2020; Fetter et al,, 2019; Li et al., 2019; Meeus et al., 2020;
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FIGURE 2 Exemplary outputs from
the Stomata (a) and Leucanthemum (b)
analyses. (a) depicts a single input image
Bounding box along with corresponding predictions by
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Song et al., 2020; Toda et al., 2018), this contribution, to our knowl-
edge, is the first trying to automatically segment whole stomata
(represented by their guard cells) using deep learning. With only 88
highly variable training images, our model achieved an AP of 51.32.
Depending on the intended downstream analyses, this precision
may already be acceptable if, for instance, only few high-quality ob-
ject instances are required. Undoubtedly, a model trained on a larger
dataset will achieve substantially higher predictive power.

Finally, the Leucanthemum analysis illustrates how to construct
a pipeline consisting of sliding window-based bounding-box de-
tection and subsequent segmentation for the extraction of high-
quality leaf silhouettes from herbarium specimens. Here, the
Faster R-CNN achieved an AP of 25.85. For potential morphomet-
ric analyses, we are not interested in extracting all leaves, but only
largely intact ones, even at the cost of discarding viable instances.
Therefore, the relatively low AP is sufficient. The Mask R-CNN,
with an AP of 74.54 before refinement, was very successful at
segmenting the leaves inside the bounding boxes. This pipeline
already allows to generate leaf outlines for downstream analyses
like Elliptic Fourier Analysis or Leaf Dissection Index calculation
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(for an overview of such methods, see McLellan & Endler, 1998)
with little manual effort.

With the presented exemplary analyses, we hope to provide
guidance for the application of GinJinn2 for automatic data collec-
tion and feature extraction. Despite GinJinn2's progress compared to
its predecessor, there is still room for further improvements. At the
moment, GinlJinn2 is only available for Unix-like operating systems
with access to an NVidia GPU while Windows support may become
available with forthcoming updates to the Windows Subsystem for
Linux (WSL). Moreover, there is only one meta-architecture for each
of the two detection tasks available, namely Faster R-CNN and Mask
R-CNN. These, however, are among the most successful architectures
for general-purpose object detection and segmentation. The integra-
tion of additional model architectures may be part of future versions.

We are confident that GinJinn2 will enable users, even those
without programming experience, to apply deep learning-based
methods for object detection and segmentation as part of their anal-
ysis pipelines. Advanced users may utilize GinJinn2 as a tool for rapid
prototyping.
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