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Master Thesis I

Abstract

While global multi-objective optimization problems continue to emerge in aerospace
engineering, conventional optimization methods, in particular, evolutionary algorithms
such as the Non-dominated Sorting Genetic Algorithm, have shown their capability to
solve such problems. However, one distinctive disadvantage of these conventional
methods is that they generally require a large number of function evaluations, which
makes them incompatible with computationally intensive numerical simulations that
are often employed in aerospace design problems.

This thesis substantiates the idea that this limitation can be overcome by using sur-
rogate based optimization, in particular multi-objective Bayesian global optimization
that utilizes Kriging as a surrogate model and Expected Hypervolume Improvement
as an infill criteria. With this approach, it is possible to obtain the Pareto front with a
relatively small computational budget. This is demonstrated through test cases that
are conducted by solving analytical optimization problems. The results show that
Bayesian optimization is able to reduce the function evaluations by 51 times for the
bi-objective problem, and by 91 times for the three-objectives problem compared to
genetic algorithms.

Furthermore, its applicability is tested in two aerospace design problems, where func-
tion evaluations were performed through Computational Fluid Dynamics (CFD) and
Computational Aeroacoustic (CAA) simulations. The proposed optimization method
returns Pareto fronts which contain various design trade-offs that result in improved
performance in terms of the desired objectives, with a reasonable number of function
evaluations. Firstly, in the aerodynamic shape optimization, it is able to obtain the
Pareto front, which contains airfoil designs with a combination of reduced drag and re-
duced pitching moment. Secondly, the aerodynamic-aeroacoustic shape optimization
is performed where the Pareto front is obtained for airfoil designs with three objectives:
reduced drag, reduced pitching moment and reduced aeroacoustic noise.

This thesis demonstrates the efficiency of the Bayesian global optimization framework
by showing how the Pareto front can be obtained at a relatively smaller number of
function evaluations compared to some of the conventional multi-objective optimiza-
tion methods. Moreover, the results obtained from the applied problems verify its
capability for practical applications in aerospace design. Hence, the outcomes of this
thesis highlight the potential of multi-objective Bayesian global optimization for mul-
tidisciplinary design optimization problems in the field of aerospace engineering.
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1 Introduction

In recent developments in engineering design, the importance of multi-objective op-
timization cannot be overstated. In practice, this is true not only in engineering, but
also in a wide range of other fields that involve trade-offs between multiple conflict-
ing objectives, such as economics, finance, and even in general process management.
Even within engineering, it is applied as diversely as design optimization and op-
timal control. Especially, with the recent advancements in computational modeling
and numerical tools, the demand for multi-objective optimization is also rapidly in-
creasing. The accuracy of numerical simulation tools has evolved to such a degree
that they can mimic physical experiments with nearly insignificant errors, and their
speed has become fast enough to produce these reliable results in a matter of hours or
even minutes. Therefore, the increase in attempts to find better designs through multi-
objective optimization using these advanced simulation tools is natural. Furthermore,
multi-objective optimization enables the making of any type of engineering decision
through a more quantitative comparison of various options that had previously been
made using empirical methods or past experience. In fact, there are various conven-
tional methods through which this can be achieved.

Some of the well known classical multi-objective methods include the weighted sum
method as well as the ε-Constraint method. In the weighted sum method, a set of
objectives are scalarized into a single objective by summing over the objective values
weighted by the coefficients. Unfortunately, despite its simplicity, it requires that the
Pareto front is convex [43]. Furthermore, it is difficult to set the weighting coefficients
without prior knowledge of which combination will lead to the desired region in the
objective space. In the ε-Constraint method which was first proposed by Haimes et
al. in [47], one of the objectives is selected while all other objectives are set to be con-
straints. While these methods are classified as parametric scalarizing approaches as
they convert multi-objectives into a parametric single-objective objective function, one
of the biggest disadvantages is that the single optimization needs to be performed
multiple times to obtain the full Pareto front, which is the general solution in multi-
objective optimization that typically involves multiple promising solutions.

One of the major difficulties of solving multi-objective optimization problems, as shown
from the examples of the classical methods, comes from the fact that there is no single
best solution, as there is in single-objective optimization problems, which makes mul-
tiple runs of optimization inevitable. With the aim of alleviating this difficulty, some
of the evolutionary algorithm based multi-objective optimization methods have been
developed. In these methods bio-inspired algorithms are used to attempt to find mul-
tiple optimal solutions in a single simulation [27]. Of the many evolutionary algorithm
based methods that exist, the nondominated sorting genetic algorithm (NSGA-II) is
particularly well known for its strategic approach in diversity preserving as well as
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elite-preservation through evolutionary operators such as mutation and recombina-
tion [28]. Although the evolutionary algorithm based methods enabled us to solve
multi-objective optimization problems more conveniently compared to the classical
methods, there was still a remaining issue with the computational time as it typically
requires a large number of function evaluations to perform an optimization. This is not
a critical problem for relatively simple problems where the objective function can be
evaluated within a matter of seconds to minutes. However, when more computation-
ally intensive numerical simulations are involved to evaluate the objective functions, a
large number of function evaluations becomes infeasible, particularly with a fixed time
constraint, which is the case for most engineering projects.

This issue motivates the use of surrogate based optimization, where the required num-
ber of function evaluations can be reduced by replacing expensive numerical simula-
tions with cheap-to-evaluate surrogate models and treating expensive simulations as
black-box functions. Among various methods, the Gaussian processes model along
with the optimization criteria that utilizes the Gaussian processes have shown its com-
petence as well as efficiency. The concept of this optimization criteria in single-objective
optimization, so-called expected improvement, was first introduced by Mockus in [24]
within a framework of surrogate based optimization utilizing Kriging regression. The
work has been continued by Jones et. al. [12] where the terminology Efficient Global
Optimization was first introduced. The expected improvement is extended to the
multi-objective optimization criteria, the expected hypervolume improvement, by Em-
merich [34], and it has been demonstrated by numerous applications that it is possible
to obtain results with similar accuracy using less function evaluations.

Surrogate based optimization has been actively adapted within the field of aerody-
namic optimization as well. While, there is a wide variety of methods that can be
used as surrogate models, it is also possible to combine evolutionary algorithms with
surrogate models. For instance, in [14], surrogate assisted aerodynamic shape opti-
mization is performed with an evolutionary algorithm such that Support Vector Ma-
chines (SVMs) are used as low fidelity surrogate models. Also in [15], the surrogate
model, which consists of the proper orthogonal decomposition as well as radial basis
functions interpolation, is coupled to an evolutionary algorithm to perform the airfoil
design optimization in multi-point transonic conditions. Furthermore, in [38], opti-
mization of a liquid rocket injector design is completed by using an evolutionary multi-
objective method utilizing the parametric polynomial regression method as a surrogate
model. In particular, surrogate based optimization that uses Gaussian processes (GPs)
has been used in Multidisciplinary Design Optimization (MDO), for example in [31],
Gaussian processes are used along with the expected hypervolume improvement infill
criteria for the partially Reusable Launch Vehicle design.

Fig. 1 briefly illustrates each step involved in a surrogate based multi-objective op-
timization. Firstly, it starts with the initial sampling where it allocates the sampling
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points in the design space. After evaluating the corresponding objective functions,
a surrogate model can be constructed using the initial sampling data set. Secondly,
among these evaluated objective values, the best solutions are selected. Next, using
the predefined optimization criteria, e.g. expected hypervolume improvement, the op-
timal point is searched in the design space assisted by a surrogate model. Lastly, after
evaluating this newly found point in objective space, the best solutions are selected
again.

y1

y2

y1

y1y1

1 2

34

y2

y2y2

Figure 1: Schematic illustration of the surrogate based multi-objective optimization
process

The primary objective of this thesis is to implement, test and analyze the state-of-
the-art approaches of the global multi-objective optimization. The focus is particu-
larly on Gaussian processes model as well as the expected hypervolume improvement.
Therefore, after theoretical analysis in comparing various existing methods within
this framework, selected methods are implemented and rigorously tested using an-
alytical problems. Finally, to validate the applicability of the implemented method
for more complicated and practical problems in the field of aerodynamics, optimiza-
tion is performed for the two applied problems: aerodynamic shape optimization and
aerodynamic-aeroacoustic shape optimization.

The thesis is structured as follows. First in Chapter 2, some theoretical insights are
given for selecting initial samples, constructing surrogate model as well as a descrip-
tion of the general idea behind infill criteria. In Chapter 3, the multi-objective optimiza-
tion problem is formally defined and the basic concepts of multi-objective optimization
are described. In Chapter 4, detailed descriptions are given for the selected methods
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along with their practical implementation. In Chapter 5, results obtained for several
analytical problems are presented and discussed. Chapter 6 contains the results for the
two applied problems. Lastly, the outcomes of the thesis are concluded in Chapter 7.

Throughout the thesis, the terminology surrogate based optimization as well as Bayesian
optimization are used. When the term surrogate based optimization is used the focus
is generally more on the surrogate based optimization without considering a specific
surrogate model. Whereas, Bayesian optimization is used to specifically refer to the
surrogate based optimization that uses stochastic processes. In addition, when it is
referred to optimization within this thesis, global minimization is meant unless stated
otherwise.
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2 Surrogate Based Optimization

In surrogate based optimization, the primary objective is to perform optimization more
efficiently by replacing expensive numerical simulations with cheaper-to-evaluate sur-
rogate models or meta-models. In order to achieve this, the chosen surrogate model
should be able to reproduce these expensive models well enough such that the opti-
mization can be done efficiently using sophisticated criteria. As much as it is important
to choose a suitable surrogate model or optimization criteria, it is important to select an
effective sampling plan which could have an unexpectedly large influence on the total
computational budget. By choosing a suitable sampling plan, numerous unnecessary
additional runs of the expensive black-box functions can be avoided. Thus, methods
and discussions about sampling methods are included in Section 2.1, followed by a de-
scription of the selected surrogate model in Section 2.2. Lastly, the chosen infill criteria
is explained briefly showing an single-objective optimization example in Section 2.3.

2.1 Design of Experiments

When treating an expensive simulation as a black-box function, data needs to be pro-
vided to build surrogate models that somewhat resemble the actual black-box function.
With a limited computational budget, it is crucial to select a minimum yet effective
number and location of sampling points. This process of deciding on a minimum yet
effective number and location of sampling points is called design of experiments (DOE)
or initial sampling, and can be done in various ways.

Among various available sampling methods, one of the intuitive methods would be
random sampling where a sample is generated as a random realization by a pseudo
random generator with some distribution, e.g. x ∼ N (0, 1). The limitation of random
sampling, however, is that it may contain clusters and gaps, which are generally un-
desirable for the design of experiments as they can impede well distributed samples in
the design space. To overcome this limitation, stratified sampling is suggested where
samples are placed randomly within a prescribed sub-domains [45]. Then, it is pos-
sible to determine the feasible sample size using full factorial design as explained in
[4]. In this full factorial design, the number of the required simulations N to ensure the
adequate coverage of the design space is computed as follows:

N = sk (1)

where s denotes the level or the strata and k is the number of parameters. In the most
general case, s = 2 is used to prevent an explosive growth of total simulations required,
which is the disadvantage of using full factorial design for large k and/or s values.
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2.1.1 Latin hypercube sampling

Latin hypercube sampling (LHS) is a type of the stratified sampling where each parameter
is stratified over s > 2 levels such that each level contains the same number of points
[4]. The primary goal of LHS is then to partition the sample space such that the design
space is well represented through sampling done in these sub-regions. This is shown
in Fig. 2 for each 1, 2 and 3 parameters. Using two-level full factorial, the domain of
each parameter is partitioned into 2k hypercubes.

Figure 2: Samples distributed over the hypercubes in Latin hypercube sampling (LHS)
in R1 (top), R2 (left) and R3 (right). From [4]

Although, it is ideal to have a full-factorial design, sometimes it can be computation-
ally expensive, e.g. a two-level full factorial would require 1024 simulations for 10
parameters, in which case a fractional factorial design approach is suggested [4].

2.1.2 Sobol sequences based sampling

Sobol sequences based sampling uses quasi-random sequences that enhance the uni-
formity across the design space [3]. It is also a low-discrepancy sequence which re-
duces the discrepancy at the theoretically optimal rate as the sequence length becomes
larger. This is done by generating low-discrepancy sequences that are somewhat bi-
ased towards the unsampled regions to ensure an even distribution while maintaining
a certain uniformity [4].

The characteristics of the two different sampling methods are shown in Fig. 3 for R2.
On the top, the LHS sampling results are presented for 20 and 30 sampling points,
while the Sobol sampling results are shown on the bottom. Comparing the plots, the
distinctive difference between the two methods, randomness, is visible. To elaborate
on this, first looking at the two plots created by the LHS sampling, for different num-
bers of samples it becomes evident that essentially completely new sample points are
generated while retaining an equal number of samples per hypercube. The results
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of the Sobol method, on the contrary, show that it is simply adding samples, in a se-
quence, as the number of samples increases. Comparing the two plots of the Sobol
method, the blue dots on the left plot (N = 20) are identical to the blue dots on the
right (N = 30), which represent the first 20 samples out of the total 30 samples gen-
erated. Here, the additional points are marked as orange dots, which are shown to be
filling in the rest of the gaps while retaining uniformity.
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Figure 3: LHS sampling with N = 20 (top left) and N = 30 (top right). Sobol sampling
with N = 20 (bottom left) and N = 30 (bottom right).

Apart from its ability to ensure uniformity and low-discrepancy, this deterministic fea-
ture of the Sobol sampling becomes particularly useful during an optimization process
where the accuracy of the initial surrogate model turns out to be insufficient, as the ac-
curacy of the surrogate model can be improved simply by adding the additional points
generated by the Sobol sequence [11].

2.2 Surrogate Model

In surrogate based optimization, surrogate models should be able to represent the un-
known black-box function to a certain extent. As long as this is satisfied, any prediction
method can be used as a surrogate model. Though, one thing to consider when choos-
ing a surrogate model is that the engineering function is almost always continuous
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such that it is safe to assume that the surrogate model should also be continuous [2].
Particularly, for Kriging, which is used in this thesis work, this is the only assump-
tion. Nonetheless, it is possible to make further assumptions, for instance, based on
the known shape of the functions, which can be found in detail in [2].

The simplest yet most intuitive way to construct a continuous surrogate model would
then be to employ the regression method. And, some of the most popular methods can
be listed as follows [5]:

• Moving least squares

• Regression trees

• Artificial neural networks

• Generalized additive models

• Supported vector regression

• Gaussian Processes (GPs)

• Kernel partial least squares

Particularly in MDO, [5] shows that the methods that use Gaussisan Processes are
the most convenient for generalization in complex problems with small data-sets and
many variables. Apart from its capability in regression for complex functions, Krig-
ing has gained popularity in surrogate based optimization due to its ability to provide
uncertainty quantification, which can be conveniently exploited within the acquisition
function for searching for optimal infill points during optimization.

One critical point not to be overlooked is that what we want for a surrogate model is
not error-free replication of a black-box function. What is important is that it is accurate
enough such that an optimizer can identify promising areas in searching for an optimal
point.

2.2.1 Kriging/Gaussian Processes

Kriging is essentially a stochastic process model that relies on Gaussian processes,
which can be thought of as a generalization of multivariate Gaussian to infinitely many
variables. With Kriging, it is possible to model given multi-dimensional samples as a
statistical model by maximum likelihood estimates (MLEs). Furthermore, whenever a
new sample is added, it can re-model and provides a most likely prediction as well as
an estimated error by following the same procedure.

The mathematical derivations and equations presented in the following discussion are
based on [12] and [1].

In order to motivate the use of Kriging from a more fundamental point of view, let’s
consider the most generic regression form and identify the limitations within it. For
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a given sampled data at point i, x(i), and its objective value Y (x(i)), the simplest and
general way of modeling by fitting the data set would be by using a simple regression
model of the form,

Y (x(i)) =
∑
j

wjhj(x
(i)) + ε for i = 1, . . . , n (2)

here, hj(x(i)) is a linear or nonlinear function, w are the unknown coefficient that need
to be estimated and ε refers to independent error terms with ε ∼ N(0, σ2). However,
the problem of using linear regression is that its assumption of independent errors
does not hold when deterministic computer codes are used for modeling, as any error
arising from this will be most certainly modeling error, not measurement error or noise,
e.g. points x that have not been sampled [12]. Hence, it is more feasible to assume
the error terms are a function of x such that ε(x). This is how the regression is done
with Gaussian Processes (GPs) or Kriging. More precisely, in Kriging, the errors are
assumed to be correlated using the Gaussian like function:

Corr
[
ε(x(i)), ε(x(j))

]
= exp

(
−

n∑
k=1

θk|x(i)
k − x

(j)
k |

pk

)
. (3)

While this function expresses the correlation between the errors at x(i) and x(j) by the
exponential difference between the two points, the behavior of the hyperparameters
θk and pk resemble the ones from the actual Gaussian function except that in Gaussian
p is fixed to two. As a result, θk behaves similar to the inverse of the variance. Thus,
increasing this parameter will result in a narrower correlation function and vice versa
as shown in Fig. 4b. From this plot, it can be seen that for increasing θ, the corre-
sponding correlation function distribution becomes narrower, which means that only
the points that are nearby, smaller |x(i)

k −x
(j)
k |, are correlated. The parameter pk controls

the smoothness of the correlation function as shown in Fig. 4a. The plot indicates that
as p increases the function becomes smoother and vice versa.

By modeling the correlation of the errors in this way, the stochastic process can be
written in a form,

Y (x(i)) = µ+ ε(x(i)) for i = 1, . . . , n (4)

where, µ represents the mean of the stochastic process, and ε(x) is the random variable
with ε ∼ N (0, σ2) which is correlated as in Equation (3). Then, the parameters θk
and pk can be estimated by maximizing the likelihood of the stochastic response Y =(
Y (x(1)), . . . , Y (x(n))

)>. First, let the observed function values be y =
(
y(1), . . . , y(n)

)>,
then, the correlation matrix, denoted as Ψ, can be constructed using Equation (3),
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(a) varying parameter p (b) varying parameter θ

Figure 4: Effect of varying hyperparameters in the correlation function with respect to
the distance. From [1]

Ψ =

Corr
[
ε(x(1)), ε(x(1))

]
· · · Corr

[
ε(x(1)), ε(x(n))

]
... . . . ...

Corr
[
ε(x(n)), ε(x(1))

]
· · · Corr

[
ε(x(n)), ε(x(n))

]
 (5)

note that the main diagonal of Ψ is always one as the random variable is perfectly
correlated to itself, which can be also seen from Fig. 4 where the correlation becomes
1 as |x(i) − x(i)| → 0. Then, the likelihood of the stochastic responses Y is written as
follows:

L(Y (1), . . . ,Y (n) | µ, σ) =
1

(2πσ2)n/2
exp

[
−
∑

(Y (i) − µ)2

2σ2

]
(6)

expressing Equation (6) using the correlation matrix and the sampled data yields,

L =
1

(2πσ2)n/2|Ψ|1/2
exp

[
−(y − 1µ)>Ψ−1(y − 1µ)

2σ2

]
(7)

to make the computation easier, we can take the logarithm to work with log-likelihood,

ln(L) = −n
2

ln(2π)− n

2
ln(σ2)− 1

2
ln |Ψ| − (y − 1µ)>Ψ−1(y − 1µ)

2σ2
(8)

By taking derivative of Equation (8) and setting it to zero, the maximum likelihood
estimates (MLEs) of µ and σ2 are obtained as follows:

µ̂ =
1>Ψ−1y

1>Ψ−11
(9)
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σ̂2 =
(y − 1µ)>Ψ−1(y − 1µ)

n
(10)

Lastly, substituting these expressions into Equation (8) yields the concentrated log-
likelihood function:

ln(L) ≈ −n
2

ln(σ̂2)− 1

2
ln |Ψ| (11)

hyperparameters θk and pk can be found by maximizing Equation (11) using a global
search method, e.g. a genetic algorithm or simulated annealing.

Furthermore, with this kriging model which is constructed by MLEs, it is possible to
do a regression for a new prediction y(+). First, the correlation function for the new
data can be augmented into the previous corrleation matrix as follows:

Ψ̃ =

(
Ψ ψ

ψ> 1

)
(12)

where,

ψ =

Corr
[
ε(x(1)), ε(x(+))

]
...

Corr
[
ε(x(n)), ε(x(+))

]
 (13)

the log-likelihood of the augmented data with ỹ = {y, y(+)}> is expressed as follows:

ln(L) = −n
2

ln(2π)−−n
2

ln(σ̂2)− 1

2
ln |Ψ̃| − (ỹ − 1µ̂)>Ψ̃

−1
(ỹ − 1µ̂)

2σ̂2
(14)

again, this likelihood needs to be maximized to find the hyperparameters. Since, only
the last term depends on y(+), this term is used for maximization which then yields,

ln(L) ≈
−

(
y − 1µ̂

ŷ − µ̂

)>(
Ψ ψ

ψ> 1

)−1(
y − 1µ̂

ŷ − µ̂

)
2σ̂2

(15)

where the inverse of Ψ̃ can be computed through the partitioned inverse method of
Theil:

Ψ̃
−1

=

(
Ψ−1 + Ψ−1ψ(1−ψ>Ψ−1ψ)−1ψ>Ψ−1 −Ψ−1ψ(1−ψ>Ψ−1ψ)−1

−(1−ψ>Ψ−1ψ)−1ψ>Ψ−1 (1−ψ>Ψ−1ψ)−1

)
. (16)
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Substituting this equation into Equation (15) and rearranging the terms that contain
y(+) gives,

ln(L) ≈
(
− 1

2σ̂2(1−ψ>Ψ−1ψ)

)
(y(+) − µ̂)2 +

(
ψ>Ψ−1(y − 1µ̂)

σ̂2(1−ψ>Ψ−1ψ)

)
(y(+) − µ̂). (17)

This can be maximized by differentiating it with respect to y(+) and setting it to zero,

(
− 1

σ̂2(1−ψ>Ψ−1ψ)

)
(y(+) − µ̂) +

(
ψ>Ψ−1(y − 1µ̂)

σ̂2(1−ψ>Ψ−1ψ)

)
= 0 (18)

finally, rearranging this equation, the maximum likelihood estimate of the new point
y(+) is given as follows:

y(+)(x) = µ̂+ψ>Ψ−1(y − 1µ̂) (19)

this equation describes the general MLE of, so-called ordinary Kriging, the equation for
universal Kriging, where the mean becomes a function of x can be written as follows,

y(+)(x) = µ̂(x) +ψ>Ψ−1(y − 1µ̂) (20)

where,

µ̂(x) =
m∑
i=0

µivi(x) (21)

µi and vi each represent the unknown parameters and some known functions. Al-
though this can improve the accuracy by capturing known trends with the additional
tuning, there is a risk of introducing inaccuracies if there is no prior knowledge on the
trends. Thus, in this thesis work, ordinary Kriging is used extensively.

One of the greatest advantages of using Kriging in surrogate based optimization is
that it provides uncertainty quantification on its predictions, which is used for finding
subsequent infill sample points during the multi-objective optimization (this will be
explained in detail in Chapter 4). The estimated mean squared error (MSE) of Kriging
yields [25]:

ŝ2(x) = σ2

[
1−ψ>Ψ−1ψ +

1− 1>Ψ−1ψ

1>Ψ−11

]
(22)

This error diminishes to zero at the sampled points.
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2.3 Infill criteria for optimization

Once the initial sampling plan and the surrogate model are constructed, the optimiza-
tion process proceeds by adding a new point, called infill point, to the surrogate model.
In this way, it can perform optimization while improving the model accuracy near the
promising regions where the optimization process sees that it is most likely to find
the optimal point. This is also sometimes referred to as adaptive sampling. The crite-
ria given for selecting new infill points is called infill criteria, and the function used
as a infill criteria is also known as acquisition function. Depending on the purpose of
the optimization, for instance, whether it has a single objective or multiple objectives,
different infill criteria are used to achieve different goals.

In this section, the infill criteria for the single-objective optimization is explained. Al-
though it is expressed in a much simpler form compared to the infill criteria for multi-
objective optimization, which comes from its simplicity in performance metric, it es-
sentially shares some of the common principle features with the infill criteria for multi-
objective optimization, such that if one understands principles of the infill criteria for
single-objective optimization, extension to multi-objective optimization infill criteria
would become much more intuitive. In particular, how uncertainty predictions pro-
vided by Kriging play a role in optimization would become clear from this single-
objective infill criteria formulation.

2.3.1 Single-objective Optimization

The primary objective of single-objective optimization is to find the objective value y
that is a global minimum. Meanwhile, in Section 2.2, it was stated that the advantage
of kriging is that it provides uncertainty quantification, which can be used for finding
an infill sample point. In fact, the infill criteria for single-objective optimization can
be formulated with the uncertainty predictions of kriging such that it enhances both
exploitation and exploration of optimization. To be more specific, the infill criteria, so-
called Expected Improvement (EI) can be formulated. With a kriging model, it is possible
to model a stochastic response as Y (x) ∼ N (ŷ(x), ŝ2(x)), where ŷ(x) is a re-expressed
notation of y(+)(x) from the previous section. In addition, for convenience in termi-
nology, the variance ŝ2(x) will be denoted as σ̂2(x) in this section. Then, the expected
value of improvement, defined as I = ymin − Y (x), at x can be computed as:

E[I(x)] = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

σ̂(x)

)
+ σ̂(x)φ

(
ymin − ŷ(x)

σ̂(x)

)
(23)

where Φ(·) and φ(·) denote the cumulative distribution function (CDF) and the probabil-
ity density function (PDF) respectively. This expected improvement diminishes to zero
at the sampled point, i.e. σ̂ = 0, and a maximum expected improvement infill pro-
cedure will eventually find the global optimum [1]. In order to find an infill point, x
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is found by maximizing Equation (23). Its performance as an infill criteria, i.e. how
this equation enhances a balanced exploitation and exploration, can be better under-
stood by examining it. From Equation (23), it is clear that the EI will increase mainly
in two different situations. One the one hand, the first term will be maximized at the
point where the predicted improvement is higher. Being weighted by the CDF, it will
enforce an optimizer to find a point where it is most likely to be the best value, thus,
enhancing exploitation. On the other hand, the second term will be maximized for a
point where higher error are present within the Gaussian processes, which typically
are unsampled regions. Thus, this will make an optimizer to explore more of the not
yet discovered design space to make sure that approximately most of the design space
has been covered or sampled. In this way, using expected improvement as an infill
criteria effectively promotes a balance between exploitation and exploration, which is
pivotal in global optimization problems.
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3 Multi-objective Optimization

In multi-objective optimization, with the presence of multiple conflicting objectives
and their evaluations, it is not very helpful to find just one point among all the possible
combinations. For this reason, generally, the goal of the multi-objective optimization
is to obtain a well distributed set of optimal solutions that represent different com-
binations of the objectives. For decades, different approaches have been developed
to obtain the optimal solution for multi-objective optimization problems, and in this
chapter, some of the basic concepts and ideas behind multi-objective optimization is
presented.

Firstly, the formal problem definition of a multi-objective problem of interest is given
in 3.1. Fundamental concepts in multi-objective optimization and ideas behind are
described in 3.2.

3.1 Problem formulation

Formally, a multi-objective optimization problem is defined as follows,

min
x∈Ω

(f1(x), f1(x), . . . , fm(x)) (24)

here, x = [x1, x2, . . . , xn]T is the vector of decision variables subjected to the feasible set
Ω ⊂ Rn, which is typically defined by the host set D ⊆ Rn such that Ω = {x ∈ D}
where the host set D is defined by the upper and the lower bounds of the decision
variables as D = [xL,xU ] ⊂ Rn. Lastly, the functions fi : Rn → R for i = 1, . . . ,m

represent the objective functions, and the objective space is the image of the feasible set
F = {f(x) ∈ Rm | x ∈ Ω}.

3.2 Basics of multi-objective optimization

In this section, some of the basic concepts and the terminology of multi-objective opti-
mization is explained. Although surrogate based optimization takes a slightly different
approach compared to the conventional multi-objective optimization methods, it is es-
sentially aiming for solving multi-objective problems. Because of this, many concepts
from the conventional multi-objective optimization have been either directly taken or
adapted to form the basis of the surrogate based optimization formulation.

In Section 3.2.1, an overview of the concept of Pareto optimality is given along with
the definitions of some of the pivotal concepts in multi-objective optimization. Sec-
tion 3.2.2 discusses performance metrics of general multi-objective optimization along
with a brief glimpse of performance metrics in Bayesian optimization.
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3.2.1 Pareto optimality

In the following, the basic concepts and definitions of Pareto optimality and multi-
object optimization are given based on [7] and [30].

Dominance Dominance in multi-objective optimization refers to the superior-inferior
relation when comparing different sets in the objective space.

For given decision vectorsx(1),x(2) ∈ Rn, let their objective values be f (1) = f(x(1)),f (2) =

f(x(2)). For the minimization problem, it is said that f (1) dominates f (2) (denoted by
f (1) ≺ f (2)) if and only if:

• fi(x
(1)) ≤ fi(x

(2)) ∀i ∈ 1, 2, · · · ,m

• fj(x
(1)) < fj(x

(2)) ∃j ∈ 1, 2, · · · ,m

Non-dominance Accordingly, the non-dominance relation can be defined such that
decision variables x ∈ X ⊂ Rn are said to be non-dominated with respect to X , if there
is no element x′ ∈ X such that f(x′) ≺ f(x) holds.

Pareto optimal set The Pareto optimal set refers to the set of design variables that
their objective values are non-dominated for all elements in a feasible set, formally
defined as follow,

P∗ = {x ∈ Ω | @z ∈ Ω : z ≺ x} (25)

Pareto front Finally, the optimal Pareto front is defined as the objective values of the
Pareto optimal set. This is essentially the formal indicator of the set of solutions of
interest in multi-objective optimization explained previously. The definition is written
as,

PF∗ = {f(x) ∈ Rm | x ∈ P∗} (26)

throughout this thesis, the term optimal Pareto front is explicitly used to indicate this
mathematical definition. In general, the term Pareto front is used to refer to the non-
dominated subset or the approximated Pareto front.

Dominated subspace of a set For a P ⊂ Rm, the dominated subspace of P in Rm

(denoted by d(P)) is given as,

d(P) := {y ∈ Rm | ∃p ∈ P : p ≺ y} (27)
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Non-dominated space of a set For a P ⊂ Rm, let r ∈ Rm be dominated by p for all
p ∈ P . Then, the non-dominated space of P with respect to r (denoted by nd(P)) is
defined as,

nd(P) := {y ∈ Rm | y ≺ r ∧ @p ∈ P : p ≺ y} (28)

3.2.2 Performance metrics

With the formal definition of Pareto optimality, one question that arises is: how do
we assess whether the obtained Pareto Front is indeed well represented? This will be
dependent on the goal of each problem, but in general, from the perspective of Pareto
optimality, the main interest is in obtaining a Pareto front that is as close as possible
to the optimal Pareto front while covering as many as possible combinations in the
objective space as illustrated in Fig. 5. Though, it is imperative to keep in mind that
this optimal Pareto front is almost always not known in advanced - if known, there is
no point of performing optimization.

Choosing a performance metric is of particular importance for surrogate based opti-
mization as it becomes the basis of the infill criteria formulation.

f1

f2

Pareto Front

Dominated space

Non-dominated
space

Figure 5: Illustration of the representation of well distributed Pareto Front in the objec-
tive space

Since the performance metric can have an impact on the efficiency and accuracy of the
optimization process, various metrics have been developed for solving multi-objective
optimization problems. For multi-objective Bayesian optimization, Hypervolume Indi-
cator (HV) based performance metrics, which was first introduced by [16] (also known
as S −metric), are most commonly used.
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Some of the hypervolume based performance metrics used in Bayesian optimization
and are relevant for this work include Hypervolume Improvement (HVI) and Probability
of Improvement (PoI). In the following, formal definitions are given based on [30].

Hypervolume Indicator (HV)

Let P =
{
y(1),y(2), · · · ,y(k)

}
⊂ Rm be the approximated Pareto Front. Then, the hyper-

volume indicator of P is defined as the m-dimensional Lebesgue measure λm on Rm of
the subspace dominated by P and bounded by the given reference point r.

HV (P) = λm

⋃
y∈P

[y, r]

 (29)

Fig. 6 shows the illustration of the hypervolume indicator defined as the subspace
bounded by the given Pareto set P =

{
y(1),y(2),y(3)

}
and a reference point r in R2.

Solving an optimization, either minimization or maximization, problem with the hy-
pervolume indicator as a metric is equivalent to maximization of the hypervolume.

One of the most significant properties of the hypervolume indicator is that it is the
only strictly monotonic unary indicator known for the Pareto front approximation [18],
meaning that for the given sets A and B, A ≺ B implies that I(A) > I(B) with I being
an unary indicator.

Furthermore, compared to the non-dominated sorting of NSGA-II, the hypervolume
indicator metric outperforms the crowding distance metric in a way that solutions
around the knee of a curve are often ranked higher within the hypervolume indicator
compared to crowding distance, where the outer points, that contribute to the uniform
distribution, are often ranked higher [34]. Considering that most of the promising so-
lutions are likely to be found in the proximity of the knee of the curve, it is likely that
crowding distance leaves out some of these sets in contrast to the hypervolume in-
dicator. Besides, unlike crowding distance there is no dependency between solution
candidates for the hypervolume indicator, which can again impede finding potentially
promising solutions.

The reference point r in the hypervolume indicator metric needs to be provided by a
user. In general, when the hypervolume itself is used as a direct performance metric
of the optimization process, the location of this reference point could alter the process
and effect the result of the optimization, e.g. for two sets of Pareto fronts, altering the
reference value can change which set of the Pareto front has the larger hypervolume.
However, from the perspective of Bayesian optimization this becomes quite trivial,
mainly because the hypervolume indicator is not used as a direct performance metric
of optimization. Further explanations of this will be given accordingly in the follow-
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ing sections. In the scope of this thesis work, the hypervolume indicator as a direct
performance metric is used explicitly to compare two or more computed Pareto fronts.

Figure 6: Illustration of the hypervolume indicator (HV) for a given Pareto set P ={
y(1),y(2),y(3)

}
, and the hypervolume improvement (HVI) for a given vector

y(+)

Hypervolume Improvement (HVI)

For a given set of vectors of P ⊂ Rm, the hypervolume improvement for a given vector
y is defined as,

HV I(y,P) = HV (P ∪ y)−HV (P) (30)

from the equation, it can be noticed that the hypervolume improvement is essentially
the difference or more precisely the improvement in the hypervolume when a vector
y is included in the original set. Interestingly, contrary to what seems so obvious, this
property is aptly exploited for the efficient computation of the hypervolume which will
be discussed in the next chapter.

From Fig. 6 the visual representation of the hypervolume improvement is shown as
colored area. As it can easily be inferred from its definition above, the hypervolume
of the set P ∪ y can be expressed as the sum of the original hypervolume and the
hypervolume improvement.

As for the hypervolume indicator, the reference point naturally reappears for the hy-
pervolume improvement. While a different reference point could result in a different
hypervolume indicator, the hypervolume improvement, is less affected by the refer-
ence setting as illustrated in Fig. 7. The two plots have the exact same Pareto fronts,
and it can be clearly seen that defining different reference points r and r∗ results in
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f1

f2

f1

f2
r

r*

HVI HVI

HV

HV
y(1)

y(2)

y(3)
y(+)

y(1)

y(2)

y(3)
y(+)

Figure 7: Although the different reference point setting gives the different hypervol-
ume indicator for the same Pareto front, hypervolume improvement is not
affected by this change unless the extreme points are dominated by the vec-
tor y(+)

different hypervolume indicators. However, the hypervolme improvement for the ad-
ditional vector y(+), e.g. infill point, is not affected by the reference point. Of course,
it could change for some extreme cases, e.g. adding a point that dominates the ex-
treme values in the Pareto set. However, the reasoning for setting a reference value for
multi-objective optimization Bayesian optimization should be based on the process of
optimizing using an infill criteria which will be discussed in detail in the next chapter.

Probability of Improvement

Another performance metric is Probability of Improvement (PoI) which indicates the
probability that y dominates the Pareto front P . The formal definition is written as:

PoI(µ,σ,P) :=

∫
Rm

1Y (y)ξµ,σ(y)dy (31)

where ξ represents the independent multivariate Gaussian distribution with mean val-
ues µ ∈ Rm and standard deviations σ ∈ Rm, and 1(·) is an indicator function, where
1Y (y) = 1 indicates the improvement for y with respect to P as,

Y = {y ∈ Rm | y ≺ r ∧ ∀p ∈ P : ¬(p ≺ y)} (32)

Although this performance metric is not extensively used for this thesis, it is closely
related to the concept that is used in one of the methods for multi-objective infill criteria
formulation which will be discussed in the next chapter.
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4 Multi-objective Bayesian Optimization framework

The efficient global optimization framework can be extended to multi-objective opti-
mization by directly adapting the performance indicator discussed in Section 3.2.2 as
the infill criteria for the surrogate based optimization process that was explained in
Chapter 2. The entire process of the framework is illustrated in Fig. 8 along with the
drawings that exemplify objective space of each step. First, starting with the design
of experiments, ideally, the samples are well distributed on the objective space. Then,
after evaluating this initial sampling plan, corresponding surrogate models can be con-
structed using Kriging. At this point, it is possible to find the non-dominated subset of
from the evaluated objective values, forming an initial Pareto front set. Using Kriging,
multi-objective infill criteria, which will be explained in this chapter, can be maximized
to find an optimal point from the design space. Although, it is ideal if this point turns
out to be non-dominated and become part of the Pareto front in objective space, if not,
this point can contribute as an infill point in training surrogate models for the next
iteration.

Design of Experiments

Evaluate sampling plan with 
black-box numerical simulations

Construct surrogate models

Search for an infill point by 
maximizing infill criteria 

Add an infill point

y1

y2

y1

y1

y2

y2

Figure 8: Multi-Objective Bayesian optimization framework

This chapter begins with a description on the idea behind the multi-objective infill cri-
teria formulation that is based on the hypervolume improvement as well as the Krig-
ing model in Section 4.1. Next, two different methods that are used for computing the
multi-objective infill criteria are described in 4.2. Finally, in 4.3, the practical imple-
mentation of these methods is described.
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4.1 Infill criteria

Expected Hypervolume Improvement (EHVI) is, as its name suggests, the expected value
of the hypervolume improvement function defined in Section 3.2.2. Its general expres-
sion is given in Equation (33) for a given Pareto front set P , statistical quantities µ and
σ and the reference point r.

EHV I(µ,σ,P .r) =

∫
Rm

HV I(P ,y, r) · ξµ,σ(y)dy (33)

where ξ denotes the independent joint probability density function (PDF) of the standard
normal distribution. Its mean values, µ, and the standard deviation values, σ, of the
predictive distributions are obtained from the Gaussian processes by means of maxi-
mum likelihood estimation as well as the estimated error in the prediction.

Since the hypervolume improvement function is inserted to compute its expectation,
the reference point, remains as the only user defined value. Then, how do we choose
this value? or more importantly, does the choice matter?

According to Yang [30], although the reference point r should be chosen such that it is
dominated by all elements of a Pareto front approximation set during the optimization
process to get the extreme non-dominated points, there is no specific requirement when
setting the reference point in practice.

From the perspective of the infill criteria at hand, the reference point should not have a
large influence on the optimization process once its larger enough, e.g. larger than the
nadir point of a given Pareto front set. This is mainly due to the fact that the hypervol-
ume is not used as a direct metric, instead, the hypervolume improvement is used as
a more direct metric. Furthermore, since we are using an infill criteria that represents
the expected value for searching in the non-dominated space, this shifts the focus of
the optimization process more towards the non-dominated space than the dominated
subspace where the hypervolume would belong to. To safely converge to the full op-
timal Pareto front, however, it is suggested to use a large enough reference value in
order to avoid the exclusion of potentially extreme Pareto set points, particularly in
the beginning of the optimization process.

Fig. 9 shows the illustration of the expected hypervolume improvement in the objective
space R2. Here, the hypervolume is the light gray area which is the dominated sub-
space of P = {y(1),y(2),y(3)} bounded by the reference r. Then, for the bivariate Gaus-
sian distribution with the statistical quantities of µ = (2, 1.5)> and σ = (0.7, 0.6)>, the
joint PDF is plotted in 3D. During the optimization process, the optimizer will search
for a point from the non-dominated space of a given Pareto set where it maximizes the
expected value of the hypervolume improvement using the statistical quantification
provided by the Gaussian Processes. While any global search method can be used for
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Figure 9: Visualization of the expected hypervolume improvement in R2. From [29]

this maximization, genetic algorithm or simulated annealing are well-known for their
capability [1].

4.2 Method

With the general expression for EHVI in hand, the next step is to actually compute
it. Even though Equation (33) suggests that this computation involves multivariate
integrals in the objective space Rm, fortunately, it is possible to take advantage of sev-
eral properties that this equation has. We can go back to Equation (33) for a moment to
briefly examine the terms involved. First of all, its integrand expresses the probabilistic
hypervolume improvement. Remember from Section 3.2.2 that the main interest of the
hypervolume improvement lies, by its definition, in the non-dominated space. This
means that there is nothing to integrate over within the dominated subspace which
suggests that with the given Pareto front, the domain of the integration can be reduced
to the non-dominated space in Rm.

In this thesis, two different approaches are taken to compute the EHVI. The first method
is based on the efficient 2D decomposition method by Emmerich et al. [35] with modi-
fications, which are explained in the corresponding chapter. Another method is WFG-
based decomposition method by Zhao et al. [20]. While both methods take slightly
different approaches in exploiting the geometrical information of the Pareto front to
efficiently decompose the integral bounds, the ultimate goal of both methods is to com-
pute the EHVI with the least possible computational effort, i.e. to reduce the number
of integration as much as possible. Moreover, both methods compute the exact EHVI
without approximations. Some of the key differences between the two methods are as
follows.
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Firstly, although both of the schemes use decomposition of the objective space to im-
prove efficiency, for the efficient 2D method, the decomposition is done on the non-
dominated space, whereas the decomposition is done on the dominated subspace for
the WFG-based method.

Secondly, as its name implies, the efficient 2D method is strictly for the bi-objective
optimization such that the general equation for EHVI is decomposed in a way it can
exclude all the unnecessary computations in R2. However, the general idea of this
method could be extended to m = 3 and above by applying suitable decomposition
schemes to its general form. On the other hand, the WFG-based is a more generalized
method that is capable of computing over m > 2 objectives.

Lastly, in terms of computational complexity, the 2D efficient method is known to be
asymptotically optimal, i.e. O(n log n) [35]. Although, WFG-based method has the
worst-case complexity ofO(m ·2n), it has shown a better average performance, and for
m > 3, it is considered the state-of-art method by being 102 faster than the correspond-
ing existing algorithms [20].

A useful function that enables us to express the EHVI function in a closed form is used
throughout the chapter, and is defined as.

Definition 4.1 (Ψ function). Let the function φ(s) = 1√
2π

exp(−s
2

2
), s ∈ R and Φ(s) =

1
2

(
1 + erf( s√

2
)
)

be the probability density function (PDF) and the cumulative probability
function (CDF) of the standard normal distribution respectively. Then, the Gaussian
distribution with mean µ and variance σ has a general density function of φµ,σ(s) =

1
σ
√

2π
exp(−1

2

(
s−µ
σ

)2
) and the cumulative distribution function of Φµ,σ(s) = 1

2

(
1 + erf( s−µ

σ
√

2
)
)

for s ∈ R. Then, the function Ψ is defined as follow:

Ψ(a, b, µ, σ) :=

∫ b

−∞
(a− z)

1

σ
φ

(
z − µ
σ

)
dz (34)

A useful relation that is employed throughout this chapter which expresses Equa-
tion (34) in a closed-form is given by [26]. This relation, which enables the exact com-
putation of Equation (34) is written as:

∫ b

−∞
(a− z)

1

σ
φ

(
z − µ
σ

)
dz = σφ

(
b− µ
σ

)
+ (a− µ)Φ

(
b− µ
σ

)
(35)

4.2.1 Efficient 2D method

In the following, the efficient 2D method, based on [30] and [35], is explained in detail.
The modification from this basic method is explained accordingly. Some of the termi-
nology are differ from the references to be consistent with the definitions given in the
previous section as well as the WFG-based method.
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The first step of the efficient 2D method is to partition the non-dominated space as n+1

disjoint rectangular stripes S1, . . . , Sn+1 for a given Pareto front set P = {y(1), . . . ,y(n)}
as in Fig. 10, where n refers to the number of elements in a given Pareto front ap-
proximation set. The stripes can be formally defined by adding the two sentinels
y(0) = (r1,−∞) and y(n+1) = (−∞, r2) to the set P . From now on, this vector that
defines the strip is denoted as y. Then, the strip i can be expressed for y = (y1, y2)>:

Si =

((
y

(i)
1

−∞

)
,

(
y

(i−1)
1

y
(i)
2

))
, i = 1, . . . , n+ 1 (36)

y1

y2

r

y(n)

y(2)

y(1)

-∞
-∞

Sn+1 S3

(0, 0)

S2 S1

Figure 10: Illustration of the partitioned strips Si for i = 1, . . . , n + 1 defined by the
given non-dominated Pareto set P =

{
y(1),y(2),y(3)

}
. The dashed lines in-

dicate the final integral bounds of the decomposition scheme. Adapted from
[35].

The function ∆ is defined as:

Definition 4.2 (∆ function). For a given vector of objective function values y ∈ Rm,
∆(y,P , r) is defined as the subset of the vectors in Rm which are exclusively domi-
nated by a vector y and not by elements in P and that dominate the reference point.

∆(y,P , r) = λm{z ∈ Rm | y ≺ z ∧ z ≺ r ∧ @q ∈ P : q ≺ z} (37)

For simplicity, this is noted as ∆(y) in the following.

The ∆ function of Equation (37) essentially expresses the hypervolume improvement
that strictly improves the hypervolume. More precisely, by using the previously de-
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fined disjoint stripes, the positive hypervolume improvement in the non-dominated
space can be expressed:

HV I+(P ,y, r) =
n+1∑
i=1

λm[Si ∩∆(y)] (38)

With this, EHVI can be re-defined in such a way that it limits the search space to the
non-dominated space. This is done by substituting Equation (38) into Equation (33).

EHV I(µ,σ,P .r) =

∫
Rm

HV I+(P ,y, r) · ξµ,σ(y)dy

=

∫ ∞
y1=−∞

· · ·
∫ ∞
ym=−∞

n+1∑
i=1

λm[Si ∩∆(y)] · ξµ,σ(y)dy (39)

For the bi-objective optimization, this reduces to,

EHV I(µ,σ,P .r) =

∫ ∞
y1=−∞

∫ ∞
y2=−∞

n+1∑
i=1

λ2[Si ∩∆(y)] · ξµ,σ(y)dy (40)

Then, this expression can be simplified further by using the fact that Si ∩∆(y) is non-
empty if and only if a vector y dominates the non-dominated space with respect to yi
and yi−1.

EHV I(µ,σ,P .r) =
n+1∑
i=1

∫ y
(i−1)
1

y1=−∞

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆(y)] · ξµ,σ(y)dy (41)

The summation is taken out in Equation (41) as the integration is a linear mapping.

Having a closed-form expression of EHVI, the most natural way is to express Equa-
tion (41) using Equation (35). To do this, the integral domain of Equation (41) is de-
composed to efficiently decompose the integration bounds as,

EHV I(µ,σ,P .r) =
n∑
i=1

∫ y
(i)
1

y1=−∞

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆(y)] · ξµ,σ(y)dy

+
n∑
i=1

∫ y
(i−1)
1

y1=y(i)

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆(y)] · ξµ,σ(y)dy

+

∫ y
(n)
1

y1=−∞

∫ y
(n+1)
2

y2=−∞
λ2[Sn+1 ∩∆(y)] · ξµ,σ(y)dy (42)

Note that the equation is decomposed in a different way as in the original method to
make it compatible with the defined bounds of the strips, which will become more
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clear after the full derivation of the equation. As a consequence, the computation of
the last strip is excluded from the decomposition, and the integral term of the last strip
is added as an additional term.

Now, each term of Equation (42) can be written without an integral in a closed form
using the Ψ function of Equation (34) and the relation Equation (35).

Evaluating the first term of Equation (42):

n∑
i=1

∫ y
(i)
1

y1=−∞

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆(y)] · ξµ,σ(y)dy

=
n∑
i=1

∫ y
(i)
1

y1=−∞
(y

(i−1)
1 − y(i)

1 ) · ξσ1,µ1(y1)dy1

∫ y
(i)
2

y2=−∞
(y

(i)
2 − y2) · ξµ2,σ2(y2)dy2

=
n∑
i=1

(y
(i−1)
1 − y(i)

1 )

∫ y
(i)
1

y1=−∞
ξσ1,µ1(y1)dy1

∫ y
(i)
2

y2=−∞
(y

(i)
2 − y2) · ξµ2,σ2(y2)dy2

=
n∑
i=1

(y
(i−1)
1 − y(i)

1 ) · Φ

(
y

(i)
1 − µ1

σ1

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2) (43)

As it can be seen from the equation, decomposition is done in a way that it exploits that
the strips are bounded in the first objective direction by the difference in its objective
value which is a constant real value. This can be conveniently employed up to the last
strip. However, this does not apply for the last strip where the lower bound of the strip
is set to be −∞ in both first and the second objectives. This is also evident from the
last form of Equation (43) that it is not solvable with the first objective sentinel value
of −∞.

Similarly, evaluating the second term of Equation (42):

n∑
i=1

∫ y
(i−1)
1

y1=y(i)

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆(y)] · ξσ,µ(y)dy

=
n∑
i=1

∫ y
(i−1)
1

y1=y(i)
(y

(i−1)
1 − y1) · ξσ1,µ1(y1)dy1 ·

∫ y
(i)
2

y2=−∞
(y

(i)
2 − y2) · ξµ2,σ2(y2)dy2

=
n∑
i=1

(
Ψ(y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−Ψ(y

(i−1)
1 , y

(i)
1 , µ1, σ1

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

(44)

For the last term, since both of the lower bounds tend to −∞, Ψ function can be used
directly as follows:
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∫ y
(n)
1

y1=−∞

∫ y
(n+1)
2

y2=−∞
λ2[Sn+1 ∩∆(y)] · ξµ,σ(y)dy

=

∫ y
(n)
1

y1=−∞
(y

(n)
1 − y1) · ξσ1,µ1(y1)dy1 ·

∫ y
(n+1)
2

y2=−∞
(y

(n+1)
2 − y2) · ξµ2,σ2(y2)dy2

= Ψ(y
(n)
1 , y

(n)
1 , µ1, σ1) ·Ψ(y

(n+1)
2 , y

(n+1)
2 , µ2, σ2) (45)

examining the resulting terms of the full Equation (42), it can be seen that the modified
term from Equation (45) does not add additional computational complexity onto the
original form. It still requires the same number of computation n + 1 that requests
O(1). Further discussions on computational complexity will be given in the end of the
chapter.

Lastly, each term can be fully expressed using the relation given in Equation (35) which
is straightforward.

4.2.2 WFG-based decomposition method

The second method uses so called WFG-based decomposition, which is a slightly dif-
ferent approach compared to the efficient 2D method of the previous section. The first
step of this method is to re-express the hypervolume improvement in terms of the in-
dicator function. Now, if you recall the expression of the probability of improvement
from Section 3.2.2, you can notice that the hypervolume improvement itself can be
expressed just by an indicator function if one explicitly gives the conditions for the
domination within this function. This has been formally written by Feliot et al. [39].
Following this approach, the hypervolume improvement of y for a given Pareto front
P can be re-written as follows:

HV I(y,P) =

∫
nd(P)

1y≺y′ dy′ (46)

here, 1(·) is the indicator function for domination of y. Compared to the probability of
improvement, where the indicator function was multiplied to the PDF and integrated
to obtain a probability, it is now integrated over the non-dominated space for the given
Pareto front. The difference here is that the information about the non-dominated
space is given as an integral bounds instead of embedding it into the indicator func-
tion as in the probability of improvement. Then the derivation for the EHVI equation
continues as:
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EHV I(y,P) = Ey
[∫

nd(P)

1y≺y′ dy′
]

=

∫
nd(P)

Ey(1y≺y′) dy′

=

∫
nd(P)

P (y ≺ y′) dy′ (47)

One of the distinctive aspects of using this modified equation is that it eases the de-
composition of the integral domain of EHVI computation by transferring the problem
of computing the EHVI in the non-dominated space into computing the integral of the
cumulative probability P (y ≺ y′) over the entire objective space. In this way, it is pos-
sible to select either in the non-dominated space or the dominated space (hypervolume
in this case) for the decomposition. That is, the integral can be either computed directly
within the non-dominated space or it can be computed by subtracting the integration
of the dominated space from the entire domain. Then, the question is: why would
one prefer to compute the integral over the dominated space than the non-dominated
space? One rather practical reason is that if we compute the over the dominated space,
we can utilize many of the already existing efficient algorithms for computing the hy-
pervolume indicator.

In fact, two different algorithms, the grid-based algorithm that decomposes the do-
main into m-dimensional disjoint boxes by Hupkens et al. [22] and the WFG-based
algorithm that decomposes the dominated space - hypervolume - by While et al. [32]
were compared by Zhao et al. in [20]. According to Zhao et al., the grid-based al-
gorithm, despite the fact that it is intuitive and easy to implement, is undesirable as it
contains a high number of integrals which increases computational cost and has certain
requirements in grid structure.

Similar to the efficient 2D method, the integrand of Equation (47) can also be expressed
as:

P (y ≺ y′) =
m∏
j=1

Φ

(
y′j − µj
σj

)
(48)

where Φ(·) denotes the cumulative distribution function.

One of the main features of the WFG-based algorithm is the decomposition of the dom-
inated space in high-dimensional "boxes". Formally defining this box to be B(u, l) that
spans (l1, u1]× (l2, u2]× · · · × (lm, um], the full integral can be discretized for grid-based
boxes as in Equation (49). Here, δ(B(u, l)) indicates the evaluation of Equation (47)
in each box bounded by the upper bounds u = (u1, u2, . . . , um) and the lower bounds
l = (l1, l2, . . . , lm).
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δ(B(u, l)) =

∫
B(u,l)

m∏
j=1

Φ

(
y′j − µj
σj

)
dy′ =

m∏
j=1

∫ uj

lj

Φ

(
y′j − µj
σj

)
dy′j (49)

using the Ψ function from Equation (34) and the relation from Equation (35), Equa-
tion (49) can be expressed in a closed-form as:

δ(B(u, l)) =
m∏
j=1

[Ψ(uj, uj, µj, σj)−Ψ(lj, lj, µj, σj)] (50)

y1

y2

r

y(1)

y(2)

y(3)

y(4)

y(n)

u

l

y2(3)

y2(4)

y1(1) y1(2)

Figure 11: Dashed lines indicate the decomposition of the objective space according
to the non-dominated set P . The green box in the non-dominated space
represents B(u, l). Adapted from [20].

With this capability of decomposing the feasible domain in boxes, any efficient algo-
rithm can be applied to evaluate Equation (50). In this thesis, the WFG algorithm by
[32] is adapted, which is known to be the state-of-the-art algorithm for the exact calcu-
lation of the hypervolume [42].

The WFG algorithm is developed originally as an efficient algorithm for the hypervol-
ume computation. In the original algorithm, the main idea is to compute the hyper-
volume by summation of hypervolume improvements ("exclusive hypervolumes") as
shown in Equation (51), which was first introduced by [36].

HV (P) =
n∑
i=1

HV I(yi, {yi+1, . . . ,yn}) (51)

In this equation, for the given non-dominated set P = {y1, . . . ,yn}, its hypervolume
is computed as a sum of the hypervolumes of each element yi with respect to a set
S = {yi+1, . . . ,yn} for i = 1, . . . , n.
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Then, to make computation more efficient, two ways were introduced by [32]. Firstly,
the concept of so-called limit set is introduced to identify and include only contributing
points into the calcuation. In addition, recall from Section 3.2.2 that the hypervolume
improvement is expressed as the difference of the hypervolume. Combining these
two concepts, the hypervolume improvement in Equation (51) can be computed as the
difference in the hypervolume of y and and the hypervolume of a limit set, denoted as
S ′ as follows:

HV I(y, S) = HV ({y})−HV (S ′) (52)

here, the limit set is defined as S ′ = {limit(s,y) | s ∈ S}, where

limit(s,y) = (max(s1, y1), . . .max(sm, ym)) (53)

by filtering the original set S to its limiting subset, it essentially simplifies the compu-
tation and reduces computational cost by reducing the number of integrals that need
to be evaluated. The computation can be simplified further by filtering out the dom-
inated subset of S ′. According to While et al. [32], during this process the set looses
about 50% to 80% of its elements, which highlights the efficiency in applying this fil-
tering procedure. Then, the computation of Equation (52) can be done recursively by
Equation (51). Consequently, this method computes the hypervolume by sequencially
summing over the difference in the hypervolume.

Extending this algorithm to compute the EHVI is straightforward. First, Equation (50)
is computed over the dominated space following exactly the same principle for com-
puting the hypervolume, and then it can be subtracted from the integral of the entire
domain bounded by r:

EHV I(y,P) = δ(B(r,−∞))− δ(d(P)) (54)

where the second term of Equation (54) is defined as:

δ(d(P)) =

∫
d(P)

m∏
j=1

Φ

(
y′j − µj
σj

)
dy′ (55)

Afterwards, Equation (55) can be computed following the exact procedure that was
described for computing the hypervolume. Applying the same principles,

δ(d(P)) =
n∑
i=1

(δ(d(yi))− δ(d(S ′))) (56)

The second term inside Equation (56) can be computed recursively. This recursive com-
putation is illustrated in Fig. 12, where the dominated subspace is defined by the Pareto
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front P = {y(1), . . . ,y(n)} and a reference point r. Here, for i = 2, the colored area
refers to the domain for δ(d({y(2)})). From the original limit set, S ′ = {y(3),y(4),y(n)},
the dominated elements, y′(4) and y′(n), are filtered, which means that the recursive
algorithm does not even have to be applied further for this case as the exact same
computation can be defined by one contributing point.

y1

y2

r

y(1)

y(2)

y(3)

y(4)

y(n)

y'(3) y'(4) y'(n)

𝛅(d(S'))

Figure 12: Illustration of an iteration in computing δ(d(P)) recursively. Colored area
in the dominated subspace refers to the domain for δ(d({y(2)})) where the
dashed lines indicate the integral bounds for δ(d(S ′)). The elements in the
dominated subset of S ′, y′(4) and y′(n), have been filtered out.

Finally, substituting Equation (56) into Equation (54) gives,

EHV I(y,P) = δ(B(r,−∞))−
n∑
i=1

(δ(d(yi))− δ(d(S ′))) (57)

The first term, although it is correctly defined in terms of its actual bounds, it can be
somewhat misleading as its lower bound tends to −∞ and that Equation (50) does
not hold directly. Furthermore, Equation (57) shows that applying the WFG-based
recursive algorithm altered the computation by converting the integration problem
on the complex domain into a series of summation and subtraction. As discussed
previously, the key point of decomposition schemes for EHVI is to reduce the number
of computation as much as possible.

Throughout the derivation of the WFG-based recursive algorithm, it has been shown
how the majority of the computations could be excluded by defining a limit set and
applying filtering procedure. Hence, it is not unpredictable that this algorithm outper-
forms compared to other algorithms in terms of efficiency, especially in high dimen-
sional problems where m > 3.
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4.3 Implementation

Having discussed the theoretical background of the methods used for the multi-objective
Bayesian optimization framework, in this section, practical implementation details of
the framework are explained, which is coded in Python. Throughout the program
utilizes various modules that are available within DLR’s in-house toolbox SMARTy,
namely the initial DOE sampling, surrogate model construction as well as the opti-
mization of the acquisition function.

In Section 4.3.1, the structures of the some of the main algorithms are presented and
explained. The implementation is discussed in terms of computational complexity
and efficiency in Section 4.3.2. Furthermore, additional adjustments for practicality are
described in Section 4.3.3. Finally, computational budget and the convergence criteria
are discussed in Section 4.3.4.

4.3.1 Algorithms

Algorithm 1 Multi-Objective Surrogate Based Optimization

Input: m Objective functions f(x), bounds, size of initial DOE n, computational bud-
get

Output: Pareto front P
1: x← Compute initial DOE using LHS or Sobol ∗

2: y ← Evaluate initial DOE by calling objective functions f(x)

3: S ← ((x1,y1), . . . , (xn,yn))

4: while computational budget > 0 do
5: Train m Gaussian Processes (GPs) models with S ∗

6: P ← ParetoFilter(y) . Sort non-dominated subset of y
7: if Acquisition Function is efficient 2D EHVI then
8: Si ← Set up the partition bounds
9: end if

10: xinfill ← Use an optimizer∗ to find an infill point by a chosen EHVI algorithm
11: y ← Evaluate an infill point by calling objective functions f(xinfill)

12: Update S ← S ∪ {(xinfill, f(xinfill)}
13: end while
14: P ← ParetoFilter(y)
15: return P . (∗) : DLR’s SMARTy modules

Algorithm 1 shows the process of the complete multi-objective surrogate based opti-
mization framework. The program starts with constructing the initial sampling plan
(DoE) unless provided by a user. The initial sampling is done by either Latin Hyper-
cube Sampling or Sobol which are both available in SMARTy. Then, the initial sampling



34 Master Thesis

plan is evaluated by calling the objective functions provided. Provided optimization
bounds are normalized such that the decision variables have a scale of (xu,xl) = [0, 1]n

throughout the optimization. According to [1], this scaling of decision vectors can pre-
vent potential scaling issues in optimization.

Then, it enters the main optimization or the infill loop with the given computational
budget. The computational budget and the termination criteria of the program will
be discussed in detail. The first task in the optimization loop is to build the surrogate
model, specifically, Gaussian processes models are constructed using the module in
SMARTy with the initial sampling plan. Next, the first set of the Pareto front is com-
puted with the function that filters out the dominated subset from the given set. A user
can choose either the efficient 2D EHVI or the WFG-based EHVI algorithm for the ac-
quisition function. An additional pre-processing is done to define the partition bounds
in case the efficient 2D EHVI is used. Then, the infill optimization can be processed
with a single-objective optimizer. In this thesis, the differential evolution method from
the SMARTy module is selected. For this, the corresponding EHVI function along with
the scaled bounds and estimations from the Kriging model are used. Then, an opti-
mizer finds a promising point by maximizing given EHVI function. When the opti-
mizer returns the optimal design point x ∈ Rn, the corresponding objective value is
computed, which is then appended to the data set for training the surrogate models.
This process is repeated until the computational budget is exceeded. In the end, it
returns the computed Pareto front.

Algorithm 2 Efficient 2D EHVI algorithm

Input: x, m Gaussian Processes (GPs), partitioned bounds set y
Output: Expected Hypervolume Improvement (EHVI)

1: µ(x),σ(x)← obtain from the GPs
2: EHVI← 0 initialize
3: for all elements in y − 1 do
4: a←

(
Ψ(y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−Ψ(y

(i−1)
1 , y

(i)
1 , µ1, σ1))

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

5: b← (y
(i−1)
1 − y(i)

1 ) · Φ
(
y
(i)
1 −µ1
σ1

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

6: EHVI← adds a and b

7: end for
8: EHVI← adds the last fraction of the integral
9: return EHVI

Algorithm 2 shows the procedure for computing the EHVI using the efficient 2D method.
Apart from the modifications that were explained in the previous section, the imple-
mentation of this method is straightforward. As it was shown during the derivation of
the equations for this method, all unnecessary computations are eliminated such that
the final form of the equation is expressed specifically for 2D. In fact, this was evident
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since the beginning of the formulation when the strips Si were being defined in terms
of the integral bounds in Rm.

The algorithm for the WFG-based EHVI computation is shown in Algorithm 3. Unlike
the 2D method, this algorithm takes any m > 2. To point out a few of the differences
in this algorithm compared to the 2D method, first, it explicitly requires the reference
point for the computation. As explained in the previous section, the main computa-
tional effort is within the hypervolume of the dominated subspace which is computed
through the function DOMINATEDEHVI. It can be seen that this function is called recur-
sively when the number of elements in the input F exceeds 1. For other cases, it can be
computed directly using function DELTA. Finally, this is subtracted from δ(B(r,−∞))

to get the EHVI value.

Algorithm 3 WFG-based EHVI algorithm

Input: x, m Gaussian Processes (GPs), Pareto front P , reference point r
Output: Expected hypervolume improvement (EHVI)

1: µ(x),σ(x)← obtain from the GPs
2: δ(d(P))← DOMINATEDEHVI(P)
3: δ(B(r,−∞))← product of Ψ(rj, µj, σj)

4: return EHVI← δ(B(r,−∞))− δ(d(P))

5: function DOMINATEDEHVI(F)
6: for all elements in F do
7: if number of elements in F > 1 then
8: for j in all elements do
9: δ(d(F))← sum over PORTIONEHVI(F ,j)

10: end for
11: else
12: δ(d(F))← compute DELTA(F) directly
13: end if
14: end for
15: return δ(d(F))

16: end function
17: function PORTIONEHVI(M, j)
18: r ← Compute DELTA(j th element ofM)− DOMINATEDEHVI(M′)

19: .M′ refers to the dominated filtered limit subset ofM
20: return r

21: end function
22: function DELTA(q)
23: return product of Ψ(rj, µj, σj)−Ψ(q, µj, σj) in each objective dimension
24: end function
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4.3.2 Computational complexity and efficiency

Computational complexity and efficiency of computing the EHVI needs to be addressed
as apart from the evaluation of the black functions, this is the computationally most ex-
pensive part of the code. This is computationally expensive as it is called many times
during the optimization of the EHVI while searching for an infill point.

According to [35], the efficient 2D algorithm is computed with an asymptotically op-
timal computational complexity of O(n log n), where n denotes the size of the non-
dominated set. On the other hand, the WFG-based algorithm has a complexity that
is proportional to the number of decomposed boxes. Although, this method has a
worst case computational complexity of O(m · 2n) when the number of decomposition
is 2n − 1, it has been demonstrated that the average complexity is much smaller for
most real-world simulations [20].

Numerical experiments are conducted by Zhao et al. [20] to compare the computa-
tional complexity of the different methods for computing the exact EHVI. For this a
randomly generated non-dominated set is created and used for the EHVI computa-
tion. From the results for m = 3, it has been shown that the WFG-based method
outperforms most of the other decomposition methods, e.g. the grid-based method.
While, the WFG-based method is shown to have the lowest computational complexity
for m > 3, for m → n = 10, the computational complexity is bounded by the worst
case complexity O(2n).

In order to increase the efficiency, sorting of the non-dominated set is suggested by [32]
and [35]. For the efficient 2D approach, it is possible to achieve a linear time complex-
ity O(n) by adding the sorting process for the non-dominated set before computing
the EHVI, which means that the computational complexity is bounded from below
by O(n) [35]. For the case of the WFG-based algorithm, it is possible to increase its
efficiency by exploiting the features of the functions in the algorithm. From the WFG-
based algorithm in Algorithm 3, it shows that the more elements of the limit subsetM
are dominated, and thus, filtered, the number of computation within DOMINATEDE-
HVI can be limited and reduced, which results in faster algorithm. This can be imple-
mented also by sorting the Pareto front set such that they are monotonically increasing
in one of the objectives. Although there are more complicated sorting systems that
produce even more dominated points, sorting in a single objective is cost efficient yet
effective method [32]. This sorting procedure has been implemented within this thesis
by sorting the non-dominated set by its 1st objective before optimizing the EHVI. It is
expected to increase efficiency for both, the efficient 2D and the WFG-based methods.

Reducing computational complexity and increasing the efficiency of the algorithm is
surely one of the particular interests when computing the exact EHVI in the surrogate
based solving multi-objective optimization problems, as it affects the running time of
the algorithms, especially during the optimization of the EHVI. However, from a more
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practical point of view, does it still play a significant role in terms of running time? In
applications, particularly for aerospace applications, evaluation of one objective value
from the black box functions can take one hour to several hours, e.g. CFD, CAA or FEM
simulations. Therefore, considering the total running time, increasing the efficiency of
the EHVI algorithm has barely any effect. What is more effective in terms of the total
running time would be to reduce the number of function evaluations.

4.3.3 Penalty for invalid objective values

The methods and algorithms described up until now work under the assumption that
the returned objective values from calling the black-box functions are valid in a sense
that the numerical simulations involved have been converged. However, this is not
always the case. For instance, in CFD simulations, problems can arise during mesh
generation that result in invalid CFD solutions. Sometimes, it is even possible that
the numerical simulations crash and do not return anything. In order to treat this is-
sue, penalty values have been introduced to handle all the above-mentioned situations
where the returned values of the black-box functions are considered invalid. Thereby,
it is possible to train the surrogate models for the valid and promising areas as well as
the invalid areas.

When the black-box functions are called, if the evaluated objective values are invalid,
e.g. in terms of accuracy etc., it needs to return None type in stead of a float. Then, after
constructing the initial design of experiments, the code checks whether all the evalu-
ated objective values are valid; if not, it replaces the invalid results with the penalty
value. The penalty value is defined as the worst value in that objective multiplied by
the penalty level given by a user.

penalty value = max(yi)× penalty level for i = 1, . . . ,m (58)

Therefore, during optimization, an optimizer will perceive the area around this penal-
ized point to be infeasible and avoid this region.

Unfortunately, since this is essentially altering the Gaussian processes in an artificial
way, although it does help an optimizer to avoid potentially invalid regions in the
decision space, it can also hinder an optimizer from approaching promising regions
where global minima could possibly be found. Therefore, for each multi-objective op-
timization problem, careful examination needs to be done to check the effect of the
penalty values and penalty level on the solution.
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4.3.4 Computational budget and termination criteria

As it is seen from Algorithm 1, the main optimization loop continues until the given
computational budget is exceeded or the convergence criteria is met. The most gen-
eral way to define a computational budget in multi-objective optimization would be
in terms of the number of function evaluations, particularly when computationally
expensive black-box functions are involved. Thus, the basic computational budget is
set to be a prescribed number of infill points, i.e. additional number of the function
evaluations after the completion of the initial design of experiments.

Of course, it is possible to implement the performance metrics discussed in the previ-
ous chapter as a termination criteria. This is not a problem if one has an idea of what
the optimal Pareto Front should be, e.g. shape and whether it should be discrete or
continuous etc. For most applications, however, this is not known in advance. Once
the analysis is done such that the optimal Pareto front can be estimated to a certain
extent, the general performance metrics for the multi-objective optimization could be
implemented as a termination criteria, e.g. hypervolume improvement. In this way,
for newly encountered multi-objective optimization problems, this is another trade-off
that needs to be considered.

One simple and effective way to check the convergence, which is also implemented
in this thesis, is to set the minimum number for the non-dominated set. Setting this
criteria also needs some knowledge of the optimal Pareto front in advance, as the total
execution time could become unexpectedly large when a high number is given for the
required minimum number of non-dominated set. For analytical problems, this ap-
proach can almost always help, as it can be more difficult to estimate the total number
of function evaluations required. For practical applications, this convergence criteria
is recommended only if there is no given computational budget in terms of total exe-
cution time. In such cases it is still recommended to set a reasonable maximum infill
sample budget.

The difficulties involved in setting the convergence criteria of multi-objective optimiza-
tion mainly come from the fact that there is no absolute metric that can be used without
any prior knowledge on the Pareto front. For instance, in single-objective optimization,
since the solution is purely quantitative, more direct metrics can be used for ensur-
ing local convergence, e.g. improvement in the objective values or Euclidean distance
between successive infill points. Furthermore, for ensuring the exploration in single-
objective optimization, Forrester et al. [1] suggested validation techniques, e.g. MSE
of successive surrogates. However, for multi-objective optimization, applying these
criteria become inefficient as it could result in spending available computational bud-
get to improve the quality of the surrogate around regions that are far from the Pareto
front or even invalid. The higher the dimension of the problem, avoiding this waste of
budget could become even more challenging.



Master Thesis 39

5 Analytical Problems

Even though the total computational time can be substantially saved by using surro-
gate models and performing surrogate based optimization, it would still be difficult
to conduct as many numerical simulations using the expensive simulations, especially
with the time constraints. Therefore, numerical experiments have been completed us-
ing analytical functions, first to validate the method that has been implemented, and
second to investigate certain aspects of the settings in multi-objective Bayesian opti-
mization, and lastly to compare the results obtained with other existing multi-objective
optimization methods, particularly with evolution algorithms and genetic algorithms.

In this way, any information acquired from this analysis would not only be meaningful
on its own, but it could also provide useful prior knowledge for solving applied prob-
lems that are difficult to solve as the optimal Pareto front is not known. Still, this does
not entail that the analytical problems are any less challenging, because the functions
involved are designed to be particularly challenging in order to test the various aspects
of the multi-objective optimizer.

Considering that in many practical applications, available computational resources are
limited by expensive evaluation of black-box functions, the total number of function
evaluations in the following tests is kept relatively small in order to create a similar
circumstance.

For this, few of the well-known test functions have been selected as test cases. The first
two cases are the bi-objective problems that have different number of design variables
as well as different shape of the optimal Pareto front, and the last case has 3 objec-
tives. First test case has been carried out with Poloni’s test function in Section 5.1. Sec-
ondly, a test function with a concave optimal Pareto front, namely the Fonseca-Fleming
function, is solved, and its results are presented in Section 5.2. Lastly, the 3D Viennet
function is solved, and the relevant results are given and discussed in Section 5.3.

5.1 Poloni’s Test Function

The Poloni’s test function comprises of two objective functions and two decision vari-
ables with a given bound. It has some of the typical properties of many engineering
design problems such that it has multi-modal behavior as well as sufficient smoothness
[9].

5.1.1 Problem formulation

The Poloni’s two-objective test functions and the bounds for the decision variables are
given as follows:
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minimize

 f1(x) = 1 + (A1 −B1(x1, x2))2 + (A2 −B2(x1, x2))2

f2(x) = (x1 + 3)2 + (x2 + 1)2
(59)

where xi ∈ [−π, π] for i = 1, 2

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1(x) = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2(x) = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

5.1.2 Results

The result of the multi-objective optimization is shown in Fig. 13. The initial sampling
is completed by Sobol method with a total of 60 initial sample points. Then the infill
budget is set to 40, resulting in the total 100 function evaluations. From the plot, it
can be seen that the computed Pareto front aligns well with the known optimal Pareto
front. The small gaps in between the solution at f1 > 2 will be filled accordingly
with the increased number of function evaluations. Along with its Pareto front, the
dominated sampled points are also plotted which are used for Gaussian processes.
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Figure 13: Result of the computed Pareto front with 100 function evaluations

Since Poloni’s two-objective function is a popular test case for multi-objective opti-
mization, results obtained using various multi-objective optimization techniques have
been reported in many literature. In [37], it is reported that the Pareto front was ob-
tained after 600 function evaluations using a variant of differential evolution method.
In [9], the optimization is performed using multi-objective genetic algorithm with 50
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individuals evolved for 50 generations, resulting in 2500 function evaluations. This
demonstrates that the method taken for this thesis, i.e. surrogate based optimization
with EHVI, has a capability of solving the multi-objective optimization in a more effi-
cient way than some of the conventional approaches.

5.1.3 Analysis of the effect of the initial DOE

In order to investigate how the size of the initial DOE affects the accuracy of the ini-
tial surrogate model as well as the final Pareto front, optimization is performed for 3
different cases where every case has a different size of the initial DOE and the number
of infill points. For fair comparison, the total computational budget, i.e. the number
of function evaluation, is kept constant and set to N = 60. Therefore, another signifi-
cance of the following numerical experiments is to investigate the efficient distribution
of the computational budget between the initial DOE and the infills to a certain extent.
While the LHS method is used for the initial DOE sampling, the efficient 2D method
is taken as an acquisition function. And, the reference point is set to (70, 70). The first
optimization case is performed with 5 initial DOE samples and 55 infill points. The
resulting Pareto front is shown in Fig. 14, where along with the computed Pareto front
and the optimal Pareto front known, the initial Pareto front, which refers to the Pareto
front of the initial DOE samples, is given.
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Figure 14: Result of the optimization with the 5 initial DOE and 55 infills

From the plot, it can be seen that although the initial Pareto front is off from the com-
puted or the optimal Pareto front, this is still nicely aligning with them, which implies
that the selected initial DOE sampling method was able to cover the objective space.
Then, after 55 iterations, it was able to capture the whole trend of the optimal Pareto
front.
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The second case is performed with 13 initial DOE and 47 infill points, and the resulting
Pareto front is given in Fig. 15. Compared to the previous result, although there is
no obvious discrepancy within the computed Pareto front, improvement in the initial
Pareto front is clearly visible in a sense that the discrepancy between the initial Pareto
front and the optimal Pareto front has been reduced for this case. This implies that it
is possible to obtain the better initial Pareto front with the increased number of initial
DOE.
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Figure 15: Result of the optimization with the 13 initial DOE and 47 infills

The last case is performed with 20 initial DOE and 40 infills, and the resulting Pareto
front is shown in Fig. 16. Here, it was able to nicely obtain the full Pareto front. One
distinctive difference, compared to the previous cases, is that it has much larger and
widely distributed set of the initial Pareto front. In a way, this is quite obvious and
expected, as the increased number of the initial sample should provide a higher chance
of better coverage in the objective space. However, strictly comparing the discrepancy,
i.e. the distance to the optimal Pareto front, this result does not seem to perform any
better compared to the second case, for instance, the three initial Pareto front points
from Fig. 15 are much closer to the optimal Pareto front than they are for this case.
From the perspective of optimization using the 2D acquisition function, this implies
that the results obtained in the previous case are likely to be premature progress due
to a lack of samples to construct an accurate enough Gaussian processes. Aside from
its distribution of the initial Pareto front, what the reduced initial sampling size would
effect is the accuracy of the initial surrogate model. And the key point here is that
the initial surrogate model does not need to be an error-free replication of the actual
objective function, instead, it needs to be accurate enough for an optimizer to be able
to identify the promising regions where the potential solutions reside.

The same optimization cases were performed using the Sobol sampling method as
well, and the results can be found in Fig. 17. This results show that discrepancies in the
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Figure 16: Result of the optimization with the 20 initial DOE and 40 infills

initial Pareto front for three cases are not as drastic as the ones obtained with the LHS.
Instead, it shows a consistent trend of the gradual convergence of the initial Pareto
front towards the optimal Pareto front, which suggests the possibility that the Gaussian
processes have been less affected by the size of the initial DOE that are generated using
the Sobol sequence.
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Figure 17: Results obtained using Sobol sampling using 5 (left), 13 (middle) and 20
(right) initial DOE

In order to further investigate the effect of the initial sampling size on the accuracy
of the initial surrogate model resulting from Gaussian processes, the initial surrogate
models of five different number of initial DOE were analyzed, which are 5, 8, 13, 16
and 20. Then, the corresponding errors were computed based on the 100 randomly
generated samples with a uniform distribution, and the initial sampling is completed
by the Sobol method. One rather an obvious prediction one can make is that with
the growing number of the initial samples used for constructing Gaussian processes,
the resulting surrogate model should become more accurate. And, this can be seen
clearly in Fig. 18 and Fig. 19 each of which shows the initial surrogate model f̂1 and f̂2

constructed with a different size of the initial DOE. From both figures, the first plot of
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each figure Fig. 18a and Fig. 19a are the plots of the actual objective functions, f1 and
f2 which are treated as black-box functions, and the black dots plotted over the surface
indicate the location of the samples that were used for the error computation. The dots
plotted over the surface of all the other plots in the two figures indicate the location of
the sample points of the initial DOE which were used to construct the initial surrogate
model.

First examining Fig. 18, there is a trend of f̂1 becoming more accurate with the increas-
ing size of the initial DOE, denoted as N . This is particularly apparent in the first three
cases: the flat regions where the values are much higher than the objective function
seems to be lowered just by adding three more samples to the initial sampling, and at
the same time, the surrogate model starts to capture the regions of the local minimum.
Then, from N = 13, it starts to identify more accurate landscape around these local
minimum. By N = 16, the surrogate model has identified more or less the entire local
minimum including the regions around (x1, x2) = [0, 2] which has not been identified
by the one with N = 13. Finally with N = 20, it was able to identify the regions with
local minimum as well as more accurate landscapes around these regions. Before go-
ing into a deeper analysis, a similar trend can be observed for the results of the second
objective function in Fig. 19, here, the Gaussian processes were able to properly cap-
ture a monotonically increasing landscape function due to simplicity as it only has one
optimum region. Thus, for this function, the Gaussian processes were able to identify
its optimum region already with N = 5, and it was able to capture the full curvature
as soon as it had N = 8.

This result, further explains the obtained Pareto front results for N = 5, 13 and 20.
First of all, premature convergence that occurred for the smaller N , could be due to
the inaccuracy of its initial surrogate model. Of course, there are other factors that
might potentially have affected the obtained result, e.g. error estimations by Gaussian
processes, besides that a well balanced search between exploration and exploitation is
generally expected using the EHVI. However, it is possible that its lack of knowledge
of the design space led to deterioration in exploration part compared to the case where
it started an optimization with a better knowledge of the design space. This suggests
that enough budget should be allocated for the initial DOE sampling in order to ensure
that the balance between exploration and exploitation is achieved within the limited
number of iterations.

For the direct comparison to the three optimization cases done with the LHS sampling,
the initial sampling size was increased further to N = 30. From the result in Fig. 20
(left), the similar result is shown as the previous result such that it not only has more
elements in the initial Pareto front, but also its distribution better aligns with the opti-
mal Pareto front. Eventually, it was able to better capture the full Pareto front just as
the result obtained using the LHS sampling. Furthermore, the total number of func-
tion evaluations was increased to 100. And, its result, in Fig. 20 (right), is shown to be
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Figure 18: objective function f1 and the Gaussian processes models f̂1 with different
size of the initial DOE (N )
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Figure 19: objective function f2 and the Gaussian processes models f̂2 with different
size of the initial DOE (N )
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improved further, and started to fill in the intermediate Pareto front points by exploita-
tion.
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Figure 20: Obtained Pareto front with increased number of initial DOE (left) and in-
creased total number of function evaluations (right)

Another perspective is that eventually, all three cases were able to obtain the trend of
the Pareto front that align well with the optimal Pareto front. This not only proves
the effectiveness of EHVI in exploration as well as exploitation, but also confirms that
the surrogate model does not need to be an error-free replicate of the actual black-box
function, in order to perform optimization. What is more important is a proper allo-
cation of computational budget between the initial sampling and the infills such that
the better Pareto front, in terms of its distribution as well as values, can be obtained
within smaller number of total function evaluations. Thus, going back to the results for
a moment, the initial surrogate model obtained with N = 20, or even N = 16 would
be considered adequate, and it would be unnecessary to further increase the size of
the initial DOE, unless it improves the Pareto front in the area of interest, e.g. extreme
points, or reduces the total computational budget. Nevertheless, how the function
evaluation budget is distributed between initial DOE and infill points depends on the
ultimate objective of each optimization problem. For example, if obtaining a full, con-
tinuous Pareto front is the main interest, the higher number of function evaluations
would be absolutely necessary.

The exact values of the computed errors are presented in Table 2 and Table 3 for f̂1 and
f̂2 respectively. These results are consistent with its graphical results such that a larger
size of the initial DOE results in more accurate surrogate model, and just as the pre-
vious results, it is particularly evident for the first three cases where the error reduces
drastically in theses first three cases. Therefore, this also shows that the efficient choice
of the size of the initial sampling could be N = 16 or 20.

Furthermore, it can be seen that the errors are higher for f̂1 in general compared to f̂2,
which is consistent with the graphical results where due to its simplicity. The initial
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Table 2: Errors in the surrogate models f̂1 with different size of the initial DOE

Size of the initial DOE 5 8 13 16 20

RMSE 10.2 6.235 2.61 1.76 1.403
NRMSE 0.198 0.122 0.0468 0.03068 0.0237

max. prediction error 20.02 13.7 7.57 5.22 4.308
normalized max. prediction error 0.388 0.268 0.136 0.09097 0.0729

surrogate model range 51.603 51.07 55.7 57.3 59.063

surrogate model f̂2 was able to mimic the function f2 already with the small number
of the initial DOE samples.

Table 3: Errors in the surrogate models f̂2 with different size of the initial DOE

Size of the initial DOE 5 8 13 16 20

RMSE 7.495 0.176 0.002 0.00239 0.00135
NRMSE 0.3603 0.003807 4.265e-05 5.103e-05 3.04e-05

max. prediction error 25.27 0.936 0.00616 0.01 0.0044
normalized max. prediction error 1.214 0.02021 1.32e-04 2.16e-4 9.85e-05

surrogate model range 20.8 46.3 46.8 46.8 44.5

5.2 Fonseca-Fleming function

The second analytical test case is completed by Fonseca-Fleming function which was
introduced by Fonseca et al. [8]. The optimal Pareto front of this function is concave,
which is particularly difficult to solve using some of the conventional methods, e.g.
weighting method. Thus, in this section, the capability of finding the concave Pareto
front is tested.

5.2.1 Problem formulation

The problem is formally written as follows:
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minimize


f1(x) = 1− exp

[
−
∑3

i=1

(
xi − 1√

3

)2
]

f2(x) = 1− exp

[
−
∑3

i=1

(
xi + 1√

3

)2
] (60)

where xi ∈ [−π, π] for i = 1, . . . , 3

5.2.2 Results

The result shown in Fig. 21 is obtained after 70 function evaluations, with the initial
sampling size and the number of infills being 20 and 40, respectively. The initial DOE
sampling is completed with the LHS, and the acquisition function used is WFG. The
result shows that the Bayesian optimization was able to detect the full trend of the
optimal Pareto front within 70 function evaluations.
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Figure 21: Result of optimization

The obtained Pareto front has been compared to the Pareto front computed by genetic
algorithm (GA), a variant of NSGA-II, in Fig. 22. Here, the genetic algorithm required
the population size of 60 and 60 generations in order to obtain the Pareto front that has
comparable quality to the one obtained by the Bayesian optimization with 70 function
evaluations, which again confirms the efficiency of Bayesian optimization in terms of
computational budget.
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Figure 22: Comparison in the Pareto front computed by 70 function evaluations and the
Pareto front obtained by genetic algorithm (GA) with 3600 function evalua-
tions

5.3 Viennet function

The Viennet function proposed by [44] consists of three objective functions with two
decision variables. Some of the challenges that are present in this test function involve
high-dimensional objective space, discontinuous Pareto optimal set and several local
minima in objective functions [19].

5.3.1 Problem formulation

The 3D Viennet function is formally written as follows:

minimize


f1(x) = 0.5 (x2

1 + x2
2) + sin (x2

1 + x2
2)

f2(x) = (3x1−2x2+4)2

8
+ (x1−x2+1)2

27
+ 15

f3(x) = 1
x21+y22+1

− 1.1 exp (−(x2
1 + x2

2))

(61)

where xi ∈ [−3, 3] for i = 1, 2

5.3.2 Results

The Viennet function was solved with the settings as summarized in Table 4.

The resulting Pareto front has been plotted as shown in Fig. 23. For validation, the
optimization has been performed by genetic algorithm with 5000 individuals that re-
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Table 4: Optimization settings for solving the 3D Viennet function
Size of the initial DOE Number of Infills Total number of function evaluations Initial sampling method Acquisition function

60 50 110 LHS WFG

quired overall 685000 function evaluations. And, the resulting Pareto front is plotted
along with the Pareto front computed by the Bayesian optimization framework.

f2 15.0
15.5

16.0
16.5

17.0

f10 2 4 6 8
f 3

0.10

0.04

0.02

0.08

0.14

0.20

Pareto front computed by GA
computed Pareto front

Figure 23: The computed Pareto front by Bayesian optimization plotted over the Pareto
front obtained by genetic algorithm (GA)

From Fig. 23, it can be seen that in general, the computed Pareto front is consistent with
the Pareto front of a genetic algorithm. Furthermore, although it did not fully capture
the Pareto front compared to the one obtained by the genetic algorithm, it was still able
to capture the trend of the most of the Pareto front.

The regions where it struggled to find the full Pareto front set were those with highly
non-linear shape of the optimal Pareto front, to be precise, where f1 > 4.5. In contrast,
it was able to find a rather dense set of Pareto front subset near f1 < 4, and the possible
scenarios are as follows. First of all, the Pareto front being very dense in one area
implies that there were no other regions that were likely to have the higher EHVI value,
assuming that the optimizer of an acquisition function was able to find the optimal
value. Then, this results in two remaining possibilities that first, according to the EHVI
criteria, the points around the sparse region were not likely to contribute enough to the
hypervolume compared to the points near the dense region. Another possibility is that
from the design space point of view, the optimizer did "explore" enough with enough
sampling around this region such that the estimated errors in this region are low, which
unfortunately were not the optimal points, and thus were dominated. In the end, the
EHVI is a criteria that balances between these possibilities, so the combination of the
two above-mentioned scenarios are also possible.

For a more realistic and feasible comparison, the Viennet problem was solved once
again by a genetic algorithm with a reduced number of the total function evaluations.
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Here, the number of function evaluations resulted in 10000 from 100 generations with
a population size of 100. And, the corresponding results are shown in Fig. 24.
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Figure 24: Pareto front plotted in 3D (top left), and against each axis

First, on the top left of Fig. 24, the full 3D plot is shown, where the computed Pareto
front is denoted by circles and the Pareto front obtained from genetic algorithm is
shown as triangles. Then, the projections on each axis are plotted on the top right,
f1 versus f2, and the bottom left, f2 versus f3, lastly at the bottom right, f1 versus f3.

Again, what is noticeable is the non-linear regions, where the Pareto front of GA seem
to have provided much dense solutions. Here, it seems that the Pareto front obtained
by the GA has captured the non-linearity to a certain extent. Arguably, this does not
necessarily mean that the Pareto front of GA has a better quality or that the subset
of the Pareto front of GA in these areas is outperforming that of the Pareto front of
Bayesian optimization, which can be shown by examining each plot more closely. For
instance, tracking one element of Pareto front that at f1 ≈ 4.5 and f3 ≈ 0.09, will call
this point A, and let one element of Pareto front of GA at f1 ≈ 5 and f3 ≈ 0.1 be point
B. Now, tracking these two points on all three planes by fixing the given f1 and f3

coordinates, it can be easily seen that the point B is dominated by point A.
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A possible reason for this discrepancy between the two Pareto fronts in this region
could be the difference in the Pareto sorting system. Considering that the genetic algo-
rithm used here is a variant of NSGA-II, throughout the sorting processes, the higher
ranks have been awarded to the solutions that contribute to uniformity. Therefore,
even though it does not progress as fast as a whole Pareto front, it is capable of keep-
ing the entire trend of the Pareto front.

On the other hand, for the EHVI, which is the hypervolume based criteria, full distribu-
tion does not mean anything, instead what is more important is to find a single, if not
many, point that can significantly contribute to the hypervolume improvement, and
if the expected amount of improvement in hypervolume is not sufficient, the EHVI
would rather make an optimizer to exploit or explore other areas where it finds the
higher expected improvement. And this is, of course, under the assumption that the
estimated error of Gaussian processes is also not high enough in this region, which
seems to be the case.

Nevertheless, another important point that should never be overlooked is the substan-
tial difference in the total number of function evaluations. The fact that the Pareto
front obtained by the GA required the total function evaluations that are nearly 100
times higher than that of the surrogate based optimization most certainly underscores
its efficiency as well as efficacy.
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6 Applied Problems

In this chapter, two applied problems involving aerodynamics and aeroacoustics are
solved. The goal of the analyses involved in this chapter is therefore to validate the
applicability of the implemented Bayesian optimization method towards more com-
plicated and applied problems.

6.1 Formulation

The main objective of the airfoil shape optimization is to find promising airfoil shapes
that results in a combination of reduced drag, reduced absolute value of pitching mo-
ment, and reduced noise. While reducing the drag has an effect of reduction in fuel
consumption, decrease in absolute value of pitching moment is expected to reduce the
trim drag. The problem is subdivided into the two separate problems, where in the
first problem, the focus is onto the aerodynamic optimization, where the aerodynamic
shape optimization has been carried out to obtain airfoil designs with mixed combi-
nation of lower drag and lower pitching moment for a fixed value of lift coefficient.
Next, the aerodynamic-aeroacoustic shape optimization has been completed to obtain
the Pareto front that contains airfoil designs with the mixed combination of lower drag,
lower pitching moment as well as lower noise. For both of the problems, the lift coef-
ficient is fixed to the target Cl,target, which is typically based on the weight estimation
and the wing loading, was set to be 0.792.

The main difference of these applied problems from the analytical problems is that
these are the actual black-box functions, meaning there is no prior information on the
shape of the Pareto front, feasible optimization settings or the computational budget
allocation. In analytical problems, this was not a critical issue as the time required by a
single function evaluation was relatively low, on the order of fraction of a second. Now,
we are dealing with the problems where one function evaluation would take about 5
to 10 minutes up to several hours, and therefore, because of the given time constraint,
it is infeasible to test every possible aspect of the EHVI for these applied problems:
this is particularly true for the second applied problem, the aerodynamic-aeroacoustic
shape optimization, where one function evaluation takes approximately 3 to 4 hours.
Therefore, more in-depth analysis has been completed, mainly in aerodynamic shape
optimization, where one function evaluation takes much less time, around 8 minutes.
In this way, it is also possible to utilize some of the information obtained from the
first problem to more efficiently perform the more time-constrained optimization case.
Therefore, in aerodynamic optimization, several tests were performed to verify the
effects of optimization settings on the computed Pareto front. Here, the primary ob-
jectives is to observe the effect of the different optimization settings and identify the
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suitable settings for the aerodynamic-aeroacoustic problem. However, this analysis is
by no means conclusive due to the given time constraint.

Then, based on the results obtained from the aerodynamic optimization, aeroacoustic-
aerodynamic optimization has been completed to find the Pareto front that contains
different airfoil designs with lower drag, lower pitching moment as well as the lower
noise generation.

For both of the problems, a fixed penalty value has been applied to invalid results, i.e.
cases when the mesh generation fails due to unreasonable geometry, or the resulting
Cl value of the flow simulation does not meet the target Cl value. Thus, whenever the
resulting Cl of the flow simulation is below the target Cl,target with a margin of 0.05,
the corresponding objective optimization is considered to be invalid, which is then
subsequently penalized by the set penalty value.

6.1.1 Airfoil geometry parametrization

In the airfoil shape optimization, one essential requirement is to choose the feasible
geometry parametrization method such that any change in airfoil shape can be well
represented by means of few selected design parameters, besides, it should be possible
to control the shape change to a certain extent with the given geometric parameters.
Throughout the analysis presented in this chapter, the class function/shape function
transformation (CST) geometry representation method is used for parametrizing the
airfoil geometry. In this method, various classes of geometries of an airfoil, e.g. round
nose, are represented by the analytic well-behaved functions [6]. The CST parametriza-
tion is briefly explained in the following through the fundamental CST functions, while
a more detailed description is available in [6].

Here, the upper and lower surfaces of a cambered airfoil is defined by Bernstein poly-
nomials of order n. Then, the set of component shape functions are defined by the
terms involved in the Bernstein polynomial as follows:

Si(ψ) = Kiψ
i(1− ψ)n−i (62)

where,

Ki =
n!

i!(n− i)!
(63)

here, ψ = x/c. Then, the class function for the airfoil is defined as follows:

Cn1
n2(ψ) = ψn1(1− ψ)n2 (64)
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n1 and n2 are the coefficients that are determined by the specific type of an airfoil,
where, for a typical NACA type airfoil n1 = 0.5 and n2 = 1.0. Then, the upper and the
lower surfaces are defined by the following equations,

ζu/l = Cn1
n2(ψ)S(ψ) + ψ∆ξu/l (65)

where ζ = z/c, and ∆ξu/l represent the trailing edge thickness ratios for the upper
and the lower surface respectively. S(ψ) for unknown coefficients Ai,u/l is expressed as
follows:

S(ψ) =
n∑
i=1

Ai,u/lSi(ψ) (66)

6.2 Aerodynamic Shape Optimization

For the aerodynamic shape optimization, the optimization objectives were the drag co-
efficient Cd and the absolute value of pitching moment coefficient |Cmy |while keeping
the constant lift coefficient at Cl,target. As a baseline airfoil, the RAE2822 airfoil as seen
in Fig. 25, is used, where its geometry is represented by a CST parametrization with 10
coefficients.
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Figure 25: Geometry of the RAE2822 airfoil

Since one of the most critical aspects of surrogate based optimization is to reach as
close as possible to the optimal Pareto front with a given computational budget, it is
important to test and verify the effect of different settings on the resulting Pareto front.
Therefore, in this analysis, several tests were performed to investigate the effect of the
different optimization settings which includes: the optimization bounds of the decision
variables, computational budget allocation between the initial DOE and the infills, the
penalty level, the sampling method for the initial DOE and lastly, the different acqui-
sition function. For all the tests performed, all other variables that are not being tested
were set constant.

The optimization problem is then written formally as follows:
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min
x∈Ω

(
Cd(x), |Cmy(x)|

)
(67)

where Ω = {x ∈ D} for D = [xL,xU ] ⊂ R10. Since the feasible bounds differ for each
test case, it is explicitly given for each optimization case. For evaluating the objectives,
DLR’s in-house flow solver TAU is used with a computational grid of 28572 nodes as
shown in Fig. 26.

Figure 26: CFD mesh of the RAE2822 airfoil

6.2.1 Effect of the optimization bounds

The optimization bounds in aerodynamic simulation that come from the CST variables
should be set wide enough to allow a meaningful shape deformation but restricted
enough to not generate too many invalid geometries for CFD simulations. To test the
effect of different bound settings, five test cases were performed, each with from the
widest bound (0.0, 1.0), (0.3, 0.9), (0.4, 1.0), (0.3, 0.8) and (0.4, 0.7), where 0 and 1 indi-
cate a variation with respect to original CST coefficients of -0.3 and +0.3, respectively.
Note that these bounds were applied for all 10 parameters of each case. For the num-
ber of the initial design of experiments, without any prior knowledge on the problem,
100 initial samples were used, which was suggested by Loeppky et al. in [23] to use
ten times the problem dimensionality for Gaussian processes. Then for all cases, the
total function evaluation was 500, with 400 infill iterations. The WFG is used as an
acquisition function, and for the initial sampling, the Sobol method is used. Finally,
for invalid results, penalty values have been applied with the penalty level of 2. The
resulting Pareto fronts are shown in Fig. 27.
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Figure 27: Pareto fronts obtained for the different bound settings

In the figure, the x-axis is the computedCd of the modified airfoil scaled by the baseline
airfoil Cdorig , and similarly for the y-axis, the obtained |Cmy |was scaled by the baseline
airfoil |Cmyorig

|. From the result, it can be seen that, in general, all the Pareto fronts re-
side nearby. Some of the noticeable points are that first, compared to the other bounds,
the bound (0.4, 0.7) did not make enough progress through the region Cd/Cdorig ≈ 1.25.
On the other hand, it made much more progress compared to the other cases in min-
imum drag region, i.e. Cd/Cdorig < 0.75. Particularly, around Cd/Cdorig < 0.75 and
|Cmy |/|Cmyorig

| > 0.7, this was the only case that was able to obtain a more or less full
distribution that dominates the solutions from the other cases.

One possible reason could be that this region in the objective space could have been
restricted by the upper values of the bounds in the design space, which made it more
difficult for the one with the lower upper bound to sample and progress in this region.
For instance, for the case with the bounds (0.4, 1.0) had no problem in progressing
this region, thus considering that the upper bound of this case, (0.4, 0.7), was the most
restricted, it is possible that this limited upper bound has resulted in restricted progress
in certain area compared to the other cases.

Similarly, the case with the bound (0.0, 1.0), although it did made more progress than
the case with the bounds (0.4, 1.0), it did not progress as much as the other three cases
in this region. Though, the issue for this case is slightly different. For this case, it had
the widest range in the bound, meaning that it had the least restricted exploration in
design space, thus it did not have a problem in identifying and progressing in this area
to a certain extent also. However, the least restricted exploration also means that it
is very much likely to have identified other promising regions compared to more re-
stricted bounds. Thus, for this case, it would require much more time to observe the
apparent progress in the Pareto front as a whole as it would not rapidly identify and
exploit few of the promising regions as other cases. However, having widest bounds in
the design variables mean that it can actually examine through the most various poten-
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tial designs, and then provide the optimum solution. The biggest problem for having
a wider bound, however, is that it can produce too many, unexpected invalid samples.
For this specific case, it produced the total 155 invalid samples meaning that nearly
one third of the total samples were used to mark the infeasible or invalid regions in
the design space instead of the actual optimization, which further explains the slowest
convergence of this case. Thus, having to explore more wider design space as well as
producing more invalid samples mean that this widest bound (0.0, 1.0) is infeasible for
the optimization with given time constraint. How the optimizer spends more budget
on exploration when the bounds are wider can be seen in Fig. 28. Here, it is evident
that the wider bound leads to infill locations that are far more distributed than more
restricted bound, where the infill evaluations are more clustered near the computed
Pareto front.

The restriction also occurs for the bound (0.3, 0.8) to a certain extent such that it seems
to have started to exploit the regions around 0.75 < Cd/Cdorig < 1. Then, among the
two remaining cases, it can be seen that the case with the bounds (0.3, 0.9) has resulted
in the most progressed Pareto front with an adequate distribution. Firstly, its solutions
near the knee of the curve of its own Pareto front are the knee of the curve of the entire
distribution of all Pareto fronts. Secondly, even though it does not provide the full
distribution along the Cd axis, its solution at Cd/Cdorig ≈ 1.4 actually dominates the
rest of the Pareto fronts form the other cases in Cd/Cdorig > 1.4 by being a solution
with the minimum value of |Cmy |/|Cmyorig

|. Although, its performance slightly reduces
for the lowest Cd, it is still adequate considering the other nearby solutions except for
the unusual solution from (0.4, 0.7), and in general, it provides the best solutions in
compromising region as well as the lowest Cmy . Lastly, it produced 38 invalid samples
which is large enough to mark the infeasible regions in the design space, but small
enough to make a progress in convergence of the Pareto front.

From the perspective of the airfoil shape optimization, the solutions atCd > 1.50 would
not be very interesting even if the solution of the bound (0.3, 0.9) was assumed to be
excluded. This is mainly because along this axis and the distribution of the Pareto
front, there is only a very small amount of reduction in Cmy , while the trade-off for
the Cd increases much more abruptly. Generally, the solutions at this region is also
expected to contribute less to the hypervolume, which could be the reason why most
of the cases have been produced more dense set of solutions near the knee point.

6.2.2 Analysis on the computational budget allocation between the initial DOE
and the infills

Having a larger set of initial DOE samples means that the optimization can be per-
formed with a more accurate initial surrogate model such that it does not have to
spend excessive infill budget to explore the design space. However, this means that
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Figure 28: Initial samples, infills and the Pareto front for the bound (0.4, 0.7) (left) and
(0.0, 1.0) (right). The design space exploration is clearly shown to be done
much more for the wider bound.

the number of infill iterations needs to be reduced for a fixed amount of the total com-
putational budget, which could lead to its reduced performance in exploitation. On the
other hand, having a larger infill budget means that the optimization would leverage
a less accurate, or even a largely erroneous, initial surrogate model. Thus, with a given
amount of the total computational budget, it is critical to find the balance between the
number of the initial DOE samples and the infill iterations that can achieve the most
optimal Pareto front.

Thus, in the following analysis, the effect of the computational budget allocation be-
tween the initial DOE sampling and the infills has been investigated. For this, a total
of four optimization cases were performed, where each case has a number of the initial
DOE samples of 100, 400, 800 and 1024. The total number of function evaluations was
fixed to be 1300. Therefore, each case had the infill budget of 1200, 900, 500 and 276.
Again, in order to minimize the effect of the other variables, other parameters were set
to be the safest or the most restricted, if possible. The optimization bound was fixed
to (0.4, 0.7) as this is found to be the safest bound which returned the least amount of
invalid samples. Furthermore, the Sobol method was used to generate the initial sam-
pling, the penalty level was set as 2, and the WFG-based EHVI is used as an acquisition
function. The resulting Pareto fronts are shown in Fig. 29.

The result shows the similar behavior of the case with the initial DOE of 100 to the
previous result of the bound (0.4, 0.7). Considering that the only difference for this
case compared to the previous case of the bound (0.4, 0.7) is the number of additional
infills, this result confirms that even after 700 more infill iterations, it was impossible
to progress through the region, Cd/Cdorig ≈ 1.2. However, for all other three cases
with the higher initial samples, it was possible to progress through this region. This
confirms that its upper bound is not the limitation that prevents it from progressing,
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Figure 29: Pareto fronts obtained for the different computational budget allocation

but the potential issue was more on its lack of exploration in the design space, and
similar to the previous case, this resulted in its immense exploitation at the lowest
Cd region. For the case with the increased number of initial DOE of 400, it seems
to have produced a better distributed Pareto front with particularly dense solutions
around the knee points. The next case with 800 initial DOE samples shows that it did
not progress to convergence as much as the previous case with 400 initial samples.
Again, this becomes even worse for the increased initial samples of 1024 as it has the
clearly visible region where it struggled to progress through near 0.8 < Cd/Cdorig <

1.0. The progress in the Pareto front for the four cases can be investigated further
by examining the change in the hypervolume indicator through the infill iteration as
shown in Fig. 30. First of all from the right plot, from the converged values of the
hypervolume indicator, the difference between the case with 100 initial samples and
the other cases are distinctive. Furthermore, the region where the initial samples of
1024 struggled is also visible, by being the second lowest, it also implies that this region
was smaller compared to the region where the 100 initial sample case struggled. Then,
the remaining two cases have converged to the Pareto front that resulted in the higher
hypervolumes, with the initial samples of 400 being the highest. Thus, this result in
the hypervolume indicator is consistent with the previous result of its Pareto front in
Fig. 29.

Apart from the converged values of the hypervolume indicator for the different cases,
what is noticeable is its progress in increasing the HV through the infill iterations.
First of all, comparing the two cases with the initial samples of 800 and 1024, it can be
seen that despite the fact that the two cases started with the different number of the
initial samples, it started with more or less the same HV, and this resulted in the better
final value for the case of 800 initial samples as it had more budget for infill iterations.
Another interesting point is that the case with 400 initial samples has nearly reached
its final HV value as soon as its 600th function evaluation, which has higher value than
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Figure 30: Change in hypervolume indicator (HV) for increasing number of infill iter-
ations

the converged values of all other cases. This suggests that the most efficient way to
reach the highest possible hypervolume for given cases is to allocate 400 evaluations
of the initial sample with the additional infills of around 600. Thus, in the following
analyses, initial samples of 400 and the infills of 800 were used which include some
margin to ensure the convergence.

For the hypervolume indicator computation, the reference point was set to (0.4, 0.4) for
the pre-scaled data. Usually, the hypervolume computation is affected by the reference
point, particularly when comparing the different Pareto fronts that are asymmetric, e.g.
one Pareto front set is more skewed towards one objective while the other is in the op-
posite situation. However, from the converged Pareto fronts in Fig. 29, the Pareto front
of all three cases are more or less well aligned except for the two visible gaps. One way
to check this skewness of the Pareto fronts would be to draw vertical lines of extreme
Pareto front sets along each objective. In this way, it is possible to check if there exists
extreme sets that cause abnormally larger hypervolume. Once these extreme abnor-
mality is checked, the difference in the hypervolume indicator consequently indicates
the difference along its distribution. Since no such abnormality exists in the results
from Fig. 29, the selected reference point used for computing the result in Fig. 30 can
be justified. Further examination on the reference value to compare the Pareto fronts
in "fairer" manner would require further analysis for given shape of Pareto fronts, e.g.
[21] suggests analysis to find the better reference point for Evolution Algorithm (EA).

Furthermore, in order to quantify and compare the errors involved in the initial surro-
gate model for the different number of initial samples, the errors involved in the initial
surrogate models that are constructed with 100, 200, 300, 400 and 800 initial DOE sam-
ples have been computed. Firstly, the initial surrogate model errors for Cd is shown in
Table 5. For this error computation, all the invalid samples, which are set to penalty
values in optimization, are excluded. For this reason, one could argue that the com-
puted errors are not fully representative of the actual surrogate models, however, from
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the perspective of surrogate based optimization, accuracy near the infeasible regions is
not of interest. Instead, what would be more valuable is accuracy near the promising
optimum region. For instance, from Table 5, where the RMSE gradually decreases for
the increased number of initial DOE samples, the RMSEs for the initial samples of 400
and 800 would be increased when the penalized samples are included. However, this
penalized samples are actually helping an optimizer to be aware of infeasible regions.
Thus, strictly from an optimization point of view, computed errors are indeed repre-
sentative of the actual surrogate models for all five cases. Again, another noticeable
point from Table 5 is the reduction in RMSE for adding additional 100 DOE samples to
the initial 100 samples, which could be an indication to use at least 200 samples unless
limited by the available computational budget.

Table 5: Errors in the initial surrogate models for Cd with different number of the initial
DOE samples

Number of initial DOE samples 100 200 300 400 800

RMSE 0.0221 0.0175 0.0159 0.01307 0.0144
NRMSE 0.1421 0.1127 0.1025 0.0842 0.0926

max. prediction error 0.0661 0.065 0.0582 0.04905 0.06704
normalized max. prediction error 0.4257 0.4188 0.375 0.316 0.432

surrogate model range 0.155

Next, the initial surrogate model errors for Cmy can be found in Table 6. Similarly,
for this result, penalized values are excluded from computation. Also, a similar trend
can be observed such that the RMSE gradually reduces for an increased number of the
initial DOE.

Table 6: Errors in the initial surrogate models for Cmy with different number of the
initial DOE samples

Number of initial DOE samples 100 200 300 400 800

RMSE 0.0118 0.009056 0.00835 0.00775 0.007044
NRMSE 0.111 0.0853 0.0787 0.0729 0.0663

max. prediction error 0.0376 0.0359 0.0327 0.0309 0.0362
normalized max. prediction error 0.354 0.338 0.3077 0.291 0.341

surrogate model range 0.106
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6.2.3 Effect of different penalty values

Having completed the analysis on the reasonable bounds as well as the computational
budget allocation, further investigation has been completed to observe the effect of
different penalty values on the final Pareto front. The higher penalty values would act
as the stronger markers for an optimizer to avoid infeasible areas in the design space.
However, this could induce certain unexpected artificial features in the underlying
surrogate model that can effect the resulting Pareto front. The smaller penalty value,
on the other hand, would limit this problem, but its values might not act as strong as
the larger value to mark the infeasible regions.

To assess this aspect, two optimization test cases were performed with penalty level of
2 and 3 respectively. Based on the previous analyses, a total of 800 function evaluations
were done with 400 initial DOE samples and 400 infills. Since it needs to produce
invalid samples to test the effect of the penalty value, the optimization bounds were
set to (0.3, 0.9). For the initial sampling, the Sobol method is used, and the WFG-
based EHVI is used as an acquisition function Then, the resulting Pareto fronts are
presented in Fig. 31. From the figure, first of all, it can be observed that there is no
distinctive gap between the two results where one case clearly outperforms the other.
However, the differences can be observed mainly in two regions. Firstly, around knee-
points 0.7 < Cd/Cdorig < 1.4, the result from the penalty level 2 is shown to have been
exploiting much more, and outperformed the result from the penalty level 3 in general
in this region, meaning that the solutions produced by the first case is dominating most
of the solutions produced by the other case. In the regions along the minimum values
of each axis, in contrast, the solution produced by the penalty level 3 is outperforming,
and it has a more uniformly distributed Pareto front. However, considering the fact
that the points near the knee-point are contributing the most towards the hypervolume
improvement as observed from the previous analysis, the fact that it has shown less
performance in knee-point area is critical.

6.2.4 Effect of different initial sampling methods

In order to keep efficiency as high as possible in surrogate optimization, it is impor-
tant to observe the effect of different initial sampling methods as much as determining
the number of initial samples. Thus, the test was performed to see the difference be-
tween, the Sobol and the LHS methods, in resulting Pareto fronts. For the optimization
bounds, (0.4, 0.7) was used as it is not necessary to generate invalid samples for this
case, and, the WFG method was used along with the penalty level of 2. Again, it
completed the total 800 function evaluations with 400 initial samples and 400 infill it-
erations, and, the resulting Pareto fronts of the two cases can be seen in Fig. 32. The
result shows that, first of all, each case outperformed the other in different regions, for
instance, the Sobol result is outperforming in the region, Cd/Cdorig > 0.8, where the
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Figure 31: Result of the computed Pareto fronts for the different penalty level settings

clear gap is visible between the two Pareto fronts. Meanwhile, the LHS method seems
to have produced marginally better solutions near 0.4 < |Cmy |/|Cmyorig

| < 0.55. Inspect-
ing the gaps between the two Pareto fronts, the Sobol method has been shown to have
created a better result. This aspect is verified by the the exact computation of the hyper-
volume for the pre-scaled reference point of (0.4, 0.4): the result of the Sobol method
has the HV of ≈ 0.1546, whereas that of the LHS has the HV of ≈ 0.1532. Nonetheless,
considering that the LHS involves randomness, the result might change if more test
runs were performed. Therefore, further analysis would be required to investigate the
effect of each sampling method more precisely.
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Figure 32: Result of the computed Pareto fronts for different initial sampling methods
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6.2.5 Effect of the acquisition function

Although the 2D efficient EHVI and the WFG-based EHVI aims to the same goal of the
exact computation of the EHVI as seen from Section 4.2, the two methods are taking a
different approach, which resulted in different final expressions as well as algorithms.
Therefore, another numerical test was conducted to verify the effect of the chosen ac-
quisition function on the resulting Pareto front. Similar to the previous tests, all the
other parameters were set constant. Here, 400 initial samples and 400 infills were al-
located, and, the optimization bound was set to (0.4, 0.7). For the initial sampling, the
Sobol method is used with the penalty level was set to two.

The result in Fig. 33 shows that the two solutions are aligning in general, except for the
area near Cd ≈ 0.8 and Cmy ≈ 0.2 where the solution of the efficient 2D method dom-
inates the whole subset of the solutions of the WFG method in that region. However,
in the areas near Cd ≈ 1.0 and Cd ≈ 1.4, the solutions of the WFG method dominate.
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Figure 33: Pareto fronts obtained from the different acquisition function

For the two results, quantitative comparison is not very helpful as the difference in the
hypervolume indicator of the two solutions is less than 0.0001, which makes it difficult
to compare the quality of the two Pareto fronts. Qualitatively comparing the two re-
sults, the efficient 2D solution would be appealing considering that its Pareto front was
able to progress through the knee point, which is often a major interest as it provides
a good compromise between the two objectives. On the other hand, the WFG result
could be more appealing if the interested area is in Cd ≈ 1.0 or Cd ≈ 1.4. Therefore,
the precise assessment on the quality of the two Pareto fronts are difficult such that the
further analysis would be required along with the comparison in the difference in the
obtained designs of each Pareto front. Nevertheless, no drastic discrepancy is observed
in the Pareto fronts obtained by the two different acquisition functions.
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6.2.6 Airfoil design results

From the computed Pareto fronts in Section 6.2.1, few of the resulted airfoil designs are
presented. The first design point selected is the compromising point where the there is
reasonable reduction for both the drag and the pitching moment. The corresponding
solution from the obtained Pareto front is indicated in Fig. 34 along with the modified
airfoil shape and its cp distribution. Here, for the angle of attack of 3.83 degree and Cl
of 0.792, the drag (Cd) was reduced by 26.6% compared to the baseline airfoil, and the
pitching moment coefficient (|Cmy |) was reduced by 75.5%.

Figure 34: Change in airfoil shape (top) and Cp distribution (bottom left) for the com-
promising solution, and the location of the compromising solution from the
Pareto front is marked with star (bottom right)

Next, the solution from the Pareto front which yielded the minimum drag coefficient
Cd was evaluated, where its location from the Pareto front is marked in Fig. 35.

This solution resulted in the reduction in the drag coefficient by 34.1% compared to the
baseline airfoil, and increase in the absolute value of the pitching moment coefficient
by 10 %. The lift coefficient was again set to 0.792 and the angle of attack was 2.73. The
resulting airfoil shape as well as itsCp distribution are compared to the single-objective
surrogate based optimization result of [10], where the resulting reduction in the drag
coefficient was by 34.9%. Considering that in multi-objective optimization case, the
two objectives are being minimized simultaneously, difference in the drag coefficient
reduction compared to the reference is reasonable.
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Figure 35: Location of the minimum drag coefficient solution from the Pareto front

(a) Airfoil shape for the Pareto front solution with the
minimum drag

(b) Optimized airfoil design obtained by single-objective
optimization. From [10]

Figure 36: Modifications in airfoil shape (RAE2822) for the minimum drag

First, comparing the resulting airfoil shape change in Fig. 36, the two airfoils have
different geometries, which could possibly be due to the different approaches in airfoil
shape parametrization.

Fig. 37 shows the resulting change in theCp distribution, here, both of the results shows
a similar trend such that the size of the normal shock wave of the baseline configuration
has been reduced.
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(a) Result obtained from the Pareto front (b) Result obtained by single-objective opti-
mization. From [10]

Figure 37: Changes in Cp distribution for the minimum drag
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Figure 38: Change in airfoil shape (top) and Cp distribution (bottom left) for the mini-
mum |Cmy |, and the location of this solution from the Pareto front is marked
with star (bottom right)

Lastly, the Pareto front solution that yielded the minimum |Cmy | value was evaluated
as seen in Fig. 38. Here, for Cl of 0.792 and the angle of attack of 4.32, the drag coeffi-
cient is increased by 39.8%, while the absolute value of the pitching moment coefficient
is decreased by 99.9%.
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6.3 Aerodynamic-Aeroacoustic Shape Optimization

In the following, method and result of the aerodynamic-aeroacoustic airfoil shape op-
timization is presented.

6.3.1 Problem statement and description

The primary objective of this optimization is to obtain the Pareto front, which contains
the promising design solutions for an airfoil that has a combination of minimum drag
Cd, minimum absolute value of the pitching moment Cmy and the minimum aeroa-
coustic noise for a fixed lift coefficient Cl,target. Thus, the problem is formulated as
follows:

min
x∈Ω

(
Cd(x), |Cmy(x)|, NoiseLevel(x)

)
(68)

where Ω = {x ∈ D} for D = [xL,xU ] ⊂ R6.

The objective functions were evaluated by means of a black-box framework that cou-
ples the DLR’s CFD-RANS solver TAU and the DLR’s Computational Aeroacoustic
(CAA) code PIANO.

The approximate execution time of each simulation was 1 to 1.5 hours and 2 to 2.5
respectively. However, in order for the CAA simulation to compute the mean flow
vorticity that partially describes the dominated vortex sound source, which is respon-
sible for a direct sound source for the sound generation in free turbulence, it requires
the mean flow variables from the steady RANS simulation [41].

This means that the two simulations essentially need to be carried out sequentially,
which makes the total function evaluation time of around 3 to 4 hours. As a baseline
airfoil, the NACA 63416 airfoil in Fig. 39 is used with 6 CST parameters that describe
the geometry of an airfoil, which results in 6 decision variables for the optimization.
With a given time constraint of this thesis work as well as the total function evalua-
tions, obtaining the most optimal Pareto front with the minimum possible total func-
tion evaluations is therefore the most critical point.
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Figure 39: Geometry of the NACA 63416 airfoil
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6.3.2 Optimization parameters

The first step of the aerodynamic-aeroacoustic optimization is to determine the opti-
mization bounds and the computational budget allocation, which has been reasonably
estimated by using the results obtained from Section 6.2.2. In this section, the sug-
gested initial samples and the infill evaluation were 400 and 400 respectively. Since the
decision variables have been reduced to six, the corresponding number of the function
evaluation were also adjusted using full factorial design. Given that the aerodynamic
analysis used total 10 design variables, the strata of the design space can be computed
using Equation (1). This gives the strata of s ≈ 1.82 for the 400 initial samples with 10
design variables. Assuming the new design space needs the similar coverage, i.e. the
strata of s ≈ 1.82, the required number of simulation for the aerodynamic-aeroacoustic
optimization case is N ≈ 36.41. Thus, applying this for both of the initial samples as
well as the infill, the required number of initial samples and the infill iteration are 37
and 37. For the final values of the initial samples and the number of infill evaluations,
these values were rounded to 40 each to give some margins.

For the optimization bounds, the analysis from Section 6.2.1 was taken. From this
analysis, it was shown that the non-dimensionalized bounds of (0.3, 0.9) have resulted
in the most progressed Pareto front compared to the other bounds.

6.3.3 Results

The resulting Pareto front obtained from the aerodynamic-aeroacoustic shape opti-
mization is shown in Fig. 40 as 3D. From the figure, the Pareto front is seen to be
the foremost scattered points. Compared to the result from the 3D analytical problem,
the main difference that can be noticed here is that there is no one particular region in
the objective space that was immensely exploited or at least not as much as it did for
the 3D Viennet function. This could imply that the Pareto front as a whole has been
progressed with a more or less balanced exploration as well as exploitation.

In order to observe the obtained result more closely in Fig. 41, the same result is pro-
jected on each 2D plane, where each objective is scaled relative to the baseline configu-
ration. First of all, the result shows that from the computed Pareto front which contains
11 solutions, 7 solutions have been found during the infill iterations while remaining
4 solutions were found directly from the initial DOE samples. In addition, comparing
the set of the initial DOE samples to the infill points, the infill points are more tilted
towards the lower x-axis as well as y-axis, which means that the optimizer has been
identified the correct direction to proceed, thus was exploiting more on this region. Al-
though there is no distinctive area of exploitation as it was in some of the the previous
results, from the cd and cmy plot, it shows that there are four consecutive points near
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Figure 40: Result of the Pareto front obtained from the aerodynamic-aeroacoustic
shape optimization, the Pareto front is marked with red circles, and the gray
plus signs indicate the dominated samples
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cd ≈ 1.0, which could suggest that the optimizer might have had a favor in specific
region to a certain extent.
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Figure 41: 2D projection of the 3D Pareto front

Without knowing the optimal Pareto front, it is impossible to check whether the com-
puted Pareto front has been fully converged. Based on the iteration count, it shows
that the solution with the minimum cd value has been found during the last iteration,
which could imply that it is possibly has not reached the full convergence. On the
other hand, this point, which can be seen from the first plot in Fig. 41, is in the region
where the optimizer seemingly has been started to exploit. Hence, without further
evaluations with increased number of the infill budget, it is difficult to judge whether
the computed Pareto front is optimal or not. Even after additional evaluations with
the increased infill budget, it could still be difficult to verify its full convergence as
seen from the previous results in the aerodynamic optimization, where seemingly con-
verged distribution of the Pareto front could be the sign of premature exploitation and
convergence due to some other factors such as lack of exploration due to not enough
size of the initial design of experiments samples.

Nevertheless, with the given amount of the computational budget, it was possible to
obtain some of the promising airfoil designs from the computed Pareto front. Out of
all solutions present in the Pareto front, there were four designs with a reduction in
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all three objectives compared to the baseline airfoil. Results are summarized for these
four designs in Table 7.

Table 7: Four designs from the Pareto front that resulted in reduction in all three objec-
tives

Case ∆Cd ∆|Cmy | Noise level (change in %)

1 - 1.59 % - 28.33 % - 4.75 %
2 - 2.65 % - 4.99 % - 4.45 %
3 - 3.23 % - 16.2 % - 4.34 %
4 - 6.17 % - 6.04 % - 2.04 %

Next, few of the selected Pareto front solutions with the lowest noise level as well as a
compromising objectives are evaluated in more detail.

Fig. 42 shows the airfoil shape deformation and corresponding change in the Cp dis-
tribution as well as its location from the Pareto front. This case is the one with the
minimum noise level of 36.44 [dB], which resulted in the reduction of 17.66 % com-
pared to the baseline airfoil. Unfortunately, but as expected, this has been paid off by
increase in the drag which resulted in 9.77 % increase compared to the baseline airfoil.
Still, it achieved reduction of 30.3 % in the absolute pitching moment.

Fig. 43 shows the corresponding results of the case that resulted in one of the lowest
noise levels (second lowest) of 39.6 [dB], with the noise reduction of 10.45%. Here,
the drag was also reduced by 5.35 %, though it was compensated by increase in the
pitching moment by 30.29 %.

Lastly, one of the compromising solution from the Pareto front can be closely examined,
as this is often an interesting solution in multi-objective optimization. Fig. 44 shows
one of the compromising solution between the three objectives. This design achieved
reduction in acoustic noise level by 7.61 % and reduction in the drag coefficient by 5.22
%. Unfortunately but as expected, these reductions were compensated by increase in
the pitching moment coefficient |cmy | by 0.63 %, which is, in fact, relatively small. In
this way, without penalizing one objective too much, it can obtain a relatively adequate
design that has been improved in most of the objectives by reasonable amount.

As it can be seen from all the various design solutions that the Pareto front provides,
the final design choice depends on the particular interest of each problem. For instance,
if the desired goal is to achieve reduction in all three objectives, one of the designs from
the four possible solutions is possible as shown. Otherwise, if the main interest is the
optimization of a particular objective, this choice can also be made with the drawback
of some increase in the other objectives.
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Figure 42: Airfoil design with the lowest noise level. Airfoil shape (top left), cp distri-
bution (top right) and the location of the solution point within the Pareto
front (bottom).



76 Master Thesis

0.0 0.1 0.2 0.3 0.4 0.5
x/c

0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

z/
c

0.0 0.1 0.2 0.3 0.4 0.5
x/c

1.0

0.5

0.0

0.5

1.0

Cp

original airfoil
modified airfoil

Figure 43: Airfoil design with the second lowest noise level. Airfoil shape (top left),
cp distribution (top right) and the location of the solution point within the
Pareto front (bottom).
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Figure 44: Airfoil design with a compromise in three objectives. Airfoil shape (top left),
cp distribution (top right) and the location of the solution point within the
Pareto front (bottom)
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7 Conclusion and Outlook

Throughout the thesis, the efficiency as well as the efficacy of multi-objective surro-
gate based optimization have been shown by obtaining Pareto fronts with relatively
small computational budget. This has been particularly demonstrated through analyt-
ical problems, where the result and the number of function evaluations were compared
to some of the conventional methods such as genetic algorithms. For the case of the
Poloni’s test function, it needed 6 to 25 times less function evaluations compared to the
evolutionary based algorithms. For the Fonseca-Fleming function, it required 51 times
less function evaluations to generate the Pareto front of comparable quality. Lastly for
the 3D Viennet function, it used about 90 times less function evaluations. Given that
the computational time for evaluating a function in applied problems ranged from
10 minutes to 4 hours, obtaining comparable quality Pareto fronts with conventional
multi-objective methods can take up to 1200 days, which is simply infeasible for most
of the applications with a limited time budget. Furthermore, its applicability to more
complex problems with actual black-box functions has been validated through applied
problems. Here, it was able to obtain the Pareto front, which contains the various de-
sign trade-offs that resulted in improved performance in terms of the desired objec-
tives.

For the design of experiments, mainly two methods were used, namely Sobol and LHS.
Although neither one of them clearly outperformed the other, for applied problems,
the Sobol method provided convenience of being a deterministic method such that an
increase in the number of initial samples was straightforward. Besides, the random
feature of the LHS sometimes resulted in somewhat irregular Pareto fronts, which is
inevitable when a stochastic approach is involved. Therefore, if one prefers the LHS
method, several consecutive optimization runs are recommended to filter out these
potential variations.

As a surrogate model, Kriging has been used throughout the work, and its capability
of being able to mimic black box functions with only a few number of samples was
demonstrated during the initial surrogate error analysis for the Poloni’s test function,
where the errors of the model were reduced remarkably with just around ten initial
samples. Furthermore, owing to Kriging’s ability to estimate uncertainty quantifica-
tion, it was able to use an efficient infill criterion such as the EHVI.

The expected hypervolume improvement is shown to be an efficient infill criteria that
works particularly well with Gaussian process models. However, its potential weak-
ness in providing a full distribution has been shown compared to the non-dominated
sorting of a genetic algorithm during the 3D Viennet function analysis, where it strug-
gled to capture the full Pareto front in regions where the Pareto front has a highly
non-linear shape. This was possibly due to the fact that having a uniformly distributed
Pareto front does not add any advantage in terms of hypervolume improvement, whereas
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uniformity in the Pareto front is considered during the ranking process of the NSGA-
II, which ensures a certain uniformity within the distribution. Hence, if the resulting
Pareto front consists of two regions, a dense region which clearly shows that the op-
timizer has been exploited certain areas only compared to other regions, and a spares
region with much less populated solutions, it would be suggested to solve the corre-
sponding optimization problems by other means. To further improve its efficiency, its
gradient in objective space could be utilized. For instance, [29] shows that by comput-
ing the gradients of the EHVI, gradient ascent methods can be also used. In addition,
this study suggests that this gradient information can also be used as a convergence
criteria. Similarly, [46] shows improved performance of the gradient assisted opti-
mization using EHVI.

The reference point is given as a user input for computing the expected hypervolume
improvement. Although this is not expected to effect the results once it is fully dom-
inated, to safely converge to the full Pareto set including the extreme points, a large
enough value was suggested to use. For more rapid convergence of the Pareto front,
it should be not too large to restrict the search space. Nonetheless, further analysis
and tests could be performed to clarify its effect on the optimization process. One sug-
gestion would be to use the reference point as an adaptive value such that it readjusts
its value depending on the current Pareto front. In this way, it would be possible to
enhance convergence while keeping the rate of convergence at its optimum.

To improve applicability, penalty values were introduced such that the computational
budget used for evaluating objective functions that resulted in invalid results, e.g.
target Cl was not met, are not wasted. Instead, the surrogate model as well as the
optimizer learn the infeasible or invalid regions within the design space. Although
in-depth analysis is not carried out due to the time constraint, it enabled an opti-
mizer to progress without wasting its resources and showed its capability to obtain
the Pareto front which contained the promising solutions as it was seen in the two ap-
plied problems. An improvement can be made for penalty values such that its value
can be changed in an adaptive way. For instance, the current implementation takes
the penalty value based on the initial design of experiments, which means that in case
of poor initial sampling, some of the critically worse values might not be included in
this initial sampling, rather it could be found and added to the sampling during the
optimization process. Thus, if the penalty value re-adapts itself, any infill value can be
also taken into account. Additionally, further analysis could be completed to fine-tune
the penalty levels.

During the aerodynamic optimization, it has been seen that larger bounds of the design
variables allows better exploration of the design space such that it can introduce more
variety in the design options, however, this resulted in slower convergence compared
to the smaller bounds. One the one hand, in design problems, it is important to ensure
certain variety within the solutions. On the other hand, for general optimization prob-
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lems where the focus is more on rapid convergence, bounds should be more restricted.
In the end, a good balance between the two should be found through rigorous analysis
to ensure both, the variety of the designs as well as the convergence speed. Regarding
the setting of the bounds, further studies could be extended to investigate the effect of
bounds for each design parameter.

Within the scope of this master thesis, unconstrained approaches were developed and
used. However, for further improvement, it would be possible to introduce penalty
terms within the infill criteria similar to the constraint method for the single-objective
optimization as introduced in [1]. Alternatively, it would be possible to construct a
Lagrangian and evaluate the KKT conditions as suggested by [13].

Although it was shown through the thesis that Bayesian optimization is indeed an effi-
cient method that can provide solutions with a fairly small number of function evalu-
ations, further improvement could be made in a direction to increase the convergence
rate of the Pareto front. However, as it was shown, when the convergence rate is im-
proved, this usually implies the premature convergence due to lack of its exploration
in design space. And, this issue will only become more pronounced with the growing
number of the objectives. Looking at this problem from a different perspective, the cur-
rent method is limited in that the information is propagating only from the reference
point towards the non-dominated space. Therefore, the availability of any information
from the non-dominated space could help treating this issue.

One promising way to further improve on this aspect would be to implement and
utilize prior information given during the optimization. The only difference would
then be that certain decisions need to be made in advance. In engineering problems,
it is expected that there are always preferences that are known to a certain extent. For
instance, during the aerodynamic shape optimization, it was stated that the full Pareto
front might not always be of interest if the reduction along the pitching moment is
small while its increase in drag is much larger. If this is indeed a not very interesting
area, this means that the optimizer is essentially wasting computational budget for
searching in this region.

Some of advanced versions of the expected hypervolume improvement have been de-
veloped to perform optimization under prescribed preferences. In [33], a new acqui-
sition function based on expected improvement has been introduced to perform an
optimization under preferences in the objectives. Here, its hypervolume calculation
is weighted by the posterior probability of satisfying the preferences from a gradient
Gaussian process model to either award or penalize given preference conditions. With
this method, they showed that enhancement in optimization search towards a certain
objective is possible, however, due to the increased complexity of the new acquisition
function, it needed to be evaluated through Monte-Carlo simulation, which means that
the exact computation of the acquisition function is no longer possible.
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A similar technique has been applied by [40], where the hypervolume is defined by
a user-defined continuous measure instead of the Lebesgue measure which was pro-
posed by [17]. By encoding the preferences within weight functions of the acquisition
function, this method can populate interesting regions of the Pareto front within much
less iteration. However, similar to the previous method, sequential Monte-Carlo had
to be applied to deal with the computation of the modified acquisition function.

The last aerodynamic-aeroacoustic problem was a great showcase of how important it
is to obtain the converged Pareto front at a given limit of iteration where further itera-
tions are not possible due to time constraints. Despite the fact that complex black-box
functions are employed, with 80 total function evaluations, it was able to obtain the
Pareto front with improved designs. Based on the outcomes of the analytical prob-
lem analysis, this could have taken a potentially infeasible amount of time to do with
conventional multi-objective optimization approaches. Hence, this not only empha-
sizes the efficiency of Bayesian optimization, but also shows the potential for further
development of this approach.
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