
ePubWU Institutional Repository

Claudio Di Ciccio and Fajar J Ekaputra and Alessio Cecconi and Andreas
Ekelhart and Elmar Kiesling

Finding non-compliances with declarative process constraints through
semantic technologies

Book Section (Accepted for Publication)
(Refereed)

Original Citation:

Di Ciccio, Claudio ORCID: https://orcid.org/0000-0001-5570-0475 and Ekaputra, Fajar J and
Cecconi, Alessio and Ekelhart, Andreas and Kiesling, Elmar

(2019)

Finding non-compliances with declarative process constraints through semantic technologies.

In: Information Systems Engineering in Responsible Information Systems. CAiSE 2019.

Lecture Notes in Business Information Processing, 350.

Springer, Cham.

pp. 60-74.

This version is available at: https://epub.wu.ac.at/8491/
Available in ePubWU: December 2021

License: Creative Commons: Attribution 4.0 International (CC BY 4.0)

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments. It is a verbatim copy of the publisher version.

http://epub.wu.ac.at/

https://orcid.org/0000-0001-5570-0475
https://epub.wu.ac.at/8491/
https://creativecommons.org/licenses/by/4.0/deed.en
http://epub.wu.ac.at/

Finding Non-compliances with Declarative
Process Constraints through Semantic Technologies

Claudio Di Ciccio2, Fajar J. Ekaputra1, Alessio Cecconi2,
Andreas Ekelhart1, Elmar Kiesling1

1 TU Wien, Favoritenstrasse 9-11, 1040 Vienna, Austria,
{firstname.lastname}@tuwien.ac.at

2 WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria
{claudio.di.ciccio,alessio.cecconi}@wu.ac.at

Abstract. Business process compliance checking enables organisations to assess
whether their processes fulfil a given set of constraints, such as regulations, laws, or
guidelines. Whilst many process analysts still rely on ad-hoc, often handcrafted per-
case checks, a variety of constraint languages and approaches have been developed
in recent years to provide automated compliance checking. A salient example is DE-
CLARE, a well-established declarative process specification language based on tem-
poral logics. DECLARE specifies the behaviour of processes through temporal rules
that constrain the execution of tasks. So far, however, automated compliance check-
ing approaches typically report compliance only at the aggregate level, using binary
evaluations of constraints on execution traces. Consequently, their results lack gran-
ular information on violations and their context, which hampers auditability of pro-
cess data for analytic and forensic purposes. To address this challenge, we propose a
novel approach that leverages semantic technologies for compliance checking. Our
approach proceeds in two stages. First, we translate DECLARE templates into state-
ments in SHACL, a graph-based constraint language. Then, we evaluate the resulting
constraints on the graph-based, semantic representation of process execution logs.
We demonstrate the feasibility of our approach by testing its implementation on real-
world event logs. Finally, we discuss its implications and future research directions.

Keywords: Process mining, compliance checking, SHACL, RDF, SPARQL

1 Introduction

Declarative business process specification approaches rely on a normative description
of processes’ behaviour by means of inviolable rules. Those rules, named constraints,
exert restrictions on the process behaviour. DECLARE [1], Dynamic Condition Response
Graphs (DCR Graphs) [24], and the Case Management Model and Notation (CMMN)3

are examples of such declarative process specification languages. Declarative process
discovery is the branch of the process mining discipline [2] aimed at extracting the con-
straints that specify a process by their verification over execution data, namely event logs.
To date, research in the area has mainly focused on devising of efficient algorithms for
mining constraints verified in the event log [9,32,14,11]. All of these approaches return

3 https://www.omg.org/spec/CMMN/1.1

https://www.omg.org/spec/CMMN/1.1

2 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

constraints that are never (or rarely) violated in the event log, thus implicitly assuming that
rarity corresponds to noise. Similarly, approaches have been proposed to verify the compli-
ance and conformance of event logs with declarative process specifications [39,30,29,28],
indicating whether and to what extent constraint sets are satisfied by process executions.

However, it is often not sufficient to solely assess whether constraints are satisfied or
not. Especially in cases with rare exceptions, knowing when and why certain constraints
are violated is key. Those circumstances apply in many scenarios: To mention but a few,
inspecting the root cause of enactment errors [15], deriving digital evidence of malicious
behaviour [25], identifying the origin of drifts in the process [31], or identifying illicit
inflows into digital currency services [26].

Against this background, we leverage semantic technologies for the verification and
querying of event logs, in an approach that (i) checks whether they comply with provided
declarative process specifications, and (ii) if not, reports on the cause of violations at a fine-
grained level. We evaluate our technique by applying our prototype to real-world event
logs. We empirically show the insights into detected violations provided by detailed reports.
The opportunities brought about by the use of semantic technologies go well beyond the
promising results presented in this vision paper. We thus endow the discussion on the
evaluation of our approach with considerations on potential improvements over the current
achievements, especially in regard to further semantic analyses of the current results.

The remainder of the paper is structured as follows. Section 2 provides an overview
of the literature on declarative process mining and semantic technologies. Section 3 de-
scribes our approach, i.e., its workflow and components, from the bare event log to its
semantic representation and reasoning. Section 4 evaluates and discusses the feasibility
of the approach against real-life logs. Section 5 concludes the paper and highlights future
research directions.

2 Background and State of the Art

Our approach draws on two main strands of research: on the one hand, it is grounded
in state-of-the-art process mining techniques for declarative specifications; on the other
hand, it adopts validation concepts developed in the semantic web research community
and applies them to fine-grained compliance checking.
Declarative process mining. A declarative process specification defines a process be-
haviour through a set of temporal rules (constraints) that collectively determine the allowed
and forbidden traces. Specifically, constraints exert conditions that allow or forbid target
tasks to be executed, depending on the occurrence of so-called activation tasks. A declar-
ative specification allows for any process executions that do not violate those constraints.
Each constraint is defined using a template that captures the semantics of the constraint,
parametric to the constrained tasks. The number of parameters denote its cardinality. DE-
CLARE [1] is a well-established declarative process specification language. Its semantics
are expressed in Linear Temporal Logic on Finite Traces (LTLf) [10]. It offers a repertoire
of templates extending that of the seminal paper of Dwyer et al. [16]. Table 1 shows
some of those. RESPONSE, for example, is a binary template stating that the occurrence
of the first task imposes the second one to occur eventually afterwards. RESPONSEpa,bq
applies the RESPONSE template to task a and b, meaning that each time that a occurs

Finding Non-compliances with Process Constraints through Semantic Technologies 3

Table 1: A collection of DECLARE constraints with their respective natural language
explanation, and examples of accepted (X) or violating (ˆ) traces.

Constraint Explanation Examples

PARTICIPATIONpaq a occurs at least once X bcac X bcaac ˆ bcc ˆ c

RESPONSEpa,bq If a occurs, then b occurs eventually after a X caacb X bcc ˆ caac ˆ bacc

ALTERNATERESPONSEpa,bq Each time a occurs, then b occurs eventually afterwards, and no other a
recurs in between

X cacb X abcacb ˆ caacb ˆ bacacb

PRECEDENCEpa,bq b occurs only if preceded by a X cacbb X acc ˆ ccbb ˆ bacc

ALTERNATEPRECEDENCEpa,bq Each time b occurs, it is preceded by a and no other b can recur in between X cacba X abcaacb ˆ cacbba ˆ abbabcb

NOTSUCCESSIONpa,bq a can never occur before b X bbcaa X cbbca ˆ aacbb ˆ abb

in a trace, b is expected to occur afterwards. ALTERNATERESPONSEpa,bq is subsumed
by RESPONSEpa,bq as it restricts the statement by adding that a cannot recur before b.
PRECEDENCEpa,bq switches activation and target as well as the temporal dependency:
b can occur only if a occurred before. NOTSUCCESSIONpa,bq establishes that after a, b
cannot occur any more. Finally, PARTICIPATIONpaq is a constraint stating that in every
process execution, a must occur. It applies the PARTICIPATION unary template.

The fundamental input for process mining is the event log, i.e., a collection of recorded
process executions (traces) expressed as sequences of events. For the sake of simplicity,
we assume events to relate to single tasks of a process. The eXtensible Event Stream (XES)
format is an IEEE standard4 for the storage and exchange of event logs and event streams,
based on XML. In declarative process mining, constraints are verified over event logs to
measure their support (i.e., how often they are satisfied in the traces), and optionally their
confidence (i.e., how often they are satisfied in traces in which their activation occurs),
and interest factor (i.e., how often they are satisfied in traces in which both activation
and target occur) [32,14]. Table 1 reports traces that satisfy or violate the aforementioned
constraints. For instance, a trace like caacb satisfies RESPONSEpa,bq (increasing its mining
measures) but violates ALTERNATERESPONSEpa,bq (decreasing it). Although a trace like
bcc satisfies RESPONSEpa,bq, it does not contribute to its confidence or interest factor,
since the activation (a) does not occur. Support is thus an aggregate measure for compliance
as those traces that do not comply with a constraint, decrease its value.
Semantic web technologies provide a comprehensive set of standards for the represen-
tation, decentralised linking, querying, reasoning about, and processing of semantically
explicit information. We mainly base our approach on two elements of the semantic web
technology stack: (i) the Resource Description Framework (RDF), which we use as a
uniform model to express process information, declarative constraints, and validation
reports, and (ii) the SHACL Shapes Constraint Language (SHACL), which provides a
constraint specification and validation framework on top of RDF. In the following, we
provide a brief overview of both these standards.
RDF is a data representation model published by the World Wide Web Consortium (W3C)
as a set of recommendations and working group notes.5 It provides a standard model
for expressing information about resources, which in the context of the present paper
represent traces, tasks, events, actors, etc. An RDF dataset consists of a set of statements

4 https://doi.org/10.1109/IEEESTD.2016.7740858
5 http://www.w3.org/TR/rdf11-primer/

https://doi.org/10.1109/IEEESTD.2016.7740858
http://www.w3.org/TR/rdf11-primer/

4 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

about these resources, expressed in the form of triples xs,p,oywhere s is a subject, p is
a predicate, and o is an object; s and o represent the two resources being related whereas
p represents the nature of their relationship. Formally, we define an RDF graph G as a
set of RDF triples pv1,v2,v3qPpUYBYLqˆUˆpUYBYLqwhere: U is an infinite set
of constant values (called RDF Uniform Resource Identifier (URI) references); B is an
infinite set of local identifiers without defined semantics (called blank nodes); andL is a set
of values (called literals). For instance, a trace expressed in RDF may contain a statement
such as eventA xes:nextEvent eventB to describe the temporal relationship between
two particular events. A key advantage of RDF as a data model is its extensible nature, i.e.,
additional statements about eventA and eventB can be added at any time, adding concepts
and predicates from various additional, potentially domain-specific vocabularies.

Furthermore, ontology specification languages such as the Web Ontology Language
(OWL)6 can be used to more closely describe the semantic characteristics of terms. Al-
though beyond the scope of the present paper, this extensible semantic web technology
stack opens up opportunities for the use of reasoners in compliance checking and in
the interpretation of violations (e.g., generalisations, root cause analyses, etc.) [17,4].
Other benefits of RDF include interoperability, i.e., information expressed in RDF using
shared vocabularies can be exchanged between applications without loss of meaning.
Furthermore, it makes it possible to apply a wide range of general purpose RDF parsing,
mapping, transformation, and query processing tools.

Finally, once transformed into RDF, information (such as process information and
compliance checking rules) can be easily published online, interlinked, and shared be-
tween applications and organisations, which is particularly interesting in the context of
collaborative processes.
SHACL is a W3C Recommendation and language for validating RDF graphs against a set
of conditions.7 These conditions are specified in the form of RDF shape graphs which
can be applied to validate data graphs. SHACL thereby provides a flexible declarative
mechanism to define arbitrary validity constraints on RDF graphs. Specifically, these con-
straints can be formulated using a range of constraint components defined in the standard,
or as arbitrary constraints implemented in SPARQL Protocol and RDF Query Language
(SPARQL).8 Validation of a data graph against a shapes graph produces a validation report
expressed in RDF as the union of results against all shapes in the shapes graph. Importantly,
compliance checking in SHACL is performed gradually by validating each individual
so-called focus node against the set of constraints that apply to it. Compliance checks
therefore produce detailed validation reports that not only conclude whether a data graph
conforms globally, but also reports on the specific violations encountered. In the context of
process compliance checking, this provides a foundation to not only determine whether a
process trace conforms, but to also report on the specific declarative rules that are violated.
Semantic approaches to compliance checking. Several approaches have been devel-
oped to support organisations in their compliance efforts, each offering their own functional
and operational capabilities [5,22]. The underlying frameworks, such as Process Com-
pliance Language (PCL) [20], DECLARE [1], and BPMN-Q [3], offer different levels of

6 http://www.w3.org/TR/owl2-primer/
7 https://www.w3.org/TR/shacl/
8 http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/shacl/
http://www.w3.org/TR/sparql11-query/

Finding Non-compliances with Process Constraints through Semantic Technologies 5

expressiveness, and consequently, varying reasoning and modelling support for normative
requirements [23]. Three main strategies for business process compliance checking have
been proposed in the literature to date [22]: (i) runtime monitoring of process instances to
detect or predict compliance violations (runtime compliance checking, online monitoring,
compliance monitoring); (ii) design-time checks for compliant or non-compliant behaviour
during the design of process models; (iii) auditing of log files in an offline manner, i.e.,
after the process instance execution has finished. Based on DECLARE, techniques such
as the one described in [34] can discover declarative models, use them to check process
compliance, and apply the model constraints in online monitoring. Presently, however, all
reported result are at the granularity of a trace, without pointing at the cause. Remarkably,
Maggi et al. [33] apply the outcome of that technique to repair BPMN [15] process models
according to the constraints to which an event log is not compliant.

In our approach, we implement DECLARE constraints with semantic technologies.
Related work on semantic approaches in process mining include Thao Ly et al. [38],
which presents a vision towards life-time compliance. The authors motivate the creation of
global repositories to store reusable semantic constraints (e.g., for medical treatment). and
advocate the importance of intelligible feedback on constraint violations. This includes the
reasons for the violations, to help the user to devise strategies for conflict avoidance and
compensation. Furthermore, the results of semantic process checks must be documented.
In our paper, we address these requirements. To reason about the data surrounding a
task, semantic annotations of tasks are introduced in [21,19] as logical statements of the
PCL language over process variables, to support business process design. Governatori et
al. [18] show how semantic web technologies and languages like LegalRuleML (based on
RuleML)9 can be applied to model and link legal rules from industry to support humans
in analysing process tasks over legal texts. They apply semantic annotations in the context
of a regularity compliance system. To that end, they extend their compliance checker
Regorous [21] with semantics of LegalRuleML. An approach to include additional domain
knowledge to the process perspective is introduced in [39]. The authors extract additional
information from domain models and integrate this knowledge in the process compli-
ance check. Pham et al. [36] introduce an ontology-based approach for business process
compliance checking. They use a Business Process Ontology (BPO) and a Business
Rules Ontology (BRO) including OWL axioms and SWRL10 rules to model compliance
constraints. They do not, however, systematically translate compliance rules as in our ap-
proach, and mention that performance is a key problem with standard reasoners. Our focus
is different from the work presented in that our main aim is not to validate process models
against rules, but to verify declarative specifications on existing process executions.

A Folder-Path enabled extension of SPARQL called FPSPARQL for process discov-
ery is proposed in [6]. Similarly, Leida et al. [27] focus on the advantages of process
representation in RDF and show the potential of SPARQL queries for process discovery.
Our approach also builds on semantic representations of process data but explores how
compliance checking can be conducted with semantic technologies.

9 http://wiki.ruleml.org/index.php/RuleML_Home
10 https://www.w3.org/Submission/SWRL

http://wiki.ruleml.org/index.php/RuleML_Home
https://www.w3.org/Submission/SWRL

6 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

The SHACLare Approach

Declare to SHACL
Translation

XES to RDF
Translation

Compliance
Checking

Report
(*.ttl)

SHACL Constraints
(*.ttl)

2

Declare
Constraints

1

3

XES RDF Vocabulary

Event Log
(*.xes)

Declare to SHACL
Templates

Traces in RDF
(*.ttl)

SHACL Engine

Fig. 1: SHACLARE components architecture

3 Approach

Our approach applies a set of semantic technologies, including SHACL on event logs to
check their compliance with DECLARE constraints.11 As depicted in Fig. 1, the SHA-
CLARE compliance checking workflow is composed as follows. À We generate SHACL
compliance constraints for a target process from a set of DECLARE constraints. To this end,
we translate the DECLARE constraints through respective SHACL templates. Á Because
SHACL constraints can only be validated against RDF graphs, we next transform the
event log into RDF. This step takes an event log in XES format as input and produces a
traces file in RDF. Â At this point, we have all necessary inputs to perform the SHACL
compliance check, which results in a detailed report on each constraint violation.

À DECLARE to SHACL. In this first step, we generate SHACL compliance constraints
for a target process. As input, we take a set of DECLARE constraints, which can be au-
tomatically discovered with tools such as MINERful [12]. Table 2 shows an excerpt
of the declarative constraints retrieved by MINERful from the real-life Sepsis event
log [35]. We then use the RDF Mapping language (RML)12 to map each constraint
(e.g., ALTERNATERESPONSEpAdmission IC,CRPq) to the respective DECLARE RDF data
model elements (available at http://semantics.id/ns/declare).

To enable SHACL validation on DECLARE constraints, we developed a complete set
of SHACL templates to represent the DECLARE ones. Specifically, we analysed the DE-
CLARE constraint semantics and derived a set of equivalent SHACL constraint templates,
similarly to what Schönig et al. [37] did with SQL. These SHACL templates are publicly
available at http://semantics.id/resource/shaclare as documents written using the
RDF Turtle notation.13 Listing 1 shows an excerpt of SHACL template that represents

11 Hence, we call it SHACLARE.
12 http://rml.io/RMLmappingLanguage
13 https://www.w3.org/TR/turtle/

http://semantics.id/ns/declare
http://semantics.id/resource/shaclare
http://rml.io/RMLmappingLanguage
https://www.w3.org/TR/turtle/

Finding Non-compliances with Process Constraints through Semantic Technologies 7

Table 2: Some DECLARE constraints discovered by MINERful [14] from the Sepsis log [35]

Template Activation Target Support Confidence Interest factor

PARTICIPATION ER Registration 1.000 1.000 1.000

NOTSUCCESSION IV Antibiotics ER Sepsis Triage 1.000 0.784 0.783

PRECEDENCE CRP Return ER 0.996 0.956 0.268

RESPONSE ER Registration ER Triage 0.994 0.994 0.994

ALTERNATERESPONSE Admission IC CRP 0.974 0.102 0.098

1 @prefix xes: <http :// semantics.id/ns/xes#> .

2 @prefix dec: <http :// semantics.id/ns/declare#> .

3 @prefix decs: <http :// semantics.id/ns/declare -shacl#> .

4 % ... deliberately left out rdf ,rdfs ,sh,owl , and xsd

5 <decs:param_URI >

6 a sh:NodeShape ;

7 sh:targetClass xes:Trace ;

8 decs:baseConstraint <decs:param_declare > ;

9 decs:baseConstraintClass dec:AlternateResponse ;

10 sh:sparql [

11 a sh:SPARQLConstraint ;

12 sh:message "Each time ’decs:param_value1 ’ occurs , then ’decs:param_value2 ’ occurs afterwards ,

before ’decs:param_value1 ’ recurs. Cause event: {? object }" ;

13 sh:prefixes decs:namespace ;

14 sh:select """

15 SELECT $this ?object

16 WHERE {

17 $this xes:hasEventList/rdf:rest*/rdf:first ?object .

18 {

19 # check if there is no "decs:param_value2" after "decs:param_value1"

20 ?object rdfs:label "decs:param_value1" .

21 FILTER NOT EXISTS {

22 ?object ^rdf:first/rdf:rest+/rdf:first ?object2 .

23 ?object2 rdfs:label "decs:param_value2" . } }

24 UNION {

25 # check if there is no "decs:param_value2" between two "decs:param_value1"s

26 ?object rdfs:label "decs:param_value1" .

27 ?object ^rdf:first/rdf:rest+/rdf:first ?object2 .

28 ?object2 rdfs:label "decs:param_value1" .

29 FILTER NOT EXISTS {

30 ?object ^rdf:first/rdf:rest+/rdf:first ?item .

31 ?object2 ^rdf:first/^rdf:rest+/rdf:first ?item .

32 ?item rdfs:label "decs:param_value2" .

33 }}}""" ;

34];.

Listing 1: SHACL template excerpt for ALTERNATERESPONSE

ALTERNATERESPONSE in RDF Turtle notation. Lines 1-4 list the namespaces used in the
templates. In addition to the standard rdf, rdfs, and shacl vocabularies defined by the
W3C, we introduce the following vocabularies: (i) desc: provides a set of properties and
parameters used in the template, which are specific to the SHACLARE approach, (ii) dec:
defines the RDF classes and properties to describe the DECLARE language, and (iii) xes:
provides the terms used to represents XES data in RDF. Line 5 contains a placeholder
that will be replaced by the name of the particular DECLARE constraint instance during
the compliance checking runtime. Lines 6-7 signify that the constraint will be validated
against instances of class xes:Trace. Lines 8-9 specify that the SHACL constraint will
evaluate ALTERNATERESPONSE, while line 12 provides a template for the violation con-
straint message. Lines 14-34 are the main part, representing the ALTERNATERESPONSE
DECLARE constraint template in its SHACL-SPARQL representation.

Subsequently, we translate the DECLARE constraints into SHACL constraints by
injecting the constraint parameters Activation and Target in the SHACL template. All

8 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

generated SHACL constraints are stored in memory for later execution, but also get
persisted as a SHACL shape graph in the RDF Turtle .ttl format as a reference.

Á From XES to RDF. The transformation takes as input an event log in XES format
and translates it in RDF. To that end, we developed an XES RDF vocabulary (available
at http://semantics.id/ns/xes), which provides the terms and concepts to represent
XES data in RDF. We transform into main classes the basic XES objects: (i) xes:Log for
the complete event log, (ii) xes:Trace to refer to individual traces, and (iii) xes:Event for
single events. In addition to those classes, we define a set of data properties for the optional
event attributes, such as xes:timestamp and xes:transition. Object properties (relation)
bind together the elements, e.g., xes:hasTrace to relate xes:Log and xes:Trace, and
xes:hasEventList to relate an xes:Trace and an rdf:List that contains event sequences.

Â SHACL compliance checking. Given the SHACL DECLARE constraints (À) and the
RDF event log (Á), we have all the required input to run the SHACL Compliance Checking
component. All generated SHACL constraints are grouped according to their template (e.g.,
ALTERNATERESPONSE) and subsequently checked one by one by a SHACL validation
engine. The result of a SHACL validation is an RDF graph with one ValidationReport
instance. In case the conforms attribute of a ValidationReport is false, a result instance
provides further details for every violation, including: (i) focusNode, which points to the
trace in which the violation occurred; (ii) sourceShape, linking the SHACL constraint
instance which triggered the result; (iii) resultMessage, explaining the reason for the
constraint violation with a natural-language sentence.

4 Evaluation

To demonstrate the efficiency and effectiveness of our compliance checking approach,
we developed a proof-of-concept software tool, available for download at gitlab.isis.
tuwien.ac.at/shaclare/shaclare. In this section, we report on its application on pub-
licly available real-world event logs. In particular, we focus on the report produced on a
specific event log to demonstrate the capability of SHACLARE to provide detailed insights
into compliance violations. The experiment environment, as well as the full set of input
and output files are available on the aforementioned SHACLARE GitLab project page.

The prototype. The prototype is implemented in Java, using a number of open source
libraries,14 including (i) Apache Jena, for RDF Graph manipulation and processing,
(ii) OpenXES, for accessing and acquiring XES data into RDF Graph, (iii) caRML, for
acquiring RDF representation of DECLARE constraints, and (iv) the TopBraid SHACL
engine, for compliance checking. Based on the SHACLARE approach description in
Section 3, the following functions are available: À translation of DECLARE to SHACL
constraints, Á translation of XES event logs to its RDF Graph representations, and Â com-
pliance checking of event logs against defined constraints.
14 Apache Jena: http://jena.apache.org/; OpenXES: http://code.deckfour.org/

xes/; caRML: https://github.com/carml/carml/; TopBraid: https://github.com/
topquadrant/shacl.

http://semantics.id/ns/xes
https://gitlab.isis.tuwien.ac.at/shaclare/shaclare
gitlab.isis.tuwien.ac.at/shaclare/shaclare
https://gitlab.isis.tuwien.ac.at/shaclare/shaclare
gitlab.isis.tuwien.ac.at/shaclare/shaclare
http://jena.apache.org/
http://code.deckfour.org/xes/
http://code.deckfour.org/xes/
https://github.com/carml/carml/
https://github.com/topquadrant/shacl
https://github.com/topquadrant/shacl

Finding Non-compliances with Process Constraints through Semantic Technologies 9

Table 3: An excerpt of the SHACLARE validation report

Constraint Trace Message

dec:AlternateResponse Admission+IC CRP xesi:trace/c677627d-079b-4585-87e4-8ea4ff11ff2a Each time ‘Admission IC’ occurs, then ‘CRP’ occurs
afterwards, before ‘Admission IC’ recurs. Cause event:
xesi:event/A657AD0E-AD65-4E6F-B141-871A8C340B37

dec:Precedence CRP Return+ER xesi:trace/4f1aff3f-b078-48e8-8e94-72c38c0ce6b7 If ‘Return ER’ occurs, ‘CRP’ must occur beforehand.
Cause event: xesi:event/2BEFECDC-88C0-40E1-83D1-
B41089C6A7C1

Insights into violations. The steps are illustrated on the example of the Sepsis treat-
ment process event log [35]. That event log reports the trajectories of patients showing
symptoms of sepsis in a Dutch hospital, from their registration in the emergency room
to their discharge. Because of the reported flexibility of the healthcare process [35] and its
knowledge-intensive nature, it is a suitable case for declarative process specification [13].

After running our prototype with the mined DECLARE constraints and the Sepsis event
log as inputs, we receive as output the compliance report, the traces in RDF, and the set
of checked constraints in SHACL (cf. Fig. 1). Those files form the basis of our analysis.
We thus import the report and trace triples in GraphDB15 to query and visualise the result
data structures. An excerpt of non-compliant validation results is shown in Table 3.

Next, we explore why particular constraints are violated. For instance, the constraint
ALTERNATERESPONSEpAdmission IC,CRPq dictates that after every admission at the In-
tensive Care unit (Admission IC), a C-Reactive Protein test (CRP) must be performed
later on, and the patient should not be admitted again at the IC before the CRP. As it
can be noticed in Table 2, the support of the constraint is high (0.974), therefore we
are interested in understanding what event(s) determined its violation. We thus extract
the event xesi:event/A657AD0E-AD65-4E6F-B141-871A8C340B37 signalled by the report
and visualise it from the XES RDF representation. Figure 2(a) depicts a graph with the
violating event and the connected events from its trace. We observe that the violation is due
to the fact that the two events are swapped in the trace (CRP occurs before Admission IC).
The right-hand side in the screenshot features a sample of metadata on the selected event
(the violating activation, namely Admission IC). The tool allows us to scroll through all
available properties and navigate through the trace, thus providing the user a powerful tool
to inspect the violations in detail. Similarly, Fig. 2(b) shows that despite the high support
of PRECEDENCEpCRP,Return ERq in the event log (0.996 as per Table 2), in one trace it
was recorded that the patient was discharged and sent to the emergency room (Return ER),
although no CRP took place before.

The analysis can be further extended through the integration of additional context
information on the traces, which may be specified in domain-specific vocabularies. Fur-
thermore, the by-products and results of our approach can be utilised for further analyses
via semantic technologies. This can provide a rich interpretation context for the qualitative
analysis of constraint violations. An important aspect is that it is possible to use all the
metadata information directly in the SHACL constraints or later on in a SPARQL query.
Therefore, the analysis is readily extensible beyond the control flow perspective. The inves-
tigation of those extensions draws future plans for our research, outlined in the next section.

15 http://graphdb.ontotext.com/

http://graphdb.ontotext.com/

10 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

(a) ALT.RESPONSEpAdmission IC,CRPq (b) PRECEDENCEpCRP,Return ERq

Fig. 2: Graphs illustrating the violations of constraints in the traces.

5 Conclusion and Future Work

In this vision paper, we proposed a novel approach for compliance checking leveraging
semantic technologies, named SHACLARE. In particular, we provide a set of templates to
translate DECLARE constraints into SHACL constraints, and subsequently validate them
against a graph representation of XES process execution data. Thereby, we overcome
a typical limitation of existing compliance checking approaches, which lack granular
information on violations and their context. The compliance reports SHACLAREprovides
contain links to the respective traces, as well as to the events triggering constraint viola-
tions. Due to the semantically explicit representation, we can easily query and visualise
connected events and inspect all metadata provided in the original log files. The prelim-
inary results attained illustrate how our approach could be used and extended further for
auditability of event logs.

This new approach opens opportunities for future work in various directions. We aim
at leveraging Linked Data frameworks so as to conduct compliance checking over multiple
process data sources beyond single event logs, inspired by the seminal work of Calvanese
et al. [8]. In that regard, the checking of richer constraints encompassing perspectives
other than the usual control flow (i.e., data, time, resources, etc.) [7], draws our future
research endeavours, driven by the capabilities readily made available to that extent by
SHACL and SPARQL. This paper analysed the compliance checking setting, thus the
analysis of constraints violations. If the goal is also to analyse the relevance of satisfaction,
verification of a formula is not sufficient and the vacuity problem must be taken into
account [12]. We will investigate how our approach can be extended to tackle this problem.
Online compliance checking is another topic of interest. It would be worth exploring how
SHACL constraints can be checked in a streaming fashion, potentially based on stream
reasoning engines. In addition, we aim to further (automatically) enrich the metadata
extracted from the log data, using Natural Language Processing (NLP) and ontologies.
From a formal analysis viewpoint, we will investigate the semantic equivalence of the
SHACL constraints with respect to DECLARE LTLf formulas, and more generally the
expressive power of those languages. Finally, additional compliance checking tools could
be developed to provide users with easy-to-use and feature-rich options to adopt this
approach in their process management strategies.

Finding Non-compliances with Process Constraints through Semantic Technologies 11

Acknowledgements. This work was partially funded by the Austrian FFG grant 861213
(CitySPIN), the Austrian FWF / netidee SCIENCE grant P30437-N31 (SEPSES), the EU
H2020 programme under MSCA-RISE agreement 645751 (RISE BPM), the Christian
Doppler Research Association, the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between
flexibility and support. Computer Science - Research and Development 23(2), 99–113 (2009)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer
(2016)

3. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal
logic. In: BPM. pp. 326–341. Springer Berlin Heidelberg (2008)

4. Balduini, M., Celino, I., Dell’Aglio, D., Della Valle, E., Huang, Y., Lee, T., Kim, S.H., Tresp,
V.: Reality mining on micropost streams. Semantic Web 5(5), 341–356 (2014)

5. Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applicability of
model-based business process compliance-checking approaches — a state-of-the-art analysis
and research roadmap. Business Research 5(2), 221–247 (2012)

6. Beheshti, S.M.R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query language for ana-
lyzing business processes execution. In: BPM. pp. 281–297. Springer Berlin Heidelberg (2011)

7. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective
declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

8. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A., van der Aalst, W.: Conceptual schema
transformation in ontology-based data access. In: EKAW. pp. 50–67 (2018)

9. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive
logic programming techniques for declarative process mining. T. Petri Nets and Other Models
of Concurrency 2, 278–295 (2009)

10. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: IJCAI. pp. 854–860 (2013)

11. Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative process mining for DCR
graphs. In: SAC. pp. 759–764. ACM (2017)

12. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a business constraint
to an event log. Information Systems 78, 144–161 (2018)

13. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive Processes: Characteristics,
requirements and analysis of contemporary approaches. J. Data Semantics 4(1), 29–57 (2015)

14. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes.
ACM Trans. Manage. Inf. Syst. 5(4), 24:1–24:37 (2015)

15. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management, Second Edition. Springer (2018)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE. pp. 411–420 (1999)

17. Francesconi, E.: Semantic model for legal resources: annotation and reasoning over normative
provisions. Semantic Web 7(3), 255–265 (2016)

18. Governatori, G., Hashmi, M., Lam, H.P., Villata, S., Palmirani, M.: Semantic business process
regulatory compliance checking using LegalRuleML. In: EKAW. vol. 10024, pp. 746 – 761
(2016)

19. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compliance for
business process models through semantic annotations. In: Business Process Management
Workshops. pp. 5–17. Springer Berlin Heidelberg (2009)

12 C. Di Ciccio, F.J. Ekaputra, A. Cecconi, A. Ekelhart, E. Kiesling

20. Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In:
APCCM. pp. 3–12. Australian Computer Society, Inc. (2010)

21. Governatori, G., Shek, S.: Regorous: A business process compliance checker. In: ICAIL. pp.
245–246. ACM (2013)

22. Hashmi, M., Governatori, G.: Norms modeling constructs of business process compliance
management frameworks: a conceptual evaluation. Artificial Intelligence and Law 26(3),
251–305 (2018)

23. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business process
compliance. In: Service Research and Innovation. pp. 100–116. Springer International
Publishing (2014)

24. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs.
In: FSEN. pp. 343–350. Lecture Notes in Computer Science, Springer (2011)

25. Kävrestad, J.: Fundamentals of Digital Forensics - Theory, Methods, and Real-Life
Applications. Springer (2018)

26. Kuzuno, H., Karam, C.: Blockchain explorer: An analytical process and investigation
environment for bitcoin. In: eCrime. pp. 9–16. IEEE (2017)

27. Leida, M., Majeed, B., Colombo, M., Chu, A.: A lightweight rdf data model for business
process analysis. In: SIMPDA. pp. 1–23. Springer Berlin Heidelberg (2013)

28. de Leoni, M., Maggi, F.M., van der Aalst, W.M.: An alignment-based framework to check
the conformance of declarative process models and to preprocess event-log data. Inf. Syst. 47,
258–277 (2015)

29. Letia, I.A., Goron, A.: Model checking as support for inspecting compliance to rules in flexible
processes. J. Vis. Lang. Comput. 28, 100–121 (2015)

30. López, M.T.G., Parody, L., Gasca, R.M., Rinderle-Ma, S.: Prognosing the compliance of declar-
ative business processes using event trace robustness. In: OTM. pp. 327–344. Springer (2014)

31. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual drifts in busi-
ness processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

32. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: CAiSE. pp. 270–285. Springer (2012)

33. Maggi, F.M., Marrella, A., Capezzuto, G., Cervantes, A.A.: Explaining non-compliance of
business process models through automated planning. In: ICSOC. pp. 181–197. Springer
International Publishing (2018)

34. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata. In: BPM. pp.
132–147. Springer Berlin Heidelberg (2011)

35. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process
mining. In: RADAR+EMISA. pp. 72–80. CEUR-ws.org (2017)

36. Pham, T.A., Le Thanh, N.: An ontology-based approach for business process compliance
checking. In: IMCOM. pp. 1 – 6. ACM SIGAPP (2016)

37. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and
customisable declarative process mining with SQL. In: CAiSE. pp. 290–305. Springer (2016)

38. Thao Ly, L., Göser, K., Rinderle-Ma, S., Dadam, P.: Compliance of semantic constraints - a
requirements analysis for process management systems. In: GRCIS (2008)

39. Thao Ly, L., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compliance
rule graphs in process-aware information systems. In: CAiSE. pp. 9–23. Springer (2010)

	Finding Non-compliances with Declarative Process Constraints through Semantic Technologies
	Introduction
	Background and State of the Art
	Approach
	Evaluation
	Conclusion and Future Work

