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a b s t r a c t 

In sub-Saharan Africa (SSA), diminishing soil fertility has been experienced from continuous cropping and low nutrient replacement. Organic inputs and minimum 

tillage are proposed to increase the declining fertility of the soil to increase crop growth and yields. We reviewed animal manure and minimum tillage use on maize 

yields and soil organic carbon (SOC) in SSA. This involved a meta-analysis on the influence of minimum tillage and animal manure on maize grain yields and SOC. 

The peer-reviewed publications on animal manure and minimum tillage influence on maize yields and SOC were selected from articles that contained one or multiples 

of the following keywords, ’tillage, minimum tillage, conventional tillage, organic, manure, animal manure’ using ScienceDirect database. Reported data on maize 

yields and soil organic carbon were extracted from figures, tables, and text, of the selected studies. These studies were analyzed using R, and results were presented 

in a forest plot. Minimum tillage had no significant influence on maize yields and soil organic carbon. Animal manure significantly improved maize yields and soil 

organic carbon. The study underscored the importance of animal manure in improving maize yields and soil organic carbon in SSA. Animal manure application in 

maize cropping systems is plausible to increase maize yields and soil organic carbon in SSA. 

1

 

t  

2  

c  

a  

2  

i  

(  

s  

S  

t  

w  

W  

d  

c  

c  

r  

(  

u  

n  

M  

d  

y

 

s  

s  

a  

t  

e  

m  

(  

s  

t  

t  

t  

(  

(  

t  

2  

C

0  

h  

i  

t  

h

R

2

(

. Introduction 

An increase in the global population has impacted food security due

o agricultural intensification leading to soil degradation ( Pradhan et al.,

017 ). Most farming in SSA is rain-fed dependent, facing numerous

hallenges such as; low soil quality, low earnings, limitations of land

nd labor, and the emerging climate variability issues ( Rurinda et al.,

013 ; Mairura et al., 2021 ). Diminishing soil fertility is the main lim-

ting factor in smallholder farming in the region’s farmers’ constraint

 Ngoma et al., 2015 ). Nutrient removal from the soil has been ob-

erved due to continuous cropping and low nutrient replenishment in

SA ( Moebius-Clune et al., 2011 ). This has diminished food produc-

ion compared to Latin America, North America, China, and Australia,

hich have reported increased food production over time ( Hazell and

ood, 2008 ). Low soil fertility resulting from land degradation is also

ue to rigorous tillage and crop residue removal, leaving the soil sus-

eptible to erosion ( Cerda et al., 2009 ). For instance, soil fertility de-

line in Kenya due to limited soil inputs and land degradation has been

eported to pose a food security issue, especially in maize production

 Karaya et al., 2012 ). Further, low and erratic rainfall worsens the sit-

ation in SSA ( Cobo et al., 2009 ). Several studies proposed animal ma-

ure as an organic resource ( Abuom et al., 2014 ; Shisanya et al., 2009 ;

waura et al., 2021 ), integrating inorganic with organic inputs and re-
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ucing tillage ( Kiboi et al., 2019 ) as practices that could improve crop

ields and soil quality. 

Maize is a major cereal crop in SSA, mainly grown by sub-

istence farmers using household labor on relatively limited land

izes ( Bedeke et al., 2019 ). Maize is grown in different climates

s it has numerous cultivars, great returns on money, and nu-

ritional values ( Abate et al., 2015 ; Adimassu et al., 2014 ). For

xample, as a study in Northeast Nigeria reported, fast-growing

aize cultivars can yield even in areas that experience low rainfall

 Kamara et al., 2009 ). Most of the SSA region is experiencing climate

tress due to climate variability, negatively impacting maize produc-

ion ( Lobell et al., 2011 ). Moreover, rapid soil degradation due to

he increased human population, inaccessible agronomic consulta-

ion services ( Falco, 2014 ), and inadequate soil nutrients resources

 Ngetich et al., 2014 ) leading to reduced crop growth and production

 Mulwa et al., 2017 ). Variation in the rainfall pattern in SSA has led

o low maize production and, consequently, poverty ( Akinnifesi et al.,

010 ). For instance, in Ethiopia, maize production in the

entral Rift Valley has experienced temperature increases of 0.12–

.54 °C and high rainfall variability recently, and ( Kassie et al., 2013 )

as challenged farmers who depend on rain for maize production. The

ncreased demand for maize as a staple food for most SSA communi-

ies creates a need to improve yield per hectare on already existing
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Fig. 1. Preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) for minimum tillage and animal ma- 

nure studies in sub-Saharan Africa. 

Fig. 2. Forest plot for the effect of minimum 

tillage on maize yields in SSA. SMD = Stan- 

dardized mean difference the overlap across 

SDM indicates no significant differences. 95% 

CI = confidence interval indicating a 95% con- 

fidence that the mean of the population range 

between - 0.03and 0.50 t/ha. I 2 ( Higgins and 

Thompson, 2002 ). 𝜏2 = tau 2 Q = Cochran’s 

statistic, d. f = degrees of freedom, p ≤ 0.05. 
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arming land by the small-scale holders ( Adamtey et al., 2016 ) through

gricultural management strategies. 

Soil organic carbon (SOC) suggests the inherent fertility of the soil

OC stores nutrients, adds to soil aeration, improves the rate of infil-

ration of water, and the ability of soil to store water ( Naresh et al.,

017 ). The amount of SOC is influenced by management practices,

oil properties, temperature, rainfall, the extent and kind of soil in-

uts, and land use ( Fantappiè et al., 2010 ; Farina et al., 2011 ). Agri-

ultural practices such as minimum tillage increase soil quality by

nhancing microbial community and activity ( Ghimire et al., 2014 )
2 
nd increases root biomass production, which leads to SOC protec-

ion ( Franzluebbers, 2007 ). Further, minimum tillage improves soil or-

anic matter by decreasing the exposure of SOM to microbial degra-

ation ( Yang et al., 2015 ). An increase in fine roots and microbial

iomass increases SOC amounts ( Ghimire et al., 2014 ). Animal ma-

ure influences the microbial biomass pool, increases microbial activ-

ties, and impacts microbial communities ( Zhang et al., 2012 ). This is

rought about by high C inputs and native microbes from the manure

 Blagodatskaya et al., 2009 ). 
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Fig. 3. Forest plot on the effect of minimum tillage on soil 

organic carbon (SOC) in SSA. SMD = Standardized mean dif- 

ference the overlap across SDM indicates no significant differ- 

ences. 95% CI = confidence interval indicating a 95% confi- 

dence that the mean of the population range between - 1.75 

and 1.57 t/ha. I 2 ( Higgins and Thompson, 2002 ), 𝜏2 = tau 2 , 

Q = Cochran’s statistic, d. f = degrees of freedom, p ≤ 0.05. 
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.1. Tillage influence on maize yields and soil organic carbon 

Different tillage methods have different outcomes on crop produc-

ion and soil health. Minimum or reduced tillage involves minimal soil

isturbance, which results in several advantages. Minimum tillage aug-

ents soil’s physicochemical and biological properties through reduced

oil erosion, thus allowing soil organic matter buildup ( Bescansa et al.,

006 ; Cardoso et al., 2013 ). It also decreases compaction, reduces ero-

ion and runoff, and conserves soil microbial activity ( Sauvadet et al.,

018 ). However, it’s difficult to control weeds when minimum tillage is

sed, thus, heavy reliance on herbicides ( Melander et al., 2013 ). Also,

rops grown under minimum tillage are more adaptive to climate vari-

tions and have higher yields than conventional tillage ( Busari et al.,

018 ). On the other hand, conventional tillage, which farmers in SSA

ommonly practice, control weeds and allows for effective sowing and

lanting operations ( Jin et al., 2007 ). In conventional tillage, decompo-

ition of organic matter is promoted through disturbance of the aggre-

ates in the soil and enhanced aeration and even distribution of carbon

ources in the soil ( Martníez et al., 2017 ). Moreover, conventional tillage

peeds up microbial activity on the protected organic carbon, accelerat-

ng nutrient cycling ( Tian et al., 2016 ). 

Most smallholder farmers in SSA practice some form of minimum

illage, which has shown increased yields. Studies have reported that

inimum tillage yields less in an experimental study’s initial stages than

onventional tillage ( Das and Bauer, 2012 ). For example, Pittelkow et al.

2015 ) showed that maize yields reduced with less than five years of

inimum tillage but increased over time. A review by Giller et al. (2009 )

eported that less or no yields are observed when minimum tillage is

sed in the short term. The initial yield decrease could be attributed to

hort duration of experimentation ( Lechenet et al., 2016 ). The period

eeded by the personnel to obtain the required expertise to run the ex-

eriments and also the agricultural system to adapt to the experiment

 Dignac et al., 2017 ; Pittelkow et al., 2015 ). Further, short-lived chal-

enges related to soil structure change, residue retention, N -availability,

eed management, and soil compaction could be reported at the begin-

ing of modification to reduced tillage ( Derpsch et al., 2014 ). Studies

ave shown greater maize yields when minimum tillage is practiced

ver 3 to 4 years. For instance, in Ethiopia, Rockström et al. (2009 )

eported improved maize yields of 40% over conventional tillage in a 4-

ear study, while Ngwira et al. (2012 ) indicated maize yields increased

y 29% in minimum tillage to conventional tillage in a 3-year study in

alawi. 
c  

3 
Conventional tillage usually out yields minimum tillage due to N

ineralization’s speeding up from soil organic matter due to soil distur-

ance and microbial degradation of exposed protected organic matter

ue to soil structure disruption ( Balesdent et al., 2000 ). For example,

n Zimbabwe, Masvaya et al. (2017 ), comparing minimum tillage with

onventional tillage, there was a depressed maize grain yield by 4–60%

hen minimum tillage was used. A study in Nepal by Balesdent et al.

2000 ), after two years, showed conventional tillage yielded more maize

ields than minimum tillage. The authors attributed this to limitations

n the root development in the early stages of growth, leading to less

utrient availability in the minimum tillage plots. There’s an increase in

aize yields over time when minimum tillage is used, and conventional

illage yields decrease due to lessening soil fertility brought about by

ow soil nutrients and organic carbon ( Okeyo et al., 2014 ). 

Improving soil health and enabling sustainability in farming by in-

reasing and maintaining soil organic carbon is essential ( Jarecki et al.,

018 ). Organic and inorganic soil inputs influence soil carbon as a study

y Jiang et al. (2014 ) indicated that frequent mineral fertilizers’ addi-

ion might reduce SOC, as C inputs from organic matter are less than C

ecomposed by micro-organisms. On the contrary, manure application

an supply nutrients to the soil ( He et al., 2015 ), improving SOC content

 Cerda et al., 2009 ). Inorganic fertilizers’ use increased root biomass in

he soil, increasing SOC ( Tian et al., 2015 ). Inorganics might decrease C

ontent compared to soils with no added inputs ( Shimizu et al., 2009 ).

herefore, judicious application of mineral and organic soil inputs in-

reases the SOC stocks ( Ghosh et al., 2015 ). 

Soil organic matter interaction with soil inputs affects soil inputs’ nu-

rients mineralization/ immobilization ( Dignac et al., 2017 ). The type

nd the amount of soil organic materials and soil disturbance influence

 storage in minimum tillage practice ( de Moraes Sá et al., 2008 ). Ad-

itionally, carbon amounts are influenced by the tillage methods used

nd the amount of carbon inputs which were limiting (0.1–1 g C kg − 1 

oil yr − 1 ) but not by a great scale ( ∼2 Mgha − 1 ) ( Chessman et al., 2016 ).

inimum tillage adds SOC amounts in the upper layers of some soil

ccures when where there are high amounts of roots and surface lit-

er ( Powlson et al., 2012 ). Additionally, minimum tillage enhances SOC

torage more than conventional tillage. For instance, Liu et al. (2014 )

bserved that the accumulation of SOC in 0–60 cms was higher in re-

uced tillage (50.2 t C ha − 1 ) than (46.3 t C ha − 1 ) in conventional tillage.

he studyby Enfors et al. (2011 ). pointed out that minimum tillage and

anure increased SOC by 1.2% compared with conventional tillage.

tudies under minimum tillage conducted for a longer period show in-

reased soil C stocks ( Govaerts et al., 2009 ). This is because the soils un-
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Fig. 4. Forest plot on animal manure’s effect on maize yields 

in the SSA. SMD = Standardized mean difference the overlap 

across SDM indicates no significant differences. 95% CI = con- 

fidence interval indicating a 95% confidence that the mean 

of the population range between 1.13 and 3.90 t/ha. I2 

( Higgins and Thompson, 2002 ), 𝜏2 = tau 2 , Q = Cochran’s statis- 

tic, d. f = degrees of freedom, p ≤ 0.05. 

Fig. 5. Forest plot on animal manure’s ef- 

fect on soil organic carbon (SOC) in SSA. 

SMD = Standardized mean difference the over- 

lap across SDM indicates no significant differ- 

ences. 95% CI = confidence interval indicating 

a 95% confidence that the mean of the pop- 

ulation range between 1.85 and 36.44 t/ha. 

I 2 ( Higgins and Thompson, 2002 ), 𝜏2 = tau 2 , 

Q = Cochran’s statistic, d. f = degrees of free- 

dom, p ≤ 0.05. 
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er minimum tillage are less exposed to erosion, leaching, and volatiliza-

ion of ammonia ( Onweremadu et al., 2007 ). 

.2. Animal manure effects on SOC and crop yields 

The application of manure provides carbon and other nutrients that

he plants take up. For instance, studies done in Kenya showed that most

anure used by farmers has less than 1% nitrogen ( Giller et al., 1997 ).

anure is used by most households (80%) in Kenya’s central highlands

 Makokha et al., 2001 ). Further, 90% of them get manure from house-
4 
olds, and the remaining 10% is bought or handed free, but this is not

nough as a source of nutrients to their farms ( Makokha et al., 2001 ).

n Western Kenya, animal manure adoption is limited by its low avail-

bility and quality ( Odendo et al., 2007 ). In addition, soil organic mat-

er from manure has a unique role in forming stable humus fractions

hrough humification and is responsible for nutrient cycling in the soil

 Yang et al., 2016 ). Animal manure usually releases macro and micronu-

rients steadily to the soil during the cropping period ( Adediran et al.,

005 ). Decomposition of manure may provide organic acids accelerat-
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ng acidification, leading to leaching of Ca from the soil, especially in

ow fertility soils ( Zaujec et al., 2009 ). 

Soil organic matter (SOM) pools are affected by manure application,

hich generates soil dissolved organic C in large amounts ( Abalos et al.,

013 ). This is intensely associated with microbes and enzyme activities

 Kiikkilä et al., 2014 ). The incorporation of manure adds high carbon in-

uts to the soil, which provide energy for micro-organisms and increase

 immobilization. For example, the addition of manure increased yearly

 amount than inorganic fertilizer in Japan ( Shimizu et al., 2009 ). Fur-

her, a SOC balance was reported after manure application in a study

y Mori and Hojito (2015 ). The addition of organic amendments in-

reases SOC stocks. Carbon stocks in the world at 0–20 cms depth im-

roved 240–460 Kg C ha − 1 yr − 1 after ten years of addition of manure

 Gattinger et al., 2012 ). Further, a 30% rise in SOC in 0–15 cm depth of

oil when manure was added ( Zavattaro et al., 2017 ). Manure applica-

ion could further add SOC concentration due to added organic C inputs

n manure ( Zhao et al., 2014 ). Further, after the addition of manure for

our years, a 25% C was stored in the soil carbon pool ( Eghball, 2002 ).

onversely, recent studies have shown a decrease in SOC with the ap-

lication of animal manure to nutrient mining ( Naresh et al., 2017 ;

ang et al., 2015 ). 

Soil organic carbon amounts are an essential guide for different crop

ields ( Tian et al., 2016 ). Some studies have indicated that adding ma-

ure for a long time results in residual effect, leading to greater amounts

f nutrients available for crops ( Cerda et al., 2009 ). This is ascribed to

anure slowly releasing nutrients in the soil ( Yang et al., 2015 ). Ma-

ures add nutrients by generating plant-based acids that bind with the

luminum, diminishing its toxicity, thereby increasing the nutrients for

rop growth ( Nziguheba et al., 1998 ). Organic soil inputs addition to

he soil improves soil health and yields ( Shahid et al., 2013 ). Increased

rganic C input related to high yields augments SOC stocks by 32–87%,

nd that an average increase in maize yields 7–10% and 8–15% in the

nd and 3rd year of organic manure application compared with inor-

anic manure application ( Zhang et al., 2016 ). A 2% maize yield in-

rease in 4 years and a 10% increase in 9 years was reported ( Cai et al.,

019 ). Moreover, maize yields increased by 430 kg/ha, and yield vari-

bility reduced by 3.5% when SOC content of the topsoil (0–20 cm) in-

reased by 1% ( Pan et al., 2006 ). However, other studies have reported

hat organic inputs use lead to lower soil C ( Leifeld et al., 2013 ). 

In combination with inorganic soil inputs, the addition of organics

mproves the release of nutrients and uptake by plants ( Palm et al.,

997 ), resulting in improved yields. This is true, as fertilizers increase

rop yields and yield large crop residues that impact the soil fertility and

he organic resources can restore the degraded soils, allowing fertilizer

se efficiency ( Vanlauwe et al., 2010 ). Further, increasing the farmyard

anure application rate increased maize yields ( Kihanda, 1996 ). The

ddition of inorganic fertilizer with farmyard manure augmented maize

ields to more than 3.5 t ha − 1 . Therefore, an assessment of animal ma-

ure use in enhancing and maintaining SOC and improving the amount

f soil nutrients that would support crop growth and enhance SSA yields

s prudent. Further, an assessment of minimum tillage as an agricultural

ractice affects SOC amounts, and maize yields in SSA are required.

hus, this review’s objective was to assess the influence of minimum

illage and soil inputs, particularly animal manure, on soil organic car-

on and maize yields in SSA. 

. Data retrieval and analysis 

We used peer-reviewed journal papers focusing on the influence

f minimum tillage and animal manure on SOC and maize yields.

e searched for the studies reviewed from the ScienceDirect database

 www.sciencedirect.com ). The keywords used to narrow the search in-

luded "tillage," "manure," "soil organic matter," "yields," and to narrow

he search further "minimum tillage and or reduced tillage," "animal ma-

ure," "maize yields," "soil organic carbon" were included. Truncations

ere used for the words organic, manure in the search. This was to cater
5 
o the plural and continuous tense of these words: Organic ∗ , (organic,

rganics), manure ∗ (manure, manures, manuring). The inclusion crite-

ia were as follows; (1) Randomized complete block design (RCBD) as

he experimental design, (2) area of coverage is Sub- Saharan Africa as

he region/area of coverage, (3) the test crop is maize intercropped or

s a mono-crop. (4) Minimum tillage as a treatment and conventional

illage served as the control (5) soil input as animal manure. The exclu-

ion criteria used were for; (1) the studies with no control, (2) conference

roceedings, (3) scientific correspondence (4) posters, and (5) reviews.

e obtained abstracts of the studies identified that fit the above criteria.

he process yielded 30 studies, as summarized in Fig. 1 . 

Reported data on maize grain yields and SOC were extracted from

gures and or tables from the studies. The mean of the intervention and

he mean of the SOC control (Mg/ha), and the yields (t ha-1) for mini-

um tillage and animal manure were tabulated in Microsoft Excel TM .

dditional information extracted from the studies included the number

f replications, the experimentation period or the reported duration of

he experiment, soil type, coordinates of the study sites, textural class

f the soil, trial type (on station or on-farm), experimental sites, and

ountry in which the study was carried out ( Table 1 ). 

Some of the articles used had more than one site, and therefore, the

ites are treated as study areas for comparison. Meta-analysis using R

as done on the data collected ( R, 2015 ). First, the data from the Mi-

rosoft Excel TM was arranged according to sites that were used as the

nique identifier. The studies described data in similar units. Therefore,

edges’ g standardized mean difference (SMD) was used as the weighted

mount of studies, maintaining (Mg/ha and t/ha), which were essential

or the random effect model ( Hunter and Schmidt, 2000 ). The sample

ize, denoted as N , was used as the replicates of the studies. The hetero-

eneity was measured using three parameters; Cochran’s statistic ( Q ),

iggin’s & Thompson’s I 2 , and Tau squared ( 𝜏2 ). (1) Cochran’s Q statistic

chi-square statistic) is the variance amongst the experimental weighted

izes and the fixed effect model approximation of the weighted size. (2)

iggins and Thompson (2002) ’s I 2 is the proportion of unpredictability

n the weighted sizes, which is not caused by an error in sampling which

esults from Q . (3) Tau squared ( 𝜏 2 ) is the variations within the studies

n our meta-analysis and was done using Sidik and Jonkman (2007) and

artung and Knapp (2001 a, 2001 b) adjustment for the random effect

odel. A summary effect estimate was done using the random effect

odel ( Schwarzer et al., 2015 ) that assumes that the studies are not ho-

ogenous and that the sample is part of a larger population of studies.

 forest plot was drawn, showing how every study’s weighted approxi-

ations were spread near a null value and around the overall weighted

stimations. Twenty-nine (29) and fifteen (15) study sites were used to

btain forest plots on minimum tillage and animal manure effects on

aize yields. Six (6) and thirteen (13) study sites were used to obtain

orest plots on the influence of minimum tillage and animal manure on

OC. 

. Results and discussions 

.1. Minimum tillage effects on maize yields 

Minimum tillage had no significance ( p = 0.62) influence on the

aize yields ( Fig. 2 ). The results show no considerable variance in maize

ields in minimum tillage and conventional tillage as the control (farm-

rs’ practice). This concurs with Atreya et al. (2006 ) study indicating

inimum tillage did not influence maize yields. In other studies, maize

ield output in minimum tillage was insignificant compared with con-

entional tillage ( Ngetich et al., 2014 ; Nziguheba et al., 1998 ). Further,

hanges in soil structure, surface residue retention, and N availability

ay interfere with the introduction of minimum tillage in a cropping

ystem ( de Moraes Sá et al., 2008 ). A study in South Africa reported

educed maize yields in minimum tillage plots Swanepoel et al. (2018 )

nd attributed this to the topsoil compaction ( Taylor et al., 2012 ). This

ould have reduced root penetration, infiltration, and water storage,

http://www.sciencedirect.com
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Table 1 

Characteristics used in selecting minimum tillage and animal manure studies in sub-Saharan 

Africa ( n = 64). The number and percentage of the study sites are shown for each of the categories. 

Characteristics Number of study sites % of the study sites 

Number of replications 

1–10 56 90 

> 10 8 10 

Number of seasons 

1–10 61 98 

> 10 3 2 

Units in which maize yields were originally reported b 

Kg/ha 19 44 

t/ha 15 35 

Mg/ha 9 21 

Units in which SOC content was originally reported b 

Mg/ha 7 37 

Kg/mg 2 4 21 

g/kg 3 16 

Others (Kg/m 

3 , mg/g, t/ha) 5 26 

Soil type a 

Humic Nitisols 19 29 

Cambisols 6 9 

Eutric Arenosols 4 6 

Ferrasols 4 6 

Acrisols 4 6 

Soil textural class a 

Clay 30 48 

Sandy 6 10 

Sandy loam 13 21 

Trial type 

On-farm 37 60 

On-station 25 40 

Study countries a 

Kenya 29 47 

Zimbabwe 10 16 

Zambia 9 15 

Minimum tillage practices a 

Hand pulling, only planting holes are open 14 33 

Ripping 13 31 

Planting basins 12 29 

a Only the top choices of the characteristics are shown. 
b Units before conversion as they appear in the studies. 
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y  
eading to the lower root and plant proliferation and, consequently,

ields ( Tadesse et al., 1996 ). Further, a study in Ethiopia reported that

inimum tillage had lower yields (13–20%) than conventional tillage

 Sime et al., 2015 ). The authors attributed this to increased weed in-

estation in the minimum tillage plots and the short study period. Min-

mum tillage in the short term resulted in low or no yields but could

esult in higher yields in the long run ( Giller et al., 2009 ). However,

ome studies have reported maize yields to increase in the short term.

or example, in a three to four-year study in Ethiopia, maize yielded

igher in minimum tillage than conventional tillage ( Ito et al., 2007 ;

ockström et al., 2009 ). A three to ten-year study gave similar results

n Malawi ( Ngwira et al., 2012 ). 

.2. Minimum tillage on soil organic carbon 

Minimum tillage had no significant ( p = 0.91) effect on soil organic

arbon ( Fig. 3 ). The 95% CI ranged from - 1.7461 to 1.5706 t/ha. The

resent analysis shows that minimum tillage, which is the intervention,

oes not impact the SOC. This is documented in various studies that

ecorded no increase in SOC amounts after minimum tillage was imple-

ented as an agricultural practice. For example, Sheehy et al. (2015 )

tudy showed no significant change in SOC.Further, Büchi et al. (2017 )

eported that in a 44-year trial, 0–20 cm depth, there was no consider-

ble decrease in SOC in minimum tillage treatment. This may possibly be

scribed to the experiments’ duration as SOC and soil properties change

lowly Büchi et al. (2017 ) since several years are required for balance

fter the change of the tillage system. Other factors, type of soil, and

eather patterns Wiesmeier et al. (2015 ) could influence the amount of

OC in minimum tillage treatment by inducing residue decomposition
6 
ate and the turnover of SOC. This study’s results are contrary to other

tudies. For example, Prasad et al. (2016 ) indicates that reducing tillage

ntensity increased the organic carbon. Previous studies in Zambia and

imbabwe showed increased C stocks, 0–30cms depth, converted from

onventional tillage practices to conservation agriculture in four years

 Thierfelder and Wall, 2010 , 2012 ). Improvement of the amount and

aintaining the carbon in the soil would lead to improved soil quality.

.3. Effects of animal manure on maize yields 

Animal manure significantly ( p = 0.0018) influenced the maize grain

ields ( Fig. 4 ). The 95% confidence interval ranged from 1.1267 to

.9030 t/ha. All the study sites showed an increase in yields when

nimal manure was used as a soil input. This could be attributed to

he organic input (animal manure), which is acknowledged to increase

oil physicochemical and biological properties, improving the nutri-

nts available for plant growth ( Giacometti et al., 2013 ). Manure im-

roves the soil’s physical condition resulting in higher nutrient uptake

y the soil leading to increased yields ( Mando et al., 2005 ). Further,

imani et al. (2007 ) study showed maize yields increase under manure

pplication. Further, increased nutrients due to the addition of manure

ed to improved maize yields ( Mucheru-Muna et al., 2014 ). A two-year

tudy in Benin by Tovihoudji et al. (2017 ) reported that animal manure

pplication significantly improved maize yields as opposed to no ani-

al manure plots in both years. In China, Yang et al. (2004 ) indicated

hat the addition of manure considerably augmented macronutrient ab-

orption by maize plants, instigated transfer and relocation of nutrients

o the grains. A manure application study in India reported that maize

ields were higher by 60% than plots with no inputs ( Rasool et al.,
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008 ). Therefore, as shown in the analysis, animal manure would be

sed to improve maize yields in sub-Saharan Africa. 

.4. Animal manure on soil organic carbon 

Animal manure significantly ( p = 0.04) influenced the soil organic

arbon in SSA ( Fig. 5 ). The findings underscored the importance of

nimal manure in enhancing soil health through improved SOC. This

ay be endorsed because the use of animal manure as a soil fertility

ntervention enhances soil organic matter buildup. This corroborated

ith Tittonell et al. (2005 ) looking at the heterogeneity in soil fertil-

ty management in Western Kenya, indicating that household priori-

ies and production strategies determined the variation in the adoption

f organic resources. Further, farmers in Aludeka used less cattle ma-

ure in their farms because they had a smaller cattle population and

ere less efficient in collecting the manure as they allowed free grazing

 Tittonell et al., 2005 ). This resulted in less cattle manure being avail-

ble for applying to the soil. However, once applied, the animal manure

mproves soil organic carbon in the soil. 

Further, this scenario of low adoption of soil fertility improvement

trategies is validated because most of the farmers in SSA are resource-

onstrained, leading to low uptake of soil fertility improvement tech-

ologies such as the choice to use these technologies is dictated by bio-

hysical attributes, socioeconomic situations that do vary, leading to

ifferent farming systems in one area ( Yengoh, 2012 ). A high economic

eturn was recorded when sole manure was used as input ( Ngetich et al.,

014 ; Mwaura et al., 2021 ). This was attributed to the availability of

anure in the farms and the lower cost related to its use, leading to in-

reased SOC. This meta-analysis showed that most of the studies showed

hat animal manure increased SOC and agrees with agrees with Li et al.

2018 )’s study which recorded that treatments that received animal ma-

ure had higher SOC than mineral fertilizer and no input treatments.

urther, these SOC concentrations increased with organic manure incor-

oration rates due to a large amount of recalcitrant organic compounds

n manure ( Liu et al., 2014 ). The SOC increase can further be ascribed

o slow decomposition rate of organic manure ( Zhou et al., 2015 ). In

ddition, SOC concentration after a long-term experiment with cattle

anure increased by 20% ( Blanco-Canqui et al., 2017 ). 

. Conclusion 

The meta-analysis showed that animal manure interventions can

mprove maize yields and soil organic carbon in SSA. The improve-

ent of maize yields in SSA would improve livelihoods and increase

ncomes among households. Soil fertility improvement is made possi-

le in the long run through these interventions improving the soil’s

uality by maintaining the nutrients present in the soil. However, mini-

um tillage showed no significant influence on soil organic carbon and

aize yields. Our study focused on the sole implementation of mini-

um tillage, which is promoted under the umbrella of conservation

griculture. Therefore, evaluation of conservation agriculture’s influ-

nce on soil organic carbon and maize yields is requisite. Our findings

nderscored the importance of animal manure in improving soil health

nd agricultural productivity. Therefore, animal manure should be pro-

oted among smallholder farmers in SSA for improved soil health and

rop yields. 
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