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Abstract—Analysis of EEG requires years of clinical training 

and mentorship.  To alleviate the human cost involved in EEG 

analysis, we propose a general LSTM-Autoencoder-CNN for 

EEG (GLACE) framework, which is adequately general to 

facilitate the use of transfer learning in smart healthcare. 

Traditionally in transfer learning, only the last few layers of the 

neural network are changed and adapted to the new task. 

Instead, we focus on the adaptation of the first layers to each new 

task. We exploit the inter-trial couplings in our proposed deep 

learning approach called GLACE. The efficacy of GLACE was 

assessed against a real-world clinical problem, i.e. the detection of 

interictal epileptiform discharges; GLACE circumvents the need 

for the neurophysiologist to spend hours on EEG analysis. 

Simulations show that the adaptation of the first layers of the 

trained model leads to an accuracy improvement of 12%. 
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I.  INTRODUCTION 

Electroencephalography (EEG) is a gold standard in 
healthcare for the diagnosis of epilepsy, sleep disorders, 
disorders of consciousness, to name a few. EEG typically 
involves electrodes capturing the brain electrical activities. The 
10-20 international EEG system can have as many as 256 
electrodes, which means the number of electrodes depends on 
the EEG application. The number of electrodes used varies for 
each EEG acquisition system, e.g. the OpenBCI Ganglion 
caters for 4 electrodes, the intracranial EEG typically has 6-13 
electrodes, and higher resolution EEG system such as the 10-5 
system uses over 300 electrodes [1]. 

These varying number of electrodes pose a problem for 
transfer learning of EEG. In fact, transfer learning usually 
involves freezing the first layers of a trained neural network 
and adapting its last layers to the problem at hand. In other 
words, it is almost a prerequisite that the number of input 
neurons (EEG electrodes) required to learn from the original 
task is the same as that of the new task. If this is not the case, 
then the common approach is to reduce or increase the input 
dimension of the trained neural network to match the number 
of input neurons required for a new task. However, this 
common approach has problems. On one hand, a decrease in 

input neurons means less data and may cause the deep network 
to effectively run out of data. On the other hand, an increase in 
input neurons may require additional layers to achieve 
reasonable accuracy, leading to lengthy trial-and-error 
experimentation before the optimal network is found. To 
circumvent these problems, we propose a deep neural network 
(DNN) based on the transfer learning from scalp EEG to 
intracranial EEG for epilepsy. The availability of scalp EEG 
means that in most cases it is the only accessible way for health 
monitoring in epilepsy. 

Epilepsy is a chronic brain disorder that can affect people at 
any age [2]. It causes recurrent and erratic alterations in brain 
functionality due to abnormal excessive or synchronous 
neuronal activity in the brain, called epileptic seizure. The 
seizure arises owing to the dysfunction of the 
electrophysiological system of the brain and uncontrolled 
electrical discharges in a group of neurons in the cerebral 
cortex [3]. It is associated with abnormal patterns of cortical 
activation, known as epileptiform brain activity, which can be 
captured by the EEG. Nonetheless, scalp EEG suffers from low 
sensitivity in capturing epileptiform discharges and, 
consequently, around 30% to 40% of patients considered for 
epilepsy surgery require invasive intracranial EEG recording 
[4]. As a result, increasing the sensitivity of sEEG for epilepsy 
diagnosis and management as a low cost noninvasive approach 
becomes very important. Moreover, findings from sEEG are 
very useful in presurgical assessment to decide if and where to 
implant iEEG electrodes. Therefore, developing an effective 
method for identification of interictal epileptiform discharges 
(IEDs) from over the scalp can directly alleviate the need for 
intracranial EEG.  

II. EEG DEEP LEARNING 

A. Dataset and problem statement 

The details of the dataset used to demonstrate the efficacy 
of our proposed general LSTM-Autoencoder-CNN for EEG 
(GLACE) algorithm are provided in this section. The dataset is 
comprised of two parts: 20 channels of scalp EEG and the 12 
simultaneously recorded channels of intracranial EEG sampled 
at 200 Hz. There are N segments for each pair of EEG, called 
`trials'. Fig. 5 provides a colour map to illustrate the inter-trial  



 

Fig. 1. Autoencoder 1: 1300 input neurons correspond to the 20 channels of 

scalp EEG (20 channels × 65 samples). 

 

 

Fig. 2. Autoencoder 2: 780 neurons correspond to the 12channels of 

intracranial EEG (12 channels × 65 samples) 

 

 

Fig. 5. Colour map showing the correlation between different trials, 

where the most correlated ones are amongst the first ∼ 800 trials. 

 

correlation for the dataset – which is exploited in our work. 

More details on this dataset can be found in [5]-[12]. 

 

Remark: Notice the strong degree of correlation amongst 

the first ~800 trials in Fig. 5. Both these short and long term 

temporal dependencies can be exploited using long short-term 

memory (LSTM). As expected, the maximum correlation is 

along the diagonalline due to the nth trial autocorrelation. 

 
 The machine learning problem is two fold: 1) Estimation of 
interictal epileptiform discharge (IED) enhanced scalp EEG; 2) 
Classification of the EEG neural signature into IED and non-
IED waveforms. 

  

 

Fig. 3. Encoder 1 + Encoder 2 = Asymmetric Autoencoder, where the number 

of input neurons ≠ output neurons. 

 

Fig. 4. Final stacked autoencoders to map scalp to intracranial EEG 

B. Autoencoders to map scalp onto intracranial EEG 

 It is well established that autoencoders can be exploited to 
pre-train DNNs such as the one considered in Fig. 4. In this 
direction, the asymmetric autoencoders are employed, whereby 
the number of input neurons is not equal to the number of 
output neurons. We map the input from one domain to another, 
i.e. from scalp EEG to the corresponding intracranial sources. 
To achieve this, two autoencoders depicted in Fig. 1-2 are first 
trained, and their weights are used to initialise the asymmetric 
autoencoder depicted in Fig. 3. Each trial lasts 325 ms, which 
corresponds to the 65 samples. The 65-sample segments are 
adequately long to cover the occurrence of a typical IED 
waveform. 

 Remark: In the asymmetric autoencoder, the hidden layer is 
greater than the input so that the inputs can be broken down 
into smaller ones; this break down of inputs facilitates the 
learning of the output layer, provided adequate training is 
performed. For the symmetric autoencoder, it is well 
established that the hidden layer must be smaller than the input 
layer, so that the output layer can `ignore' the noise by taking 
the dimension reduction approach.  

C. LSTM for inter-trial learning 

We take advantage of the inter-trial dependencies 

illustrated in Fig. 3 by using long short-term memory NNs. For 

completeness, this section provides a brief description of 

LSTM. LSTM consists of many layers comprised of cells. The 

long term memory is implicitly captured by the cell state 

whose output c(t) is given by 

                                     (1) 

where the current cell state c(t) depends on the past cell state 

c(t-1) and  denotes elementwise multiplication. The newly 

processed information g(t) is computed as 

 

 g(t) = tanh(x(t),h(t-1))  () 



 
Fig. 6: Overall architecture: From EEG mapping to IED 

classification. 

 

h(t-1) is the hidden output from the previous cell. In fact, the 

hidden state h(t) implements the short-term memory as:  

 h(t) = o(t)tanh(c(t)) (3) 

Gates control the two outputs of a cell via sigmoidal functions  

with range [0,1] such as o(t) in (3), and f(t), i(t) in (1). More 

details on LSTM can be found in [14]. Convolutional neural 

networks (CNNs) can extract the temporal information in EEG 

[15]. Zhu incorporated convolutional layers in LSTM for 

feature extraction [16]; we adopt this approach in our 

proposed GLACE to extract one feature vector per trial.  

D. Overall architecture 

The overall deep learning architecture is shown in Fig. 6. 

More specifically, the main layers comprised of 

1) one layer of asymmetric autoencoder to map scalp to 

intracranial EEG; 

2) one layer of symmetric autoencoder to consolidate 

estimation of intracranial EEG; 

3) one layer of convolutional layer to extract temporal 

local features within each trial; 

4) one layer of LSTM to exploit inter-trial correlation. 

This deep learning architecture is concluded with a fully 

connected layer to optimise the LSTM estimate followed by 

one layer of softmax for classification. 

III. SIMULATIONS 

To verify the proposed GLACE, comprehensive 

simulations were conducted using the EEG dataset considered 

in [5]-[6]. The data was divided into training data (84%), 

validation data (1%), and testing data (15%). The experiments 

were to evaluate (i) the performance of proposed stacked 

autoencoders detailed in Section IIB and (ii) the proposed 

LSTM-based GLACE method on the classification of IED. 

Our previous work [6] was used to assess the efficacy of our 

proposed GLACE method as a benchmark algorithm. Other 

benchmark results can be found in [6]. 

A. Experiment 1: Estimation of Intracranial EEG 

The regression plots in Fig. 7 compare the proposed 

GLACE with the method in [6]. The more aligned the data is 

on the x =y axis, the better the intracranial EEG estimates.  

 

 

 

Fig. 7.  Regression plots for mapping scalp to intracranial EEG. 

 

Fig. 8. Learning curves for the training data: CNN applied to scalp EEG. 

 



TABLE I. CLASSIFICATION ACCURACY ON TEST DATA. X1, T1, AND 

T2 REFER RESPECTIVELY TO SCALP, INTRACRANIAL, AND 

ESTIMATED INTRACANIAL EEG. 

Method CNN X1 CNN T1 CNN T2 GLACE 
T2 

Accuracy 61.04% 93.17% 74.44% 100% 

 
Similarly, the closer to unity the value of R-statistics 
(Goodness-of-fit) is, the better the estimates. The performance 
measure R on the test data has almost doubled using GLACE 
(R = 0.23) compared to the convolutional neural network (R = 
0.13) in [6]. Similarly, the best validation performance in 
terms of mean-squared-error was 0.028 for [6] compared to 
0.014 for GLACE. 

B. Experiment 2: Classification of interictal epileptiform 

discharges 

First, we illustrate the advantage when using intracranial 

EEG (T1) over scalp EEG (X1). Second, we show the benefit 

of exploiting the correlation between different trials by 

GLACE. The learning curves for training the convolutional 

neural network considered in [5] for scalp (X1), intracranial 

EEG (T1) and estimated intracranial EEG from GLACE (T2) 

are shown in Fig. 8. Moreover, the learning curve of our 

LSTM-based GLACE is also plotted in the same figure. Table 

I summarises the results for the test data. 

Remark: Due to transfer learning, all methods start at an 

accuracy of at least 55% in Fig. 8 whether learning from scalp 

or intracranial EEG. Clearly, it is more straightforward for 

CNNs to learn from intracranial EEG than scalp EEG, due to 

the quicker convergence of ‘CNN T1’ and ‘CNN T2’. Fig. 8 

shows that the training accuracy of scalp EEG is better than 

the estimated intracranial T2, however, the test accuracy 

shows the superiority of learning from intracranial EEG 

(whether estimated or ground truth) in Table I. The existing 

inter-trial correlation boosted the performance of our proposed 

GLACE in both training in Fig. 8 and testing phase in Table I. 

On the other hand, CNN did reasonably well, but was still 

outperformed by GLACE. 

 

IV. CONCLUSIONS 

A unified deep learning framework has been proposed. LSTM, 

autoencoders, and convolutional layers are merged leading to 

a general mapping approach for linking two EEG modality 

recordings. In particular, an asymmetric autoencoder layer has 

been exploited to correlate the input layer from the old task to 

the new task in transfer learning. The convolutional layers 

extracts the temporal information from each trial, whereas the 

LSTM layers learn the inter-dependencies between different 

trials as well. 
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