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ON THE CHOICE OF PRESTRESSING PARAMETERS

Anatolii V. Perelmuter
SCAD Soft, Ltd, Kiev, UKRAINE

Abstract: This paper focuses on the regulation of forces in a statically indeterminate system under the action of many
loads. This regulation is realized by prestressing. The paper compares two proposed methods for selecting rational values
of the prestressing parameters: maximizing the minimum bearing capacity margin for the elements of the system (1) and
equalizing the margins for all elements (2). An illustrative example is provided.
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O BBIBOPE TAPAMETPOB IIPEJAHAIIPAKEHUSA
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HITO «CKA Codt», r. Kue, YKPAUHA

AnHoTanusi: PaccmarpuBaeTcs 3a/1aua 0 peryJMpOBaHAN YCWINH B CTAaTHYECKH HEOTIPEACTMMON CHCTEMe HaXo/sIecs
1071 BO3/ICHCTBMEM MHOTHX HarpykeHWH. PerymipoBaHue BBITOIHSACTCS ITyTEM CO3/IaHHS MPEABAPUTEIILHOTO HAIpPsDKe-
Hust. CONOCTABISIIOTCS /1BA MPEUIaraeMbIX METo/1a JUTs BBIOOpa pallOHAIBHBIX 3HAUCHUH apaMeTpOB MPeIHATPSHKCHIS:
MaKCHMH3aLUsI MUHIMAJILHOTO TI0 SJIEMEHTaM CHCTEMBI 3araca HecyIeil cnocodHocTH (1) 1 BRIpaBHUBaHUE 3aI1acoB MO
BceM aneMeHTaM (2). [IpuBeneH WuTIoCTpaTuBHBIN IpUMep.

KaroueBrble cjioBa: MpeaHaIps’KCHUEC, 3arachbl Hecymeix'l CHOCO6HOCTI/I, 4eOBIIIEBCKOE peuicHuce,
BbIpaBHHBAHUC 3a11aCOB

1. INTRODUCTION in continuous beams and stiffening girders of
cable-stayed bridges [3, 6], adjustment of cable-

One of the effective ways to improve a design is stayed structures [9] and others [4])

prestressing, which regulates the internal forces
in the system. Many works on structural
optimization consider prestressing forces as
design parameters, along with the cross-sectional
dimensions of the structural members [6, 7, 8]. We will assume that an internal force envelope
However, such a problem formulation is not the diagram is obtained as a result of the analysis of
only possible one; there is often a problem of —an unstressed system for all the load cases.
choosing prestressing parameters for a structure With a known internal force envelope diagram
with known dimensions, which will not be We will determine the prestressing parameters,
changed unless absolutely necessary. For which make it possible, in a way, to improve the
example, this situation is typical when analyzing distribution of internal forces in the system (e.g.
existing structures under changed loading 1O expand the elastic deformation area, or to
conditions (e.g. during reconstruction). There are reveal the bearing capacity margins, improve the
many other cases when it is necessary to adjust ~operating mode of the structure, etc.).

internal forces in a structure (equalizing moments ~ Let us show that this problem can be solved using
optimization methods. To do this, consider the

2. PROBLEM FORMULATION
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expressions for true extreme forces (stresses) in
an element (section) of the elastic system

i i

S; _ Sipm’ +S["’i” (1 = 1,2,...,m)

St :S.prm+Simax; (1)

Here S, S are the maximum and minimum

internal forces in the i-th element, obtained as a
result of a standard analysis of an elastic n-times
statically indeterminate system, taking into
account the deformation compatibility conditions
and possible unfavorable load combinations. The
calculated values S/ and S;" are corrected as

follows (Fig. 1).

S™ = max (0, S )

S =min(0,S7"). ®

This ensures that values S are positive and

S"". are negative.

s -
/ | — 5 :
N’ 7 k j
Smin
Figure 1.

The prestressing force is determined by the
following expression

Siprestr — Zn:‘sijxj (l = 1: 2!""m) (3)
=l

where s, 1s the force in the i-th element of the
system from the action x =1 of the j-th

prestressing parameter (unknown of the force
method).
If the values of tensile R’ and compressive R,

bearing capacity are known, then the bearing
capacity conditions are written as
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S'<R.,S >-R' (i=1..,m), (4)

i

or as system of two-sided inequalities

R -S" <Y sx <R -S™
e Q)
(i=12,..,m).

System (5) determines the feasibility of the
design. If it is consistent, i.e. there are values

x,(j=12,..,n) which satisfy inequalities (5),

then they can be selected as prestressing
parameters. If it is inconsistent, we have to set
other values of R and R, .

It should be noted that if a system is made of an
ideal elastoplastic material, and the inequalities
(5) are consistent, it will exhibit purely elastic
behavior after a certain number of plastic
deformation cycles for all possible changes in the
live load, i.e. the system will be adaptable. This
conclusion follows directly from the Bleich-
Melan adaptability theorem.

It means that in cases where the physical
realization of an optimal elastic system can be
achieved with the help of prestressing, it is
always possible to design an optimal elastoplastic
system that adapts to a given load program, and
there is no need for the artificial regulation of
forces.

Not to be bounded by the values of the bearing
capacity of the truss members, assuming that the
bearing capacity of each member is equal to the
extreme force possible for it, i.e. consider the so-
called fully stressed structure [5, p. 78], where
every part is stressed to the maximum
permissible stress at least under one of the
possible load combinations, we will consider the
following conditions instead of (5)

(i=12,.,m), (6)

goJ !

-S" < is.,x. s
=l

that 1s, our goal is to find the prestress that should
reduce the internal force wvariation range
calculated without its effect.
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When the system (6) is consistent, there is an
infinite set of solutions which forms a domain Q

in the space of values x=(x,,...,x,). You can

choose from this set the values of the prestressing
parameters which satisfy some predetermined
conditions. Let us consider some of the possible
options.

3. OPTIONS

Bearing capacity margin maximization.

We will assume that, all other things being equal,
prestressing ensuring the maximum bearing
capacity margin of the system will be the best.
Since the values

fi(x)=8" —Zn:sﬁxj (i=12,..m);
()

ﬁ(x): i’"”’+2n:s,.j.xj (i:m+1,...,2m)
j=1

characterize these margins for all elements
(sections) of the system, it is advisable to look for

such a vector x =(x1* x), for which the
following condition is satisfied

L(x")=max min f;(x), (®)

x 1<ioam !
1.e. the minimum bearing capacity margin for
the elements of the system is maximized.
Determining the value L(x) from the condition
(8) with limitations (6) is the problem of
finding the Chebyshev point of a system of
linear inequalities. This problem can also be

solved as the following linear programming
problem [2]:

find the maximum of a linear form
Z= Xn+l 9)

with limitations
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n
fi(x)=8" _Z‘;S(/x./ X
=

(i=12,..m); (10

10
fi(x)=8""+ ;Siij +X,,
(i:m+1,...,2m)

If we denote the Chebyshev solution of the
inconsistent system as X~ :(x,* x,) then by

creating the corresponding prestress in the
system, we can obtain the following values of the
required bearing capacity parameters:

Pos S

| (an

i i

I%:S.’”’"+Zn:si/.x*_ (i=12,..,m)
e

Strength margin equalization.
Strength margin of a complex multi-element
system is often determined by forces in only a
few design members, while other members have
much larger bearing capacity margins. Therefore,
you might want to use prestressing to obtain a
system with uniform margins [1].
The consistency condition for the system of
inequalities (3), which can be written as follows

ﬁ(x,,...,xn)ZO (izl,...,Zm), (12)
indicates that there are interior points in the
domain Q defined by the inequalities (10) if at
least one of these inequalities is strict. We will
further proceed from this assumption.
Following [1], we consider an auxiliary function
in the form of the product of the bearing capacity
margins

P=f fofo (13)

The function P is smooth and takes positive
values at all interior points of the domain Q, and

vanishes at the boundary of this domain, since
here at least one of the functions (7) is equal to
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zero. Hence the smooth function P reaches its
maximum at an interior point of the domain Q2.
To show that this maximum is realized at a single
point M™ and, therefore, the local maximum
coincides with the global one, consider the
logarithm of P.

2m

L=InP=3 Iny, (14)

The function L is negatively defined and concave
in the domain Q, as evidenced by the analysis of
a matrix of the second partial derivatives

FL 31 0 9 1 9
oxox, A f oxdx, Hox f ox, (15)
(i,kzl,...,n)

Taking into account that

f,=(Sax b)), (16)
s=1
we obtain
82L _ —%- ajiajk
oxox, A (<& b ’
;ajsxs—‘r J (17)
(i,k :1,...,n)

The negative definiteness of a matrix with such
coefficients follows from the conditions of linear
independence of functions (10).

The solution corresponding to the point M’
located as far as possible from the boundaries of
the permissible domain, and its deviations from
the boundaries determine a balanced system of
strength margins.

4. NUMERICAL EXAMPLE

As an illustrative example, consider a simple
system of four bars with the same tension-
compression stiffness shown in Fig. 2. It can be
subjected to one of the three independent loads at
a time: P1=10t, P>=10 t and P3=10t.

Figure 2.

Forces in the 1st and 3rd bars are used as the
prestressing parameters of this twice statically
indeterminate system. Force values obtained as a
result of the static analysis are given in Table 1

Table 1
Bar Forces from loads: Extreme Prestressing
J Pl P2 P3 Smax Smm X1:1 X2=l
1 0.000 6.983 5.382 6.983 0.000 1.000 0.000
2 -3.162 2514 4.375 4.375 3.808 -0.707 -0.707
3 -4.941 0.000 3.808 -3.162 -4.941 0.000 1.000
4 -3.162 -2.514 0.499 0.499 -3.162 0.707 -0.707

Inequalities of type (5) for this system have the

form

0<x1<6.983,
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3.808<-0.707x1—0.707x2 < 4.375,
-4.941 <x2<-3.162,
-3.162 <0.707x1—0.707x2< 0.499.
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Their graphical representation is shown in Fig. 3.
As can be seen from Fig. 3, only four limitations
shown with a bold line are active.

X;

x,=-4,941

N
\\\\\\\\\\\\\\\\\k\\\§

These limitations can be expressed in the form of
the following inequalities:

x1>0
-3.162 < —0.707x1—0.707x2
x2<3.808
0.707x1—0.707x2 < 0.499

We will further consider only these limitations,
although it should be noted that in practical
problems it is impossible to discard inactive
limitations in advance and, as a result, the amount
of computation increases significantly.

It should also be noted, however, that using only
active limitations has no effect on the calculation
results, since the unaccounted values of the
bearing capacity margins fj(x) a priori exceed the
considered values.

Both solutions can be illustrated graphically for
the considered problem with two unknowns. The
solution to the Chebyshev point problem is
shown in Fig. 4.a, where the lines of the function
level are shown by the dotted line

L(x) = min[ fi(x), £2(x), /5(x), 3(X)].
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The solution to the equal margin problem is
shown in Fig. 4.b, where the lines of the function
level are shown by the dotted line

P(x)=fi(x)x f2(x) x f3(X) X fa(X).
a) b)

T X2 A Xy

72

LS

1,88

1,37

(I /I Y I Il

__—é_(/x
6__

%{///// L

Table 2 provides forces in the bars adjusted by
prestressing for the Chebyshev point problem.
And while for a system without prestressing with
bars of the same cross-section it was necessary at
least to ensure the following values R" = 6.983
and R~ = 4.941, for a prestressed system we
have R"=6.44 and R"=6.82.

Table 2
Jj P, P, P; Smax gmin
1| -1.04 5.94 4.34 594 | -1.04
2| -1.10 4.58 6.44 6.44 | -1.10
3] -6.82] -1.88 1.93 193 | -6.82
4] 257 -1.92 1.09 1.09 | -2.57

Table 3 provides the adjusted force values for the
equal margin problem. Here we have the
minimum possible values of the bearing capacity
parameters R+ =6.02 and R—=2.87.

Table 3
j| P P, P; gmax Smin
1| -0.96 6.02 |  4.42 6.02 | -0.96
2| -151 4.16 6.02 6.02 | -1.51
3| -631| -137 244 | 244 -1.37
4| -287| -222 079 0.79| -2.87
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As you can see, in this example ensuring uniform
bearing capacity margins is more advantageous in
terms of the weight of the structure.

There can be other relationships between the
considered solutions as well. The choice between
them depends on many factors and is informal.
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