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PIVOT: PrIVate and effective cOntact Tracing
Giuseppe Garofalo, Tim Van hamme, Davy Preuveneers, Wouter Joosen, Aysajan Abidin, and Mustafa A. Mustafa

Abstract—We propose, design, and evaluate PIVOT, a privacy-
enhancing and effective contact tracing solution that aims to
strike a balance between utility and privacy: one that does not
collect sensitive information yet allowing effective tracing and
notifying the close contacts of diagnosed users. PIVOT requires a
considerably low degree of trust in the entities involved compared
to centralised alternatives while retaining the necessary utility.
To protect users’ privacy, it uses local proximity tracing based
on broadcasting and recording constantly changing anonymous
public keys via short-range communication. These public keys
are used to establish a shared secret key between two people in
close contact. The three keys (i.e., the two public keys and the
established shared key) are then used to generate two unique
per-user-per-contact hashes: one for infection registration and
one for exposure score query. These hashes are never revealed to
the public. To improve utility, user exposure score computation
is performed centrally, which provides health authorities with
minimal, yet insightful and actionable data. Data minimisation
is achieved by the use of per-user-per-contact hashes and by
enforcing role separation: the health authority act as a mixing
node, while the matching between reported and queried hashes
is outsourced to a third entity, an independent matching service.
This separation ensures that out-of-scope information, such as
users’ social interactions, is hidden from the health authorities,
whereas the matching service does not learn users’ sensitive
information. To sustain our claims, we conduct a practical
evaluation that encompasses anonymity guarantees and energy
requirements.

Index Terms—Security, Privacy, Utility, Contact tracing

I. INTRODUCTION

The COVID-19 pandemic has been holding the world hostage
since early 2020 [1]. As the virus is mainly transmitted among
people via close contact with infected individuals, so far the
best countermeasure to stop its spread is social distancing,
with lockdowns being the most extreme variant of distancing.
Despite the development of vaccines in record times [2], it took
months until sufficient number of doses were manufactured
and distributed to (developed) countries. During these months,
countries have been under strict lockdown rules.

Such countermeasures, however, have an enormous cost, as
normal social life is halted, the psychological and economical
damages are extremely high [3]. Thus, to reboot normal life
while keeping the virus in check, there is a need to warn
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individuals who have been in close contact with infected people
as they are considered to have been exposed to the virus. A
timely notification allows them to take appropriate measures,
e.g., self-quarantine or get tested. To this end, manual contact
tracing has proven to be effective [4]. However, COVID-19’s
long incubation time1 and the presence of asymptomatic carriers
drastically increase the scale of the contact tracing problem.
There is a strong need for automated and effective solutions.

Automatic contact tracing has the potential to augment
the capabilities of manual contact tracing by being faster
and allowing to reconstruct hidden chains among strangers.
Automatically tracing populations’ contacts by default, however,
has enormous privacy implications. Some regimes implemented
contact tracing on top of their already in place surveillance
systems, thereby violating the privacy of all of their citizens or
at least of the infected population. In Europe, a more privacy-
centric approach is taken, as the European Data Protection
Board stands for a solution that ensures respect for users’
fundamental rights [6], independent of the design choice, as
long as the processing and storage of data are in line with the
purpose of the contact tracing solutions.

There have been substantial academic efforts to propose
solutions to the automatic contact tracing problem [7]–[15].
These solutions rely on Bluetooth Low Energy (BLE) to
broadcast and record frequently changing pseudonyms. If a user
tests positive, the pseudonyms are used to trace those who were
in close physical proximity with them. This basic functionality
unravels in a universe of alternative protocols, each of which
provides different security and privacy guarantees to the users.

Protocols leaning towards centralisation [7], [8] may not
achieve the required user privacy protection guarantees, while
decentralised solutions [9], [10] have limited analytic capa-
bilities as they do not consider utility metrics, thus lacking
essential data during the evaluation phase. Prioritising privacy
over utility, in fact, has led to low adoption rates of applications
and a diffuse sense of inefficacy among users [16]. Even
worse, people appeared to be skeptical about the efficacy of the
app, and expressed their unwillingness to download it without
evidence of real world impact [17]. Unfortunately, in practice,
it is hard to prove effectiveness while ensuring proper privacy
protection [16] and recent investigations shed light on govern-
ments being unable to evaluate the impact of their, sometimes
particularly costly, digital contact tracing campaigns [18]. With
this work, we tackle the problem of automatic contact tracing
evaluation by considering effectiveness and utility indicators
early in the protocol design. By doing so, we can analyse a
solution based on our protocol in terms of analytics provided to

1COVID-19’s incubation time is between 3 and 13 days [5]. Thus, infected
people can spread the disease unknowingly for far longer compared to other
highly infectious diseases such as Ebola, where people were bedridden shortly
after infection.



operators for impact monitoring and obtaining epidemiological
insights, while ensuring users’ privacy is protected.

In this paper, we aim to pivot among existing systems by
addressing their limitations and leveraging their advantages. We
propose and evaluate PIVOT – a privacy-centric system that is
utility aware compared to existing decentralised systems, while
still protecting users’ privacy from typical threats imposed by
a central authority.

Specifically, the novel contributions of this paper are three-
fold:

• We design PIVOT – a privacy-centric yet effective contact
tracing solution. PIVOT outsources users’ exposure score
calculation in a secure and privacy-friendly way such
that: (i) close contacts are registered with unique per-
user-per-contact hashes that are hidden from users; (ii)
information used for infection registration and exposure
score query is decoupled as a close contact is registered
with two different hashes; (iii) exposure score calculation
and the discovery of close contacts with infected users
is decoupled as the former is performed by health
authorities while the latter by an independent third party,
with the integrity of each discovery verifiable by the
health authorities; and (iv) the solution is utility-aware by
incorporating essential data for effectiveness evaluation.

• We perform an extensive comparison of PIVOT with other
state-of-the-art contact tracing solutions to demonstrate
that PIVOT strikes a good balance between contact
tracing effectiveness and user privacy protection. Our
comparative analysis is based upon a set of carefully
defined effectiveness and utility indicators that have largely
been ignored by the literature for, more or less justified,
privacy concerns. We also rely on a group of security and
privacy requirements drawn from our threat model, which
is aligned with attacks identified in the related work.

• We evaluate PIVOT in terms of user anonymity guarantees
and energy consumption on the user-end to demonstrate
its practicality. By simulating the work of a central node
that is in charge of mixing incoming traffic from the users,
we ensure a given degree of anonymity at a reasonable
delay. Additionally, we experiment with several devices
to demonstrate that an implementation based on Diffie-
Hellman that harnesses existing libraries comes with a
negligible energy toll.

The rest of the paper is organised as follows: Section II
reviews related work. Section III specifies the key require-
ments for automatic contact tracing. Section IV presents the
architecture and technical details of PIVOT - the proposed
solution. Section V analyses the security and privacy properties
of PIVOT, while Section VI compares it with existing solutions.
Section VII contains a practical evaluation via a proof of
concept implementation of PIVOT. Section VIII concludes the
paper.

II. RELATED WORK

We review the most prominent as well as other automatic
contact tracing solutions that rely on short-distance commu-
nication, such as BLE, for local data exchange and physical

proximity detection. These works will form a basis for our
comparative analysis in Section VI (Table III), for a more
elaborate survey we refer to the work by Wan and Liu [19]. We
categorise solutions as centralised or decentralised depending
on specific behaviours and design choices. In particular, the
pseudonym (token) generation, pseudonym (token) matching
and exposure score computation can be centralised or decen-
tralised, depending whether they are performed server-side or
client-side, respectively. When a diagnosed user uploads tokens
for matching, they can either upload the pseudonym that they
broadcast, i.e. upload-what-you-sent, or the ones they sensed
nearby, i.e. upload-what-you-received.

ROBERT [7] and BlueTrace [8] are two prominent ex-
amples of strongly centralised protocols that have been im-
plemented in the real-world by the governments of France
(StopCovid [20]) and Singapore (TraceTogether [21]), respec-
tively. In ROBERT [7], users are first registered into the system
with a unique identifier (ID). The backend generates and
distributes a list of short-lived ephemeral IDs (ephID) for each
user. The ephIDs are sensed by users nearby and uploaded
to the server once an infection is diagnosed, i.e., the ‘upload-
what-you-received’ strategy. Similarly, BlueTrace [8] generates
a set of randomised pseudonyms that are later uploaded by
infected users and matched centrally. In this case, however, the
registration is not anonymous, requiring a telephone number,
and human personnel is involved to contact a user when a high-
risk notification is raised. ROBERT and BlueTrace perform
centralised pseudonym generation, matching, and exposure
score calculation. This design jeopardizes users’ privacy as
it allows malicious service providers to track down users’
movements just by looking at the advertised ephIDs they
possess [22]. Nonetheless, heavily centralised solutions are
easier to evaluate w.r.t. key effectiveness indicators, especially
due to the access to exposure score [23]

DP3T [9] is the protocol proposed by the namesake consor-
tium of experts. It differs from the previous approaches in that
pseudonymous identifiers (IDs) are generated locally and, later,
matched locally by the user’s device, i.e., token generation
and matching are decentralised. Once diagnosed as infected,
users can opt for sending the seed used to generate their IDs
to the backend with the assistance of medical personnel, which
is the ‘upload-what-you-sent’ strategy. The seeds can then be
downloaded by all the users such that, based on the metadata
about one’s contacts, the app can calculate an exposure score,
eventually notifying the user of being at high risk. This design
is diametrically opposite to the previous ones. The three key
functionalities happen locally and few information travel to
the central entity, which is only in charge of managing a
public database of infectious seeds. This has an impact on the
amount of information gathered to evaluate the effectiveness
of contact tracing. In fact, the evidence that apps based on
decentralised protocols are working as expected is confined
to regional and low-scale manual questionnaires [23]. Besides,
despite the emphasises on users’ privacy, attacks have been
identified against this protocol [24].

Exposure Notification [10] is a set of specifications, includ-
ing BLE broadcasting and cryptographic protocols, developed
by Google and Apple. It is based on the DP3T protocol [9],
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thus many similarities and analogous weakness can be found
between them, including the decentralised handling of tokens
and its consequences. This set of specifications has been
exposed to public authorities around the globe via an application
programming interface (API), while an OS-level update enabled
its use on the users’ phones. Eleven EU countries developed
an app based on this API between May and December 20202.

DESIRE [12] was proposed by the authors of ROBERT [7]
as an optimal trade-off between centralised and decentralised
approaches for automatic contact tracing. In DESIRE, users’
devices broadcast locally generated ephemeral identifiers
(ephIDs) as Diffie-Hellman (DH) public keys. When a close
encounter happens between two users, each user’s device
calculates a secret key by combining the received ephID with
its own current ephID. The calculated secret key is further
hashed with two different prefixes to compute two separate
tokens, one for infection registration and one for exposure
status request. Note that PIVOT and DESIRE follow a similar
idea developed independently and simultaneously. However,
in this paper, we go further to propose a full-fledged solution
that minimizes the amount of trust to be placed on the central
authority by spreading responsibilities among different parties.
Compared to DESIRE, we additionally introduce an integrity
check mechanism, and perform a practicality analysis centered
on users’ anonymity and energy consumption.

Pronto-C2 [11] was proposed to address a specific short-
coming of DP3T [9], i.e., an attacker can learn whether a
set of ephIDs belongs to the same infected user and thus
can potentially infer the infected user’s movements [11]. In
Pronto-C2, users’ devices (a) upload to a server a list of Diffie-
Hellman (DH) ephemeral public keys and locally store a list of
addresses at which these keys are stored on the server, and (b)
broadcast at each time slot an address from the list of addresses.
The DH exchange allows to decouple what is broadcast and
observed (i.e., an address) from what is uploaded by an infected
user (i.e. ,the result of the exchange). This protocol introduces
important privacy guarantees for the users; however, it retains
the difficulties of gathering meaningful and complete statistics,
which are essential to evaluate the effectiveness of a digital
contact tracing campaign.

Epione [13] is the only approach here analyzed that couples a
decentralised token generation policy with a semi-centralised, or
interactive, matching scheme. On top of the BLE broadcasting
stack, Epione uses secure two-party private set intersection
to compute the cardinality of the intersection between two
groups, and let users know how many tokens (among they
sensed) belong to diagnosed users. This approach minimises
the reliance on a central entity, which is a semi-honest party,
but this also means there is no way for the server to collect
data that goes beyond the number of queries performed by the
users. Additionally, it is harder to obtain a reliable estimate
of the exposure score due to the low information exchanged,
while it can still permit to de-anonymize a known diagnosed
user by performing targeted queries.

2Estonia, Switzerland, Austria, Denmark, Finland, Germany, Ireland,
Italy, Norway, UK, and Belgium developed a solution based on the standard
developed by Google and Apple.

ReBabbler and CleverParrot [14] are two approaches built
upon the same foundation. Users have a rotating seed which is
used to compute, locally, ephemeral identifiers (called chirps)
that are continuously broadcast throughout the day. Similarly
to the other approaches, users listen for nearby chirps and store
them with a timestamp. Users who tested positive can upload
their status to a server from which other users can download
and check locally if they were exposed to a positive user during
the infectious period. The two schemes differ in what is sent
to the server during the upload phase.

• In ReBabbler users upload what they previously broad-
cast, which is similar to what DP3T proposes. The use of
timestamp is meant to trade a potential for re-identification
of diagnosed users for a better protection against replay
attacks. However, Re-Babbler presents the same security
and privacy shortcomings identified in DP3T.

• In CleverParrot the users upload what they received
from other users, which is similar to what ROBERT
describes. It relies on decisional Diffie-Hellman (DDH)
assumption to randomize the received chirps before upload,
such that only the user who generated them can verify
whether they were exposed. To further mitigate against
Sybil attacks that make use of a frequently changing
seed, the latter can be certified by a registration authority.
This has the disadvantage of using more than 1 BLE
payload during the broadcasting phase. In PIVOT, the
Sybyl attacks are mitigated by delegating the matching to
a central coordinator. Mestel [15] proposes a solution to
this problem based on the re-randomisation of the tokens
by a central authority, which is only trusted with providing
ambiguity to the malicious user. As in the case of Pronto-
C2, by default, the health authority has limited-to-none
resources to evaluate the effectiveness of an app based on
this protocol.

The development of some of the aforementioned schemes
in real world applications by governments have led to the
necessity of monitoring their functioning and finding key
performance indicators to measure their impact in curbing
the spread of the virus. Currently deployed privacy-friendly
designs do not consider utility metrics, ending up lacking
essential data during the evaluation phase. In fact, operators
running decentralised systems are looking into novel ways
of building meaningful analytics without compromising the
existing security and privacy guarantees [25], [26]. However,
using new information sharing channels is a double-edged
sword: on the one hand, the need to preserve privacy produces
limited and fragmented analytics; on the other hand, the
new channels have the potential to create unaccounted attack
vectors and, by relying on manual procedures, dig up the
pitfalls of manual contact tracing. A recent work by Cicala et
al. [27] introduces two utility proprieties, alongside security and
privacy guarantees, in a framework for comparative analyses
of digital contact tracing protocols. In PIVOT, we not only
consider data that is potentially useful to health authorities,
but explore the limitations of current techniques by looking
at preliminary quantitative analysis to extract relevant key
effectiveness indicators.
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In summary, different solutions exist that can be categorised
based on who handles which information in the pipeline. Ap-
proaches leaning more towards centralisation (e.g., ROBERT)
may not achieve the needed anonymisation guarantees w.r.t. the
authorities managing the central servers, thus becoming vul-
nerable to linkage attacks. Heavy decentralised solutions (e.g.,
DP3T) target privacy as their basic goal. They weaken the
central health authority that plays a coordinating role in
combating an epidemic and rely on users to behave responsibly,
but have limited analytic capabilities. Finally, approaches that
perform some operations centrally and others locally could
build upon the strengths of the aforementioned schemes but,
at the same time, inherit their weaknesses. Finding the right
balance is not only hard but also contextual to the priorities
and goals of the countries that decide to setup a digital
contact tracing infrastructure. Unlike existing solutions, PIVOT
introduces utility and effectiveness metrics early in the design
phase. This allows to identify and fill the gaps of existing
works and propose a solution that strives to achieve the right
balance. Moreover, the requirements identified can help build
new and improved digital contact tracing frameworks, which
will hopefully help tackle future challenges.

III. STRIKING THE BALANCE AMONG UTILITY, SECURITY
AND PRIVACY

In this section, we define the goal of automatic contact
tracing, from which we derive a set of basic functional
requirements. Then, we discuss utility metrics to evaluate its
effectiveness. The section ends with formalising the security
and privacy requirements at the hand of a range of possible
attacks and misuses.

A. Functional requirements

Most digital contact tracing solutions have a clear and scoped
goal which we define as follows:

The primary goal of digital contact tracing is the
augmentation of the capabilities of health authorities
in promptly notifying potentially contagious people,
especially before the eventual onset of symptoms.
Identification of at-risk individuals allows to take the
appropriate preventive and reactive measures to break
the transmission chain early, i.e. self-quarantine and
targeted testing.

More specifically, contact tracing aims to identify at-risk
individuals based on their recent physical contacts, i.e. people
who are believed to have high chance of having contracted the
disease according to the current transmission dynamics model.

To achieve its primary goal, a solution should abide the
following functional requirements:

(F1) Close contacts logging. Users should be able to log a
list of their close physical encounters with other users.

(F2) Infection registration. Users should be able to report
themselves after a positive diagnosis and provide the
necessary information to flag their contacts.

(F3) Exposure score computation. The system should allow
for exposure score computation. The total exposure to the
virus is estimated by using the physical close contacts
with diagnosed users. In particular, the exposure model
uses information on the nature of an encounter, i.e., when
it took place, its duration and the maintained distance [28].
This model should be flexible: if the understanding of the
transmission dynamics changes, e.g., the emergence of
new variants of the virus that are more transmissible than
previous versions [29], the operators are able to update it
without disruptions of service.

(F4) User notification. Users should be notified of being at-
risk whenever their total exposure, given by the exposure
model, exceeds a predefined threshold.

B. Effectiveness and utility indicators

A solution that fulfils its primary goal should account for its
maintenance and monitoring [30]. In general, online-surveys
and manual interviews allow to roughly estimate operational
and epidemiological data, e.g., the total number of notified
users who get tested (because of the app). However, they often
provide only a fragmented picture, and surveys are usually
carried out ex-post, thus delaying the implementation of reactive
measures triggered by the observational data. The automatic
contact tracing solution by itself might allow to share more
precise and complete information about the notification patterns
that ultimately enhances manually-mined analytics.

By considering the need for essential data during the design
phase of the app, we can avoid such compromises and provide
a full-fledged solution. Therefore, we identify two effectiveness
indicators, inspired by existing evaluation frameworks, which
allow to evaluate the effectiveness of a solution [25], [26]:
� User engagement. The effectiveness of an app is bound

to the number of people using it. We can monitor the
engagement by estimating number of downloads, the active
users, and the rate of reaction to notification.

� Notification effectiveness. We expect an effective app to
minimise false notification and maximise the notification
of infected users. This is encoded by the precision and
recall of a notification. The precision is the percentage
of people testing positive among those who have been
notified. The recall is defined as the percentage of correctly
notified users among carriers who should have gotten a
notification. In practice, these measures are hardly feasible,
since we would need to test every notified user and know a
precise estimate for the total infectious ones. Moreover, we
want to find out how many cases are punitively associated
to the notification, i.e., for which the notification is the
primary reason for testing.

Additionally, the exposure model, which is fundamental
to distribute notifications, depends on our knowledge of
the transmission dynamics. Analytics gathered during digital
contact tracing can serve to broaden our knowledge. This is
acknowledged by the European Center for Disease Control
(ECDC) which refers to the use of contact tracing solutions
to learn transmission patterns [30]. Therefore, we define the
following utility indicator:
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� Contacts dynamics. The application can capture contex-
tual information about physical contacts that are used
to validate and tune the current exposure model. These
include metadata about a contact, demographics about the
users and the number of contacts per geographical area.

If we take these indicators into account in the design phase,
we can ensure proper evaluation can be carried out during the
deployment phase. Ideally, collecting essential data does not
invalidate the security and privacy guarantees.

C. Security and privacy threats

Our security and privacy threats are partially inspired from
existing work [22], [24]. These threats will lay the foundation
of our requirements on top of which we compare our work to
real-world solutions. The security threats include:

(A1) Lazy Student Attack [22]. An attacker, either a single
user or a more powerful ensemble of users, is able to
trigger a false contact between tokens belonging to two
users that never got in close contact. This attack is carried
out in two modalities: asynchronous and real-time. Replay
attacks enable asynchronous attacks. An attacker gets in
possession of a token belonging to a different user and
replays it to a third user who becomes the victim and
stores a false contact. Relay attack makes this scenario
real-time, which prevents several possible defenses. Here,
two devices owned by the attacker are placed close to
two victims at different locations. As long as they share
their identifiers, the attacker’s devices will re-transmit
them to the user on the other end of the communication
channel. In this way, a false contact between remote users
is triggered. This attack can be targeted or untargeted.

(A2) Terrorist attack [22]. A malicious user injects fake con-
tacts into the central repository to cause alarm. This attack
comes in two flavours tied to a replay attack scenario:
(1) a targeted attack where a malicious and diagnosed
user uploads a true identifier advertised elsewhere by
the victim; (2) an indiscriminate attack where a set of
malicious users collude to build a list of contacts which
is uploaded when one of the participants is found to be
positive. This attack can be targeted, if the malicious user
harnesses one of the tokens in their possession (implies a
local de-anonymisation (A4)) or untargeted, if the token to
be uploaded is found via a different medium (e.g., online).

(A3) F for Fake attack. The organisation in charge of man-
aging the central repository of infected tokens forges its
records to trigger (selective) false notifications. This can
lead to enforced quarantine of targeted citizens.

Europe adheres to data minimisation and privacy-by-design
principles and strives to be compliant with the General Data
Protection Regulation (GDPR). In the contact tracing context,
the three most important threats identified are false notifications,
behavioural profiling of diagnosed users and de-anonymisation
of users [31]. Therefore, developed solutions should respect
individuals’ privacy by collecting and processing as few
private data attributes as possible. The EC provides safeguard
recommendations regarding the proper handling of private data

and to comply with data minimisation principles [30]. Important
private attributes, that are referenced later in the text, include:

• Personally Identifiable Information (PII). This is any
(collection of) information that can be used to uniquely
identify a person: name, phone number, address, social
security number, credit card numbers, age, blood type.
There should be no links between a user pseudonyms, or
account, and their identity within the system [30].

• Social interactions. These constitute of information (time,
duration, identity) about each individual’s encounters
with others, i.e. population’s social interaction graphs.
Proximity data should be handled as much as possible on
local devices [30].

• Personal trajectories. These are the trajectories individu-
als follow, i.e. any form of location data, which could also
be coupled with timing data. It is explicitly recommended
not to use such data for contact tracing purposes [30].

• Exposure score. This consists of a user’s exposure score
due to their close contacts. Within the limits of the legal
framework of a country, it should be considered the sharing
of anonymised/aggregated epidemiological information
with competent authorities [30].

• Test results. This consists of the ground truth of whether
an individual is infected or not.

If all of the above listed personal attributes are obtained by
any authority on a large scale, the authority would obtain big
brother-like powers. Alternatively, obtaining this information on
a small local scale can lead to adverse consequences for specific
individuals who can easily be de-anonymised. In general, there
are three types of entities who might be interested in accessing
the aforementioned private attributes of an individual: other
users, health authorities and external entities.

We identify the following privacy threats:

(A4) De-anonymisation. The attacker targets the identity of
diagnosed users or the exposure score of a given user.
This can happen in several ways:

(A4.1) Occasional disclosure [22]. A user records the time
and location of each of their encounters. Later, they
are able to inspect the pseudonyms shared by infected
users (e.g., by design) or discover the pseudonyms by
other means (e.g., coercion). Note that this particular
user knows how to violate an application.

(A4.2) Paparazzi attack [22]. One (or more) malicious
users are equipped with antennas through which they
perform observation of pseudonyms. The same means
as of (A4.1) can be used to de-anonymise victims.

(A5) User tracking. An adversary launches an attack to trace
the location of the users. This can happen, to different
degrees of extent depending on the design of a solution,
by spoofing pseudonyms via long-range antennas or
a network of Bluetooth receivers. These pseudonyms
can then be matched to the resources the attacker can
access to, e.g., common users’ queries or diagnosed users’
pseudonyms, thus the victim can vary. However, diagnosed
users are usually the only ones involved in multiple
rounds of information sharing with other stakeholders, thus
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becoming (together with their contacts) more vulnerable
to the attack.

(A6) Social graph reconstruction. An adversary able to set
up a network of Bluetooth receivers launches an attack to
disclose the encounters of (a subset of) users. This needs
the collusion of strong adversaries and can, eventually,
lead to the de-pseudonymisation of the graph nodes.

D. Security and privacy requirements

Automatic contact tracing is threatened by fake contact
information provided on a large scale. Hence, a protocol should
satisfy the following security requirements:

(S1) Contact integrity. Contact events that impact users’ expo-
sure score should correspond to real physical encounters.
Similarly, insights w.r.t. transmission dynamics cannot be
based on false contacts (cfr. (A1)).

(S2) Infection integrity. The system should defend against
people falsely claiming they are infected (cfr. (A2)).

(S3) Notification integrity. A user should receive a notification
that they are at risk only if they had been exposed to
diagnosed users, i.e., thus tampering with the notification
is disallowed (cfr. (A3)). This assumes that (S1) is fulfilled.

In order to protect users’ privacy, contact tracing should
satisfy the following privacy requirements:

(P1) Exposure score privacy. Only the health authorities can
manage sensitive information on diagnosed individuals,
separately from the automatic contact tracing pipeline
(cfr. (A4)).

(P2) Diagnosed user privacy. Notified users should not know
which of their contacts affected their exposure score
(cfr. (A4)).

(P3) User location privacy. No one should be able to track
individuals, i.e. obtain their location or trajectories.
(cfr. (A5)).

(P4) Interactions privacy. No one should be able to build
social graphs of individuals’ contacts. These include global
graphs (i.e., interactions of all users) and local graphs
(i.e., interactions of subsets of users – diagnosed users)
(cfr. (A6)).

IV. THE PIVOT SOLUTION

This section describes our proposed solution, PIVOT. We
note that several design choices can be made to implement
PIVOT within a real contact tracing infrastructure. Here, we
will underline our assumptions in terms of choices that can
be changed according to the needs of the operators. An
implementation of our solution can be divided into three phases:
(1) local proximity sensing, (2) infection registration, and
(3) exposure score query. Prior to the operational phases, an
initialisation phase is needed to exchange relevant parameters
and setup accounts. We first provide a brief overview of the
solution and then present the details on each phase in the
following subsections. A summary of all the notation used
throughout this and the following sections is provided in Table I.

TABLE I: Summary of all the notations used in the paper.

Symbol Definition

t Time
a, b Users involved in the exchange
own, peer Users involved in the exchange
H(·) Cryptographic hash function
DH(·, ·) Diffie-Hellman shared secret computation function
PRG(·) Pseudo-random number generator
Ya,t Public key of user a at time t
Xa,t Private key of user a at time t
ra,t Pseudo-random number of user a at time t
Nrotation Key validity time (minutes)
St Shared secret between two parties (users) at time t
p Prime number that is large enough for DH security
Z∗
p Multiplicative group of integers modulo the prime p

g Generator for Z∗
p that is a primitive root module p

RHa Report hash of user a to upload at infection registration time
QHa Query hash to upload at exposure score query time
IRHa Integrity report hash for integrity checks
IQHa Integrity query hash for integrity checks
Va Verification hash to spot false positives computed from IRHa

and matched with IQHa

Ex Encrypted version of x
Ncontact Average number of logged closed contacts per user per day
T Time before flushing the pool, i.e., length of a round
Smin Minimum number of senders before flushing the pool
T Length of a mix round
P (s) The probability a message leaves the pool, given s senders in

the pool
x Minimum required hashes for a user to be included in the n

senders of P (s)
sj Number of senders that have at least x hashes in the pool in

round j
Nhashes Number of hashes sent by each user
ρs Entropy of outgoing hashes, i.e., senders’ anonymity
R Number of rounds used to compute entropy
ai Number of senders who submitted hashes in round i
p(Ii) Probability that a given hash that leaves the mix in round R

is a hash I that entered the mix in round i
nR Hashes in the pool in round R

A. PIVOT overview

There are four main actors interacting in our solution: users,
medical personnel, a central coordinator, and a matching service.
Users are voluntary participants who enroll for the possibility
of being notified as well as notifying their close contacts.
Medical personnel are verified medical professionals who make
diagnosis based on the outcome of a test. For the sake of our
description, we assume the general practitioner (GP) is able
to carry this task and notify the users. In practice, this can
be done by several different entities. The central coordinator
operates the infrastructure. We assume this role is assigned to
the central health authority (CHA). The CHA has an interest in
gaining new insights on the transmission dynamics as well as
mapping the spread of the disease. The matching service (MS)
is an external party that that assists the central coordinator in
computing the exposure score of users.

We will discuss possible choices of MSs later in the text
while only referring to a generic MS for the sake of describing
our solution. From now on, we will refer to GPs, CHA, and MS
as our choice of medical personnel, coordinator, and matching
service respectively.

Our solution is based on three phases (as shown in Fig. 1)
which are preceded by an initialisation step. During boot-
strapping the necessary communication channels are set up to

6



CHA Matching 
Service

GP / Test Lab

2  Infection 
registration

3
Status 
query

 Proximity 
sensing

B

secret1

A
secret

^sd719adasj018

1sd719adasj018

match

notification
1sd719a

dasj018 secret

secret

Fig. 1: Overview of the three phases of PIVOT.

obtain the required (crypto) parameters, e.g., by downloading
an application. GPs set up a privileged account that allows
them to communicate test results to the CHA. Users create an
account with the CHA as well. From then on, they participate
in contact tracing and get notified if they have an high exposure
score due to their encounters.

Second, users broadcast frequently changing anonymous
public keys for local proximity sensing. Upon encounters
with other registered users, they calculate two identifiers for
that specific contact: one for infection registration and one
for querying. We name these identifiers report hash and query
hash, respectively. We use two separate identifiers per contact to
better defend private interactions, since no two users will report
the same contact identifier during registration of infections. The
same holds during exposure score query, i.e., no two users
will query with the same contact identifier. Fig. 1 shows that
matching happens when A’s query hash matches B’s report
hash.

Third, infection registration occurs if a user is diagnosed
with the disease by a GP. The user uploads to the CHA their
encrypted report hashes.The CHA batches and sends them to
the MS for building a list of the hashes of all the diagnosed
users. The CHA fills the role of an aggregator such that the
MS is not able to link hashes to users. Only the MS sees plain
hashes.

Fourth, a user checks their exposure status by submitting a
exposure score query to the CHA that contains their encrypted
query hashes and some metadata about the contacts. The
CHA keeps the metadata and forwards this request to the MS,
which checks for matches within the list of hashes reported
by diagnosed users. The CHA is informed on which query
hashes matched, which enables exposure score computation
and user notification. Special care is taken so that the CHA
never learns the exact hashes and the MS cannot link hashes
originated from the same user. Additionally, PIVOT allows the
CHA to check the integrity of the matches returned by the MS
via three integrity hashes established during local proximity
sensing and propagated to the involved entities during the other
two phases.
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Fig. 2: System bootstrap phase: necessary (crypto) parameters
distribution, medical personnel and user registration. The
distribution could be realised differently depending on the
infrastructure necessities.

B. PIVOT in detail

Bootstrapping: In the initialisation phase, the necessary
(crypto) parameters are exchanged, and accounts are registered
(Fig. 2). Our system relies on a DH protocol to locally compute
shared secrets between users upon close physical encounters.
The process allows to compute unique identifiers for every
contact (details in Section IV-B1). To calculate these contact
identifiers some public parameters need to be agreed upon. The
parameters are chosen by the CHA and distributed to the users
by a key distribution entity. For example, they can be put in the
contact tracing app by the developer in the form of a certificate
kit (Fig 2). The certificate kit can be verified as it is signed by
a root of trust. Similarly, a certificate kit with the public key of
MS can be embedded in the app. The MS relies on asymmetric
key cryptography to obtain contact identifiers during infection
registration and exposure score querying, without revealing
them to the GPs, the CHA or any other external parties (details
in Section IV-B2 and IV-B3).

To satisfy (S2) Infection integrity, registration of a test result
can only be done by authorised medical personnel, thus, a
privileged account is needed. GPs enroll for such an account
by providing the CHA with, e.g., proof of medical expertise.
It is possible to use existing infrastructure for this purpose.

Users who decide to participate in contact tracing download
the app from the app store and register. It is important to
allow the users to share, on a voluntary basis, demographics
information such as the province or region of domicile, age
range, and gender. These will contribute to monitoring the
effectiveness and utility indicators during the operational
phase of the app. Demographics metadata enriches the already
recorded metadata to characterise contacts, allowing the CHA to
enhance the exposure score model and their analytic capabilities,
e.g., geographically mapping the spread of the virus.

1) Local proximity sensing: Fig. 3 illustrates how proximity
(i.e., close contact) between two smartphone users is logged.
Every user u generates an ephemeral public/private key pair,
Yu,t/Xu,t, for the time period t, and locally broadcasts the
public key Yu,t over BLE. To avoid tracking, this public key
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Fig. 3: Close contact registration. All the parameters are intended for the current period t (e.g., Xa, Ya, and S respectively
refer to Xa,t, Ya,t, and St, and so on). In practice, public and private keys rotate frequently as well as the random number r.

is changed every N min. Upon physical encounters with other
participating users, the public information is picked up by their
devices. For each observed public key, each user calculates a
shared ephemeral secret following an interactive Diffie-Hellman
exchange St = DH(Xown,t,Ypeer,t). For example, given a
publicly known large prime number p and a publicly known
generator g for Z∗

p , a multiplicative group of integers modulo
the prime p, users A and B can compute the ephemeral public
keys

Ya,t = gXa,t mod p (1)

Yb,t = gXb,t mod p. (2)

Upon a close contact, A and B compute the shared secret

St = YXa,t

b,t mod p = YXb,t

a,t mod p. (3)

The public parameters are provided in certification kits during
initialisation. We note that, for efficiency, elliptic curve DH
should be used to calculate St.

The user then computes a cryptographic hash from the
concatenation of its own public key, the observed public key and
the shared secret: QH = H(Yown,t,Ypeer,t,St). The obtained
hash, i.e., the query hash, is used for query purposes only. A
second hash for infection registration, i.e., the report hash, is
obtained by interchanging the own public key and observed
public key: RH = H(Ypeer,t,Yown,t,St). By using two separate
hashes we limit the social graph building capabilities, as all
query and report hashes are unique.

In addition to the QH and RH, the proximity exchange based
on DH can be extended with a pair of hashes used for integrity
purposes, as shown in Fig. 3. Thus, each user computes a pair of
integrity report hashes. First, IRHown = H(Yown,t,St), which is
uploaded by the user with its report hashes following a positive
diagnosis (i.e., infection registration). Second, IRHpeer =
H(Ypeer,t,St), which primary use is to compute a third hash,
i.e., the integrity query hash, IQHown = H(IRHpeer, rown),
where rown is a randomly generated number. The latter is
uploaded by the user when requesting the exposure score
(i.e., exposure score query). We discuss the whole procedure in
more details in Section IV-B4, leaving out these hashes from
the discussion of phases 2 and 3.

Users store locally the hashes they compute for each of their
encounters, together with the duration and a distance estimate,
i.e., the recorded attenuation values. The hashes can be deleted
when the maximal incubation period is reached since they
lose their relevance. In addition, as mentioned earlier, users’
ephemeral public keys change every Nrotationmin, a parameter
which allows to achieve (F1) Close contact logging. In practice,
Nrotation can be linked to the rotation frequency of the BLE
MAC address, which is device-dependent, in an effort to avoid
linkage between the two.

2) Infection registration: Fig. 4 depicts the most important
steps of the infection registration phase. The goal is to build a
database that contains all the hashes of the diagnosed users,
i.e, the report hashes. Special care should be taken such that
only MS can access this database and it cannot link different
report hashes to the same user. Thereby, we aim to satisfy
(P1) Exposure score privacy, as the MS does not know which
hashes belong to which user and the CHA does not see the
plain hashes; (P2) Diagnosed user privacy, as report hashes are
hidden to the public; and (P4) Interaction privacy, as no entity
learns which hashes belong to which user and with whose
hashes they match.

A user requests a test either because they develop symptoms
or because they receive a notification. As a result of a positive
test, the user should be able to upload their report hashes. To
this extent, we need an authorization procedure which allows
only who is infected to perform the upload. One possible way
of doing so is by generating a random authorization code (AC)
via the app which is shared with a trained employee, e.g., the
GP. At the level of the CHA, AC is linked to the test performed
by the user. In this way, when (and if) a user decides to upload
their report hashes, they can share AC (or an hash based on
this value) with the CHA to get an authorization. This is a
delicate procedure since it requires the interaction of databases
used for manual contact tracing and databases dedicated to
automatic contact tracing, which should never be correlated.

During the interaction between the user and the medical
personnel, an alleged starting date of infectiousness can be
established at the purpose of filtering out unnecessary hashes
before the upload. Therefore, the user encrypts their hashes
with the public key of the MS and uploads them to the CHA.
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Fig. 4: Infection registration phase: a user interacts with a
licensed general practitioner (GP) and is enabled to share the
report hashes with the CHA via an authorization code (AC).
CHA batches the hashes from different users and sends them
to the matching service, which can ultimately decrypt them
and build a DB of (unlinked) diagnosed users’ hashes.

A proxy server is needed, between the diagnosed user and the
CHA, to hide the user’s IP and maintain a strict separation
between the query phase and the infection registration phase.
Additionally, an expiry date for report hashes can be computed
based on the day the contact happened. This information is
later used to remove hashes from the database.

Once they have collected encrypted report hashes from
different users, the CHA is in charge of batching them and
forward the batch to MS. Thus, the CHA does not learn the
hashes, and batching avoids that MS learns which hashes belong
to the same user. The MS then decrypts and builds a database
of report hashes which is used in the last phase, i.e., exposure
score query.

We note that infection registration can aid the study of
transmission dynamics by means of the sharing of aggregated,
anonymous information with the CHA and epidemiologists. For
example, in this phase, it is possible to link the test outcome
to the primary reason for testing, which may, in turn, be the
reception of a notification.

3) Exposure score query: Fig. 5 shows the interactions
during the exposure score query phase. The user encrypts
their query hashes with the public key of the MS and sends
them to the CHA with the expiry date and metadata about
duration (i.e., number of observation per each key) and distance
(i.e., signal attenuation) of each contact. The CHA batches the
encrypted hashes of several users, shuffles them, and sends
them to MS, while keeping the metadata for themselves.

MS decrypts the query hashes and compares them to its
database of reported hashes. Thus, it indicates to the CHA
which encrypted hashes (i.e., which index in the batch) matched
one of the diagnosed users’ hashes. CHA never learns the
hashes, while MS is not able to link hashes from the same
user, thus complying with (P4) Interaction privacy and (P1)
Exposure score privacy. The latter computes the exposure score
according to the most recent transmission dynamics model and
notifies the user when the score exceeds a threshold, thereby
satisfying (F4) User notification. We note that in order to

Notification

2 4

8

Public 
key

Central  
Health Authority

Matching 
Service

Decrypt 
CHA_batch

5a
Encrypt  
query_hashes

CHA_batch 

Private  
key

6
matches

encrypted_hashes 
expiry_dates 
metadata 

3 Batch 
encrypted_hashes 

1

Compute  
exposure_score7

5b QH  RH
QH  
QH  
...

RH  
RH  
...

Fig. 5: Exposure score query phase: the user sends their list of
encrypted query hashes. The CHA forwards this list in batches
to the matching service, which decrypts the list and searches
for matches within its database of hashes of diagnosed people.
The result is returned to the CHA which computes the exposure
score and informs the user accordingly.

compute the exposure score it is possible to rely on the total
amount of exposure to diagnosed users, which is not necessarily
linked to a specific number of users, e.g., the total exposure
is the same whether a user was close to 5 diagnosed user for
5min or 1 diagnosed user for 25min. This assumes that the
contacts are registered at approximately the same distance and
the alleged infectiousness of the diagnosed users was the same
at the time of the contact. Therefore, only a minimum threshold
for registering contacts is needed, which research and setting
are outside of the scope of this work. To minimize information
leakage, CHA can use a colour encoding that translates their
score into an advice. For example, green may correspond to
very low chance of infection, orange to a medium-level, and
red to a critical exposure.

By outsourcing the matching to MS, we support (F3)
Exposure score computation and (F4) User notification while
clearly separating concerns and providing only the needed
information to each involved party. Furthermore, data collected
at this stage can be re-purposed to map the spread of the
disease geographically. If users provide their coarse area of
domicile during bootstrapping (Section IV-B), CHA leans
aggregated information on the average exposure score for
that area and can allocate testing resources accordingly. CHA
also learns the metadata of all contacts and which contacts
were with diagnosed individuals. This may turn useful to
epidemiologists for obtaining new insights w.r.t. transmission
dynamics, especially when integrated to data gathered through
manual interviews and the alike.

4) Integrity check: We trust CHA and MS to act honestly
when, respectively, notifying the user and performing matching.
However, PIVOT can take advantage of an integrity check
to provide the CHA with an additional measure to validate
matches returned by the MS. Fig. 6 shows the steps needed to
verify if the MS is reporting a match that was truly originated
by (a) a valid report hash, and (b) a query hash sent by the user.
During infection registration, user a associates the encrypted
report hashes RHa to a set of encrypted integrity report hashes
IRHa, and uploads them together to the CHA. These hashes
are sent to the MS using a batching strategy (Section IV-B2)
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Fig. 6: Integrity check of matches returned by the MS. Step 1
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are an exposure score request. Along with the matching result,
the MS sends an hash which allows the CHA to check whether
matches are real. Note that this is a simplified scheme: in
practice, the CHA sends batches of encrypted hashes to avoid
linkage (Steps 2 and 4).

so it can decrypt them using its private key. It is important that
RH and IRH are not decoupled during batching such that the
MS can store them in pairs. Then, during the exposure score
query phase, user b sends the encrypted query hashes QHb

to the CHA together with plain integrity query hashes IQHb

and the encrypted random numbers rb used to generate them.
CHA then attaches the encrypted rb to the encrypted QHb

before sending them to the MS in batches (Section IV-B3).
Eventually, the MS returns a list of matches for the batch
requested by CHA, but it also provides verification hashes that
are computed using the random numbers and integrity report
hashes: Vb = H(IRHa, rb). In this way, the CHA can verify
whether the verification hash Vb matches the integrity hash
sent by user b (IQHb) to discover false positive matches.

Using the random number is necessary to disallow the CHA
to discover whether a user is within its list of encounters. It
cannot, in fact, compute the integrity query hashes of one of
its close contacts because it misses the random number. The
latter is encrypted by the user and sent to MS. This integrity
mechanism does not affect the implications of a collusion
between CHA and MS.

C. Additional considerations

1) Scalability and interoperability: Our solution is practical
(i.e. easy to implement), as it can be built with existing crypto
building blocks and builds on already existing technology
stacks. Furthermore, the system easily works across borders as
there is no need for the local CHAs to exchange data. Instead, a
global MS ensures that physical encounters of infected people
across borders are dealt with. Of course, it is important that
the individuals phones register the contact in the same way, i.e.
by computing query hashes and report hashes. The ideal data
structure and infrastructure to perform matching at a global
scale is beyond the scope of this paper.

2) Communication cost: In PIVOT, the main communication
cost for users occurs in the infection report and the exposure
score query phases.

In the infection report phase, each newly infected user would
send to the CHA all of their report hashes logged in the last
14 days prior to developing symptoms encrypted with the
public key of the MS. If we denote the average number of
logged closed contacts per user per day as Ncontact, then the
communication cost in the report phase for a newly infected
user would be 14 × Ncontact × (|E RH| + |E IRH|), where
(and below) | · | denotes the bit length (e.g., |E RH| is the
length of an encrypted report hash). Note that if the additional
integrity check explained in Section IV-B4 is not implemented,
then the communication cost in this phase would be reduced
to 14× Ncontact × |E RH|.

In the exposure score query phase, for each day, each user
would send to the CHA the following data per logged close
contact for the day: the integrity query hash and the metadata
of the close contact in cleartext 3 as well as the query hash
and the random number used for generating the integrity query
hash, both of which are encrypted with the public key of
the MS. This will result in the following communication
cost: Ncontact × (|IQH| + |metadata| + |E QH| + |E r|).
Similarly, if the additional integrity check is not imple-
mented, then the communication cost would be reduced to
Ncontact×(|metadata|+ |E QH|). As the communication cost
due to the colour coded exposure notification delivered to the
user is negligible compared to the cost incurred due to the
query data, we ignore it in our analysis. Furthermore, users
can query only the newly logged query (and integrity) hashes.

If PIVOT is set to use SHA256 as a hash function
(hashes with a length of 256 bits), elliptic curve-based en-
cryption/decryption algorithm (with a key size equal to 256
bits, hence ciphertext size equal to 512 bits), and AES256 as
the encryption scheme to secure the communication between
the user and the CHA, and we assume that on average each
user logs 200 close contacts per day as well as the metadata per
contact is less than 256 bits, then the communication cost for
the infection registration and the query phases are as follows.

• Report data: ≈ 360KB (14× 200× (512+ 512) bits) per
infected user per report when PIVOT is implemented with
the integrity check and ≈ 180KB (14× 200× 256 bits)
if it is implemented without the integrity check.

• Query data: ≈ 38KB (200 × (256 + 256 + 512 + 512)
bits) per user per day when PIVOT is implemented with
the integrity check and ≈ 19KB (200× (256+ 512) bits)
if it is implemented without the integrity check.

The communication cost per user could be further reduced
if the user encrypts their logged hashes in batches rather than
separately one by one. However, this would inevitably reduce
the privacy protection of users as the MS would know that the
hashes in these batches come from the same user.

3) Total delay: As time is critical in contact tracing, a rapid
notification is crucial. We note that the end-to-end notification
delay, which encompasses the steps needed to alert a user of
a high-risk contact, is composed of two shorter delays. First,
a report delay is introduced when a positive test is carried
out and the diagnosed user is required to upload their report

3Note that these data are still protected via the encrypted communication
channel between the user and the CHA.
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hashes to the CHA: this step is solution-agnostic since it relies
on the testing framework and users’ willingness to upload their
tokens. Second, a query delay is due to users who query for
their exposure score, a step that depends on the solution design:
completely centralised solutions introduce no delay as users do
not query for exposure, the server computes the score for them
and notifies accordingly; in decentralised schemes, the device
queries for risky exposures multiple times a day, introducing a
delay of at most a few hours. PIVOT’s separation of concerns
enables a significant reduction of the query delay. If the CHA
stores the encrypted query hashes sent by the users with a link
to their accounts, it can request the MS to perform matching
on those hashes at a higher frequency compared to the users’
upload rate, which is bound to internet connectivity and battery
consumption. This implies that the user only uploads an update
of its encounters instead of the whole list. Further analyses on
batching (Section VII-A) do not take into account the possible
reduction of the query delay. We instead consider a worst case
scenario where messages are not forwarded multiple times by
the mix node, which we use to set a baseline. On top of the
two delays, however, we should consider the time needed by
the mix node to meet a certain predefined privacy threshold to
the sender. Therefore, PIVOT introduces an additional delay
due to the CHA taking the role of a mix node to counter timing
attacks. We call it mixing delay and study its practical impact
in Section VII-A.

V. SECURITY AND PRIVACY ANALYSIS

A. Threat actors

We present the threat actors we refer to in our security and
privacy analysis. Each attacker is described by their knowledge,
capabilities, and goals.

1) Users: We identify two types of users: honest-but-
curious users and malicious users. Honest-but-curious users
can perform occasional disclosure attacks (A4.1), hence de-
anonymising other users by remembering their encounters
and using data gathered during the operational phase of
automatic contact tracing. This type of users is capable of
querying the system to learn the exposure score of their
contacts. They can also collect a manifold of encounters
by strolling through the city, including additional metadata
on their contacts by storing the exact time and location of
encounters (e.g., installing another app that leverages the
same communication infrastructure). Malicious users can carry
out two de-anonymisation attacks: the occasional disclosure
attack (A4.1) of target users and a paparazzi attack (A4.2)
that targets a wider set of victims. Additionally, they may
seek personal benefit by tinkering with exposure scores. For
example, they could force the authorities to test them by raising
their score (i.e., Terrorist attack (A2)); or they could raise
a target user’s exposure score in the hope that they would
self-isolate. Malicious users are also technically more skilled
than the honest-but-curious ones: they can inject arbitrary
contacts by directly modifying the app, and register multiple
accounts as well as use long-range antennas to eavesdrop
local communications, inferring public data broadcast by other
devices, on a small scale (A5).

2) Malicious third-party: A malicious third-party extends
the malicious user as it additionally has the goal to disrupt
the service (e.g., DDoS) and cause panic (e.g., Lazy Student
attack (A1)). Furthermore, its capabilities are scaled up. Thus,
it can obtain a manifold of accounts and can roll out a network
of antennas and Bluetooth transmitters at scale (A5).

3) General practitioners: The GPs are honest-but-curious
actors. They follow the protocol specification but might want
to know additional sensitive information about their patients.
GPs might already know their patients’ identity and medical
record, however, they might also want to learn their trajectories
and encounters. We trust GPs to act with integrity and thus
diagnose patients truthfully: they will not knowingly register a
positive diagnosis if a given user has not tested positive.

We note that a collusion between GPs and other entities
simplifies linking test results to users. This holds in case of a
decentralised system, since it is due to the authorization upload
mechanism used for uploading tokens of diagnosed people.

4) Central health authority: The CHA is an honest-but-
curious party that coordinates the protocol. Apart from learning
the exposure score of the users, they might also aim to gain
out of scope knowledge – the identity (A4), social interaction
graphs (A6), or trajectories of individuals (A5). To this extent,
they can correlate information from other data sources it
normally has access to, e.g., databases used for manual contact
tracing. We assume that the CHA will not turn malicious and
undermine the functioning of the underlying system, e.g., send
fake notifications or enforce policies on arbitrary users (A3).
This would clash with its goal of curbing the spread of the
virus.

5) Matching service: The MS acts as an honest-but-curious
party. It aims to gain out-of-scope knowledge about users:
it tries to de-anonymise users and learn their exposure score
(A4), construct their trajectories (A5) or build social interaction
graphs (A6) by using its knowledge on query and report hashes.
To this extent, it can observe keys broadcast by users in public.
Thus, it can try to link hashes to users on a large scale. However,
with respect to triggering false notifications (A3) by cheating
in computing matches, we consider MS to be malicious.

We note that, by colluding with the CHA, MS can link hashes
to users. It is, therefore, of the utmost important to choose a
trustworthy MS, which has no hidden interests in gaining access
to data nor in providing such information to the coordinator or
a central authority. We recognize that a despotic government
might act as a malicious central coordinator and dictate access
to data handled by the MS. However, we are convinced that
such behaviour would go beyond the implications of releasing
contact tracing data. Organizations fit to fill the role of MS are
to be chosen within the legal framework of a given country,
with special attention upon third-parties audit with no conflicts
of interests. As this goes beyond the scope of this paper,
we refer to recent work that has proposed a charter for the
selection of trusted intermediaries among existing governmental
institutions [32].

B. Security analysis
(S1) Contact integrity: PIVOT ensures that only real physical

encounters impact users’ exposure score. Using a combination
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of DH and proper separation of concerns, our solution protects
against attackers trying to inject false encounters which
invalidates exposure scores and related analytics. This is
achieved by combining several defence mechanisms. First,
publicly broadcast information (users’ ephemeral public keys)
are not used directly for reporting infections nor querying for
exposure score. Instead, locally computed hashes are used.
Second, each encounter is registered as a pair of hashes
that, apart from users’ public keys, take as input a shared
secret known only to the two users in close contact. Third,
each encounter is registered by both users using two different
hashes in reverse order – one for registering infections and one
for querying exposure score. These measures ensure that our
system supports unique per-user-per-contact identifiers (hashes)
which are not broadcast to the public and can be computed
only by the two users in close contact (due to the use of a
shared secret key as an input for the computation). This makes
impactful injections of false contacts unlikely.

In addition, using DH protects against indiscriminate replay
attacks. In fact, the shared secret will be different for every
pair of users, therefore just replaying a public key broadcast
by another user is not enough to establish a fake contact
between two victims. An adversary might attempt to carry out
a real-time relay attack – acting as a routing node between
two victims. In this way, a physical contact is emulated,
which can potentially lead to fake notifications and service
disruption. However, this consists of a considerably targeted
attack compared to just replaying a public key which observed
in the wild. Relay attacks can be mitigated by incorporating
information about the surrounding environment which is used
to build a unique signature verifiable by the receiving party.
In recent work, absolute location of the user and current time
have been considered [33], but other side-channel measurement
can be taken into account such as the vibrations or ambient
sounds [34].

(S2) Infection integrity: PIVOT defends against malicious
users falsely claiming a positive diagnosis (e.g., aiming to
cause panic) by limiting who and when can report infections.
Only authorised medical experts (e.g., GPs) are allowed to
report diagnosis and, at the same time, enable users to upload
their public keys to the central coordinator. This is intrinsic to
the authorization mechanism described in Section IV-B2. As
outlined before, a proxy server is needed to hide the identity,
and the account, of a user uploading their report hashes, which
prevents any linkage between query and report hashes.

(S3) Notification integrity: As PIVOT ensures infection
integrity and contact integrity, and assuming that the the
CHA is honest-but-curious, a user will receive a notification
that they are at-risk only if they had enough exposure to
(i.e., close encounters with one, or more) diagnosed users.
To protect against cheating MS, we use integrity checks on
matches (Section IV-B4). This allows the CHA to be protected
against attacks that compromise the MS and, consequently, the
received matches. By doing so, the CHA defends against false
notification due to, e.g., breaches occurring on the side of the
MS or a compromised communication channel.

C. Privacy analysis

(P1) Exposure score privacy: In PIVOT, the exposure score
of users is only known by the CHA, which is in charge of its
computation. The users themselves learn their status thanks
to a notification (or the absence of it) that might be more or
less coarse-grained, as discussed in Section IV-B3. There is
no need for the user to know an exact exposure score to fulfil
the notification of at-risk users (F2), while a color encoding
scheme might be enough.

The honest-but-curious MS is not able to associate query
and report hashes to specific users since they are both batched
by the CHA. In fact, batching guarantees the unlinkability of
the sender while only allowing the MS to infer the number
of matches per batch. Hence, as the MS does not know to
whom these hashes belong nor the related metadata – such
as proximity and duration of contacts – it cannot compute
exposure scores of users who query nor link them to real
people. An analysis of batching in our case can be found in
Section VII.

(P2) Diagnosed user privacy: As the exposure score is
calculated by CHA based on the matching results provided by
the MS, users never get to know which of their close contacts
affected their status. Moreover, the CHA is oblivious to the
hashes, only observing their encrypted version. As underlined
before, the MS is the only party that has access to the hashes of
users. However, if the MS participates in the protocol as a user
and gets in close contact with other potentially infected users,
it will be able to de-anonymise them once it sees their hashes
reported. This threat holds true, although slightly harder to
carry out, for every user who is able to be in close contact with
their target. They can query the CHA multiple times with a
bulk of contacts related to one, or more, prolonged encounters
with their victim. Eventually, the score/status returned by the
system will reveal some information, i.e., whether the victim
was diagnosed in the (few) days after their encounter. It is worth
noticing that no automatic contact tracing solution protects
against the accidental disclosure of health information. If a
regular user has encountered only, let’s say, three people in the
past two weeks, and gets notified to be at-risk, they will likely
be able to de-anonymise the diagnosed user by remembering
this skimpy group of individuals.

The impact of de-anonymisation attacks can be mitigated in
several ways. Honest-but-curious users can be prevented from
learning the status of their close contacts by simply enforcing
a limit on the number of queries associated to each account.
To protect against stronger actors, which can register multiple
accounts, the CHA can re-use encrypted query hashes. After
routing them to the MS, the latter can easily check whether they
have seen a query hash before. Since searching for matches
among already checked query hashes is a needed feature due
to the upload of new report hashes by diagnosed users, the
CHA would need to send new query hashes and old query
hashes separately to the MS. In this way, every time a user
tries to query with a query hash which the CHA, and MS, have
seen before, the MS will be able to report this to CHA after
decryption. In order not to give to the CHA the superpower
of guessing if users are among their encounters, MS can just
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discard the duplicate hash and return a non-match by default.
This will not improve the capabilities of the CHA of querying
MS with its own query hashes. By doing so, an attacker is
confined to the use of a single account per target user. As a
final countermeasure to combat highly targeted attacks, the
CHA could require the authentication of the users by means
of a permanent or semi-permanent ID. This exposes users’
privacy since the CHA will be able to associate exposure scores
to identities instead of anonymous accounts, but represent
an instrumental way of rate limiting the number of queries
performed by an entity capable of registering a disproportionate
number of accounts. This measures enormously reduce the
possibility to disclose the exposure score of diagnosed and
at-risk users to third-parties.

(P3) User location privacy: PIVOT does not collect, store or
process location data. The ability to track a user is linked to the
public key validity time, which is in turn bounded to the MAC
address rotation frequency (device-dependent). The honest-but-
curios CHA and MS might run a network of beacons (or use
existing infrastructures) to register close encounters with users
indiscriminately. However, considered in isolation, they will not
have enough data to link public keys (broadcasting material) to
report and query hashes (uploaded material). On the one hand,
the CHA never obtains plain hashes from users, since they
are encrypted using MS public key. On the other hand, the
MS sees several unrelated hashes due to batching. However,
If the CHA and the MS collude, they can then track users’
past movements by linking plain query hashes to users. To
defend against this threat, PIVOT could be enhanced with the
solution proposed by [9], i.e., sharing the public key in several
pieces ensuring that at least a predefined number of contacts
have been made before a user can determine the public key.
While being computationally inexpensive, this further reduces
the tracking capabilities to a very short time window.

(P4) Interactions privacy: PIVOT protects users’ interactions
privacy by not allowing social graphs (both global and local
proximity interaction graphs) to be built by any threat actor.
In our solution, none of the hashes are ever broadcast in the
public, which prevents adversaries from discovering contacts
between users, i.e., build a global interaction graph. Even by
knowing the public keys of target users, it is not possible for
the adversary to derive their private keys and computationally
hard to build a rainbow table that contains all the possible
salted hashes (assuming that the DH parameters are selected
properly), as explained in Section IV-B1.

The CHA has no access to users’ hashes as they are encrypted
on-premises and decrypted only when they reach the MS.
Additionally, only query hashes can be linked to a given account
since report hashes are uploaded via a proxy. This prevents
CHA from building local proximity graphs of the users who
upload their report hashes or query their exposure score. Since
CHA batches report and query hashes before providing them
to the MS, the latter cannot link a set of hashes to a single
user to building interaction graphs of any sort.

As before, if the MS and the CHA collude, and use side-
channel information, they can construct a proximity interaction
graph of a target user, although this is hindered by the use
of a proxy. One way to prevent this privacy nightmare is by

leveraging trusted execution environements (TEE) at the MS.
By doing so, all the computations happen in a trusted enclave,
the MS never learns the infected list nor the contact list. We
leave such an extension to TEE experts. A possible extension,
which is computationally expensive for the edge but not for
a central coordinator, leverages private set intersection [35].
We can reduce the degree of trust we put on the authorities
by only granting them access to the intersection between the
report hashes list and the query hashes list instead of sharing
the entire list of query hashes.

VI. COMPARISON

In the section, we compare our design to solutions presented
in Section II. We split the discussion into two strands: first, we
define a baseline solution to compare different design choices
in terms of analytics for utility evaluation; second, we evaluate
the compliance of each solution w.r.t. security and privacy
requirements defined in Section III. Table II and Table III give
a concise summary of our analysis.

A. Utility evaluation

Here, we consider our previously defined performance
and utility indicators to analyse the additional advantages
of providing the central coordinator with more data. To this
extent, we elicit important metrics for our key indicators from
evaluations of currently deployed schemes based on DP3T [25],
[26]. We note that it is not possible to compare PIVOT to other
proposed protocols since data gathered for evaluation also
depends on the contact tracing infrastructure within which the
protocol is developed and deployed. Instead, by relying on
analyses of already deployed solutions, we can weight the
potential benefits of a specific design choice:

What is the advantage of computing the exposure score
centrally (coordinator-side) instead of on-premises
(user-side)?

We consider the metrics needed for a proper evaluation
of automatic contact tracing solutions and assign a colour-
coded score to the amount of data collected for that purpose.
Table II shows the comparison between decentralised (D)
and centralised (C) exposure score computation. For (D) we
refer to the evaluation of SwissCovid as an example of an
application based on DP3T, a decentralised protocol, that only
shares minimal information with the central coordinator [26].
Regarding (C), we assume that the exposure score is computed
centrally (as in PIVOT) but the entity in charge of computing
the score is oblivious to the pseudonyms shared by users
(differently from ROBERT or TraceTogether). However, the
coordinator has access to contacts metadata and (rough) users’
demographics.

We start by considering the performance indicators. First,
the user engagement:
(D) In SwissCovid, the operators can monitor the total absolute

number of downloads, have information on the total keys
uploaded each day and the delay between the onset of
symptoms and the upload itself, and the percentage of keys
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TABLE II: Comparison between decentralised score computation (app based on DP3T) and centralised score computation (app
based on PIVOT) w.r.t. our effectiveness and utility indicators.

Indicators Decentralised score
(DP3T-like)

Centralised score
(PIVOT-like)

User engagement
{

Uploaded keys 3 3
Active users 3 3

Notification effectiveness
{

Threshold feedback 7 3
Total notifications 7 3

Contacts dynamics 7 3

uploaded among the ones generated. Additionally, they
can estimate the number of active users by monitoring
dummy requests that are sent every 5 days.

(C) Same properties as (D). However, the active users are
estimated more precisely via the link between a query
and a specific user. Thus, the operators know exactly how
many users are querying the system, while only missing
the ones using the system offline.

Metrics to estimate the notification effectiveness can be
divided in two groups: effectiveness of the technological stack
(BLE-related), and precision and recall of the notifications:

(D) The app is not able to monitor how many users were
triggered as at-risk given some parameters for the exposure
score function. These parameters can include the attenua-
tion threshold, i.e. the estimated distance, and the weights
associated to the attenuation buckets. As a result, changing
these parameters requires to carry out time-consuming
tests or ask for external feedback. SwissCovid operators
relied on tests on a relatively small scale and feedback
from users reporting that “expected notifications were not
triggered” [36].

(C) The central entity computes the exposure score by knowing
number of matches and their metadata, hence controlling
the notifications. If the definition of at-risk exposure
changes due to, for example, new findings on the contacts
dynamics or the infectiousness of the virus, the central
coordinator can on-the-fly verify whether a new threshold
increases the total number of notification by a specific
margin.

(D) Decentralised solutions rely on people providing infor-
mation on what the real cause for testing was, such
that authorities get data on how many people tested
mainly because they were notified by the app, and how
many of them turned out to be positive [26]. A rough
estimation on people going into quarantine is given by
the number of calls to the infoline associated with the
application. Moreover, SwissCovid operators rely on field
study on small controlled groups, like the work in progress
performed in the canton of Zurich [23]. Here, the app
seems to perform better compared to the rest of the country
which might indicate bias in the chosen group.

(C) Controlling the exposure score computation process gives
the system control over the notifications. On top of the
people voluntarily sharing the reason why they tested to
GPs, the authorities have the total number of notifications
and obtain a better estimation of the recall of the system.

In this scenario, users might even disclose whether they
are quarantining after the notification or if they decide to
contact authorities since the central system knows already
the exposure score, while in the decentralised scenario the
two information are to be kept separate.

Finally, we take a look at utility indicators with the contacts
dynamics:
(D) No epidemiological data is shared with central authorities.
(C) Possibility to share demographics, contacts metadata of

at-risk users that might voluntarily provide their status
(diagnosed) after a test to expand the knowledge of the
epidemiologists.

B. Security

(S1) Contact integrity: There is no solution ensuring perfect
integrity of contacts. Decentralised and centralised solutions
offer no protection against the injection of publicly known
pseudonyms in a user’s own list or emulating contacts. This
might become problematic for two reasons: (1) the government
wants to scale testing but there are no guarantees about a self-
declaration of close contact, (2) private companies – especially
during a less strict phase of lockdown – have to agree on letting
one employee to work from home and self-isolate. In particular,
in a decentralised matching solution, a malicious user who
wants to be tested to be reassured about their exposure score
might use the public bulletin board of tokens uploaded by
diagnosed users or simply fake a notification (e.g., via a clone
app). In DP3T, diagnosed users upload their daily keys used
to generate pseudonyms (i.e., upload-what-you-sent). This is
enough for skillful users to fake a contact by just crafting and
injecting an observed infected token. Decentralised solutions
using DH primitives (CleverParrot and Pronto-C2) decouple
what is uploaded to the public board from what is broadcast.
This allows to prove a contact by both parties acknowledging
it, thus preventing attacks which make use of the public board.
Centralised matching solutions are not affected by such an
attack, since the central coordinator hides the databases of
infected pseudonyms.

Replay and relay attacks affect, to different extent, every
solution. This is due to the difficulty to verify whether an
attacker has re-broadcast a pseudonym they have previously
observed from a rightful user. A replay attack consists of
the indiscriminate broadcasting of publicly observed tokens,
especially if these tokens belong to people which are likely
to get a test in the near future (e.g., recording in the vicinity
of an hospital). This leads to many false positive notifications
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TABLE III: We compare our solution to the one presented in the related work section. We additionally provide a categorization
which will aid in comparing the main characteristics of each proposed solution: a solution can perform centralised or decentralised
token matching; the exposure score is obtained centrally or on-device only; in order to perform matching, a diagnosed user can
upload what he Sent to nearby users or what he Received from nearby devices. We use a three-color code scheme to describe
the level of fulfillment of a certain requirement w.r.t. the other solutions: basic L, intermediate �, and complete  .

Token generation Decentralised Centralised Decentralised
Token matching Decentralised Centralised
Exposure score computation Decentralised Centralised
Upload strategy Sent Received Sent Received

DP3T [9] CleverParrot [14] Pronto-C2 [11] Epione [13] BlueTrace [8] ROBERT [7] DESIRE [12] PIVOT (Ours)

Se
cu

ri
ty Contact integrity L   � � �   

Infection integrity         

Notification integrity    � L L L �

Pr
iv

ac
y

Exposure score privacy     L L L �

Diagnosed user privacy L � � � � � �  

User location privacy L    L L   

Interactions privacy     L L   

* The compared solutions are protocols proposed in the literature which have been, in some cases, implemented in the real world. BlueTrace [8] has been implemented in the Singaporean app Trace
Together [21], while ROBERT is the basis of StopCovid [20], the first French app.

in case the target user becomes sick, therefore threatening the
integrity of the system. Integrity checks are usually performed
via the use of timestamp that limit a broadcast pseudonym
to a limited window of validity (ROBERT and BlueTrace).
When users upload what they broadcast, it is possible to
bind pseudonyms to epochs (DP3T and Epione) resulting
in a pseudonym that can be re-broadcast for several hours.
Mitigation include the introduction of interaction [24]: they
can compute a message authentication code (MAC) based on
a challenge and a timestamp. While working within a limited
time window, this mitigation does not fit in current schemes
that assume no communication between two users. However,
non-interactive integrity checks are also possible [33]. All the
solutions involving a DH-like exchange (CleverParrot, Pronto-
C2, DESIRE) protect against replay attacks due to the double-
acknowledgment needed to build a close contact. Relay attacks,
however, need to be tackled via additional defenses – such local
measurements as described in Section V-B – since we cannot
impede the targeted, real-time broadcasting of pseudonyms
between two victims who are not in close contact.

Like all the solutions based on DH-exchange, PIVOT relies
on unique per-user-per-contact hashes and obfuscates these
hashes to the public, thereby reducing the possibility to cheat
and increasing the probability that testing close contacts will
not result in a waste of resources. As discussed in Section V-B,
given the bi-directional nature of our protocol, the success of
replay and relay attacks is severely impaired. In particular, a
third-party cannot relay public identifiers indiscriminately and
must target one pair of users within the refresh window of their
public keys. If only one of the two public keys is transmitted
and the owner of the public key is tested positive, the receiving
party would not be notified of being at risk.

(S2) Infection integrity: Under our threat model, all the
solutions support infection integrity by only allowing medical
personnel (e.g., GPs) to grant the upload and enable notification.

(S3) Notification integrity: The analysed solutions put
different degree of trust on the back-end server in charge
of handling pseudonyms. On the one hand, solutions that

perform matching and exposure score computation centrally
are generally less transparent. This exposes the users to severe
threats – such as arbitrary notification or the use of irrelevant
data sources for exposure score computation – which are hard
to detect via audits. On the other hand, schemes that perform
decentralised matching and exposure score computation publish
the pseudonyms of the diagnosed users, or a derivation thereof,
which makes them auditable by third-parties. Assuming that
the entity managing the back-end server system decides to
tweak its records, this would result in an indiscriminate attack
that would undermine the functionality of the system itself
with little to no effect on end-users.

In PIVOT, we do not link the identity of the user to their
account and distribute the information based on the role of
each entity. Therefore the central coordinator will be in charge
of notifying the users and computing the exposure score,
like in other centralised schemes, but delegates the matching
to a matching service. Additionally, we prevent MS from
cheating via an integrity check which is embedded into the local
proximity exchange. However, we still rely on a (trustworthy)
CHA to behave correctly when reporting the notifications. An
honest-but-curious CHA might still target users for the sake of
achieving its goal of halting the virus from spreading, ending
up causing harm.

Our protocol could potentially be extended to include the
integrity report hash together with a notification, which gives
users a way to protect against fake notifications. In order not to
break the privacy guarantees of PIVOT, we do not include any
information that could expose other users to de-anonymisation
attacks.

C. Privacy

(P1) Exposure score privacy: Solutions that perform decen-
tralised matching keep the exposure score computation on the
user’s device. This is the most privacy-preserving option for the
users but denies health authorities and epidemiologist access
to this relevant piece of information. Since Epione performs
matching using PSI, it can be regarded as belonging to this
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category. When centralised matching is adopted, the exposure
score is computed by the coordinator of the protocol but hidden
from the public, who only get to see a notification or a score
encoded in few levels. This creates a single point of failure for
exposure scores and a menace to the re-purposing of sensitive
information. To mitigate such threats, PIVOT outsources the
role of the matching service to a separate entity, and provides
the central coordinator only with relevant information. The
plain hashes are never learnt by CHA, which in turns only
gain access to the exposure scores of (anonymous) users.

(P2) Diagnosed user privacy: Local matching (i.e., decen-
tralised matching) enables malicious users and third-parties
to de-anonymise diagnosed users among their close contacts.
On a small scale, the attack can be carried out just by relying
on the attacker’s memory, i.e., remembering all of your close
contacts in the last few days. On a larger scale, or just to
improve its effectiveness, users can download parallel, third-
party, apps to sniff public pseudonyms and store them with the
exact location and time of the encounter. When inspecting the
public database of diagnosed tokens, the attacker can then use
their knowledge to de-anonymise infected people among their
encounters. In this category, solutions based on non-interactive
DH exchange (CleverParrot, Pronto-C2) do slightly better by
disclosing hashes that are only known to the recipient of the
notification. In this way, it will not be enough to carry out an
indiscriminate sniffing of all the tokens in a public space by
a malicious third-party. Specifically, in CleverParrot the users
only receive the number of matches instead of plain hashes,
however, they can easily cheat by re-assigning a seed to each of
their encounters and re-identify them. While in Pronto-C2 users
share addresses which are used to compute a secret unique
hash, but a malicious third-party can assign specific addresses
to target users for a simple re-identification.

In centralised matching solutions, the database of infected
tokens is kept private by the central coordinator. This partly
protects against malicious users and third-parties. If a user
is able to create an arbitrary number of accounts or query
multiple times, they can still figure out who among their
encounters received a positive diagnosis. ROBERT proposes
a registration procedure based on QR codes to prevent bot
registration, which would scale-up this attack substantially.
Additionally, centralised designs require a substantial amount
of trust in the health authority to manage such tokens. In
particular, when tokens are generated centrally (ROBERT and
BlueTrace), it is easy for the central authority to link them
up. For the other solutions, a proxy should be used to prevent
linking users to diagnosed tokens and avoid de-anonimisations.

In PIVOT, the list of (unlinkable) hashes of infected users
is only learnt by the MS, never by the general public nor
the CHA. As described in Section V-B, we improve upon
existing centralised scheme in two ways: (1) we clearly separate
concerns between CHA and MS to mitigate the effect of a
breach or one of them turning malicious; (2) we provide three
possible extensions to rate limit users, one of which is also
specific to our design.

(P3) User location privacy: Decentralised matching solutions
are susceptible to location tracking of diagnosed people if their
pseudonyms are uploaded or leaked. Solutions that upload

and publish the observed identifiers (i.e., upload what-you-
received) preserve the location of people who tested positive
while revealing connections between users, i.e., co-location.
By using DH (as in CleverParrot and Pronto-C2), it is possible
to decouple the phases of broadcasting and uploading and,
in case of a positive diagnosis, upload only an elaborated
version of what they received from their peers (e.g., an hashed
secret). DP3T adopts an upload what-you-sent strategy. The
daily key used to generate the tokens is uploaded to the back-
end server following a positive diagnosis. This makes the
pseudonyms of diagnosed users linkable and allows to build
a meaningful history of locations to any third-party capable
of installing a network of beacons. We note that in DP3T
unlinkable alternative, it partly mitigates this threat by using a
cuckoo filter instead of releasing the plain hashes. However, the
low-cost design has been chosen for real-world implementation.

Solutions that generate pseudonyms centrally – like ROBERT
and BlueTrace – are prone to mass surveillance by means of de-
anonymisation and location tracking. The ephemeral identifiers
can be used to trace back movements through indiscriminate
and large-scale sniffing. Additionally, the use of timestamps
for integrity checks facilitates linkage attacks.

Despite being susceptible to location tracking, PIVOT is
inherently safer: a user queries by uploading only hashes
generated from close contacts which are not broadcast nor
linkable to the public keys of the user, and unknown to CHA
(differently from DESIRE). It is important, especially in case
of collusion between CHA and MS, that users upload only
relevant contacts (e.g., less than 2 meters for more than 2
min). In this way, a malicious central coordinator will need
to be close to a user for a substantial amount of time before
expecting the upload by their victim.

(P4) Interactions privacy: In decentralised matching so-
lutions, a motivated third-party can only build a limited
interaction graph within the pseudonyms refresh time window.
However, this is only possible if the received identifiers are
uploaded and no DH is used for computing the tokens.

By generating the ephemeral IDs centrally, ROBERT and
BlueTrace allow the central coordinator to build a proximity
interaction graph by simply observing the pairs (ID, timestamp)
uploaded at the time of registration of a new infection. Even
by generating the IDs on the user’s device, it is easy for the
coordinator to learn co-location: if two diagnosed users, A and
B, have been in close contact with a third (diagnosed) user, C,
within a certain time window, A and B will report the same
ID shared by C.

PIVOT ensures similar protection as the decentralised
solutions by computing a unique hash per contact and by using
different hashes for querying and reporting. CHA does not
learn that a contact happened between two non-infected users
and cannot link multiple hashes based on timestamps. This
prevents CHA from learning co-locations, i.e., whether two
users have been in close contact with a third user, due to the use
of different hashes. The link between the user who performs
the upload and its contacts hashes can be further weakened
by using proxies, as outlined in ROBERT [7]. In ROBERT,
however, the contacts remain linkable via timestamps.
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D. Summary

Table II clearly shows the advantages of calculating the
exposure score centrally in terms of utility. Computing the
score centrally, as it is the case in PIVOT, allows the system
to perform (1) more accurate user engagement estimation, (2)
better estimation of notification effectiveness and (3) more
accurate and timely score computation by taking into account
contacts dynamics.

Table III depicts the strengths and shortcomings of the
analysed solutions in terms of security and privacy protection of
users. On the one hand, more decentralised solutions that rely
on the integrity of medical reporting are not only less flexible,
but expose the privacy of diagnosed people by allowing users to
check for infections within their close contacts list. Hence, they
place trust on the users to behave correctly. On the other hand,
more centralised solutions expose users’ privacy to several
threats: data repurposing during and after the pandemic, linkage
attacks and de-anonymisation, state-enabled surveillance, and
data loss in case of breaches. Hence, a high degree of trust in
the central authority is instrumental to a successful automatic
tracing. In PIVOT, we envision a central authority that adheres
the principles of data minimisation and purpose limitation. By
distributing trust amongst entities, our solution strives to achieve
the best of both worlds, minimising the privacy risks for the
users while allowing the central authority to fight the virus by
leveraging the appropriate tools. We trust the CHA to behave
honestly and the MS to carry out the matching on behalf of
the CHA while limiting the consequences of collusion between
the two. A privacy-preserving solution reduces the amount of
trust a user has to put in the coordinator of the protocol. This
might enable wide adoption, which is a fundamental factor in
a successful digital contact tracing campaign.

VII. PRACTICALITY ANALYSIS

In this section, we analyse the core features of PIVOT from
a practical implementation perspective. We provide empirical
evidence for two peculiarities that are specific to PIVOT and
have, therefore, not been inspected by related work. First, we
look into the privacy guarantees provided by the batching
operation, which is performed by the CHA. We emphasise
the limited impact of the inherent introduced delay, which we
refer to as the mixing delay. Second, we develop a proof of
concept to analyse the energy consumption of performing a
DH exchange. We study several devices in a small setting that
clearly show how PIVOT incurs in negligible overall energy
and packet losses.

A. Batching analysis

PIVOT performs batching during phases (2) and (3) at the
level of the CHA. It is an essential step as it allows separation
of concerns while preventing the MS to carry out timing attacks
to discover sensitive user-hash relationships. During batching,
the CHA collects messages that contain a fixed number of
hashes from multiple senders and, once a certain condition is
met, it shuffles the collected hashes and sends a portion of them
to the MS, as illustrated in Fig. 7. Hence, the CHA acts as a
mixnode [37]: it provides anonymity at the cost of a mixing
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Fig. 7: Batching procedure of the CHA. The CHA collects
hashes sent between time t− 1 and t, when a certain condition
is met at time t, the CHA shuffles them and sends them in
one batch to the matching service.

delay (see Section IV-C3 for a discussion on the various types
of delays). To assess the feasibility of running a mixnode in real
circumstances we set a country of reference, i.e., Belgium4.
Number of daily tests and ratio of positive outcomes form
the basis on top of which we model the network traffic. We
strive to simulate a network flow that reflects as closely as
possible what the incoming traffic to the CHA would look like.
This enables a realistic analysis of the trade-off between the
anonymity of the sender and the mixing delay of individual
hashes.

Our analysis is based on a body of work by Diaz et al. [40]–
[42] on mixnets. Analogous to the cited literature, we assume a
passive attacker (the MS) that can sniff incoming and outgoing
network traffic of the mixnode (CHA). To be consistent with
the terminology used in this field, we will refer to the users as
senders and a set of query hashes (or report hashes) uploaded
by a user as a message. Under this attacker model, we measure
a sender’s anonymity by estimating the probability of linking
a specific hash observed by the MS to a sender. In order to
keep the probability uniform over all senders, it is commonly
assumed that messages sent to a mixnet are padded such that
they are all equal in size. We note that padding can be easily
introduced in PIVOT with no repercussion on the discussed
properties. Therefore, the remaining parameter that affects
anonymity is the number of messages entering the mix: a
large amount reduces the delay while few messages should
still guarantee a certain level of anonymity. For this reason,
we model the incoming traffic and set a lower bound for the
anonymity accordingly. Setting a lower bound is a non-trivial
task and follows our expectation about the distribution of the
uploaded hashes. We derive our thresholds by adhering to
real statistics, taking worst-case assumptions when possible.
Further considerations on variants of our baseline protocol are
discussed in Section VII-A4.

In PIVOT, there are two data streams to MS: report and query
hashes. The number of senders of report hashes is proportional
to the number of positive tests. Furthermore, the moment when
these report hashes are uploaded is determined by when test
results are published and the phone checks for them. Differently,

4We leverage data released by Sciensano [38], the central health authority
that manages the digital contact tracing solution in Belgium, i.e., Coro-
nalert [39].
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Fig. 8: The total number of tests per day from November 11th, 2020, to January 12th, 2021.

the number of query hashes is proportional to the number of
users and the number of their encounters with other users. Since
query hashes are stored by the MS and infection registration
represents a minority of the total operations, we consider the
report hash traffic to be the bottleneck and focus on it for our
analysis. To approximate the network traffic for report hashes,
we analysed the number of daily tests and daily positive tests
for Belgium. Fig. 8 shows that the number of tests follows
the pattern of a working week, with most tests being done
midweek, and the least number of tests on Sundays, which is
a logical consequence of the human factor. Therefore, it is not
unreasonable to assume that test results are entered into the
digital contact tracing system during normal working hours, i.e.,
between 9:00h and 19:00h (including Saturdays and Sundays).
Let’s assume that users check for test results periodically and
the moment of checking is unique for every user. We modeled
the arrival time of a group of encrypted report hashes from a
user, i.e., an infection registration message, as uniform between
9:00h and 19:00h.

1) Binomial mix and senders’ anonymity: We based our mix
implementation on the binomial mix [41], a variation on a timed
dynamic pool mix, which sends hashes after a predetermined
time T when a minimum of Smin senders submitted hashes to
the pool. The binomial mix performs a Bernoulli-experiment
(biased coin toss) for each hash with possible outcomes “send”
or “stay in pool”. P (s) is the probability of sending an hash
within a round (of length T) and follows the definition of the
generalized mix model by Diaz et al. [42]:

P (s) =


0, if s < Smin
s−Smin

s , if Smin ≤ s < Smin/0.35

0.65, otherwise
(4)

While in related work P (s) is a function of the number of
incoming messages, here s is the number of senders with at
least x hashes in the pool. This is related to the shuffling of the
messages and them leaving the mix separately, a previously
unaccounted circumstance. By setting a threshold x we disallow
great imbalances in the number of hashes belonging to different
users within a mix. This increases the size of the anonymity
set without introducing great delays. A further elaboration on
the matter will be given when discussing the lower bound on
anonymity.

Given an hash output by the mix, we define senders’
anonymity as the number of users the real sender is indis-
tinguishable from [41]. This is estimated by the entropy of
the probability distribution that links an output hash to input

hashes. We define p(Ii) as the probability that a specific hash
that leaves the mix in around R is a hash that entered the mix
in round i. Since we are certain that the hashes that entered
the mix in round R are still in the mix and the probability is
uniformly distributed over the messages present in the mix in
round R (i.e., nR):

p(IR) =
1

nR
. (5)

For the remaining messages, their probability to leave the
mix depends on the round of their arrival. Hashes had each
round a probability to remain in the mix of 1− P (sj), with
sj the number of senders that have at least x hashes in round
j. Thus, when i < r:

p(Ii) =
1

nR

R−1∏
j=i

(1− P (sj)) . (6)

We assume that every user sends the same number of hashes
Nhashes. This is easily achieved by padding a message uploaded
by the user with dummy hashes, a frequent assumption in
related work [40]–[42]. These dummy hashes are treated
likewise as real hashes in the mixnode (CHA) while discarded
freely by the MS. By modeling the mixnetwork as a generalised
mix model [41], the sender anonymity ρs after R rounds of
sending hashes can be expressed as follows:

ρs = −
R∑

i=1

aiNhashesp(Ii) log(Nhashesp(Ii)) (7)

with ai the number of senders who submitted hashes in round i,
and Nhashes the number of hashes sent by the user. Consequently,
Nhashesp(Ii) reflects the probability that a hash was sent by a
specific sender.

2) Experimental setup: In our simulations, Smin is equal
to 45 users. This value guarantees a lower boundary for the
entropy and, as a consequence, the senders’ anonymity. In
particular, we study the worst case scenario for lower bound
computation: a number of users equal to 1 + Smin submits a
block of hashes o length Nhashes = 200 ∗ 14, which accounts
for 200 hashes a day for the 14 days before the infection
registration. We empirically observed that 20% of the block
size is a good choice for the minimum of hashes x, thus:
x = Nhashes

5 . Nothing happens before round R = 74, when we
assume, according to the expected value of P (s), that every
user has exactly x hashes. Then, assuming a single user submits
Nhashes all the ones in round R, senders’ entropy ρs will be
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Fig. 9: The senders’ anonymity (i.e., entropy) in function of the delay for report hashes to arrive at the MS. On the left:
06-01-2020 until 08-01-2020 (summer, low traffic volumes). On the right: 01-11-2020 until 10-01-2021 (winter, high traffic
volumes).

skewed due to the last user being unfavoured w.r.t. p(IR).
Therefore, we ascertain that in the worst, i.e., very low and
skewed traffic scenario, ρp = 5.5 bits. Since this measure
represents the logarithm of the anonymity set size, 5.5 bits of
entropy correspond to a sender being indistinguishable from
25.5 − 1 ≈ 44 other senders in the worst case. Whether this
threshold can be considered acceptable or not is related to
practical considerations following an analysis of real data and
consideration of possible improvement to better defend against
active attackers, as outlined next.

Having set the lower bound on entropy, we study the practical
trade-off between anonymity and delays by means of real
data collected by the Belgian health authority during the
pandemic [38]. We simulate the arrival of report hashes in
blocks of Nhashes following the distributions of two separate
periods of 2 months, assuming that every positive test is
followed by a hash infection registration via the app. The
first period spans from June 1 till August 1, 20205, which is
characterized by low volumes of traffic: ≈ 220 positive tests
per day on average, with a minimum of 43 and a maximum
of 840. The second period is centered around December 2020,
with substantially higher traffic: on average ≈ 3583 positive
tests are reported every day, ranging from a lowest of 884 up
to 14896 tests on a single day. The length of each round of
mixing is T = 15min. With the mixing strategy, and a model
of incoming traffic in place, we can estimate the entropy and
delay per hash.

3) Real-world simulation: From Fig. 9, we see the that it
can take up to 2.5 days before a specific hash leaves the mix,
which might be unacceptable. This delay is due to low amounts
of positive tests in the summer period when the virus was less
present. In periods of high traffic, when a great number of
tests turn out to be positive, the maximum delay is less than 1
day. Of course, because sending a specific hash is probabilistic,
there is no guarantee that 1 day is the upper bound, but delays
more than 1 day are very unlikely and did not appear in our

5Running the same experiments on the highest and lowest load periods
of 2021 confirms our empirical observations. Besides, the minimum in the
number of positive tests observed during the summer of 2020 represents an
all-time low (which we keep as worst-case), result of the combination of a
higher number of tests, progressive relaxation of measures due to the roll-out
of vaccines, and the emergence of new variants that spread more easily.

simulation. We believe that the impact is low for the rare cases
where a hash gets stuck for longer. It is unlikely that the short
interaction the hash represents was the sole reason that the
user was exposed to a critical amount of viral load. However,
a delay of almost 1 day is higher compared to other solutions
that, on top of the delays of a common infrastructure, have a
toll of a few hours at most. Fig. 9 additionally shows three
vertical lines that point at the delays at which the 85%, 95%,
and 99% of the hashes have left the mix: this is 187, 1006,
and 1258min in the low traffic scenario; 30, 49, 91min in
the high traffic case. We conclude that the vast majority of
the hashes leaves the mixnode within a few hours, even under
challenging circumstances. In the whole monitored period,
between March 2020 and January 2021 (including high- and
low-traffic periods), the average time between a user uploading
its report hashes and their reception by the MS is 80min.

The delays could be decreased at the cost of anonymity.
Fig. 9 indicates that the minimal empirical entropy is higher
than the computed lower bound of 5.5 bits. In particular, low
traffic and high traffic have a minimal entropy of 5.9 and
5.5 bits, respectively. This level of anonymity is reasonable
for user location privacy, where the MS monitors one specific
sensitive place by installing a BLE beacon. MS has now a
probability of at most 1

25.5 to guess which user sent a hash that
was obtained from an exchange with its BLE beacon. Moreover,
this senders’ anonymity is more than sufficient against threats
that require linking multiple hashes, such as constructing an
interaction graph (P4), as the probability of correctly guessing
that two hashes belong together is the product of the probability
of guessing the correct user for each of them. Thus, when
entropy equals 5.5 bits: 1

25.5∗2 = 1
2048 . As the probability of

linking x hashes together is 1
2x∗5.5 , it becomes very unlikely

that an interaction graph can be constructed. The same holds
for the other anonymity threat that requires linking hashes
together at large scale, i.e., reconstructing paths by installing a
big set of BLE beacons. However, in this case spatial temporal
constraints can reduce the uncertainty, but by how much is
hard to measure. Thus, time delay can only be reduced by
ensuring that there is always high traffic.

4) Additional considerations: The mixing does not hide
which users are infected, since our attacker is able to sniff
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network traffic and we know from Section IV-C2 that traffic
for reporting is 14 times bigger than traffic for querying.
Thus, the MS can easily guess which users are uploading
report hashes and which users are uploading query hashes. To
reduce time delay and hide from MS which users are infected
dummy messages can be added such that all users upload report
hashes regularly. Sending fake report hashes incurs additional
computations comparisons for the matching operation and
adds communication overhead. To estimate the overhead let
us assume a procedure where all users check regularly for the
outcome of the medical test with the CHA. The CHA will then
randomly order some of them to report fake (dummy) hashes,
such that the number of reports is always equal to a high traffic
scenario and the number of reports is increased, for example,
at least by a factor 128 = 27. This would imply that at least
7 bits of anonymity is provided for users with a positive test
result. The communication overhead for this scenario is around
128 ∗ 6 ∗ 103 ∗ 360KB ≈ 276.5GB of additional traffic per day
– from Section IV-C2 we know that report hashes are at most
≈ 360KB per user, and the average number of daily tests in
the high load scenario is ≈ 6 ∗ 103. The MS receives around
128 ∗ 6 ∗ 103 ∗ 14 ∗ 200 ∗ 5 = 10.8 ∗ 109 additional hashes to
compare with – under the assumption that hashes are kept for
maximum 14 days, with users collecting around 200 report
hashes per day and being infectious on average for 5 days
before they obtain the test result.

B. Energy consumption

In PIVOT, we consider the addition of a DH exchange
that requires 32 bytes for the public key for 128-bit security
guarantees. This collides with the maximum payload one can
advertise using BLE, i.e., 31 bytes. One solution to this problem
is to split the public key in two parts and broadcast them
separately. This has a direct effect on the amount of time the
CPU has to be woken up to switch from one half of the key to
the other. A big toll on battery levels could hinder the adoption
of an app and limit its effectiveness by discouraging users
from keeping the app running. Despite using a low-energy
protocol (BLE) some applications (e.g., TraceTogether [21])
faced problems such as disrupted background running.

We develop a proof of concept to show that this operation
has a negligible impact on battery drain, packets loss, and
total CPU time, thus representing a practical introduction
for the studied scenario. We deliberately decide to maintain
our experiments within a closed and controlled environment
to identify and exclude confounding variables, while better
analysing the observed trends. A larger-scale experiment can
put the emphasis on other important aspects – such as the
dynamics of contact registration in challenging environments –
but this is orthogonal to our primary question, being dependent
on the technological stack rather than our novel building blocks.

As underlined in Section IV-B1, our protocol can be imple-
mented using BLE chipsets available in commercial devices.
In this section, we verify the feasibility of a non-interactive
DH exchange over BLE in terms of energy consumption and
speed of execution.

1) Primitives: Recent advances in the BLE standard allow
for variable size payloads (longer than 31 bytes), and periodic
and synchronised advertisement. Modern smartphones can
greatly benefit from these features, since long-running processes
that repeatedly scan for BLE advertisements in the background
are battery-hungry. However, only a subset of the devices
running Android 5+ supports these features 6. Since a contact
tracing app’s success is bounded to a widespread adoption,
the most commonly available technology has to be preferred.
Thus, real-world implementations, such as StopCovid, rely on
the Generic Attribute Profile (GATT) specification and BLE
legacy advertisement for sending and receiving data.

The maximum payload size for the legacy BLE advertisement
is 31 bytes. For 128-bit security with elliptic curve Diffie-
Hellman, for instance with Curve25519 7, the length of the
public key must be 32 bytes. As pointed out by Castelluccia
et al. [12], different protocols can be set up to increase the
payload length and advertise 32 bytes of data:

1) Two services advertise the public key over two separate
payloads for which the client actively scans.

2) The receiver begins an interaction asking for the second
part of the public key on-demand.

3) The peripheral advertises the public key using one service
and a switching payload encapsulating part 1 and part 2
of the public key, alternatively.

For our experiments, we opt for (3) since it requires a smaller
number of exchanged messages than (2) and only one service
to be set up compared to (1). To link part 1 and part 2 of the
public key, the receiver could use few (e.g., four) overlapping
bytes.

As discussed in Section IV-B1, the public key (i.e., the
advertised payload) needs to change every few minutes to
prevent linkability and, ideally, is synchronised with switching
of the BLE MAC address (which is highly variable across
devices). One might expect that increasing this switching time
puts an additional toll on the battery due to the frequent wake-
up of the CPU. Furthermore, no packets are advertised during
a switch. This may impact the number of received packets,
reducing the probability of correctly registering a close contact.

In the following, we show that (1) different rates of payload
switching have comparable impact on energy consumption; (2)
the time lost during the switching has a negligible impact on the
number of received packets; and (3) the DH exchange requires
a tiny fraction of the operational time. An additional CPU-
intensive task is the encryption and upload of the query hashes.
Since the upload and download time are highly dependent on
the network and the server implementation, this analysis is
beyond the scope of the present paper.

2) Experimental setup: We consider three experimental
settings. First, a single device acts as a peripheral by constantly
advertising packets, while a server acts as the central module,
listening for packets with a specific service ID. The peripheral
is one Huawei EML-L09 (P20) running Android 9. During the
experiments, only the Bluetooth module and the location ser-

6https://altbeacon.github.io/android-beacon-library/beacon-transmitter-
devices.html

7https://safecurves.cr.yp.to/
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Fig. 10: Battery drop across five experiments.

vices (necessary for BLE exchange starting from Android 8 8)
are turned on. The device is fully charged at the beginning
of every experiment. The central module is implemented on
a Unix system taking advantage of the noble library9. Both
devices are placed on a desk, one meter apart. To emulate
different environmental conditions, part of the experiments
are ran at night, in a less crowded environment that might
interfere with the reception of packets. To gain insights on
the patterns of power consumption we take advantage of the
estimates provided by the phone itself, including the Energy
estimate and the CPU time. These are specific to the app and
automatically reset after a complete charge.

Second, two devices are placed two meters apart performing
a prolonged session of scanning and advertising. We used one
Pixel 3a running Android 10 and one Samsung S8+ running
Android 9. Again, the initial battery status is 100% for both
devices and only the necessary modules are turned on. The
exchanged packets are recorded with a timestamp and two
settings are tested: same and different rate of advertising.

Third, the Huawei P20 is used standalone to perform several
time measurements. We focus on three operations: (1) the
generation of the key pairs necessary for the DH exchange,
(2) the computation of a realistic number of shared secrets,
and (3) the switching time. Time estimations rely on the
nanoTime() method provided by the Java System class.
This is not related to any other notion of system or wall-clock
time, hence unaffected by period of sleep and background
running. Each measurements is repeated 10 times in (1) and
(2), while 300 switchings are performed in (3).

For the implementation of DH, we rely on the open-source
BuoncyCastle library10 and the Curve25519 specification for
elliptic curves. In a real implementation, the public parameters
to perform the non-interactive exchange (see Section IV-B1)
can be shared by the service provider or hard-coded into the
app.

To perform BLE advertisement, we implemented an An-
droid application that builds upon the open-source SDK by
StopCovid [20]. On top of this, a sticky foreground service
performs scanning and advertising, while a delay function in
a blocking thread regulates the interval at which we switch

8https://developer.android.com/guide/topics/connectivity/bluetooth-le
9https://github.com/noble/noble

10https://www.bouncycastle.org/

TABLE IV: Overview of energy consumption and number of
exchanged packets across our settings in a 6 h time frame.

Daytime Switch rate Energy est. CPU time Battery drop Total packets

night 3 s 6.78mAh 85 s 15 % 33105
night 30 s 4.98mAh 37 s 16 % 32266
day 30 s 6.03mAh 68 s 18 % 32495
day 3min 3.74mAh 34 s 18 % 22952
day 30min 4.51mAh 27 s 18 % 32322

between the advertising of part 1 and part 2 of the public key,
which we refer to as the switching rate.

The chosen parameters for scanning and advertisement follow
the default of our reference SDK. The following settings
(ScanSettings) refer to a filtered scan that aims to match a
predetermined service id:

• SCAN MODE BALANCED: scans are paused and
restarted to improve power consumption.

• MATCH AGGRESSIVE: a match is determined upon
detection of a signal.

• Report delay of 1000ms: Delay between scan report and
notification that causes the queuing of the scans in batches.

• The AdvertiseSettings apply to a continuous advertisement
of a payload labelled with a service id:

– ADVERTISE MODE LOW LATENCY: the highest
possible advertisement frequency.

– ADVERTISE TX POWER MEDIUM: a medium
strength of the signal. This parameter drives the range
of visibility of the device and can, therefore, introduce
a privacy issue.

3) Evaluation: In the following, we present the results linked
to our three experimental settings.

Setting 1: Fig. 10 shows the pattern of battery consumption
across five experiments. For the daytime settings, we analysed
a switching rate of 30 s, 3min, and 30min, while for the
nighttime experiments we tuned the rate to 3 s and 30 s. Overall,
there is no noticeable difference in the total drop, although the
experiments ran at night demonstrated more resilience. This
might be due to less BLE filtering happening in the background
as well as app-related tasks scheduled at a particular time during
the day. Table IV shows that CPU time and energy estimates
are consistently higher for longer switching times. This is not
surprising, as a more frequent switching is associated to a
service that frequently wakes up the CPU. Nonetheless, the
battery drop does not follow the same trend, resulting in the
best performance, 15%, for the most energy-hungry setting,
3 s. Similarly, the total number of packets sent by the device
is not affected by the time lost during key switching. The only
setting deviating from this trend is when payload is changed
every 3min. This might be due to environmental interference
from active BLE devices in close proximity.

Setting 2: In a first testing phase, we kept the same switching
rate for the two devices, which is shown Fig. 11 (the part of the
hash that is received changes every 3min). Nonetheless, it can
be observed that Pixel 3a receives packets at a substantial lower
rate compared to its counterpart. Several factors can affect the
patterns of packet transmission and reception, ranging from the
underlying Bluetooth chipset and antennas to device-dependent
software optimizations. In our specific case, the Samsung S8+
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TABLE V: Time required to generate the shared secrets derived
from the public keys of recent close contacts.

Close contacts 10 100 200 500

Average time 0.52±0.09 s 4.81±0.17 s 9.92±0.73 s 21.33±3.56 s

adopted for our experiment is presumably blocked from sending
the expected number of BLE packets due to OS optimisations
occurring while running a background service, which is a
commonly observed behavior 11.

Since one of the two devices is receiving less packets due
to optimization, more time is needed before reaching a given
probability of getting both halves of the public key. In order
to adapt to the different performances, we experiment with
different switching rates of 30 s for the Pixel 3a and 3min for
the Samsung S8+. In this way, we make sure that both devices
receive approximately the same number of packets within a
switching cycle which last two times the switching rate. Fig. 12
shows the battery drop and number of received packets for the
two devices. As expected, one of the two devices is receiving
less packets in total due to the optimization discussed above.
However, the pattern of battery consumption is comparable,
independently of the chosen parameter. We conclude that an
adaptive switching rate is feasible without draining considerable
battery.

Setting 3: Table V shows the time required to compute
different numbers of secret keys. In this way, we emulate the
recording of close contacts under different use scenarios. A few
seconds are needed to generate up to 500 secret keys, linked
to 500 close contacts of duration, e.g., between 15 and 30min.
This operation is only required before querying the system
for exposure score, hence can be scheduled for a moment
associated to less strict battery constraints (e.g., nighttime).
Additionally, we analysed the time needed to compute a user’s
own public and private keys. Computing 100 keys took on
average 4.33±0.18 s. This accounts for the keys needed in a
24 h time span (i.e., 48 for a key exchange rate of 30min), and
a manual regeneration triggered by the user due to, e.g., keys
loss. Finally, the time lost during switching is measured: on
average, we observed a time of 37.62±4.5ms. Considering a
30 s switch rate, synchronised with the 30min key exchange
rate, this accounts to ≈26 s over a period of 6 h.

4) Probability of losing contacts: We note that with DH
we are not able to register uni-directional contacts. This is a
design choice that trades-off between having an integrity check
on the contact, which has to be acknowledged by the other

11https://dontkillmyapp.com/samsung
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Fig. 12: Battery drop and total received packets for a session
of exchange with a switching rate of 30 s for the pixel 3a and
3min for the Samsung S8+.

party, and increasing the chance of receiving a notification in
case one of the parties did not receive the public key.

A recent work by the designers of the Swiss app, SwissCovid,
has elaborated on the probability of catching a close contact
using BLE in a variety of real-world situations [43]. Based
on their analysis, using an attenuation bucket of 55 dB, the
interpretation of a contact as being within 1.5m (typically
interpreted as a close contact) has a probability of 57.3%.
Whereas the probability is higher for contacts within 2m
and 3m, which concur (with a smaller weight) to the final
calculation of the exposure score.

Since the public key has a validity of ≈15min (it depends
on the BLE MAC address rotation), the decreased chance of
one of the two parties to acknowledge a contact boils down
to short contacts. There will be a threshold on contacts to
be considered for contact tracing, e.g., contacts of less than
2min, from the reception of the first beacon till the last one,
are discarded by default. This means that the choice of this
parameter has to be carefully decided based on the decreased
probability of acknowledging close contacts and frequency of
advertisement of BLE.

Additionally, we have observed how sending one BLE
beacon is not enough to achieve DH exchange given the
insufficient length of the packets. We deem that, for high
enough frequencies, e.g., 100ms, the probability of getting
only one part of the message over a timespan of 2min, and
within 3m distance, is negligible. However, we argue that
an organisation willing to deploy a similar protocol should
consider these constrains and carefully tune these parameters –
including minimum timespan and average signal strength for
storing contacts – to take into account the rate of lost contacts.

VIII. CONCLUSION

In this paper, we have proposed and evaluated PIVOT – a
privacy-friendly yet effective automated contract tracing solu-
tion. To strike the balance between utility and privacy, PIVOT
combines several techniques. First, it uses local proximity
tracing via unique per-user-per-contact hashes, decoupling the
data sent when reporting infection (report hashes) and when
querying the system for exposure (query hashes). This provides
additional protection against de-anonymisation attacks as
(infected) users’ hashes are never revealed to health authorities
nor the general public. Second, it calculates users’ exposure
score centrally while decoupling the parties who discover
users’ encounters with infected users via finding matches
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between different users’ report and query hashes and who
compute the exposure score. Finding matches is performed by
an independent third party (matching service) that has access
only to users’ anonymous hashes (and nothing else), while
users’ exposure score is computed by the health authorities
who also perform integrity check on the matches reported by
the matching service. We are convinced that its enhanced utility,
sufficient privacy protection and simplicity make PIVOT as
effective as fully centralised solutions while respecting users’
privacy (almost) as good as fully decentralised solutions.

Future work may tackle the problem of formally guaranteeing
a certain level of privacy in a dynamic environment where
the number of active users changes constantly. We are also
convinced that our proposal goes beyond the landscape of
COVID-19 solutions. Our framework defining functional and
non-functional requirements, which lays the basis to our
comparative analysis, can be essential to the development
of solutions that tackle digital contact tracing in new and
unforeseen contexts. These will require to adjust the scheme
parameters depending on the environmental parameters of the
envisioned scenario of use.
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