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ON THE APPLICATION AND EXTENSION OF HARTEN’S HIGH-RESOLUTION SCHEME

He C. Yee and R. F. Warming
Computational Fluid Dynamics Branch
Ames Research Center, NASA
Moffett Field, California
and
Amiram Harten
Courant Institute of Mathematical Sciences

New York University
New York, New York

ABSTRACT

Most first-order upstream conservative differencing methods can capture
shocks quite well for one-dimensional problems. A direct application of
these first-order methods to two-dimensional problems does not necessarily
produce the same type of accuracy unless the shocks are locally aligned with
the mesh. Harten has recently developed a second-order high-resolution ex-
plicit method for the numerical computation of weak solutions of
one~-dimensional hyperbolic conservation laws. The main objectives of this
paper are (a) to examine the shock resolution of Harten’s method for a
two-dimensional shock reflection problem, (b) to study the use of a
high-resolution scheme as a post-processor to an approximate steady-state so-
lution, and (c) to construct an implicit method in the delta-form using Har-
ten’s scheme for the explicit operator and a simplified iteration matrix for

the implicit operator.
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I. INTRODUCTION

The stability, accuracy and efficiency of a numerical scheme should have

>
®

a symbiotic relationship with the types of equations that one intends to
solve numerically and the methods for treating shocks, contact discontinui-

ties, and numerical boundary conditions. A typical complaint about the ap-

E plication of a scheme that is developed under the guideline of linear theory
for the compressible Euler or Navier-Stokes equations is that the resulting
scheme is not robust and or not accurate enough. Often the root of the ins-
tability and inaccuracy lies in the improper treatment of nonlinear effects
[1,2] (shocks and contact discontinuities) and numerical boundary condition

procedures [3].

N In problems with shocks where conventional second or higher-order accu-
ratc central spatial difference methods are used, the resulting numerical so-~
lution exhibits overchoots and undershoots in the vicinity of discontinuities
{4]. The oscillations not only degrade the accuracy but can cause nonlinear
instabilities. One remedy is to add numerical dissipation. Unfortunately,

ad hoc methods of adding dissipation generally smear the discontinuities.

This work was motivated by Harten’s [5] recent success in developing a
high-resolution second-order explicit method for one-dimensional hyperbolic

. conservation laws which has the following nroperties:

. {a) "7+ - .-me is developed in conservation form to ensure that the

1 limit is a weak solution.
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(b) The scheme satisfies a proper entropy inequality [1-2] to ensure

that the limit solution will have only physically-relevant discontinuities.

(c) The scheme is designed such that the amount of numerical dissipa-

tion used produces highly accurate weak solutions.

The goal of this paper is to examine the shock resolution of Harten’s
method for a two—dimensional gas-dynamic problem, and to investigate other
eoplications of his method including the possible extension to a

high-resolution implicit method for both one~ and two-dimension problems.

We have applied Harten’s method to shock tube [5] and
quasi-one-dimensional nozzle problems. Also, we have made a direct applica-
tion of his method to two-dimensional transient [5] and steady-state
gas—-dynamic problems. In both one and two dimensions, accurate weak solu-

tions were obtained.

A brief description of a particular version of Harten’s method and its
extension 1is given in sections II and III. 1In section IV, we will describe
the two~dimensional implementation of Harten’s method by a fractional step
method and a modified implicit method. Numerical experiments for quasi-one
dimensional nozzle problems ard a two-dimensional shock reflection problem

are given in sections V and VI.

II. HARTEN’S SCHEME
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To aid the development and motivation of the next section, we briefly
describe a_particular version of Harten’s second-order explicit scheme for a
one-dimensional system of conservation laws. The reader should refer to the

original paper [5] for a more detailed description.

Consider a system of conservation laws of the form

U, M)

x T o -0 (1)

where U is the vector of m conserved variables and ¥ is the flux vector. The
Jacobian matrix A(U) = 3F(U)/ 3U has real eigenvalues ( A, SN )
and a complete set of (right) eigenvectors. Let R = (R*,R%,...,R™) be a ma-
trix whose columns are the right eigenvectors of A and let L be a matrix

whose rows are the left eigenvectors of A normalized such t :t LR = I,

Let in& = V(Ué ’Uj+1) denote an average of Uj and U}+1’ A simple exam-
ple is the arithmetic average U§+{é= (U§+1 + Ui')/z (see Roe [6] for a more
sophisticated formula for U}’yzfor inviscid gas-dynamic problems). Also let
L}+yzbe the matrix L evaluated at U§+5&i.e.,

Loy ™ L (V)
and -~ T
f — . -_— N 2
Bl = Y @
/ 0(1
gl
z
J(‘
N 3*’/2\ . A‘ U
G = | = Ly (8 V) (3)
-
Ak
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Then Harten’s explicit conservative difference scheme can be written as fol-

lows:
_nti w _4_1:_ vf-_' _ ﬁ‘“ \
L’}' - Ua = - axl Fia -2 ) (4a)
with
n':-:; y = "i-"- :(Ir) + Y"—ITZ 4),
it 2 L & AL
. N '
4 4 < 1 N 2R BV W A
V=Q Ve tB L e VK
2/‘* Z__ ! 33 3}\.;/’ Q l\ a‘/i. !8;_4-}:§+}—‘) }+.’2—! %4‘/—'

(4b)

where 4t is the time increment, 4 x is the spatial increment, with

2 : PAE
Pl = P 204y 4c,
and 9‘;*,; = 'm:m((G 91+1) 44)
9; = (I juid =1 a—h’ )/ | Ll + | z-%)
y{?% = ;2;‘ >£ (U;x;:») (e)

. ¢ L.
g' - S‘l /‘ nlM’LO /"“"“( {3;&'/9.' 3’ S?\"ﬁ)] (44)
£

?+Ia
. ~
SJ*Vaz ~ (?Hw (49)
_ ? h
1 +’/1 B [& '/z (u"'/z) J &"" ()
Ql(”gi}i) is a function of U;!iyz
K L
b’L _ (33‘41- 31 )/ Hets i '*J'*Yz# © \
e l (4£)
o) if A 0
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For a discussion of the choice and properties of the function Q(+/ ), the
reader should refer to Harten’s original paper. Two choices of Q that we

have investigated are:

(a) Q) = V4 1/4 (43)
{_%;-4_ p V<C2€
(b) Q) = ' (4k)

i/l Vy2:

€ a fixed constant

The last term in equation (4b) is designed in such a way that the approxima-
tion satisfies the guidelines listed in the previous section; that is, these

are terms which ensure that a true physical weak solution can be obtained

with high accuracy.

We can view this conservative differencing as a form of the second-order
accurate Lax-Wendroff scheme plus an additional term. The global accuracy of
this scheme is second-order and it is a nonlinear differencing scheme even if

the Jacobian A is a constant matrix. 1In addition, Harten’s method, like

Lax~Wendroff, has a steady-state dependence on At.

ITI. EXTENSIONS

It is well~-known that the time step of conventional explicit schemes are
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limited by a CFL number of order one and result in long computation times for
"stiff" problems or for steady-state calculations. For stiff problems we
would 1like to retain Harten’s high resolution feature but modify the scheme
to be implicit. For steady-state calculations, we consider the following

ways of incorporating high-resolution schemes:

(a) Compute an approximate steady-state solution by some efficient
scheme (explicit, implicit or a mixture of the two) and then apply an ex-

plicit high-resolution scheme like Harten’s as a post—-processor.

(b) Modify an implicit scheme in delta form [7], where the iteration
matrix on the left-hand side is a simple modification of the original impli-
cit operator, while the right-hand side is the appropriate representation of

the explicit high-resolution scheme.

(c) Develop a fully implicit version of the high-resolution method with

a proper linearization for the implicit operator.

One-Dimensional Problem:

Preliminary numerical experiments with techaniques (a) and (b) for the
quasi-one-dimensicnal nozzle problems showed encouraging results (see section
V for details). However, preliminary analysis of technique (c) shows that
Harten’s scheme is highly nonlinear and special techniques need to be devel-
oped for a fully implicit efficient implementation; therefore, technique (c)
will not be discvssed further in this paper. Here we will describe technique

(b) for the one-—dimensional problems.
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For simplicity, consider the class of implicit linear one-step time dif-

ferencing in a noniterative delta-form [8] for the system of conservative

laws(1)
"
oF
(1 + 88t %‘- A“)Au“ - -At(;; (5)
where aU" = U - Un and should not be confused with + U defined in equa-

Yo
tion (2). T1f 6 = 1/2, the time differencing method is the trap2zoidal for~-

mula and if @ = 1, the time differencing method is backward Euler. There 1is
no connection between the " 6" in equation (5) with the " %;" in equation
(4d). For the spatial differencing, three-point central differencing or up-
stream differencing is commonly used. The simplest implicit extension of
Harten’s method is to replace the right-hand side of (5) by the right-hand
slde of equation (4a). Some modification of the left-hana side of (5) can
also be made. For comparison, this differencing of the spatial derivative
can be viewed as three-point centri! differencing plus some "appropriate"
numerical dissipation, implicit on the left-hand side, explicit on the

right-hand side. This method will be called the "modified implicit method".

For a steady-state c#lculation, the right-hand side differencing deter-
mines the solution. We can keep the left-hand side the way it is or (to im-
prove convergence) add a scalar dissipation term [9] to the left-hand side;
€sge,

n n ] " ” n " " n "N
2AAYY) _ At =AU EAUy - 25404 5 8G

A 4

X 2 AX 24X

(6)

R
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"
with } = max lx;‘l pf\l ...IA"-l} « A constant version of the scalar dissi-
4 FLa LN
»n
pation term of equation (6) is obtained by setting 51: = constant for all j
and n. This form of dissipation is sometimes called second~order implicit

numerical dissipation.
Iwo-Dimensional Problem:

Although, Harten’s scheme was developed for one-dimensional problems,
the scheme can be implemented in two spatial dimensions by applying a Strang
type sequence of fractional step (time splitting) [10]. Again, numerical ex-
periments for the two dimensional shock reflection problem show that the

technique described in (.) is applicable.

The extension of technique (b) in two dimensions is not straightforward,
It is well-known that fractional step methods have the property that the
steady-state (if one exists) depends on At even if the original
one~dimensional version of the scheme does not depend on At. For explicit
methods, a fractional step procedure does not introduce a serious error.
However, if one could take a large time-step by maki..g the method implicit,
then the steady-state accuracy will be degraded. In general, the
steady-state dependence on At for implicit methods can be avoided by using
an alternating direction implicit method. Recall that Harten’s
one~dimensional scheme has an inherent dependence on At in the steady-state.
Consequently, technique (b) will also have a steady-state dependence on At
even 1f we wuse the alternating direction implicit method. This dilemma is
the subject of further investigation. For the purpose of this paper, a prel-

iminary version of technique (b) in two space dimensions is called the "modi-
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fied implicit method. In the next section, we will describe the implementa-

tion of |Harten’s method and the modified implicit method for the

two-dimensfonal inviscid compressible (Euler) equations of gas dynamics.

IV. APPLICATION OF HARTEN’S METHOD TO TWO-DIMENSIONAL EQUATiONS OF GAS DYNAMICS

In two spatial dimensions, the inviscid compressible equations of gas dy-

namics can be written in conservative form as

U, 9‘:(_0) v oL = )
ot o
N
where
A pusr
U =3 m ) ?‘(U) = Puv ) G’(U) = fv+r
e/ w(e+f) v(e+d)
(8)

with m = Pu and n = fv. The primitive variables of (8) are density A, velo-
city compnnents u and v, and the pressure p. The total energy per unit vo-

lume e {8 related to p by the equation of state for perfect gas as

4 = (-0 ]e - 2] (6)
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vhere 7 is the ratio of specific heats.

Jacobian matrix o F(U)/ 3U whose eigenvaluas are

Let A denote . h-
The

O, 0,08 = (u=c,u,u+c,u), where c 1is the local speed of sound.

right eigenvectors form the matrix R, = (R: .R: .R: ,R: ) given by

1 0 \

1
w u+c o \
U (10)

/1
w-C

Ry = o ”
home LS piue v

[

[ V)

2 2
ot Wiy (11)
H = Y + 2

Let the grid spacing be denoted by Ax and Ay such that x = jax and y = kay.

Using the same notation as in section II, the vector &« of equation (3) for

the x-direction (omitting the k index) is

. ( (aa-bby'2 )

4 A
e (Aa“"/z'P) - aa ? (12) :
";‘Wzi T (aa +bb)2 ‘
L ";x»yz) ¢ 4isp™) ~ Yot (44412 P ) ]

2 2
werean = T2 10 *MQ—V“Q(‘:“AJ")’”é‘%(“a‘*'/n”")“%‘m(%ﬁ")]
§*/2

bb = [ (41,™) — Y Yop )J/ Gt
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Similarly, let B denote the Jacobian matrix o G(U)/3U whose eigenvalues are
o, X:./\!.)t) = (v-c,v,v#c,v). The right eigenvectors form the matrix

1 2 - 4
R3 - (R‘Z ’RZ ,R? ,R? ) given by

1 1 1 O
u u w 1
(13)
R,& = O Ve s O |
\N v C QI‘;T‘LL H+U’ (l/'-
The vector A for the y-direction (omitting j index) is
| K [ (cc-ddy/2
2
dﬁ*'/zl\ (Apepn P) - CC (14)
A = "
°‘f«+'/z ﬂ (cc+dd)/2
\ Mﬁ’ | (Agup™) — Ut (Agsn )

where

= QL [‘A" £ €) + —“—“—"3—-‘-*’)(4¢+yzf’) Yoot —Yerra B, »{")]

Canth

dd = [(A*ﬂ/zfn) - U;u}’z (A&*VZ-P)] /C*H/Z
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As mentioned previously, the simpliest form of 07“,%_’*_ is

Vipk = ( it Ua',k)/ 2 (15)
Roe in [6] uses a special form of averaging that has the computational advan-

tage of perfectly resolving stationary discontinuities (for one—dimension).

Roe’s averaging takes the following form:

/Du‘é+i,k+ “;)Ie)/(b'* 1) )

U =
{+h, = \

., _ . ~ 4 \
T (D”z‘u.k’ H?AS/“ L

2 / vr “/ . _\: \\ ;|
Ciota™ “"’-)[Hpm \"‘g»p);,_“;,y,-,k/é] ’z (16)
T |
D= G ik
H = d -+ -i--(’L(Z‘I-:."I)
(G- 2 y

In all the computational results presented in this paper, we used Roe’s aver-

aging.

Fractional Step Method:

Harten’s explicit method can be conveniently implemented in two space

dina2nsions by the method of fractional steps with h = At as follows:

* n ) / A‘" _ /\;’\ _ %-r n
U‘)k = Uﬂ,k- % \ F?‘*yl;k Fa-szk - J’( Lji)k (17)

*

PR LIS Y Sy Ay i WS Sk 2
Uik = Y Y (Ga‘,iw'/z Gt,t-Vz) x? Ud-.k s
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that is
ned b ohh_ n
where
) —
T':a“r}'."-f = —%‘[F‘,UE o) + "Um.k)]
4 ,
CAX ST st at !
5 3 [ - SO A on e
(19)
; = [ G(U; 0+ &t )]
Gi g™ "2 LF ke ™ e
4
N
+ X?';; PM:( 3*‘1) @l ("4*/2 m Jedz)“b/z!
(20)

f
Here, it is understood that the scalar values and the vector R* in the summa-

tions in equations (19) and (20) are values of (4c-4k) evaluated at the cor-
responding x-coordinate by using equations (10-12) and at the y-coordinate by
using equations (11,13,14). We use the subscripts j for x and k for y for
the indexing of the computational mesh. Recall, for simplicity, that we om-

itted the k index in equation (12) and omitted the j index in equation (14).

In order to retain the original second-order time accuracy of the meth-

od, we use a Strang type of fractional step operators, namely

S I ;ﬁngx;/ﬁ V;; (21)
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or

oy = AL - - (R Y, e

We will call equation (21) the half-step fractional step method. For
steady-state calculations, the intermediate steps of equation (22) are just a
part of the iteration procedure. Therefore if we handle the boundary data

for the intermediate steps correctly, we can combine the adjacent

% oY
'Ix

{ . ~ 4
<, operators into 0(1( and the adjacent J;ﬁo(g‘ operators into cf? .

The half-step operators need only be applied at the first and last itera-
tions, i.e.

242 Yoyt gh gt L ko ta -] (23)
Upp = Lo Ly hads 0T Ly A e

We will call equation (23) the full-step fractional step method. Numerical
experiments on the shock reflection problem show that equation (22) and (23)
give almost identical numerical results and the amount of CPU time required

for equation (23) is half that required for equation (22).

Modified Implicit Method for Two Spatijal Dimensjous:

The two dimensional alternating direction implicit version of (5) is

' 2 AN At = - At (F 4 29
\1+GM2XA)AU = At(ax +-53—) (24)

(1+6a2€) AT

Avut (25)

U= U+ au (26)
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The modified implicit method is obtained by replacing F: + G,; on the

right-hand side of (24) by

.am AY N ‘\

. ‘ 1 7 AT \
'517\ Foop k™ Fa‘—/:,k) + ‘5"(& e G Y, (27)

where F and 6 are given by (19) and (20), and the left-hand sides of (24) and

(25) are replaced by the appropriate analogues of (6).

V. NUMERICAL RESULTS FOR QUASI-ONE-DIMENSIONAL NOZZLE PROBLEM

A detailed implementatfon of Harten’s method for the one-dimensional
inviscid compressible equations of gas dynamics can be found in Harten’s ori-
ginal paper [5]. Here, we will only describe some of our numerical results.
For t%. numerical experiments, we chose the quasi-one-dimensional nozzle
problem with two nozzle shapes (divergent and convergent-divergent). In all
of the calculations the computational domain was 0 { x £ 10. Two mesh spac-
ing were considered for the divergent nozzle; Ax = 0.5 and ax = 0.2. The

mesh snacing for the convergent-divergent nozzle was Ax = 0.2,

Analytical Boundary Conditions:

We snecified all three primitive variables £, u and p for the superson-
ic inflow case, the two primitive variables £ and p for the subsonic inflow

case, and the variable p for the subsonic outflow case.
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Numerical Boundary conditionsg:

We use first-order space extrapolation for the outgoing characteristic
variables [11] to obtain the numerical boundary conditions for the unknown
flow variables at the boundaries. Since Harten’s scheme is a five-point
scheme in space, we also need the values of 83‘ and 93 on both boundaries.

For convenience, we will use zeroth-order space extrapolation for these va-

lues.

e Form of Q and U,y

In all of the numerical experiments for the one-dimensional test prob-
lems, we use equations (4j) or (4k) for the representation of the Q function
and Roe’s formula for the evaluation of qu&. Numerical experiments
show that the two forms of the Q function have 1little effect on the

steady-state numerical results of these test problems.
Initial Conditioms:

We use linear interpolation between the exact steady-state boundary va-

lues as initial conditiouns.
Dis n Results:
To illustrate the shock-capturing capabilities of Harten’s method and

the modified implicit method, we compare in figures (1) and (2) the computed

results with the first-order flux-vector splitting scheme [9], and a conven-
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tional implicit method (5) wusing three-point central spatial differencing
with an added fourth-order explicit numerical dissipation [8]. From the re-
sults, we can see a definite improvement in shock resolution by Harten’s
scheme and the modified implicit method, especially for the coarse mesh spac-

ing.

To demonstrate the advantage of using Harten’s method as a fine tuning
process for the conventional implicit scheme, we plot in figure (3a) a more
difficult flow solution with the conventional implicit scheme as a
pre—-processor to obtain the steady-state solution. The undershoot and over-
shoot near the shock are typical of the three-point central spatial scheme.
Figure (3b) shows the improvement of the solution after we applied Harten’s
scheme as the post-processor. Figure (4) also shows the solution improvement
after we applied Harten’s scheme as the post-processor for the solution il-
lustrated in figure (1ld). Note that it took approximately 700 steps for Har-
ten’s method alone as opposed to 50 steps of the implicit flux-vector split-
ting method plus 40 steps of Harten’s method to converge to the steady-state
solution. Figures (3-4) illustrate how well the method can capture the
shock, especially for the more sensitive subsonic inflow, subsonic outflow
case. In all of the above test problems (except for Harten’s method), we

used the backward Euler method as the time differencing.

VI. NUMERICAL COMPUTATION OF TWO-DIMENSIONAL SHOCK REFLECTION PROBLEM

Various first-order upstream conservative differencing methods have been
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developed for systems of one-dimensional hyperbolic conservation laws
[6,9,12-14]. When these methods are applied to the one-dimensional 1invisctl
equations of gas dynamics, most of the methods capture shocks very well.
However, a direct application of these methods to problems in two~dimensions
does not necessarily produce the same type of high resolution near shocks un-
less the shocks are aligned with one of the computational coordinates. This
is due to the fact that first-order methods are generally not adeyuate to
solve a complicated flow field accurately except on a very fine mesh. On the
other hand higher-order extensions of these first-order upst+~eam methods are
usually rather complicated to use (see for example, van Leer [15]). Harten’s
method is 1less complicated than other recently proposed second-order
high-resolution methods; however, it was developed for one-dimensional prob-

lems.

In order to see how well Harten’s method and the modified implicit meth-
od can capture shocks for two~dimensional inviscid gas-dynamic prohlems, we
consider a simple inviscid flow field developed by a shock wave reflecting
from a rigid surface (fig. 5). The steady-state solution can be calculated
exactly and thus can aid us in evaluating the quality of the numerical meth-

od. Figure 5 shows the indexing of the computational mesh.

Analytical Boundary Conditions:

The boundary conditions are given as follows: (a) supersonic inflow at
j=1, k=1,..,,K which allows the values l&.k to be fixed at freestream
4
conditions; (b) prescribed fixed values of I%'k at k =K, j=1,...,7 which
]

produce the desired shock strength and shock angle; (c) supersonic outflow
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at j = J, k=1],...,Ki (d) a rigid flat surface at k = 1, j = 1,...,J which
can be shown to be properly represented by the condition v = 0, with the ad-

ditional condition ap/ay = 0 at k = 1 from the normal y-momentum equation.

Initial Conditioms:

Initially, the entire flow field is set equal to the freestream super-

sonic inflow values plus the analytical boundary conditions as described

above.

Numerical Boundary Conditions [1l1]:

The supersonic outflow values U_ L
NI

k =1,¢..,K-1 are obtained by zer-

oth-order extrapolations, i.e.,

Uv’lk = U:r,j)k' k = l,ooo,K-l (28)

The values of J%;i 'hgd-

ined by zeroth-order extrapolations, i.e.

on the rigid surface with j = 1,...,J are also obta-

MY
5= Lyeenyd (29)

Three different methods were used in approximating Jp/ay = 0 to get ez\i s
)

j = I,O-o,J
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(a) normal derivative of e equal to zero (first-order)

81\)4 - ea‘lz (30‘)

(b) normal derivative of e equal to zero (second-order)

e, = (b4e,

» B2 " %803 (30b)

(c) normal derivative of p equal to zero (second-order)

\ = (4p . - N '30¢
Pa'i ( pajz pJ)3 )/3 (30c)
ea)i = ‘3,‘,1 /(Y¥=-1) + ‘“3;1/(21’3‘,1) (30d)

Equation (30a) together with equatfon (29) is an approximation to
pj}i - pf}z; i.e., a first-order approximation for the normal derivative of
p equal to zero. Equation (30b) together with equation (29) is an approxima-
tion to equation (30c). We use equations (30a) or (30b) for the implicit
methods mainly because of their ease of application with implicit numerical
boundary conditions. From the numerical experiments, we found that equation

(30b) or (30d) produce better numerical solutions near the wall than equation

(30a).

Since Harten’s scheme 18 a 5-point scheme (in each spatial direction),

we also need the values of 84,4z ’ gj_/k ’ sa‘,i ’ g’\"( ’ %;k’ e’ 03}1'
6%)K , for § = 1,ses,J 0or k = 1,.,..,K. For convenience, we will set

ok = du ’ &‘lk = ba,1c

= 9,0, ok = O34 (31)

3""' = ’1‘»3 ’ 9"’1 = 8“)2

$K= 45k 2 Q4K = B4,k-1
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The Fora of 0 and Uy

In all of the numerical experiments for the shock reflection problem, we
use equation (4j) for the representation of the Q function and equation (16),

’ 7.
(Roe’s formula) for the evaluation of JB*%%kf

Boundary Data for the Intermediate Steps:

When fractional steps are used for the two-dimensional problems, there
are intermediate boundary data which are not required for non-fractional step
and alternating direction implicit methods. For example, in order to advance
from equation (17) (the X:’lzoperator) to equation (18) (the a(;ﬁ operator), we

"
need values of Uﬁd. for j = 1,...,J. Since we are solving for steady-state

+ +
solutions, we set v, =0 = v;i_ at the rigid surface, and U J = lyeee,d
)

1.4 oK
equal to the precribed boundary values. For the remaining intermediate boun-

4 4 i
dary data vg't’ ma g and e., , we use equation (17) to solve for the values.
Vi

)] 34
The reason is that we know the values of the entire flow field at level n.
Therefore we can advance to the next step by equation (1i8), and update the

numerical boundary conditions by equations (28-30). We can repeat the pro-

cess by using the sequence indicated in equation (22).

For the full-step fractional step method, every step is an intermediate

step. The process is as follows:

&

step l: the é(x operator

4 , 0 ND
" at /A ) (32)

Uk = Yk~ 2 (Fip k™ Feomt
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AQ
where Ft\%k“ tie value of F evaluated at the initial value of
Jj
u. .
1tk

4
step 2: the 5(# operator

Ty » at /A" A
A — D - 24 . — . 33
-Ué)k« - -U1.)k~ 4y < Gﬂ Rta Gé/k’y
step 3: the ozp:operator
8] ““
se1 sk (£ —F ) (3)
= T \ — m—— N . A
Yk T Tax LBk TR

»
Thus, we can start out by setting the intermediate values of v. ,

. ~ +* * i

U.
S %1 Yk
the half-step method at step 1 ( X:/zoperator). The reason is that we know

J = 1l,000,J the same way as

the values of the entire flow field by the initial conditions and the analyt-

ical boundary conditions. Therefore we can advance to the next step by equa-

“

tion (33). After the values of Ua-k y k=1,...,Kand j = 2,...,J are calcu-
)

-
lated, we use the precribed values at the inflow as Uikand equation (28) as
7/

v* 4 fon (33 lve for U, and U**
K n equation ) to solve for 1k an T

(o(a" operator) is finished and we can apply similar process to step 3

At this stage step 2

( ;(:‘ operator). We can repeat the process by using the sequence shown in

equation (23).

Modified Implicit Method:
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Recall we use of the term "modified implicit method" to denote the al-
gorithm obtained by applying technique (b) of section III to equation (7)
(i.e., by the alternating direction method as described at the end of section
IV), A fully implicit form of the Harten’s method results in a more compli-
cated solution inversion procedure. Work is uaderway to develop a proper 1li-
nearization procedure. Here we only study the applicability of the less com-

plicated iteration matrix as the implicit operator.

Other Numerical Methods:

We choose four methods for comparison with Harten’s method and the modi~
fied implicit method: (a) a first-order explicit method of Roe [6], (b) the
first~ and second~order flux-vector splitting method {91, (c) the
explicit-impiicit MacCormack’s method (finite volume) [16], and (d) a conven-
tional implicit method with three-point central differencing in space and a
fourth-order explicit numerical dissipation term [8]. In the calculations
with the implicit methods (except MacCormack’s method), we use the backward

Euler for the time differencing.

Discussion of Results:

The main purpose of the two-dimensional numerical experiments is to eva-
luate the shock resolution of Harten’s method and the modified implicit meth-
od. Convergence rate and computational efficiency wili pe investigated and
reported elsewhere. We expect that techniques (b) and (c) proposed in sec-
tion IIT will speed up convergence for subsonic (dominated) steady-state

problens.

T
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In all of the numerical experiments, the incident shock angle 10 was

29° and the freestream Mach number M, was 2.9. The cuwutational domain was
0¢x¢ 41, and 0Ky 1, and the grid size was 61X21. The appropriate
analytical boundary conditions are applied along the boundaries cf the doma~
in. Only pressure contour and pressure coefficients will be 1illustrated.
Here, the pressure coefficient is defined as c,f, = 5;%:(% - i) with
R, the freestream pressure. The exact uminimum pressure corresponding to
V- 29° and Mo = 2.9 1s 0.714286 and the exact maximum pressure is 2.93398
(see Fig. 6). Forty-one pressure contour levels between the values of 0 and

4 with uniform increment 0.1 were used for the contour plots. The pressure

coefficient was evaluated at y = 0.5 for 0 £ x £ 4.1.

The exact pressure solution is shown in figure €. Pressure contours and
the pressure coefficirnt evaluated at y = 0.5 are shown in figure 7 for seven
different methods. Both the first-order explicit method of Roe and the im-
plicit first-order flux-vector splitting method yield smeared discontinuities
as shown in figures (7a) and (7b). The second-order (in space) flux-vector
splitting method, the second-order (in space) conventiona. implicit method,
and MacCormack’s explicit-implicit method are shown in figures (7¢c)=(7e).
(The results for MacCormack’s method were provided by W. Kordulla, National
Research Council resident research associate at NASA Ames Research Center.)
Harten’s method with full-step fractional steps and the modified implicit
method are shown in figures (7f) and (7g). These methods show a definite im-
provement in shock resolution. There are practically no oscillations over
the entire flow field. Figure 8 shows the pressure contours of Harten’s
method by using the hal’-step fractional step method. The solution is nearly

identical to figure (7f) but required half the number of iterations (i.e.,
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half of the step size, double the CPU time). Figure (9a) shows the results
after 30 steps of the conventional implicit method. Figure (9b) shows the
improvement after we applied 200 steps of Hartea’s method as post processor.
All of the above wethods required 157-600 iterations to converge with CFL

numbers ranging from 0.5 to 0.8 (except figure (9a)).

At the present stage of development, the prliminary version of the modi-
fied implicit method for two-dimensional problems has several deficiencies.
In particular, the implicit operators (left-hand sides of (24) and (25)) are
not proper linearizations of the right-hand side. In fact, the lineariza-
tions are crude at best, and one would expect that this would have a serious
effect on the stability of the method. In addition, Harten’s method, like
Lax-Wendroff, has a steady-state dependence on At. For explicit methods,
this does not introduce a serious error. However, if one could take a large
time-step by making the method implicit, then the steady-state accuracy is
expected to be degraded. Figure 10 shows the pressure contour for the shock
reflection problem at a CFL number of 1.2. Even at this modest CFL value,
the accuracy is degraded as compared to the same problem run at a CFL number

of 0.5 shown in figure 7g.

VII. CONCLUSION

The application of Harten’s explicit method to quasi-one-dimensional
nozzle problems and to a i.._.-dimensional shock reflection problem resulted in

high shock-resolution steady-state numerical solutions. By combining the ad-
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Jacent half-gtep operators into full-step operators of the fractional step
method, one can cut the computation time in half. Applications of the
post—processor method and the modififed implicit method for steady-state cal-
culations show encouraging results for one—-dimensional problems; however,
testing in two dimensions is not complete and further investigation is needed

for efficient implementation of the implicit method.
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(c) Conventional implicit method. (d) Firsi-order implicit flux-vector

Figc 1

splitting method.

Density distribution:

Nozzle shape: ~~ ; 20 spatial intervals.

supersonic inflow, subsonic outflow.
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(c) Conventional implicit method.
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(b) Modified implicit method.
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(d) First-order implicit flux-vector
splitting method.

Fig. 2 Density distribution: supersonic inflow, subsonic outflow.

Nozzle shape:

; 50 spatial intervals.
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(a) Conventional implicit method. (b) Harten’s method as post-processor.

Fig. 3 Density distribution: subsonic inflow, subsonic outflow.

Nozzle shape: — .

— 50 spatial intervals.

00000

EXACT A
0 NUMERICAL

DENSITY

Fig. 4 Dengity distribution: supersonic inflow, subsonic outflow.
Harten’s method as post-processor (use the result of fig.
(1d) as initial conditions).
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Fig. 6 The exact pressure solution for
the shock reflection problem.
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(a) First-order explicit method of Roe.

a5
1 ¢, s
L 7 —1 25 ) i ]
0 1 2 3 4 o 1 2 3 4
x x

(b) First-order implicit flux-vector splitting method.
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(d) Conventional implicit method.

Fig. 7 Pressure contours and pressure coefficients for the shock
reflection problem.
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(e) MacCormack’s explicit-implicit method.
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(g) Modified implicit method.

Fig. 7 (continued).
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Fig. 8 Pressure Contours: Harten’s method
(half-step fractional steps).

] . J

] 1 2 3 4

(a) 30 steps of the conventional (b) 200 steps of Harten’s method
implicit method. (use the result of fig. (%)

as initial conditions).

Fig. 9 Pressure Contours: Harten’s method as post-processor.

Fig. 10 Pressure Contours: Modified
implicit method at CFL = 1.2.
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