
A Game Using Eye, Finger, & Mouse Tracking
Faris Durrani

afarisdurrani@gatech.edu
Georgia Institute of Technology

Rishabh Ghora
rishabhghora@gatech.edu

Georgia Institute of Technology

ABSTRACT
This paper considers the application of eye movements
to user interfaces, mainly as an input to user interfaces
allowing for a new premise to control applications with
less need to physically touch any buttons or screens.
The paper first introduces the topic of eye-tracking
and how such an implementation on user interfaces
would be beneficial. Next, we review previous literature
on similar subjects in order to clarify what research
has already developed in this field and how we will
use findings from other papers to enhance our system.
Finally, we implemented an application that combines
eye movements with finger gestures as user inputs to
showcase the feasibility of having an application that
is concurrently considering both forms of input.

1 INTRODUCTION AND
MOTIVATION

Since the introduction of direct manipulation by Shnei-
derman ([28], cited in [26]), the common interface has
been based in 2D Graphical User Interface (GUI) with
the the button being a fundamental element of inter-
action. However, the limitations of the button, i.e. the
need to move the cursor and press the button especially
by people with limited capability whether that may be
for medical reasons or high-performance tasks, prove
the need to extend the functionality of the button be-
yond the physical touch. Taking into consideration the
increased presence of various forms electronic devices
in everyday lives, and the increased communication
and social media, it is necessary to use these technol-
ogy to increase the control modes of our computers
whether for patients with neuro-motor disabilities [20],
virtual reality systems, or video games (eye tracking
1993). This project aims to explore how eye gaze, blinks,
and other nontraditional input methods can enhance
the basic concept of a button. Such implementations
would add to the multimodality of user interface and
allows for more complex instructions from the user, in
addition to increasing accessibility to those who have

limited neuro-motor functions. We explore this pos-
sibility by creating a simple game using inexpensive
eye-tracking device and input processing software.

2 LITERATURE REVIEW
Research on nontraditional user input methods have
been long in progress with the creation of the unique
prosthetic device Erica devised by Thomas et al. [11].
Erica works by accepting input directly from the hu-
man eye using a camera that detects near-infrared light
from the eyes and allowing invoking a correspond-
ing menu option based on the position of where the
eye looks at. Similarly, Yamada and Fukuda [35] de-
signed an eye word processor controlled by eye move-
ments by victims of amyotrophic lateral sclerosis (ALS).
Their design used photo-transistors and infra-red LED
placed opposite the eye, detecting horizontal move-
ments. However, Kaufman et al. [14] argued these meth-
ods are too expensive and described instead an inex-
pensive eye movement controlled user interface based
on electro-oculography (EOG) rather than the expen-
sive reflectance based methods. Being inexpensive, the
system is applicable for many virtual reality systems
and video games, as well as for people with limited
muscular control. EOG depends on the corneoretinal
potential that creates an electrical field in front of the
head, which changes as the eyeballs move. The signal
quality of the EOG output, though noisy, could be im-
proved with straightforward signal processing steps
and a notch filter. To finally extract the salient events
such as eye fixations, saccades, and post-saccadic os-
cillations (PSO), Goltz et al. [8] have come up with a
simple and fast automatic solution for eye-gaze analysis
based on supervised neural network learning.
These advances in eye tracking technology enable

complementary eye trackers integrated into the default
display or attached as peripheral devices ([16]; [4], cited
in [26]). For instance, Lupu et al. [21] proposed a new

https://github.com/farisdurrani/SpaceshipBattle
https://github.com/farisdurrani/SpaceshipBattle


CS 6456, November 23, 2021, Atlanta, GA, USA, UI Faris Durrani and Rishabh Ghora

technique to be used by patients with neuro-motor dis-
abilities to control a web browser by means of eye track-
ing. However, with slight modifications, the authors
noted this can be used by healthy subjects as well. The
infrared web camera acquires eye images and sends
them to the computer where these are processed using
the pupil detection algorithm implemented to deter-
mine the eye gaze input (called the eye tracking mouse).
In order to provide the low running time to obtain the
stable cursor movement without lag between the gaze
direction and cursor movement, the first two out of
four levels of the application were written in C++, with
the rest in .NET. The application determines the cursor
position variation within a radius, and after the dwell
time has passed, if the cursor has not moved from that
radius, the application generates a click event. Addi-
tionally, a matrix is used to implement a grid for fixed
snap points, or adaptive snap points. This type of adap-
tive grid offers easier element selection for the user
although it requires additional computing and instruc-
tions [17]. Our project will include these aspects to aid
in user control and provide a smooth transition when
trying to select certain buttons.
Additionally, Rivu et al. [26] proposed theGazeButton

which takes the advantage of a physical button to aid in
selection of items on the screen. The concept extends
the default button mode with advanced gaze-based in-
teractions for custom-made text reading, writing, and
editing on a multitouch tablet device. Where the default
button enables an atomic action, adding gaze allows
the interaction to be more expressive by taking into
account where the user looks while issuing the man-
ual input ([24], cited in [26]). The GazeButton provides
three input states in addition to the default interaction
state, where the user interface (UI) is controlled solely
by normal touch mode. For example, if the user is look-
ing at a text field, physically pressing the button places
the text cursor at the visual position. If the user is look-
ing at a key on the keyboard, the user would type that
key. If the user looks and touches the same physical but-
ton, the system triggers a distinct action, e.g., provide a
system-level menu. This addition of a physical button
minimises the learning curve and improves the grip
and reach issue, i.e. the hand holding the tablet limit-
ing the interaction. Indeed, gaze and touch interactions
have been investigated by Stellmach and Dachselt [29],
who looked at how gaze can be used as an interaction
technique for mobile devices to zoom and pan while

browsing images on a large screen. Turner et al. also
applied gaze and touch to the context of transferring
content between a local touchscreen and remote display
([32], [33], [34]). From these, we see the advantages of
adding a touch component to improve our project’s
future accessibility.
Further, research in eye typing or gaze typing, first

introduced in the 1970s for disabled people ([22], cited
in [26]) have made typing using eye movements fast
and accurate [26]. Dasher [31] is one of the fastest eye-
typing applications today, operated by continuous gaze
pointing gestures between letters. EyeSwipe is another
example of eye typing that works by scanning the gaze
line [19]. In addition, dwell-based gaze interaction soft-
ware like pEyeWrite that uses a pie menu shape as a
text pad has also found its way to eye-typing [10].
There are other nontraditional input methods as well.

For example, using an immersive visual environment
in combination with a mobile eye tracking system, pro-
posed by Schrom-Feiertag et al. [27]. The authors ar-
gued that body orientation andmovement have a strong
impact on eye tracking patterns in spatial navigation
tasks and hence, uses a mobile eye tracking device.
There is also the detecting of voluntary blinks and in-
terprets them as control commands [18], moving the
tongue to push buttons on the screen (mouth screen
reading) [21], and of course, voice commands like one
proposed by Ferracani et al. [7] for immersive experi-
ences in augmented museums.
The first aspect of our project relies on developing

a program that will be able to track a user’s eye move-
ments. This will be done by developing a state of the
art machine learning model which will essentially be a
neural network built through known computer vision
techniques that will be able to identify human eyes and
track their movement.
There has been a lot of research in the world of object

detection and more particularly how deep learning can
assist with the task of object detection. In our case in
particular we are less interested of identifying objects
such as a dog in a picture but rather need to identify
the bounding boxes of human eyes in order to track
their movement. We also want to accomplish this real
time with the Camera rather than a prerecorded video.
Zhao et al. compared deep learning architectures to
more traditional object detection algorithms before the
rise of deep learning and, in the case of face detection,
observed that most of the classic methods perform with



A Game Using Eye, Finger, & Mouse Tracking CS 6456, November 23, 2021, Atlanta, GA, USA, UI

similar results and are outperformed by CNN based
methods by a significant margin [36]. However, a major
limitation of their review is the ability to detect small
objects. The authors point out that to improve localiza-
tion accuracy on small objects under partial occlusions,
it is necessary to modify network architectures by in-
troducing scale adaptation, 3D object detection, and
Video Object detection.
More recently, there has been a lot of work done with

Video Object detection and cloud services such as AWS
and Google Cloud Platform offer object detection ser-
vices so that companies do not need to develop their
own models but can simply pay for a service and feed it
images or videos to accomplish object detection [1]. The
task of video object detection is extremely important
for self driving cars and thus there has been extensive
research done on it. Perreault et al. worked at taking
advantage of the similarity between video frames to
produce better detections by introducing a novel video
object detection architecture that allows a network to
share feature maps between nearby frames and a fea-
ture fusion module that learns to merge feature maps to
enhance them [23]. We can leverage some of these tech-
niques for real time object detection as well by creating
short clips or videos and merging features in order for
more accurate detection of eye movements.
Another technique was presented by Redmon et al.

where the task of object detection was reframed as a re-
gression problem to spatially separated bounding boxes
and associated class probabilities [25]. This technique is
more relevant to our project as it attempts to create mul-
tiple bounding boxes on an image or one frame in our
continuous video that is occurring in real time, and as-
sociate class probabilities to all of the boxes outputting
the highest probability for human eyes.
There have been some other recent developments in

the field of object detection that can relate to our project
in general. Beery et al. demonstrated boosting object
detection performance on the current frame by using
an attention-based approach that allows the model to
index into a long term memory bank constructed from
previous frames and aggregate contextual features [5].
Now there is tradeoff between speed and accuracy and
we do not want to introduce complexity to the model if
achieving greater accuracy takes longer running time
as we are trying to track eye movements in real time
and use them as user inputs for an interface. Huang et
al. presents a detector that achieves real time speed and

can be deployed on a mobile device [9], which is closely
related to the system we want to build. Related to com-
plexity, more intricate and layered neural networks
will increase the running time for predictions for which
Tan et al. have proposed various methods to improve
efficiency including a weighted bi-directional feature
pyramid network and a compound scaling method for
images [30]. All of these techniques will be useful in
developing a fast and efficient eye tracker.
Now to narrow down the task of object detection to

eye movement tracking and using such movement to
dictate user inputs in an application have its own set
of challenges. As pointed out by Jacob et al., for real
time use, the problem with eye tracking is to find ap-
propriate ways to respond judiciously to eye movement
input, and avoid over-responding; which is not nearly
as straightforward as responding to well-defined, inten-
tional mouse or keyboard input [12]. With that being
said, these questions were risen very long ago before
the rise of neural networks and developments in ma-
chine learning. In fact there has been plenty of research
of doing object detection quickly in low level systems.
In fact Kassner et al. released a product that comprises
of a light-weight headset with high-resolution cameras,
an open source software framework for mobile eye
tracking, as well as a graphical user interface to play-
back and visualize video and gaze data [13]. In addition,
most popular computer vision libraries such as OpenCV
leverage most of the recent advancements made in the
machine learning community allowing developers to
easily build applications that rely on models for object
detection. Thus, we are confident we will be able to
develop an accurate eye tracking model that will be
used to define user input in applications.

3 PROPOSED SOLUTION
Our solution will be in the form of a spacecraft game
that is trying to defeat the evil ships shooting at it. The
goal would be to survive as long as possible. Eye move-
ment will be combined with more complex user inter-
face inputs such as finger gestures to control the layout
or influencing the course of the game itself. One exam-
ple could be inspired by the Fruit Ninja game, where the
player could ’slice’ incoming asteroids to save the ship
should there be an incoming one. This allows for the
player to attack two fronts–using their eyes and hands–
simultaneously. Manipulating the number of fingers

https://github.com/farisdurrani/SpaceshipBattle


CS 6456, November 23, 2021, Atlanta, GA, USA, UI Faris Durrani and Rishabh Ghora

as well as incorporating the already ubiquitous mouse
could add much more to the controls as well. Overall,
through this project we will demonstrate how eye, fin-
ger, and mouse movements could be used as inputs to
user interfaces and discuss the benefits and challenges
of this approach.

4 IMPLEMENTATION
The final game implementation employed most of the
proposed user interface solutions to give a complex yet
intuitive control to the game and the spaceship. The
Pygame Python package (v. 2.1.0) was used ubiquitously
as the main platform where this game was coded from.
The main control comes from the eye tracking program,
followed by peripheral controls using the fingers and
mouse to either defeat obstacles, change views, or sim-
ply to toggle a button.

4.1 Eye Tracking Input
As stated before, we utilized common methods in open
source projects that involve object detection for our
Eye Tracking system. To start, we get frames from the
camera of the device running our program using the
OpenCV VideoCapture function [3]. We then run these
frames through dlib’s frontal face detector [2] which re-
turns rectangular objects of faces detected in the frame.
Next, we pass these detected facial objects through a
pretrained facial keypoints detector presented origi-
nally by Kazemi et al [15] which estimates the face’s
landmark positions directly from sparse subset of pixel
intensities, achieving super-realtime performance with
high quality predictions. Theoretically, more complex
CNN models could improve facial landmark position-
ing in terms of pinpoint accuracy but would lose out
on performance in terms of speed, making it unreason-
able to use for a game application. Next, we take the
region indicated by the landmark position coordinates
and isolate the eye by masking the region and bitwise
not the rest of the image with the solid color black. The
next step involves taking the isolated eye images and
prepossessing them by applying bilateral filter, erosion,
and threshold based binarization using OpenCV all of
which are common filtering processing in the world
of computer vision. We then detects the iris from the
preprocessed image using OpenCV findCountours and
estimates the position of the iris by calculating the cen-
troid. The thresholds for the filters are also optimized

for each person based on their pupil size and the device
camera frames.
This process is implemented in our code by creating

Pupil, Eye, and GazeTracking objects. A GazeTraking
object is initialized with the continuing while loop of
our webcam feed and constantly refreshes new frames
from the video feed. Each refresh causes a new analyze
which resets the left and right Eye objects within the
GazeTracking object. Each Eye object also contains a
Pupil object. Now, left and right eye coordinates are
calculated by taking the origin Eye coordinates, which
are the min x and y coordinate of the isolated eye image
added to the centroid pupil coordinates of that eye. A
horizontal ratio is calculated considering the positions
of both eyes’ pupils and their x center coordinate. The
horizontal ratio is a number between 0.0 and 1.0 that
indicates the horizontal direction of the gaze where the
extreme right is 0.0, the center is 0.5 and the extreme
left is 1.0. Similarly, a vertical ratio is calculated con-
sidering the positions of both eyes pupils and their y
center coordinate. The vertical ratio is a number be-
tween 0.0 and 1.0 that indicates the vertical direction
of the gaze where the extreme top is 0.0, the center is
0.5 and the extreme bottom is 1.0. These attributes of
the GazeTracking object allow for the eye movement
of a user to be used as input for an application.

4.2 Eye Tracking for Ship
Coordinates

With the input of the right eye normalized coordinates,
the normalized coordinates is converted to a scaled co-
ordinate commensurate with the window width and
height, which shall be where the main spaceship points
to and shoots at. Such angle where the ship must ro-
tate to (counterclockwise from the vertical axis being
270 + 𝑎 + 𝑏 degrees in Figure 1) is calculated through
simple trigonometry. The spaceship is always located
in the center of the screen.

The added difficulty of implementation comes from the
evil ship’s rotation which must always point towards,
and shoots at, the main spaceship. Referring to Figure
1, what must be entered into Pygame is the coordinates
of the evil ship and its angle of rotation 𝑐 . The evil ships
are initialized randomly on the screen, so the coordi-
nates are derived from its current coordinate plus the
speed of the evil ships. The ships move such that if the

https://github.com/farisdurrani/SpaceshipBattle


A Game Using Eye, Finger, & Mouse Tracking CS 6456, November 23, 2021, Atlanta, GA, USA, UI

main ship points to them, the separating distance gets
smaller and vice versa. This is to give the impression
of running into them or away from them in space. To
find 𝑐 , we find that the following set of mathematical
equations to be true in Figure 1 when the evil ship is in
Quadrant I of the screen:

• 𝑏 = arctan 𝑄

𝑃

• 𝑐 = 180 − (90 − 𝑏) = 90 + 𝑏

Figure 1: Calculating the angle of rotation of en-
emy ships

4.3 1-Finger Gestures
The concept of a one-finger gesture was expanded fur-
ther to increase the utility of this user interface input.
An input may be a click to a button or, as this game
implements it, drawing a specific shape that is inter-
preted as a recognizable shape present in its template
library. A “9-Square recognizer” was used for the sys-
tem to interpret these simple hand-drawn shapes. Such
a recognizer that supported digital ink and natural ink
gestures was developed at Xerox PARC for use on the
Liveboard system and has been used in meetings over
a period of several years [6]. We took on the idea and
built our own simple 9-square recognizer whose basic
algorithm can be summarized as the following:

(1) Continuously record the coordinates of the single-
finger gesture as long as the finger does not lift
above the screen.

(2) Compute the minimum bounding box of said co-
ordinates

(3) Divide the bounding box into 9 equal sized rect-
angles

(4) Mark where the gesture passes through
(5) Compare this gesture with the templates. Such

templates may mark a ‘square’ as requiring a ges-
ture present, left blank, or does not matter.

This algorithm can easily be expanded to accommodate
roughly 39 possible templates but for this game, five
templates are used. In the event the finger gesture does
not match any templates, the user is required to input
the gesture again. Additionally, the program draws the
gestures made to aid in user feedback.

4.3.1 Left (<).
The first template is equivalent to the less-than symbol
(“<”). See Figure 2 for demonstration. Taking advan-
tage of the human intuition to associate this bracket to
pointing to the left, this application will pause the game
and open a Settings panel that stays on the left part of
the screen, shadowing over the rest of the screen cov-
ered with a translucent Pygame surface. When paused,
most interactions would stop except for the shimmer-
ing stars and asteroid rotations to remind the user the
game is still running well. Within the Settings panel,
one setting option is provided for the user to customize
their spaceship’s bullet color to a set of given colors.
The setting button changes color to the current color
chosen to aid in user’s color choice.

Figure 2: Drawing a ‘<’ to open Settings panel

https://github.com/farisdurrani/SpaceshipBattle


CS 6456, November 23, 2021, Atlanta, GA, USA, UI Faris Durrani and Rishabh Ghora

4.3.2 Right (>).
The second template is one equivalent to the more-than
symbol (“>”). Like the previous template, this takes the
advantage of human intuition to open a panel on the
right. This Request Support panel allows the user to
select a number of friends, decorated as blue ships, to
come to their support to defeat the evil ships until they
ran out of health or until they are out of screen range.
The current implementation means these friends are
randomly generated and operated but in higher imple-
mentations, this can be expanded to retrieve a list of
online friends, e.g., on Facebook and have the friends
control the ally ships; in essence, this creates a multi-
player game. For added feedback, the button decora-
tions change when hovered upon or selected.

4.3.3 Up (∧).
The third template is equivalent to the wedge sym-
bol (“ ∧ ”). This opens the Market panel filled with
randomly generated items with randomly generated
prices (within their predetermined ranges based on in-
trinsic value). The user may select the items to buy
and sell. With random prices, this means the user can
trade items–buying at low prices and selling at higher
prices to make a profit. These money can be used to buy
shields and upgrade their bullet power. The inventory
button changes color depending on whether the user
is selling or buying to the inventory. Red if the inven-
tory is decreasing or green if increasing. The change in
cash also changes color depending if the user is gain-
ing or losing money from these trades. See Figure 3 for
demonstration.

Figure 3: User can buy and sell items on the mar-
ket, changing the button colors

4.3.4 Shield (⃝).
The fourth is an approximate circle (“ ⃝ ”). Drawing
a circle will temporarily activate a shield around the
spaceship, which halts any health damages to the ship
while the shield is up. The ship must have at least one
inventory of a shield item bought from the Market for
this function to be activated.

4.3.5 Strike (/).
The fifth and final one-finger gesture template is a back-
slash (“/”). Drawing this strike symbol over an incom-
ing asteroid will destroy the asteroid. See Figure 4 for
demonstration. This design takes inspiration from the
Fruit Ninja game where the player slices fruits with
their fingers. This added functionality complements
the eye tracking software which allows the user to con-
trol the direction of the ship using the eyes in an effort
to aim the gun to the evil ships and destroy asteroid ob-
stacles using their fingers. In further implementations,
this can be expanded to have much higher difficulty
with more asteroids/enemy ships and the capability to
destroy both asteroids and enemies with both finger
and eye inputs.

Figure 4: Striking the asteroids with a finger de-
stroys them

4.4 4-Finger Gesture
A 4-finger gesture is detected by keeping track of the
number of fingers, using the finger IDs, currently on
screen.

4.4.1 Slide to change view.
By sliding 4 fingers on the screen from the right to left,
the user can change the view of the ship from a third-
person view to a first-person view. See Figure 5 for



A Game Using Eye, Finger, & Mouse Tracking CS 6456, November 23, 2021, Atlanta, GA, USA, UI

demonstration. In the first view, the main spaceship is
always centered at the bottom middle part of the screen
to give the impression of looking into space from the
ship’s cockpit. Additionally, ship icons are squashed
vertically to give the impression the enemy ships are
pointing at you.

Figure 5: An alternative first-person view after
sliding 4 fingers to the left

This view is derived from the original third-person
view where only the environment in the 180 degree
frontal view of the cockpit are rendered on screen. The
2-dimensional Euclidean distance from the spaceship to
enemy ships are calculated to give the absolute distance
between them. The coordinates of the ships in third-
person view are used to calculate the angle deviation
of the enemy ships from the cockpit. Together with the
angle and Euclidean distance, the new coordinates in
the first-person view is rendered for the enemy ships.
Looking in Figure 6, we see the following set of mathe-
matical equations are true if the evil ship is located in
the right half of the main cockpit view.

• 𝐷 =
√
𝑃2 +𝑄2 = 𝐸

• 𝑑 = 90 − 𝑎

• 𝑒 = 180 − (90 − 𝑑) = 90 + 𝑑
• 𝑆 = 𝐸 sin𝑑
• 𝑅 = 𝐸 cos𝑑

5 CONCLUSION
Overall, we have implemented an application that uses
eye movement and finger gestures as user input. We
have demonstrated that these two input types in con-
currence is feasible as modern machine learning tech-
niques have allowed for real time accurate eye position

Figure 6: Deriving the new coordinates of the en-
emy ships in first-person view

predictions. Future work involves expanding the do-
main interest beyond a fast paced application such as a
game, as we have personally found concentrating on
the game and eye movements in a quick manner can
be quite difficult.

REFERENCES
[1] Amazon rekognition. https://aws.amazon.com/rekognition/

?blog-cards.sort-by=item.additionalFields.createdDate&
blog-cards.sort-order=desc. Retrieved September 27, 2021.

[2] dlib. http://dlib.net/python/index.html. Retrieved November
21, 2021.

[3] Opencv videocapture. https://docs.opencv.org/3.4/d8/dfe/
classcv_1_1VideoCapture.html. Retrieved November 21, 2021.

[4] Peripherals. Available at https://gaming.tobii.com/products/
peripherals/. Retrieved 30 September 2021.

[5] Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, and
Jonathan Huang. Long term temporal context for per-camera
object detection. CoRR, abs/1912.03538, 2019.

[6] W. Keith Edwards. 10-recognizers, Aug 2021.
[7] Andrea Ferracani, Marco Faustino, Gabriele Xavier Giannini,

Lea Landucci, and Alberto Del Bimbo. Natural experiences
in museums through virtual reality and voice commands. In
Proceedings of the 25th ACM International Conference on Mul-
timedia, MM ’17, page 1233–1234, New York, NY, USA, 2017.
Association for Computing Machinery.

[8] Jonas Goltz, Michael Grossberg, and Ronak Etemadpour. Ex-
ploring simple neural network architectures for eyemovement
classification. In Proceedings of the 11th ACM Symposium on
Eye Tracking Research amp; Applications, ETRA ’19, New York,
NY, USA, 2019. Association for Computing Machinery.

[9] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, and Kevin Murphy.
Speed/accuracy trade-offs for modern convolutional object
detectors. CoRR, abs/1611.10012, 2016.

[10] Anke Huckauf and Mario H. Urbina. Gazing with peyes: To-
wards a universal input for various applications. In Proceed-
ings of the 2008 Symposium on Eye Tracking Research amp;
Applications, ETRA ’08, page 51–54, New York, NY, USA, 2008.
Association for Computing Machinery.

https://github.com/farisdurrani/SpaceshipBattle
https://aws.amazon.com/rekognition/?blog-cards.sort-by=item.additionalFields.createdDate&blog-cards.sort-order=desc
https://aws.amazon.com/rekognition/?blog-cards.sort-by=item.additionalFields.createdDate&blog-cards.sort-order=desc
https://aws.amazon.com/rekognition/?blog-cards.sort-by=item.additionalFields.createdDate&blog-cards.sort-order=desc
http://dlib.net/python/index.html
https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
https://gaming.tobii.com/products/peripherals/
https://gaming.tobii.com/products/peripherals/


CS 6456, November 23, 2021, Atlanta, GA, USA, UI Faris Durrani and Rishabh Ghora

[11] T.E. Hutchinson, K.P. White, W.N. Martin, K.C. Reichert, and
L.A. Frey. Human-computer interaction using eye-gaze input.
IEEE Transactions on Systems,Man, and Cybernetics, 19(6):1527–
1534, 1989.

[12] Robert Jacob andKeith Karn. Eye Tracking in Human-Computer
Interaction and Usability Research: Ready to Deliver the Promises,
volume 2, pages 573–605. 01 2003.

[13] Moritz Kassner, William Patera, and Andreas Bulling. Pupil:
An open source platform for pervasive eye tracking andmobile
gaze-based interaction. CoRR, abs/1405.0006, 2014.

[14] A.E. Kaufman, A. Bandopadhay, and B.D. Shaviv. An eye
tracking computer user interface. In Proceedings of 1993 IEEE
Research Properties in Virtual Reality Symposium, pages 120–
121, 1993.

[15] Vahid Kazemi and Josephine Sullivan. One millisecond face
alignment with an ensemble of regression trees. 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages
1867–1874, 2014.

[16] Mohamed Khamis, Florian Alt, and Andreas Bulling. The
past, present, and future of gaze-enabled handheld mobile
devices: Survey and lessons learned. In Proceedings of the 20th
International Conference on Human-Computer Interaction with
Mobile Devices and Services, MobileHCI ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[17] Elizabeth S. Kim, Adam Naples, Giuliana Vaccarino Gearty,
Quan Wang, Seth Wallace, Carla Wall, Jennifer Kowitt, Linda
Friedlaender, Brian Reichow, Fred Volkmar, Frederick Shic, and
Michael Perlmutter. Development of an untethered, mobile,
low-cost head-mounted eye tracker. In Proceedings of the
Symposium on Eye Tracking Research and Applications, ETRA
’14, page 247–250, New York, NY, USA, 2014. Association for
Computing Machinery.

[18] Aleksandra Królak and Paweł Strumiłło. Eye-blink detection
system for human–computer interaction. Universal Access in
the Information Society, 11(4):409–419, November 2012.

[19] AndrewKurauchi,Wenxin Feng, Ajjen Joshi, CarlosMorimoto,
and Margrit Betke. Eyeswipe: Dwell-free text entry using gaze
paths. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, page 1952–1956, New
York, NY, USA, 2016. Association for Computing Machinery.

[20] Min Lin and Bin Li. A wireless eog-based human computer
interface. In 2010 3rd International Conference on Biomedical
Engineering and Informatics, volume 5, pages 1794–1796, 2010.

[21] Robert Gabriel Lupu, Radu Gabriel Bozomitu, Alexandru
Păsărică, and Cristian Rotariu. Eye tracking user interface for
internet access used in assistive technology. In 2017 E-Health
and Bioengineering Conference (EHB), pages 659–662, 2017.

[22] Päivi Majaranta and Kari-Jouko Räihä. Twenty years of eye
typing: Systems and design issues. In Proceedings of the 2002
Symposium on Eye Tracking Research amp; Applications, ETRA
’02, page 15–22, New York, NY, USA, 2002. Association for
Computing Machinery.

[23] Hughes Perreault, Guillaume-Alexandre Bilodeau, Nicolas
Saunier, and Maguelonne Héritier. Ffavod: Feature fusion
architecture for video object detection, 2021.

[24] Ken Pfeuffer, Jason Alexander, Ming Ki Chong, and Hans
Gellersen. Gaze-touch: Combining gaze with multi-touch
for interaction on the same surface. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’14, page 509–518, New York, NY, USA, 2014.
Association for Computing Machinery.

[25] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time object
detection. CoRR, abs/1506.02640, 2015.

[26] Sheikh Rivu, Yasmeen Abdrabou, Thomas Mayer, Ken Pfeuffer,
and Florian Alt. Gazebutton: Enhancing buttons with eye gaze
interactions. In Proceedings of the 11th ACM Symposium on
Eye Tracking Research amp; Applications, ETRA ’19, New York,
NY, USA, 2019. Association for Computing Machinery.

[27] Helmut Schrom-Feiertag, Volker Settgast, and Stefan Seer.
Evaluation of indoor guidance systems using eye tracking
in an immersive virtual environment. Spatial Cognition &
Computation, 17(1-2):163–183, 2017.

[28] Shneiderman. Direct manipulation: A step beyond program-
ming languages. Computer, 16(8):57–69, 1983.

[29] Sophie Stellmach and Raimund Dachselt. Look amp; touch:
Gaze-supported target acquisition. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, page 2981–2990, New York, NY, USA, 2012. Associa-
tion for Computing Machinery.

[30] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet:
Scalable and efficient object detection. CoRR, abs/1911.09070,
2019.

[31] Outi Tuisku, Päivi Majaranta, Poika Isokoski, and Kari-Jouko
Räihä. Now dasher! dash away!: longitudinal study of fast text
entry by eye gaze. In ETRA ’08, 2008.

[32] Jayson Turner, Jason Alexander, Andreas Bulling, and Hans
Gellersen. Gaze+rst: Integrating gaze and multitouch for re-
mote rotate-scale-translate tasks. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI ’15, page 4179–4188, New York, NY, USA, 2015.
Association for Computing Machinery.

[33] Jayson Turner, Andreas Bulling, Jason Alexander, and Hans
Gellersen. Cross-device gaze-supported point-to-point con-
tent transfer. In Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’14, page 19–26, New York,
NY, USA, 2014. Association for Computing Machinery.

[34] Jayson Turner, Andreas Bulling, and Hans Gellersen. Combin-
ing gaze with manual interaction to extend physical reach. In
Proceedings of the 1st International Workshop on Pervasive Eye
Tracking amp; Mobile Eye-Based Interaction, PETMEI ’11, page
33–36, New York, NY, USA, 2011. Association for Computing
Machinery.

[35] Mitsuho Yamada. Eye word processor (ewp) and peripheral
controller for the als patient. IEE Proceedings A (Physical
Science, Measurement and Instrumentation, Management and
Education, Reviews), 134:328–330(2), April 1987.

[36] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong
Wu. Object detection with deep learning: A review. CoRR,
abs/1807.05511, 2018.


	Abstract
	1 Introduction and Motivation
	2 Literature Review
	3 Proposed Solution
	4 Implementation
	4.1 Eye Tracking Input
	4.2 Eye Tracking for Ship Coordinates
	4.3 1-Finger Gestures
	4.4 4-Finger Gesture

	5 Conclusion
	References

